PT21-22-Reseau-Neurones/sobek/network.py
2021-12-15 22:18:03 +01:00

95 lines
4.3 KiB
Python
Executable File

import numpy as np
class network:
def __init__(self, inputLayerSize, *layerSizes):
if type(inputLayerSize) != int:
raise TypeError("The input layer size must be an int!")
self.__weights = []
self.__inputLayerSize = inputLayerSize
oldLayerSize = inputLayerSize
for layerSize in layerSizes:
self.__weights.append( np.random.default_rng(42).random((oldLayerSize, layerSize)) )
oldLayerSize = layerSize
self.__biases = [[0]*layerSize for layerSize in layerSizes]
self.__weights = np.array(self.__weights, dtype=object)
self.__biases = np.array(self.__biases, dtype=object)
def __reLu(value, derivative=False):
if (derivative):
return 0 if (value == 0) else 1
return max(0, value)
def __sigmoid(value, derivative=False):
if (derivative):
return network.__sigmoid(value) * (1 - network.__sigmoid(value))
return 1/(1+np.exp(-value))
def process(self, _input, __storeValues=False):
if type(_input) != np.ndarray:
raise TypeError("The input must be a vector!")
if _input.size != self.__inputLayerSize:
raise ValueError("The input vector has the wrong size!")
#if _input.dtype != np.float64:
# raise TypeError("The input vector must contain floats!")
if (__storeValues):
self.activations = np.array([])
self.outputs = np.array([])
for layerWeights, bias in zip(self.__weights, self.__biases):
_input = np.matmul(_input, layerWeights)
_input = np.add(_input, bias)
if (__storeValues):
print("-------------------")
print(bias)
print("-------------------")
self.activations = np.append(self.activations, _input)
self.activations[len(self.activations)-1] = np.insert(self.activations[len(self.activations)-1], 0, bias)
#reLu application
with np.nditer(_input, op_flags=['readwrite'], flags=['refs_ok']) as layer:
for neuron in layer:
neuron = network.__reLu(neuron)
#On peut comparer la performance si on recalcul plus tard
if (__storeValues):
self.outputs = np.append(self.outputs, _input)
self.outputs[len(self.outputs)-1] = np.insert(self.outputs[len(self.outputs)-1], 0, 1)
return _input
def train(self, inputs, desiredOutputs, learningRate):
ErrorSums = [[0]*(len(layer)+1) for layer in self.__biases]
for _input, desiredOutput in zip(inputs, desiredOutputs):
self.__output = self.process(_input, True)
self.__desiredOutput = desiredOutput
for layerNumber in range(len(ErrorSums)-1, -1, -1):
ErrorSums[layerNumber][0] += self.__partialDerivative(layerNumber, 0)
for neuronNumber in range(1, len(ErrorSums[layerNumber])):
print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber))
ErrorSums[layerNumber][neuronNumber] += self.__partialDerivative(layerNumber, neuronNumber)
for i in range(len(ErrorSums)):
for j in range(len(ErrorSums[i])):
ErrorSums[i][j] = 1 / ErrorSums[i][j]
self.__biases[i, j] -= learningRate * ErrorSums[i][j]
def __Error(self, layer, neuron):
return self.__ErrorFinalLayer(neuron) if (layer == len(self.__weights)-1) else self.__ErrorHiddenLayer(layer, neuron)
def __ErrorFinalLayer(self, neuron):
print(self.activations)
return network.__reLu(self.activations[len(self.activations)-1][neuron], True) * (self.__output[neuron] - self.__desiredOutput[neuron])
def __ErrorHiddenLayer(self, layer, neuron):
upperLayerLinksSum = 0
for upperLayerNeuron in range(len(self.__weights[layer+1]-1)):
#A comparer avec un acces direct au erreurs precalcules
upperLayerLinksSum += self.__weights[layer+1][upperLayerNeuron][neuron] * self.__Error(layer+1, neuron)
return network.__reLu(self.activations[layer][neuron], True) * upperLayerLinksSum
def __partialDerivative(self, layer, neuron):
return self.__Error(layer, neuron) * self.outputs[layer][neuron]