30 lines
656 B
Python
30 lines
656 B
Python
|
import numpy as np
|
||
|
|
||
|
class layer:
|
||
|
def __init__(self, neurons, activationFunction)
|
||
|
self.neurons = neurons
|
||
|
self.activationFunction = activationFunction
|
||
|
|
||
|
def process(_input, __storeValues=False)
|
||
|
|
||
|
class dense(layer):
|
||
|
def process(_input, __storeValues=False):
|
||
|
|
||
|
_input = np.dot(layerWeights, _input)
|
||
|
_input = np.add(_input, layerBias)
|
||
|
|
||
|
if (__storeValues):
|
||
|
self.activation = _input
|
||
|
|
||
|
_input = self.activationFunction.applyTo(_input)
|
||
|
|
||
|
if (__storeValues):
|
||
|
self.output = _input
|
||
|
|
||
|
return _input
|
||
|
|
||
|
class convolution(layer):
|
||
|
pass
|
||
|
|
||
|
class flatten(layer):
|
||
|
pass
|