49 lines
1.4 KiB
Python
49 lines
1.4 KiB
Python
|
import numpy as np
|
||
|
|
||
|
class network:
|
||
|
|
||
|
def __init__(self, inputLayerSize, *layerSizes):
|
||
|
self.weights = []
|
||
|
self.inputLayerSize = inputLayerSize
|
||
|
self.oldLayerSize = inputLayerSize
|
||
|
for layerSize in layerSizes:
|
||
|
self.weights.append( np.random.default_rng(42).random((self.oldLayerSize, layerSize)) )
|
||
|
self.oldLayerSize = layerSize
|
||
|
self.biases = [[0]*layerSize for layerSize in layerSizes]
|
||
|
self.weights = np.array(self.weights)
|
||
|
self.biases = np.array(self.biases)
|
||
|
|
||
|
def reLu(value):
|
||
|
return max(0, value)
|
||
|
|
||
|
def process(self, input):
|
||
|
if type(input) != np.ndarray:
|
||
|
print("non")
|
||
|
if input.size != self.inputLayerSize:
|
||
|
print("vite")
|
||
|
if input.dtype != np.float64:
|
||
|
print("aaa")
|
||
|
for layer, bias in zip(self.weights, self.biases):
|
||
|
print("---------------------")
|
||
|
print(input)
|
||
|
print(layer)
|
||
|
print(bias)
|
||
|
input = np.matmul(input, layer)
|
||
|
input = np.add(input, bias)
|
||
|
with np.nditer(input, op_flags=['readwrite']) as layer:
|
||
|
for neuron in layer:
|
||
|
neuron = network.reLu(neuron)
|
||
|
return input
|
||
|
|
||
|
|
||
|
test = network(16, 16, 8, 4)
|
||
|
|
||
|
for y in test.weights:
|
||
|
print(y, end="\n\n")
|
||
|
|
||
|
for y in test.biases:
|
||
|
print(y, end="\n\n")
|
||
|
|
||
|
print(network.reLu(8))
|
||
|
|
||
|
print(test.process(np.random.default_rng(42).random((16))))
|