legere corrections

This commit is contained in:
eynard 2021-12-03 15:10:27 +01:00
parent 47e31258cf
commit b844d10347
3 changed files with 28 additions and 25 deletions

0
sobek/__init.py__ Normal file
View File

View File

@ -3,6 +3,9 @@ import numpy as np
class network:
def __init__(self, inputLayerSize, *layerSizes):
if type(inputLayerSize) != int:
raise TypeError("The input layer size must be an int!")
self.weights = []
self.inputLayerSize = inputLayerSize
self.oldLayerSize = inputLayerSize
@ -10,40 +13,26 @@ class network:
self.weights.append( np.random.default_rng(42).random((self.oldLayerSize, layerSize)) )
self.oldLayerSize = layerSize
self.biases = [[0]*layerSize for layerSize in layerSizes]
self.weights = np.array(self.weights)
self.biases = np.array(self.biases)
self.weights = np.array(self.weights, dtype=object)
self.biases = np.array(self.biases, dtype=object)
def reLu(value):
return max(0, value)
def process(self, input):
if type(input) != np.ndarray:
print("non")
raise TypeError("The input must be a vector!")
if input.size != self.inputLayerSize:
print("vite")
raise ValueError("The input vector has the wrong size!")
if input.dtype != np.float64:
print("aaa")
for layer, bias in zip(self.weights, self.biases):
print("---------------------")
print(input)
print(layer)
print(bias)
input = np.matmul(input, layer)
raise TypeError("The input vector must contain floats!")
for layerWeights, bias in zip(self.weights, self.biases):
input = np.matmul(input, layerWeights)
input = np.add(input, bias)
#reLu application
with np.nditer(input, op_flags=['readwrite']) as layer:
for neuron in layer:
neuron = network.reLu(neuron)
return input
test = network(16, 16, 8, 4)
for y in test.weights:
print(y, end="\n\n")
for y in test.biases:
print(y, end="\n\n")
print(network.reLu(8))
print(test.process(np.random.default_rng(42).random((16))))

14
test.py Normal file
View File

@ -0,0 +1,14 @@
import numpy as np
from sobek.network import network
test = network(16, 16, 8, 4)
"""
for y in test.weights:
print(y, end="\n\n")
for y in test.biases:
print(y, end="\n\n")"""
print(network.reLu(8))
print(test.process(np.random.default_rng(42).random((16))))