debut model

This commit is contained in:
eynard 2022-01-11 10:35:01 +01:00
parent 58d2d70f2b
commit c66c0ae87a

View File

@ -115,6 +115,7 @@ class network:
for layerNumber in range(len(errorSumsWeights)-1, -1, -1): for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
for neuronNumber in range(len(errorSumsWeights[layerNumber])): for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber) errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
#eventuellemtn sortir de boucle
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber]) errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
total = 0 total = 0
@ -179,4 +180,17 @@ class network:
def networkFromFile(fileName): def networkFromFile(fileName):
with open(fileName, "rb") as file: with open(fileName, "rb") as file:
return pickle.load(file) return pickle.load(file)
class model:
def __init__(self, inputWidth, inputHeight, inputChannels):
self.inputWidth = inputWidth
self.inputHeight = inputHeight
self.inputChannels = inputChannels
self.layers = []
def add(layerType, activation):