import numpy as np class layer: def __init__(self, neurons, activationFunction) self.neurons = neurons self.activationFunction = activationFunction def process(_input, __storeValues=False) class dense(layer): def process(_input, __storeValues=False): _input = np.dot(layerWeights, _input) _input = np.add(_input, layerBias) if (__storeValues): self.activation = _input _input = self.activationFunction.applyTo(_input) if (__storeValues): self.output = _input return _input class convolution(layer): pass class flatten(layer): pass