parcoursup/node_modules/recast/lib/fast-path.js

528 lines
19 KiB
JavaScript
Raw Normal View History

2023-03-05 13:23:23 +01:00
"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
var tslib_1 = require("tslib");
var assert_1 = tslib_1.__importDefault(require("assert"));
var types = tslib_1.__importStar(require("ast-types"));
var util = tslib_1.__importStar(require("./util"));
var n = types.namedTypes;
var isArray = types.builtInTypes.array;
var isNumber = types.builtInTypes.number;
var PRECEDENCE = {};
[
["||"],
["&&"],
["|"],
["^"],
["&"],
["==", "===", "!=", "!=="],
["<", ">", "<=", ">=", "in", "instanceof"],
[">>", "<<", ">>>"],
["+", "-"],
["*", "/", "%"],
["**"],
].forEach(function (tier, i) {
tier.forEach(function (op) {
PRECEDENCE[op] = i;
});
});
var FastPath = function FastPath(value) {
assert_1.default.ok(this instanceof FastPath);
this.stack = [value];
};
var FPp = FastPath.prototype;
// Static convenience function for coercing a value to a FastPath.
FastPath.from = function (obj) {
if (obj instanceof FastPath) {
// Return a defensive copy of any existing FastPath instances.
return obj.copy();
}
if (obj instanceof types.NodePath) {
// For backwards compatibility, unroll NodePath instances into
// lightweight FastPath [..., name, value] stacks.
var copy = Object.create(FastPath.prototype);
var stack = [obj.value];
for (var pp = void 0; (pp = obj.parentPath); obj = pp)
stack.push(obj.name, pp.value);
copy.stack = stack.reverse();
return copy;
}
// Otherwise use obj as the value of the new FastPath instance.
return new FastPath(obj);
};
FPp.copy = function copy() {
var copy = Object.create(FastPath.prototype);
copy.stack = this.stack.slice(0);
return copy;
};
// The name of the current property is always the penultimate element of
// this.stack, and always a String.
FPp.getName = function getName() {
var s = this.stack;
var len = s.length;
if (len > 1) {
return s[len - 2];
}
// Since the name is always a string, null is a safe sentinel value to
// return if we do not know the name of the (root) value.
return null;
};
// The value of the current property is always the final element of
// this.stack.
FPp.getValue = function getValue() {
var s = this.stack;
return s[s.length - 1];
};
FPp.valueIsDuplicate = function () {
var s = this.stack;
var valueIndex = s.length - 1;
return s.lastIndexOf(s[valueIndex], valueIndex - 1) >= 0;
};
function getNodeHelper(path, count) {
var s = path.stack;
for (var i = s.length - 1; i >= 0; i -= 2) {
var value = s[i];
if (n.Node.check(value) && --count < 0) {
return value;
}
}
return null;
}
FPp.getNode = function getNode(count) {
if (count === void 0) { count = 0; }
return getNodeHelper(this, ~~count);
};
FPp.getParentNode = function getParentNode(count) {
if (count === void 0) { count = 0; }
return getNodeHelper(this, ~~count + 1);
};
// The length of the stack can be either even or odd, depending on whether
// or not we have a name for the root value. The difference between the
// index of the root value and the index of the final value is always
// even, though, which allows us to return the root value in constant time
// (i.e. without iterating backwards through the stack).
FPp.getRootValue = function getRootValue() {
var s = this.stack;
if (s.length % 2 === 0) {
return s[1];
}
return s[0];
};
// Temporarily push properties named by string arguments given after the
// callback function onto this.stack, then call the callback with a
// reference to this (modified) FastPath object. Note that the stack will
// be restored to its original state after the callback is finished, so it
// is probably a mistake to retain a reference to the path.
FPp.call = function call(callback /*, name1, name2, ... */) {
var s = this.stack;
var origLen = s.length;
var value = s[origLen - 1];
var argc = arguments.length;
for (var i = 1; i < argc; ++i) {
var name = arguments[i];
value = value[name];
s.push(name, value);
}
var result = callback(this);
s.length = origLen;
return result;
};
// Similar to FastPath.prototype.call, except that the value obtained by
// accessing this.getValue()[name1][name2]... should be array-like. The
// callback will be called with a reference to this path object for each
// element of the array.
FPp.each = function each(callback /*, name1, name2, ... */) {
var s = this.stack;
var origLen = s.length;
var value = s[origLen - 1];
var argc = arguments.length;
for (var i = 1; i < argc; ++i) {
var name = arguments[i];
value = value[name];
s.push(name, value);
}
for (var i = 0; i < value.length; ++i) {
if (i in value) {
s.push(i, value[i]);
// If the callback needs to know the value of i, call
// path.getName(), assuming path is the parameter name.
callback(this);
s.length -= 2;
}
}
s.length = origLen;
};
// Similar to FastPath.prototype.each, except that the results of the
// callback function invocations are stored in an array and returned at
// the end of the iteration.
FPp.map = function map(callback /*, name1, name2, ... */) {
var s = this.stack;
var origLen = s.length;
var value = s[origLen - 1];
var argc = arguments.length;
for (var i = 1; i < argc; ++i) {
var name = arguments[i];
value = value[name];
s.push(name, value);
}
var result = new Array(value.length);
for (var i = 0; i < value.length; ++i) {
if (i in value) {
s.push(i, value[i]);
result[i] = callback(this, i);
s.length -= 2;
}
}
s.length = origLen;
return result;
};
// Returns true if the node at the tip of the path is wrapped with
// parentheses, OR if the only reason the node needed parentheses was that
// it couldn't be the first expression in the enclosing statement (see
// FastPath#canBeFirstInStatement), and it has an opening `(` character.
// For example, the FunctionExpression in `(function(){}())` appears to
// need parentheses only because it's the first expression in the AST, but
// since it happens to be preceded by a `(` (which is not apparent from
// the AST but can be determined using FastPath#getPrevToken), there is no
// ambiguity about how to parse it, so it counts as having parentheses,
// even though it is not immediately followed by a `)`.
FPp.hasParens = function () {
var node = this.getNode();
var prevToken = this.getPrevToken(node);
if (!prevToken) {
return false;
}
var nextToken = this.getNextToken(node);
if (!nextToken) {
return false;
}
if (prevToken.value === "(") {
if (nextToken.value === ")") {
// If the node preceded by a `(` token and followed by a `)` token,
// then of course it has parentheses.
return true;
}
// If this is one of the few Expression types that can't come first in
// the enclosing statement because of parsing ambiguities (namely,
// FunctionExpression, ObjectExpression, and ClassExpression) and
// this.firstInStatement() returns true, and the node would not need
// parentheses in an expression context because this.needsParens(true)
// returns false, then it just needs an opening parenthesis to resolve
// the parsing ambiguity that made it appear to need parentheses.
var justNeedsOpeningParen = !this.canBeFirstInStatement() &&
this.firstInStatement() &&
!this.needsParens(true);
if (justNeedsOpeningParen) {
return true;
}
}
return false;
};
FPp.getPrevToken = function (node) {
node = node || this.getNode();
var loc = node && node.loc;
var tokens = loc && loc.tokens;
if (tokens && loc.start.token > 0) {
var token = tokens[loc.start.token - 1];
if (token) {
// Do not return tokens that fall outside the root subtree.
var rootLoc = this.getRootValue().loc;
if (util.comparePos(rootLoc.start, token.loc.start) <= 0) {
return token;
}
}
}
return null;
};
FPp.getNextToken = function (node) {
node = node || this.getNode();
var loc = node && node.loc;
var tokens = loc && loc.tokens;
if (tokens && loc.end.token < tokens.length) {
var token = tokens[loc.end.token];
if (token) {
// Do not return tokens that fall outside the root subtree.
var rootLoc = this.getRootValue().loc;
if (util.comparePos(token.loc.end, rootLoc.end) <= 0) {
return token;
}
}
}
return null;
};
// Inspired by require("ast-types").NodePath.prototype.needsParens, but
// more efficient because we're iterating backwards through a stack.
FPp.needsParens = function (assumeExpressionContext) {
var node = this.getNode();
// This needs to come before `if (!parent) { return false }` because
// an object destructuring assignment requires parens for
// correctness even when it's the topmost expression.
if (node.type === "AssignmentExpression" &&
node.left.type === "ObjectPattern") {
return true;
}
var parent = this.getParentNode();
if (!parent) {
return false;
}
var name = this.getName();
// If the value of this path is some child of a Node and not a Node
// itself, then it doesn't need parentheses. Only Node objects (in fact,
// only Expression nodes) need parentheses.
if (this.getValue() !== node) {
return false;
}
// Only statements don't need parentheses.
if (n.Statement.check(node)) {
return false;
}
// Identifiers never need parentheses.
if (node.type === "Identifier") {
return false;
}
if (parent.type === "ParenthesizedExpression" ||
(node.extra && node.extra.parenthesized)) {
return false;
}
switch (node.type) {
case "UnaryExpression":
case "SpreadElement":
case "SpreadProperty":
return (parent.type === "MemberExpression" &&
name === "object" &&
parent.object === node);
case "BinaryExpression":
case "LogicalExpression":
switch (parent.type) {
case "CallExpression":
return name === "callee" && parent.callee === node;
case "UnaryExpression":
case "SpreadElement":
case "SpreadProperty":
return true;
case "MemberExpression":
return name === "object" && parent.object === node;
case "BinaryExpression":
case "LogicalExpression": {
var po = parent.operator;
var pp = PRECEDENCE[po];
var no = node.operator;
var np = PRECEDENCE[no];
if (pp > np) {
return true;
}
if (pp === np && name === "right") {
assert_1.default.strictEqual(parent.right, node);
return true;
}
break;
}
default:
return false;
}
break;
case "SequenceExpression":
switch (parent.type) {
case "ReturnStatement":
return false;
case "ForStatement":
// Although parentheses wouldn't hurt around sequence expressions in
// the head of for loops, traditional style dictates that e.g. i++,
// j++ should not be wrapped with parentheses.
return false;
case "ExpressionStatement":
return name !== "expression";
default:
// Otherwise err on the side of overparenthesization, adding
// explicit exceptions above if this proves overzealous.
return true;
}
case "IntersectionTypeAnnotation":
case "UnionTypeAnnotation":
return parent.type === "NullableTypeAnnotation";
case "Literal":
return (parent.type === "MemberExpression" &&
isNumber.check(node.value) &&
name === "object" &&
parent.object === node);
// Babel 6 Literal split
case "NumericLiteral":
return (parent.type === "MemberExpression" &&
name === "object" &&
parent.object === node);
case "YieldExpression":
case "AwaitExpression":
case "AssignmentExpression":
case "ConditionalExpression":
switch (parent.type) {
case "UnaryExpression":
case "SpreadElement":
case "SpreadProperty":
case "BinaryExpression":
case "LogicalExpression":
return true;
case "CallExpression":
case "NewExpression":
return name === "callee" && parent.callee === node;
case "ConditionalExpression":
return name === "test" && parent.test === node;
case "MemberExpression":
return name === "object" && parent.object === node;
default:
return false;
}
case "ArrowFunctionExpression":
if (n.CallExpression.check(parent) &&
name === "callee" &&
parent.callee === node) {
return true;
}
if (n.MemberExpression.check(parent) &&
name === "object" &&
parent.object === node) {
return true;
}
if (n.TSAsExpression &&
n.TSAsExpression.check(parent) &&
name === "expression" &&
parent.expression === node) {
return true;
}
return isBinary(parent);
case "ObjectExpression":
if (parent.type === "ArrowFunctionExpression" &&
name === "body" &&
parent.body === node) {
return true;
}
break;
case "TSAsExpression":
if (parent.type === "ArrowFunctionExpression" &&
name === "body" &&
parent.body === node &&
node.expression.type === "ObjectExpression") {
return true;
}
break;
case "CallExpression":
if (name === "declaration" &&
n.ExportDefaultDeclaration.check(parent) &&
n.FunctionExpression.check(node.callee)) {
return true;
}
}
if (parent.type === "NewExpression" &&
name === "callee" &&
parent.callee === node) {
return containsCallExpression(node);
}
if (assumeExpressionContext !== true &&
!this.canBeFirstInStatement() &&
this.firstInStatement()) {
return true;
}
return false;
};
function isBinary(node) {
return n.BinaryExpression.check(node) || n.LogicalExpression.check(node);
}
// @ts-ignore 'isUnaryLike' is declared but its value is never read. [6133]
function isUnaryLike(node) {
return (n.UnaryExpression.check(node) ||
// I considered making SpreadElement and SpreadProperty subtypes of
// UnaryExpression, but they're not really Expression nodes.
(n.SpreadElement && n.SpreadElement.check(node)) ||
(n.SpreadProperty && n.SpreadProperty.check(node)));
}
function containsCallExpression(node) {
if (n.CallExpression.check(node)) {
return true;
}
if (isArray.check(node)) {
return node.some(containsCallExpression);
}
if (n.Node.check(node)) {
return types.someField(node, function (_name, child) {
return containsCallExpression(child);
});
}
return false;
}
FPp.canBeFirstInStatement = function () {
var node = this.getNode();
if (n.FunctionExpression.check(node)) {
return false;
}
if (n.ObjectExpression.check(node)) {
return false;
}
if (n.ClassExpression.check(node)) {
return false;
}
return true;
};
FPp.firstInStatement = function () {
var s = this.stack;
var parentName, parent;
var childName, child;
for (var i = s.length - 1; i >= 0; i -= 2) {
if (n.Node.check(s[i])) {
childName = parentName;
child = parent;
parentName = s[i - 1];
parent = s[i];
}
if (!parent || !child) {
continue;
}
if (n.BlockStatement.check(parent) &&
parentName === "body" &&
childName === 0) {
assert_1.default.strictEqual(parent.body[0], child);
return true;
}
if (n.ExpressionStatement.check(parent) && childName === "expression") {
assert_1.default.strictEqual(parent.expression, child);
return true;
}
if (n.AssignmentExpression.check(parent) && childName === "left") {
assert_1.default.strictEqual(parent.left, child);
return true;
}
if (n.ArrowFunctionExpression.check(parent) && childName === "body") {
assert_1.default.strictEqual(parent.body, child);
return true;
}
if (n.SequenceExpression.check(parent) &&
parentName === "expressions" &&
childName === 0) {
assert_1.default.strictEqual(parent.expressions[0], child);
continue;
}
if (n.CallExpression.check(parent) && childName === "callee") {
assert_1.default.strictEqual(parent.callee, child);
continue;
}
if (n.MemberExpression.check(parent) && childName === "object") {
assert_1.default.strictEqual(parent.object, child);
continue;
}
if (n.ConditionalExpression.check(parent) && childName === "test") {
assert_1.default.strictEqual(parent.test, child);
continue;
}
if (isBinary(parent) && childName === "left") {
assert_1.default.strictEqual(parent.left, child);
continue;
}
if (n.UnaryExpression.check(parent) &&
!parent.prefix &&
childName === "argument") {
assert_1.default.strictEqual(parent.argument, child);
continue;
}
return false;
}
return true;
};
exports.default = FastPath;