Jalon 2 complete
This commit is contained in:
parent
83e220282c
commit
7733de01d2
BIN
MNIST30epoch
Normal file
BIN
MNIST30epoch
Normal file
Binary file not shown.
41
MNISTDrawingPrediction.py
Normal file
41
MNISTDrawingPrediction.py
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
import tkinter
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
|
from sobek.network import network
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class Sketchpad(tkinter.Canvas):
|
||||||
|
def __init__(self, parent, predictionLabel, **kwargs, ):
|
||||||
|
super().__init__(parent, **kwargs)
|
||||||
|
self.bind("<Button-3>", self.test)
|
||||||
|
self.bind("<B1-Motion>", self.add_line)
|
||||||
|
self.PILImage = Image.new("F", (560, 560), 100)
|
||||||
|
self.draw = ImageDraw.Draw(self.PILImage)
|
||||||
|
self.MNISTNN = network.networkFromFile("MNIST30epoch")
|
||||||
|
self.predictionLabel = predictionLabel
|
||||||
|
|
||||||
|
def add_line(self, event):
|
||||||
|
self.create_oval((event.x+32, event.y+32, event.x-32, event.y-32), fill="black")
|
||||||
|
self.draw.ellipse([event.x-32, event.y-32, event.x+32, event.y+32], fill="black")
|
||||||
|
smallerImage = self.PILImage.reduce(20)
|
||||||
|
imageAsArray = np.array(smallerImage.getdata())
|
||||||
|
imageAsArray = (100 - imageAsArray)/100
|
||||||
|
self.predictionLabel['text'] = ( "Predicted number : " + str(np.argmax(self.MNISTNN.process(imageAsArray))))
|
||||||
|
|
||||||
|
def test(self, event):
|
||||||
|
self.PILImage = Image.new("F", (560, 560), 100)
|
||||||
|
self.draw = ImageDraw.Draw(self.PILImage)
|
||||||
|
self.delete("all")
|
||||||
|
|
||||||
|
window = tkinter.Tk()
|
||||||
|
window.title("Number guesser")
|
||||||
|
window.resizable(False, False)
|
||||||
|
window.columnconfigure(0, weight=1)
|
||||||
|
window.rowconfigure(0, weight=1)
|
||||||
|
|
||||||
|
predictionLabel = tkinter.Label(window, text="Predicted number :")
|
||||||
|
|
||||||
|
sketch = Sketchpad(window, predictionLabel, width=560, height=560)
|
||||||
|
sketch.grid(column=0, row=0, sticky=(tkinter.N, tkinter.W, tkinter.E, tkinter.S))
|
||||||
|
predictionLabel.grid(column=0, row=1)
|
||||||
|
|
||||||
|
window.mainloop()
|
57
MNISTLearning.py
Normal file
57
MNISTLearning.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
import numpy as np
|
||||||
|
from sobek.network import network
|
||||||
|
import gzip
|
||||||
|
import time
|
||||||
|
|
||||||
|
print("--- Data loading ---")
|
||||||
|
|
||||||
|
def getData(fileName):
|
||||||
|
with open(fileName, 'rb') as f:
|
||||||
|
data = f.read()
|
||||||
|
return np.frombuffer(gzip.decompress(data), dtype=np.uint8).copy()
|
||||||
|
|
||||||
|
|
||||||
|
tempTrainImages = getData("./MNIST/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 784)).tolist()
|
||||||
|
trainImages = []
|
||||||
|
for image in tempTrainImages:
|
||||||
|
for pixel in range(784):
|
||||||
|
if image[pixel] !=0:
|
||||||
|
image[pixel] = image[pixel]/256
|
||||||
|
trainImages.append(np.array(image, dtype=np.float64))
|
||||||
|
tempTrainLabels = getData("./MNIST/train-labels-idx1-ubyte.gz")[8:]
|
||||||
|
trainLabels = []
|
||||||
|
for label in tempTrainLabels:
|
||||||
|
trainLabels.append(np.zeros(10))
|
||||||
|
trainLabels[-1][label] = 1.0
|
||||||
|
|
||||||
|
myNetwork = network(784, 30, 10)
|
||||||
|
|
||||||
|
learningRate = 3.0
|
||||||
|
|
||||||
|
print("--- Learning ---")
|
||||||
|
|
||||||
|
startTime = time.perf_counter()
|
||||||
|
|
||||||
|
"""
|
||||||
|
for i in range(1):
|
||||||
|
print("Epoch: " + str(i))
|
||||||
|
batchEnd = 10
|
||||||
|
while batchEnd < 1000:
|
||||||
|
batchImages = trainImages[:batchEnd]
|
||||||
|
batchLabels = trainLabels[:batchEnd]
|
||||||
|
myNetwork.train(batchImages, batchLabels, learningRate)
|
||||||
|
batchEnd += 10
|
||||||
|
if (batchEnd%100) == 0:
|
||||||
|
print(batchEnd)
|
||||||
|
"""
|
||||||
|
|
||||||
|
myNetwork.train(trainImages, trainLabels, learningRate, 10, 30)
|
||||||
|
|
||||||
|
endTime = time.perf_counter()
|
||||||
|
|
||||||
|
print("Learning time : " + str(endTime - startTime))
|
||||||
|
|
||||||
|
print(trainLabels[121])
|
||||||
|
print(myNetwork.process(trainImages[121]))
|
||||||
|
|
||||||
|
myNetwork.saveToFile("MNIST30epoch")
|
30
MNISTLoadTest.py
Normal file
30
MNISTLoadTest.py
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
import numpy as np
|
||||||
|
from sobek.network import network
|
||||||
|
import gzip
|
||||||
|
|
||||||
|
print("--- Data loading ---")
|
||||||
|
|
||||||
|
def getData(fileName):
|
||||||
|
with open(fileName, 'rb') as f:
|
||||||
|
data = f.read()
|
||||||
|
return np.frombuffer(gzip.decompress(data), dtype=np.uint8).copy()
|
||||||
|
|
||||||
|
|
||||||
|
tempTrainImages = getData("./MNIST/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 784)).tolist()
|
||||||
|
trainImages = []
|
||||||
|
for image in tempTrainImages:
|
||||||
|
for pixel in range(784):
|
||||||
|
if image[pixel] !=0:
|
||||||
|
image[pixel] = image[pixel]/256
|
||||||
|
trainImages.append(np.array(image, dtype=np.float64))
|
||||||
|
tempTrainLabels = getData("./MNIST/t10k-labels-idx1-ubyte.gz")[8:]
|
||||||
|
trainLabels = []
|
||||||
|
for label in tempTrainLabels:
|
||||||
|
trainLabels.append(np.zeros(10))
|
||||||
|
trainLabels[-1][label] = 1.0
|
||||||
|
|
||||||
|
print("--- Testing ---")
|
||||||
|
|
||||||
|
myNetwork = network.networkFromFile("MNIST30epoch")
|
||||||
|
|
||||||
|
print(myNetwork.accuracy(trainImages, trainLabels))
|
112
sobek/network.py
112
sobek/network.py
@ -1,4 +1,8 @@
|
|||||||
|
import random
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.animation as animation
|
||||||
|
import pickle
|
||||||
|
|
||||||
class network:
|
class network:
|
||||||
|
|
||||||
@ -26,9 +30,9 @@ class network:
|
|||||||
|
|
||||||
def process(self, _input, __storeValues=False):
|
def process(self, _input, __storeValues=False):
|
||||||
if type(_input) != np.ndarray:
|
if type(_input) != np.ndarray:
|
||||||
raise TypeError("The input must be a vector!")
|
raise TypeError("The input must be a numpy array!")
|
||||||
if _input.size != self.__inputLayerSize:
|
if _input.size != self.__inputLayerSize:
|
||||||
raise ValueError("The input vector has the wrong size!")
|
raise ValueError("The input vector has the wrong size! " + str(_input.size) + " != " + str(self.__inputLayerSize))
|
||||||
if _input.dtype != np.float64:
|
if _input.dtype != np.float64:
|
||||||
print(_input.dtype)
|
print(_input.dtype)
|
||||||
raise TypeError("The input vector must contain floats!")
|
raise TypeError("The input vector must contain floats!")
|
||||||
@ -59,11 +63,48 @@ class network:
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def train(self, inputs, desiredOutputs, learningRate):
|
def train(self, inputs, desiredOutputs, learningRate, batchSize, epochs=1, visualize=False):
|
||||||
|
if (type(inputs) != list or type(desiredOutputs) != list):
|
||||||
|
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
||||||
if (len(inputs) != len(desiredOutputs)):
|
if (len(inputs) != len(desiredOutputs)):
|
||||||
raise ValueError("The inputs and desired outputs vectors must have the same amount of data !")
|
raise ValueError("The inputs and desired outputs lists must have the same amount of data ! " + str(len(inputs)) + " != " + str(len(desiredOutputs)))
|
||||||
|
if (len(inputs) == 0):
|
||||||
|
raise ValueError("The list is empty !")
|
||||||
|
if (visualize == False):
|
||||||
|
if (self.__inputLayerSize != 2):
|
||||||
|
raise ValueError("Visualization is only possible for 2 inputs networks")
|
||||||
|
if (len(self.weights[-1]) != 1):
|
||||||
|
raise ValueError("Visualization is only possible for 1 output networks")
|
||||||
|
|
||||||
for _input, desiredOutput in zip(inputs, desiredOutputs):
|
errorSumsWeights = []
|
||||||
|
errorSumsBiases = []
|
||||||
|
|
||||||
|
if (visualize):
|
||||||
|
vizualisationData = []
|
||||||
|
fig, graph = plt.subplots()
|
||||||
|
|
||||||
|
for epoch in range(epochs):
|
||||||
|
randomState = random.getstate()
|
||||||
|
|
||||||
|
random.shuffle(inputs)
|
||||||
|
|
||||||
|
random.setstate(randomState)
|
||||||
|
|
||||||
|
random.shuffle(desiredOutputs)
|
||||||
|
|
||||||
|
if (visualize and epoch%10 == 0):
|
||||||
|
vizualisationFrame = np.empty((30, 30))
|
||||||
|
for x in range(30):
|
||||||
|
for y in range(30):
|
||||||
|
vizualisationFrame[x][y] = self.process(np.array([float(x), float(y)]))
|
||||||
|
vizualisationData.append([graph.imshow(vizualisationFrame, animated=True)])
|
||||||
|
|
||||||
|
inputBatches = [inputs[j:j+batchSize] for j in range(0, len(inputs), batchSize)]
|
||||||
|
desiredOutputsBatches = [desiredOutputs[j:j+batchSize] for j in range(0, len(inputs), batchSize)]
|
||||||
|
|
||||||
|
for inputBatch, desiredOutputsBatch in zip(inputBatches, desiredOutputsBatches):
|
||||||
|
|
||||||
|
for _input, desiredOutput in zip(inputBatch, desiredOutputsBatch):
|
||||||
|
|
||||||
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
|
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
|
||||||
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
|
||||||
@ -73,44 +114,49 @@ class network:
|
|||||||
self.process(_input, True)
|
self.process(_input, True)
|
||||||
self.__desiredOutput = desiredOutput
|
self.__desiredOutput = desiredOutput
|
||||||
|
|
||||||
#Somme de matrice ?
|
#A optimiser
|
||||||
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
|
||||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||||
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
|
||||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
#for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||||
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
|
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
|
||||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
|
||||||
|
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsBiases[layerNumber][neuronNumber] * self.outputs[layerNumber][weightNumber]
|
||||||
|
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
|
||||||
|
|
||||||
total = 0
|
total = 0
|
||||||
|
|
||||||
|
for layerNumber in range(len(errorSumsWeights)):
|
||||||
|
errorSumsWeights[layerNumber] = np.multiply(errorSumsWeights[layerNumber], -(learningRate/len(inputBatch)))
|
||||||
|
self.weights[layerNumber] = np.add(self.weights[layerNumber], errorSumsWeights[layerNumber])
|
||||||
|
|
||||||
errorSumsWeights = np.multiply(errorSumsWeights, -(learningRate/len(inputs)))
|
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
|
||||||
self.weights = np.add(self.weights, errorSumsWeights)
|
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
|
||||||
|
|
||||||
errorSumsBiases = np.multiply(errorSumsBiases, -(learningRate/len(inputs)))
|
|
||||||
self.biases = np.add(self.biases, errorSumsBiases)
|
|
||||||
|
|
||||||
#print(self.__biases)
|
#print(self.__biases)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
for layerNumber in range(len(errorSumsWeights)):
|
for layerNumber in range(len(errorSumsWeights)):
|
||||||
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
|
||||||
|
|
||||||
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputs)
|
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputBatch)
|
||||||
total += errorSumsBiases[layerNumber][neuronNumber]
|
total += errorSumsBiases[layerNumber][neuronNumber]
|
||||||
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
|
||||||
|
|
||||||
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
|
||||||
|
|
||||||
#Probablement faisable avec une multiplication de matrices
|
#Probablement faisable avec une multiplication de matrices
|
||||||
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputs)
|
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputBatch)
|
||||||
|
|
||||||
total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
#total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||||
|
|
||||||
#Probablement faisable avec une somme de matrices
|
#Probablement faisable avec une somme de matrices
|
||||||
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
|
||||||
|
|
||||||
#print("Error : " + str(total))"""
|
#print("Error : " + str(total))"""
|
||||||
|
if (visualize):
|
||||||
|
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
def __Error(self, layer, neuron):
|
def __Error(self, layer, neuron):
|
||||||
if (self.__errors[layer][neuron] == 0 ):
|
if (self.__errors[layer][neuron] == 0 ):
|
||||||
@ -122,20 +168,38 @@ class network:
|
|||||||
|
|
||||||
def __ErrorHiddenLayer(self, layer, neuron):
|
def __ErrorHiddenLayer(self, layer, neuron):
|
||||||
upperLayerLinksSum = 0
|
upperLayerLinksSum = 0
|
||||||
#Probablement faisable avec une multiplication de matrices
|
|
||||||
for upperLayerNeuron in range(len(self.weights[layer+1])):
|
for upperLayerNeuron in range(len(self.weights[layer+1])):
|
||||||
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
|
||||||
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
|
||||||
|
|
||||||
def __PartialDerivative(self, layer, neuron, weight):
|
#def __PartialDerivative(self, layer, neuron, weight):
|
||||||
return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
# return self.__Error(layer, neuron) * self.outputs[layer][weight]
|
||||||
|
|
||||||
|
def accuracy(self, inputs, desiredOutputs):
|
||||||
|
if (type(inputs) != list or type(desiredOutputs) != list):
|
||||||
|
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
|
||||||
|
if (len(inputs) != len(desiredOutputs)):
|
||||||
|
raise ValueError("The inputs and desired outputs lists must have the same amount of data !")
|
||||||
|
if (len(inputs) == 0):
|
||||||
|
raise ValueError("The list is empty !")
|
||||||
|
sum = 0
|
||||||
|
for i in range(len(desiredOutputs)):
|
||||||
|
if (np.argmax(desiredOutputs[i]) == np.argmax(self.process(inputs[i]))):
|
||||||
|
sum += 1
|
||||||
|
return sum/len(desiredOutputs)
|
||||||
|
|
||||||
|
|
||||||
def saveToFile(self, fileName):
|
def saveToFile(self, fileName):
|
||||||
np.savez(fileName, biases=self.biases, weights=self.weights)
|
with open(fileName, "wb") as file:
|
||||||
|
pickle.dump(self, file)
|
||||||
|
|
||||||
def loadFromFile(self, fileName):
|
def loadFromFile(self, fileName):
|
||||||
data = np.load(fileName)
|
with open(fileName, "rb") as file:
|
||||||
self.biases = data['biases']
|
fromNetwork = pickle.load(file)
|
||||||
self.weights = data['weights']
|
self.weights = fromNetwork.weights
|
||||||
|
self.biases = fromNetwork.biases
|
||||||
|
self.__inputLayerSize = fromNetwork.__inputLayerSize
|
||||||
|
|
||||||
|
def networkFromFile(fileName):
|
||||||
|
with open(fileName, "rb") as file:
|
||||||
|
return pickle.load(file)
|
@ -8,7 +8,7 @@ myNetwork = network(10, 10)
|
|||||||
|
|
||||||
learningRate = 3
|
learningRate = 3
|
||||||
|
|
||||||
for j in range(10000):
|
for j in range(1000):
|
||||||
rand = []
|
rand = []
|
||||||
inputs = []
|
inputs = []
|
||||||
desiredOutputs = []
|
desiredOutputs = []
|
||||||
@ -36,4 +36,13 @@ test[0][1] = 1.0
|
|||||||
test[1][5] = 1.0
|
test[1][5] = 1.0
|
||||||
print(test[0])
|
print(test[0])
|
||||||
print(myNetwork.process(test[0]))
|
print(myNetwork.process(test[0]))
|
||||||
|
print(test[1])
|
||||||
print(myNetwork.process(test[1]))
|
print(myNetwork.process(test[1]))
|
||||||
|
|
||||||
|
print("Save and load test :")
|
||||||
|
|
||||||
|
myNetwork.saveToFile("test")
|
||||||
|
|
||||||
|
myNetwork2 = network.networkFromFile("test")
|
||||||
|
|
||||||
|
print(myNetwork.process(test[0]).all() == myNetwork2.process(test[0]).all())
|
@ -1,10 +1,11 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
from sobek.network import network
|
from sobek.network import network
|
||||||
|
import time
|
||||||
|
|
||||||
random.seed()
|
random.seed()
|
||||||
|
|
||||||
myNetwork = network(2, 1)
|
myNetwork = network(2, 2, 1)
|
||||||
|
|
||||||
learningRate = 3
|
learningRate = 3
|
||||||
|
|
||||||
@ -23,23 +24,29 @@ result.append(np.ones(1))
|
|||||||
result.append(np.ones(1))
|
result.append(np.ones(1))
|
||||||
result.append(np.zeros(1))
|
result.append(np.zeros(1))
|
||||||
|
|
||||||
for j in range(10000):
|
learningTime = 0
|
||||||
inputs = []
|
|
||||||
desiredOutputs = []
|
|
||||||
|
|
||||||
if (j%1000 == 0):
|
nbRep = 1
|
||||||
print(j)
|
|
||||||
|
|
||||||
random.shuffle(test)
|
for i in range(nbRep):
|
||||||
|
if (i%(nbRep/10) == 0): print(i)
|
||||||
|
|
||||||
for i in range(4):
|
startTime = time.perf_counter()
|
||||||
if (test[i][0] == 1.0) and (test[i][1] == 1.0):
|
|
||||||
result[i][0] = 0.0
|
|
||||||
else:
|
|
||||||
result[i][0] = 1.0
|
|
||||||
|
|
||||||
myNetwork.train(test, result, learningRate)
|
#for j in range(10000):
|
||||||
|
# inputs = []
|
||||||
|
# desiredOutputs = []
|
||||||
|
|
||||||
|
#if (j%1000 == 0):
|
||||||
|
# print(j)
|
||||||
|
|
||||||
|
# myNetwork.train(test, result, learningRate)
|
||||||
|
|
||||||
|
myNetwork.train(test, result, learningRate, len(test), 10000, visualize=False)
|
||||||
|
|
||||||
|
endTime = time.perf_counter()
|
||||||
|
learningTime += endTime - startTime
|
||||||
|
learningTime = learningTime / nbRep
|
||||||
test = []
|
test = []
|
||||||
result = []
|
result = []
|
||||||
test.append(np.zeros(2))
|
test.append(np.zeros(2))
|
||||||
@ -55,9 +62,13 @@ result.append(np.ones(1))
|
|||||||
result.append(np.ones(1))
|
result.append(np.ones(1))
|
||||||
result.append(np.zeros(1))
|
result.append(np.zeros(1))
|
||||||
|
|
||||||
print(myNetwork.weights)
|
#print(myNetwork.weights)
|
||||||
print(myNetwork.biases)
|
#print(myNetwork.biases)
|
||||||
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
|
||||||
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
|
||||||
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
|
||||||
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
|
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
|
||||||
|
|
||||||
|
myNetwork.saveToFile("NAND")
|
||||||
|
|
||||||
|
print("Learning time : " + str(endTime - startTime))
|
Loading…
Reference in New Issue
Block a user