PT21-22-Reseau-Neurones/sobek/network.py

79 lines
3.1 KiB
Python
Executable File

import numpy as np
class network:
def __init__(self, inputLayerSize, *layerSizes):
if type(inputLayerSize) != int:
raise TypeError("The input layer size must be an int!")
self.__weights = []
self.__inputLayerSize = inputLayerSize
oldLayerSize = inputLayerSize
for layerSize in layerSizes:
self.__weights.append( np.random.default_rng(42).random((oldLayerSize, layerSize)) )
oldLayerSize = layerSize
self.__biases = [[0]*layerSize for layerSize in layerSizes]
self.__weights = np.array(self.__weights, dtype=object)
self.__biases = np.array(self.__biases, dtype=object)
def __reLu(value, derivative=False):
if (derivative):
return 0 if (value == 0) else 1
return max(0, value)
def __sigmoid(value, derivative=False):
if (derivative):
return network.__sigmoid(value) * (1 - network.__sigmoid(value))
return 1/(1+np.exp(-value))
def process(self, input, storeValues=False):
if type(input) != np.ndarray:
raise TypeError("The input must be a vector!")
if input.size != self.__inputLayerSize:
raise ValueError("The input vector has the wrong size!")
if input.dtype != np.float64:
raise TypeError("The input vector must contain floats!")
if (storeValues):
self.activations = []
self.outputs = []
for layerWeights, bias in zip(self.__weights, self.__biases):
input = np.matmul(input, layerWeights)
input = np.add(input, bias)
if (storeValues):
self.activations.append(input)
#reLu application
with np.nditer(input, op_flags=['readwrite']) as layer:
for neuron in layer:
neuron = network.__reLu(neuron)
#On peut comparer la performance si on recalcul plus tard
if (storeValues):
self.outputs.append(input)
return input
def train(self, inputs, desiredOutputs):
for input, desiredOutput in zip(inputs, desiredOutputs):
self.__output = self.process(input, True)
self.__desiredOutput = desiredOutput
#partialDerivatives
def __Error(self, layer, neuron):
return self.__ErrorFinalLayer(neuron) if (layer == 1) else self.__ErrorHiddenLayer(layer, neuron)
def __ErrorFinalLayer(self, neuron):
return network.__reLu(self.activations[len(self.activations)-1][neuron], True) * (self.__output[neuron] - self.__desiredOutput[neuron])
def __ErrorHiddenLayer(self, layer, neuron):
upperLayerLinksSum = 0
for upperLayerNeuron in range(len(self.__weights[layer+1]-1)):
#A comparer avec un acces direct au erreurs precalcules
upperLayerLinksSum += self.__weights[layer+1][upperLayerNeuron][neuron] * self.__Error(layer+1, neuron)
return network.__reLu(self.activations[layer][neuron], True) * upperLayerLinksSum
def __partialDerivative(self, layer, neuron):
return self.__Error(layer, neuron) * self.outputs[layer][neuron]