privatisation
This commit is contained in:
parent
b844d10347
commit
75bc43d48f
@ -6,33 +6,36 @@ class network:
|
||||
if type(inputLayerSize) != int:
|
||||
raise TypeError("The input layer size must be an int!")
|
||||
|
||||
self.weights = []
|
||||
self.inputLayerSize = inputLayerSize
|
||||
self.oldLayerSize = inputLayerSize
|
||||
self.__weights = []
|
||||
self.__inputLayerSize = inputLayerSize
|
||||
oldLayerSize = inputLayerSize
|
||||
for layerSize in layerSizes:
|
||||
self.weights.append( np.random.default_rng(42).random((self.oldLayerSize, layerSize)) )
|
||||
self.oldLayerSize = layerSize
|
||||
self.biases = [[0]*layerSize for layerSize in layerSizes]
|
||||
self.weights = np.array(self.weights, dtype=object)
|
||||
self.biases = np.array(self.biases, dtype=object)
|
||||
self.__weights.append( np.random.default_rng(42).random((oldLayerSize, layerSize)) )
|
||||
oldLayerSize = layerSize
|
||||
self.__biases = [[0]*layerSize for layerSize in layerSizes]
|
||||
self.__weights = np.array(self.__weights, dtype=object)
|
||||
self.__biases = np.array(self.__biases, dtype=object)
|
||||
|
||||
def reLu(value):
|
||||
def __reLu(value):
|
||||
return max(0, value)
|
||||
|
||||
def process(self, input):
|
||||
if type(input) != np.ndarray:
|
||||
raise TypeError("The input must be a vector!")
|
||||
if input.size != self.inputLayerSize:
|
||||
if input.size != self.__inputLayerSize:
|
||||
raise ValueError("The input vector has the wrong size!")
|
||||
if input.dtype != np.float64:
|
||||
raise TypeError("The input vector must contain floats!")
|
||||
|
||||
for layerWeights, bias in zip(self.weights, self.biases):
|
||||
for layerWeights, bias in zip(self.__weights, self.__biases):
|
||||
input = np.matmul(input, layerWeights)
|
||||
input = np.add(input, bias)
|
||||
#reLu application
|
||||
with np.nditer(input, op_flags=['readwrite']) as layer:
|
||||
for neuron in layer:
|
||||
neuron = network.reLu(neuron)
|
||||
neuron = network.__reLu(neuron)
|
||||
|
||||
return input
|
||||
return input
|
||||
|
||||
def train(self, inputs, results):
|
||||
|
Loading…
Reference in New Issue
Block a user