Sénart/ Fontainebleau

PLSQL

Maggie LEKPA

Une base de données est un ensemble de fichiers.

Les fichiers peuvent

> stockés des donneées structurées —> on parle de bases de données
relationnelles

> stockées des donneées non structurées - on parle de bases de données
NoSQL

Un langage unique pour interroger les bases de données structurées : SQL

Sénart/ Fontainebleau

SQL : Structured Query Langage - Langage structure de requéte

Le langage SQL est un langage declaratif et non un langage de
« programmation ». Il permet d’effectuer des requétes dans un langage simple.

Cependant, il ne permet pas de définir des fonctions ou des variables ou encore
d’effectuer une boucle...

Le traitement des données se fait au niveau de 1’application

Sénart/ Fontainebleau

SQL : Structured Query Langage
Langage structure de requéte

Comment ¢a se passe ?

Connexion + requéte SQL
Client LemTTT T T T T - Serveur
Code R)

. Donnees

~ -
N7

Traitement de la Données résultat de la requéte

données (boucle,
condition...)

Le traitement des données se passe au niveau de ’application cliente

Multiples connexion au serveur de données

Sénart/ Fontainebleau

Besoin d’un langage qui permettra de définir des fonctions, procédures
ou encore de faire des itérations...

> PL/SQL

Sénart / Fontainebleau

PL/SQL : Programming Langage / Structured Query Langage

PL/SQL est un langage procédural qui integre SQL. Il permet de définir un ensemble
de commandes contenues dans des blocs pl/sql;

: _ Serveur
Client Connexion + appel
"""""""""""" "Procédures stockées-fonctions (
Code traitement)
+ Résultat procédure
Appel procédure €T)
(blocs pl/sql) Donnees

Traitement des données se fait coté serveur. Volume de données réduit entre le client et
le serveur. Code PL/SQL portable

Sénart/ Fontainebleau

PL/SQL : Programming Langage / Structured Query Langage

Coté serveur :

» Blocs d’instructions anonymes et non persistants
» Procedures et fonctions : persistants

» Triggers : declencheurs sur DML-DDL-ERREUR
> Paquetages :persistants

Cote client :
Outils clients utilisant PL/SQL

Sénart/ Fontainebleau

» Blocs PL/SQL

> Types de donnees

> Structures de contrdle
» Exceptions

> Proceédures

» Fonctions

» Curseurs

> Triggers

» Package

» SQL dynamique

Sénart/ Fontainebleau

BLOCS PL/SQL

Un bloc PL/SQL est I’unité de programmation du PL/SQL

Deux types de blocs :
> Bloc anonyme : ensemble d’instructions qui s’exécute a 1I’endroit ou il existe.

> Bloc nomme : procedure ou une fonction, pouvant étre appelées autant de fois
gue necessaire.

Parties d’un bloc PL/SQL :

» Partie declarative (facultative): permet de declarer les variables et de les
initialiser; ne contient pas d’exécutable...

> Partie d’execution (obligatoire) : contient les instructions d’éxécution

> Partie de gestion des erreurs (facultative) : contient le code a executer en cas
d’erreur.

10

Sénart/ Fontainebleau

Structure d’un bloc

[<Entéte de bloc>] (valable pour les fonctions, procedures package)

[DECLARE
Constantes
,variables
,Cursors]
BEGIN

Instructions — partie d’exécution

EXCEPTION
gestion des erreurs

END;

Sénart / Fontainebleau

11

Exemple

-- Déclaration des variables

DECLARE v_variable VARCHAR(255):

-- Instructions a exécuter
BEGIN

DBMS_ OUTPUT.PUT_LINE(v variable); -- affiche le contenu de la variable

END;

4’i‘?’E’.§il1hledehmmnn:

20000

bienvenu au premier cours

Sénart / Fontainebleau

de ED

'‘bienvenu au premier cours de BD';

Les blocs PL/SQL peuvent étre imbriqués

[<Entéte de bloc>]
[DECLARE
BEGIN
DECLARE
BEGIN
DECLARE
BEGIN

END
END;

END;

Sénart / Fontainebleau

13

Exemple :

DECLARE v_premiere_variable VARCHAR(50):='premiere variable’;
BEGIN
DECLARE v_seconde_variable VARCHAR(50):='seconde variable';
BEGIN
DBMS OUTPUT.PUT_LINE(v_seconde_variable);
END;
DBMS_ OUTPUT.PUT_LINE(v_premiere_variable);
END;

‘3Sortie SGBD *

P & B 5, |1aile de tampon :[20000 ||

seconde wariable
premiére wariable

14

Sénart / Fontainebleau

Sénart/ Fontainebleau

TYPES DE DONNEES

15

» Types scalaires

= CHAR(taille) : chaine de caractere de longeur fixe, 2000 max
= VARCHARZ2(taille) : chaine de caractere de longeur variable (4000 max)
= NCHAR et NVARCHAR?2 : pour les caracteres unicode

= NUMBER: numérique positif et négatif. A pour sous type INT, SMALLINT,
REAL, DECIMAL

= DATE
= BOOLEAN: TRUE, FALSE

Sénart/ Fontainebleau

16

» Type implicite
Le type implicite fait reference a une entité déja existante.

%TYPE permet de faire reference a un type existant
%ROWTYPE permet de faire reference a la structure d’une table existante

Exemple :

Variable de méme type que la colonne Name de la table Etudiant
DECLARE V_variable Etudiant.Name%otype;

Variable faisant reference a une structure entiére d’une table
DECLARE V_Rec Employe%ROWTYPE

Sénart/ Fontainebleau

17

> Types définis par "utilisateur

Exemple :

DECLARE SUBTYPE Type Date IS DATE;
V _var Type Date;

BEGIN

SELECT sysdate INTO V_var FROM DUAL,;
DBMS OUTPUT.PUT _LINE(V var);

END;

06/09/23

Sénart / Fontainebleau

18

> Types définis par "utilisateur

Exemple :

DECLARE SUBTYPE type_varchar IS VARCHAR(100),

v_variable type varchar:='Faites le moi savoir si ¢a ne vous semble pas
clair;

BEGIN

DBMS _OUTPUT.PUT _LINE(v_ variable);

END;

o & B & | Taile de tampon :[20000 ||

Faites le moli savoir si ¢a ne vous semble pas clair

Sénart / Fontainebleau

19

Deux types composes : Record et Table

20

» Type RECORD : il permet de définir un enrégistrement

Syntaxe

DECLARE TYPE type record IS RECORD(champ1 typel, champ2 type2... champn typen);
DECLARE v_variable First_Record; -- declare une variable de type type record

BEGIN

--assigne des valeurs aux différents champs

v_variable.champl := valeur;

v_variable.champn:=valeur;

END;

Sénart/ Fontainebleau

21

Exemple :

DECLARE TYPE type record IS RECORD (nom varchar(50), age int);
v_variable type record;

BEGIN

v_variable.nom :='Maggie’,

v_variable.age:=90;
DBMS OUTPUT.PUT _LINE(v_variable.nom [|"est agée de ' || v_variable.age || 'ans’);
END;

Maggie est agée de 90 ans

Sénart / Fontainebleau

22

» Type Table

C’est un vecteur d’¢léments de méme type (scalaire ou record) accessible au moyen d’un
indice préalablement déclaré.

Syntaxe

DECLARE TYPE Nom_Type IS TABLE OF type_donnee [NOT NULL] INDEX BY
[BINARY_INTEGER | PLS_INTEGER |VARCHAR2(size limit)]

Exemple

DECLARE TYPE Type_Table IS TABLE OF VARCHAR2(50) INDEX BY BINARY _INTEGER;
First_Table Type Table ;

BEGIN

First_Table(l).:=‘Premiere Valeur’ ;

First_Table(2).=‘Seconde Valeur’ ;

DBMS_OUTPUT.PUT_LINE('First_Table(1) a pour valeur :' || First_Table(1) || ' et First_Table(2) a pour valeur :'
|| First_Table(2));

Sortie SGBD

END; & & B & | Taile de tampon :20000 ||

connectionl x

First_Table(l) a pour valeur :Premiére Valeur et First_Table(2) a pour valeur :Seconde Valeur

Sénart/ Fontainebleau

Manipulation du type compose TABLE

TableName.count : nombre d’éléments
TableName.Exists(i) = TRUE si i-ieme elément existe
TableName.First et TableName.Last : indice du premier et dernier élément si pas vide

TableName.next(i) et TableName.prior(i): renvoie 1’indice qui suit ou precede la ieme
case. Vaut null si elle est vide

TableName.delete : supprime tous les éléments
TableName.extend(p) : allonge la table de p éléments.

24

Sénart/ Fontainebleau

Exemple
DECLARE TYPE First_Table IS TABLE OF VARCHAR2(50) INDEX BY VARCHAR2(50);

V_First_Table First_Table;

BEGIN

V_First_Table(1):='Premiere Valeur’;
V_First_Table(2):='Seconde Valeur’;
V_First_Table(4):='Quatrieme Valeur’;
DBMS_OUTPUT.PUT_LINE(V_First_Table.count);
DBMS_OUTPUT.PUT_LINE(V_First_Table(4));
DBMS_OUTPUT.PUT_LINE(V_First_Table.next(2));
END;

Quatrieme Valeur
4

Sénart/ Fontainebleau

25

Constantes locales

Syntaxe :
DECLARE Nom_Variable [CONSTANT] type [NOT NULL]:=expression

Le mot cle CONSTANT permet de définir une constante; une initialization est obligatoire
et la valeur ne pourra étre changee.

Exemple :

DECLARE V _variablel VARCHAR2(5);

DECLARE V variable2 VARCHAR2(5):=‘OK’

DECLARE V_variable3 CONSTANT VARCHAR2(5):=‘0OK”’

26

Sénart/ Fontainebleau

Pensez a bien préfixer vos objects pour une bonne lisibilité :

Variables : V_Nom_Variable
Exception : E_Nom_EXxception
Curseur : C_Nom_Curseur
Parametre : P_Nom_Parametre

Sénart / Fontainebleau

27

» Conversion explicite
Utilisation des fonctions prédéfinies (TO NUMBER, TO CHAR, TO DATE...)

DECLARE V_number NUMBER(10,5) :=TO NUMBER(‘15,40);

» Conversion implicite

DECLARE V_number NUMBER(10,5) :=15,40" —conversion implicite de la chaine de caractére

I Conseillé de faire des conversions explicites

Sénart / Fontainebleau

28

« Commentaires multi-lignes

[* Je
Suis un commentaire
Multi-lignes*/

« Commentaire sur une ligne

-- Je suis un commentaire sur une ligne

29

Sénart / Fontainebleau

La table DUAL est une table d’une colonne et d’une ligne utilisée dans des
select qui ne nécessitent pas une clause FROM.

SELECT * FROM DUAL;

. 4
D> Résuitat de requéte X
A 5 W) B sou | Toutesles lignes extraites : 1en

{tmmv|

1X

I L’instruction SELECT doit toujours avoir une clause FROM en Oracle.

SELECT sysdate FROM DUAL;

ortie de script X [bnésutatdemu x
5,) &R soL | Toutes les lignes extraite:

{ SYSDATE |

1 05/12/22

30

Sénart / Fontainebleau

Une séquence est un objet utilisé pour générer un entier unique.
Elle permet de générer automatiquement des clés primaires.

Lorsqu’un entier est génere, la s€quence est incrémentée
automatiguement.

Une séquence peut étre utilisée pour plusieurs tables et par
plusieurs utilisateurs.

31

Sénart/ Fontainebleau

Syntaxe :

CREATE SEQUENCE sequence _name
[INCREMENTE BY interval] -- default value is 1
[START WITH first_number]

[MAXVALUE maxvalue | NOMAXVALUE]
[MINVALUE minvalue | NOMINVALUE]
[CYCLE | NOCYCLE]

[CACHE cache_size | NOCACHE]

[ORDER | NOORDER]

32

L’option CYCLE indigue si la séquence continue a générer des
valeurs apres avoir atteint ses bornes; si la borne maximale est
atteinte, la prochaine valeur qui sera générée sera la borne
minimale qui sera ensuite incrémentée d’ou le cycle.

L’option CACHE indique la taille de la memoire qui sera
allouée a la séquence en mémoire pour un acces rapide

33

Sénart/ Fontainebleau

SEQUENCE

Pseudo-column

NEXTVAL : permet d’obtenir la valeur suivante
CURRVAL : permet d’obtenir la valeur courante

Exemple :

CREATE SEQUENCE seq_test SQL> select seq_test.nextval from dual;
INCREMENT BY 2 NEXTVAL

START WITH 10

NOCYCLE

NOCACHE:; SQL> select seq_test.currval from dual;

CURRVAL

Sénart/ Fontainebleau

STRUCTURES DE CONTROLE

35

Instruction conditionnelle : permet de faire des tests
conditionnels

Exemple

IF condition THEN

ELSIF condition THEN]. Optionnelle
ELSIF condition THEN

ELSE séquence THEN - une seule et optionnelle
END IF;

Sénart/ Fontainebleau

36

Exemple

DECLARE V_nbre NUMBER:=2;

BEGIN IF V_nbre>=10
THEN DBMS_OUTPUT.PUT_LINE(Je suis une valeur supérieure
ou égale a 10');

ELSIF V_nbre<10 AND V_nbre>=0

THEN DBMS_OUTPUT.PUT_LINE("Je suis une valeur inférieure a
10 et supérieure ou égale a 0');

ELSE DBMS_OUTPUT.PUT_LINE('Je suis une valeur négative');
END IF,
END,

Sortie SGBD
% & B & Taile de tampon 20000 |

connectionl

Je suis une valeur inférieure & 10 et supérieure ou é&gale a 0

37

Sénart/ Fontainebleau

Structure case : Permet aussi de mettre en place
les tests conditionnels

Syntaxe :

Var

CASE Var
WHEN condionl1 sur Var THEN instructionl1;
WHEN condition2 sur Var THEN instruction2;

WHEN ConditionN sur Var THEN instructionN;
ELSE instruction
END CASE

38

Sénart/ Fontainebleau

Exemple

DECLARE V_nbre NUMBER:=13;

BEGIN

CASE V _nbre

WHEN 10 THEN DBMS_OUTPUT.PUT_LINE('je suis une valeur égale a
10');

WHEN 11 THEN DBMS_OUTPUT.PUT_LINE('je suis une valeur égale a
11');

ELSE DBMS_OUTPUT.PUT_LINE("Je suis une valeur différente de 10
et 11');

END CASE;
END,' Je suls une valeur differente de 10 et 11

Statement processed.

0,00 seconds 39

Sénart/ Fontainebleau

La boucle LOOP : permet de faire une boucle avec une condition
de sortie définit avec EXIT WHEN

Syntaxe :
LOOP

instruction
EXIT WHEN condition

END LOOP; @ & B & Talle de tampon :20000 ||

connection1 x]|

Sortie SGBD

1

Exemple 2

DECLARE V_nbre NUMBER=0, la condition de sortie a €té atteinte

BEGIN

LOOP

V_nbre:=V_nbre+1; DBMS_OUTPUT.PUT_LINE(V_nbre),

EXIT WHEN V_nbre=2;

END LOOP;

DBMS_OUTPUT.PUT_LINE('la condition de sortie a été atteinte');

iEND;
40

Sénart/ Fontainebleau

La boucle FOR : permet de faire une boucle avec une condition de
sortie définir au départ

Syntaxe :
FOR counter IN [REVERSE] borne_inf...borne_supérieure
LOOP

instruction _ _
END LOOP; Incrémentation automatique

contrairement a la boucle

Exemple Loop

DECLARE V_nbre NUMBER:=0;

BEGIN

FOR V_nbre in 1..3

LOOP

DBMS_OUTPUT.PUT_LINE(V_nbre);

END LOOP;

DBMS_OUTPUT.PUT_LINE('Fin de la boucle’);

.:E.END/

oW e

in de la boucle

41

Sénart/ Fontainebleau

La boucle WHILE: permet de faire une boucle avec une évaluation

de la condition au début de chaque itération

Syntaxe :
WHILE condition
LOOP
Instruction

END LOOP;

Exemple * ¢ B & 7aie e tampon ;20000 |,
DECLARE V_nbre NUMBER:=0; Comectiont. X|
BEGIN 1

WHILE V_nbre <=3 e e 1a boucte
LOOP

DBMS_OUTPUT.PUT_LINE(V_nbre); V_nbre:=V_nbre+1;

END LOOP;

DBMS_OUTPUT.PUT_LINE('Fin de la boucle’);

-END;

42

Sénart/ Fontainebleau

Sénart/ Fontainebleau

EXCEPTION

43

Lors du traitement d’un bloc PL/SQL, une erreur peut se produire; ce
sont des exceptions. Lorsqu’elles ne sont pas traitées, ells provoquent 1’échec du
bloc PL/SQL.

La gestion des exceptions se fait dans la section EXCEPTION du bloc
PL/SQL et permet de transformer un échec en “succes”.

Exceptions internes: ce sont celles detectéees implicitement par ORACLE. Elles
sont de la forme ORA-XXX.

Exceptions externes: détectées explicitement par le développeur; elles sont
definies dans la section DECLARE.

44

Sénart/ Fontainebleau

Exemple :
Sans gestion d’erreur

DECLARE V_Result NUMBER;
V_Num NUMBER :=100;
V_Deno NUMBER :=0;

BEGIN

V_Result :=V_Num/V _Deno;
END;

Résultat :

ORA-81476: le diviseur est égal a zéro

Sénart/ Fontainebleau

Avec gestion d’erreur

DECLARE V_Result NUMBER,;
V_Num NUMBER :=100;
V_Deno NUMBER :=0;

BEGIN
V_Result :=V_Num/V_Deno ;
EXCEPTION

WHEN ZERO_DIVIDE THEN

DBMS OUTPUT.PUT LINE(Attention division par
zéro");

END;

Résultat;

Sortie SGBD
% & B & | aile de tampon 20000 ||

connection1 X

Attention division par zéro

45

Exceptions les plus courantes

» DUP_VAL ON_INDEX (ORA-00001) : le tuple existe deja; si une table

n’admet pas de doublons, I’ajout d’un tuple déja existant Ieve cet
exception.

» NO DATA FOUND : pas de donnees

» TOO_MANY_ ROWS : retour de plusieurs ligne par le SELECT
» VALUE ERROR :n’est pas de méme type ou NULL

» ZERO DIVIDE : division par zéro

» INVALID CURSOR : curseur n’est pas autorisé

>

INVALID _NUMBER : échec d’une conversion d’une chaine de caractere
en un nombre

» OTHERS : exceptions non definies

46

Sénart/ Fontainebleau

Il est aussi possible de définir un message d’erreur.

Syntaxe : RAISE_APPLICATION_ERROR(error_number, message)
Error_number : nombre négatif dont la valeur absolue est comprise entre 20000 et 20999

Exemple :
DECLARE

v_empno NUMBER := 9999;

v_sal NUMBER;
BEGIN

select salary into v_sal from employe where Emp_id =v_empno;

DBMS_OUTPUT.PUT_LINE(v_sal);

EXCEPTION

WHEN ZERO_DIVIDE THEN
DBMS_OUTPUT.PUT_LINE('Division par zero');

WHEN OTHERS THEN

raise_application_error(-20102, 'Je suis une erreur définie’);

END;

Sénart/ Fontainebleau

ORA-20102:

Je suis une erreur définie

47

Il est possible de déefinir une exception (dans la section
declarative) et de la géerer ensuite dans la section exception.

Syntaxe : DECLARE EXCEPTION nom_exception;

48

Exemple :

DECLARE

E_division_par_zero EXCEPTION;

v_numerateur NUMBER :=10;

v_denominateur NUMBER :=0;

BEGIN

IF v_denominateur=0 THEN RAISE E_division_par_zero;

ELSE DBMS OUTPUT.PUT_LINE(v_numerateur/v_denominateur);
END IF;

EXCEPTION

WHEN E_division_par_zero THEN DBMS_OUTPUT.PUT_LINE('le
dénominateur doit étre different de zéro');

END;

Sénart/ Fontainebleau

49

Sénart/ Fontainebleau

PROCEDURES

50

C’est le code PL/SQL compil¢ et stocké dans le dictionnaire Oracle.

Syntaxe :

CREATE [OR REPLACE] PROCEDURE Nom_Procedure(P_p1 type, P_p2
type,...) IS
BEGIN

-- Instruction

EXCEPTION

--Gestion des erreurs

END Nom_Procedure;

REPLACE : remplace une procédure existante (suppression puis recréation

Sénart/ Fontainebleau

51

Differents modes des parametres

>IN (mode par defaut) - en entrée, lecture seule
» OUT - en sortie, écriture

> IN OUT -> en entrée/sortie , lecture et écriture

Appel d’une procédure

EXECUTE Nom_Procedure(pl, p2...);
CALL Nom_Procedure(pl,p2...);
BEGIN

Nom_Procedure(pl,p2...)
END;

Sénart/ Fontainebleau

52

Procédures

Exemple 1 : Compter le nombre d’employés de 1’entreprise

CREATE OR REPLACE PROCEDURE Compte Emp

IS

V_Nbre_Employe INT;

BEGIN

SELECT COUNT(*) INTO V_Nbre_Employe FROM Employe;
DBMS_OUTPUT.PUT_LINE(CONCAT('Nombre employe =', V_Nbre_Employe));
END Compte_Emp;

| SQL> execute Compte_Emp
Nombre employe =4

PL/SQL procedure successfully completed.

53

Procédures

Exemple 2 : Compter le nombre d’employ¢ d’un département

CREATE OR REPLACE PROCEDURE Nbre_Emp_Dept(P_Dept_Name VARCHAR2)
IS

V_Nbre Emp INT;

BEGIN

SELECT COUNT(*) INTO V_Nbre_Emp FROM Employe E

INNER JOIN Department D ON E.Dept_Id = D.Dept_ID

WHERE D.Dept_Name=P_Dept_Name;

DBMS_OUTPUT.PUT_LINE('Nombre employé du departement '|| P_Dept_Name ||’ est . ' ||
V_Nbre_Emp);

END Nbre_Emp_Dept;

SQL> EXECUTE Nbre_Emp_Dept('RESEARCH');
Nombre employe du departement RESEARCH est : 2

54

PL/SQL procedure successfully completed.

Procédures

Exemple 3: Afficher le salaire d’un employ¢

CREATE OR REPLACE PROCEDURE Show_Salary(P_Emp_Id Employe.Emp_1d%TYPE ,

P_Salary OUT NUMBER)
IS

V_Emp_Name Employe.Emp_Nom%TYPE;

BEGIN

SELECT Salary, Emp_Nom INTO P_Salary , V_Emp_Name

FROM Employe WHERE Emp_Id=P_Emp_Id;
DBMS_OUTPUT.PUT _LINE('Le salairede ' || V_Emp_Name || 'est de '|| P_Salary);
END Show_Salary;

SQL> DECLARE P_sal NUMBER;
BEGIN
Show_Salary(100,P_sal);
dbms_output.put_line(P_sal);

end;
6 /
_ Le salaire de MARTIN est de 6000
\UT 6000

55

Procédures

Exemple 3: Afficher le salaire d’un employ¢

DECLARE P_Sal NUMBER;
BEGIN
Show_Salary(700,P_sal);
END;
5 /
DECLARE P_Sal NUMBER;

*

ERROR at line 1:

ORA-01403: no data found

ORA-06512: at "SYSTEM.SHOW_SALARY", line 5
ORA-06512: at line 3

Procédures — gestion des erreurs

Exemple 3: Afficher le salaire d’un employ¢

CREATE OR REPLACE PROCEDURE Show_Salary(P_Emp_Id Employe.Emp_Id%TYPE, P_Salary
OUT NUMBER) IS
V_Emp_Name Employe.Emp_Nom%TYPE;
V_Salary Employe.Salary%TYPE;
BEGIN
SELECT Salary, Emp_Nom INTO P_salary, V_Emp_Name
FROM Employe WHERE Emp_ld=P_Emp_Id;
DBMS _OUTPUT.PUT_LINE('Le salaire de' || V_Emp_Name || ' est de '|| P_salary);
EXCEPTION
WHEN NO_DATA FOUND THEN
DBMS_OUTPUT.PUT_LINE('L"employé ' || V_Emp_Name || ' n"existe pas');
END Show_Salary;

DECLARE P_sal NUMBER;
BEGIN

Show_Salary(700, P_sal);
END:

5 /
L'employe n'existe pas

------- iUT PL/SQL procedure successfully completed.

57

Sénart/ Fontainebleau

FONCTIONS

58

Les fonctions retournent une valeur (number, integer, varchar2, booléen, date, ...).
Son appel peut se faire via un ordre SQL Select, une procédure ou une fonction.

Syntaxe :

CREATE OR REPLACE FUNCTION function_name(P_pl type ...)
RETURN type

IS

BEGIN

instruction

RETURN

EXCEPTION

END function_name;

59

Sénart/ Fontainebleau

Fonctions

Exemple : Afficher le salaire des employés

CREATE OR REPLACE FUNCTION Function_Show_Salary(P_Emp_Id
NUMBER)

RETURN NUMBER

IS

V_Salary NUMBER;

BEGIN

SELECT Salary INTO V_Salary FROM Employe WHERE Emp_Id=P_Emp_Id;
RETURN V_Salary;

END Function_Show_Salary; EEEESRE V_sal NUMBER;

V_Sal:= Function_Show_Salary(100);
dbms_output.put_Lline(V_sal);
END;
6 /
6000

PL/SQL procedure successfully completed.

Fonctions

Exemple : Afficher le salaire des employés

SQL> SELECT Emp_Id, Function_Show_Salary(Emp_Id) FROM Employe;

EMP_ID FUNCTION_SHOW_SALARY(EMP_ID)

....... JUT

Sénart / Fontainebleau

Sénart/ Fontainebleau

CUrseurs

62

Un curseur est une zone mémoire (un vecteur)
dans laquelle les informations de traitement sont

sauvegardeées.

Il existe des curseurs implicites et explicites.

Sénart/ Fontainebleau

63

CURSEURS

CURSEUR IMPLICITE : déclaré automatiquement
par Oracle lors de I'exécution des requétes.

Lors d’un SELECT, un seul enregistrement doit étre
résultat.

SQL> DECLARE V_Emp_Name VARCHAR2(50);
BEGIN
SELECT Emp_Nom INTO V_Emp_Name from eMPLOYE WHERE Dept_Id=20;
DBMS_OUTPUT.PUT_LINECV_Emp_Name);
END;
6 /
DECLARE V_Emp_Name VARCHAR2(50);

*

ERROR at line 1:
ORA-01422: exact fetch returns more than requested number of rows
ORA-06512: at line 3

CURSEUR EXPLICITE : déclaré et géré par les

utilisateurs. Il permet de consulter plusieurs lignes et d'y
effectuer des traitement sur chaque ligne.

Syntaxe déclaration d’un curseur:

DECLARE CURSOR nom_curseur [(P_paraml1, P_param?2..)] IS
SELECT statement;

Ouverture d'un curseur :

OPEN nom_curseur[(P_paraml1, P_param?2...)]
Acces aux lignes d’un curseur :

FETCH nom_curseur INTO variablel, variableZ2...;
Fermeture du curseur :

CLOSE nom_curseur

Sénart/ Fontainebleau

65

La commande FETCH permet d’assigner le contenu de la ligne courante dans
des variables et déplace le pointeur a la ligne suivante.

La commande CLOSE nom_curseur permet de libérer I’espace mémoire
alloue au curseur

Attributs d’un curseur :

Nom_curseur%eROWCOUNT : nombre de lignes affectées

Nom_curseur%FOUND : prend la valeur TRUE si une ligne est
trouvée,FALSE si non.

Nom_curseur% NOTFOUND : prend la valeur TRUE si aucune ligne n’est
retournée, FALSE si non

Nom_curseur%ISOPEN =TRUE si le curseur est ouvert;

Sénart/ Fontainebleau

66

Exemple :

DECLARE CURSOR C_Employe IS SELECT Emp_Nom, Salary FROM Employe WHERE
Dept_1d=20;

V_Emp_Nom Employe.Emp_Nom%TYPE;

V_Salary Employe.Salary%TYPE;

BEGIN

OPEN C_employe;
LOOP

FETCH C_employe INTO V_Emp_Nom, V_Salary;
DBMS_OUTPUT.PUT_LINE(V_Emp_Nom || ' a un salaire de '||V_Salary);
EXIT WHEN C_employe%NOTFOUND;

END LOOP;

CLOSE C_employe; —
END

MARIE a un salaire de 3000
JEAN a un salaire de 2508

Statement processed.

Sénart/ Fontainebleau

67

PL/SQL permet de faire une boucle SQL spéciale pour les curseurs. Elle prend en
charge les opérations du curseur : OPEN, FETCH, EXIT and CLOSE.

Exemple :

DECLARE CURSOR C_Employe IS SELECT Emp_Nom, Salary FROM Employe
WHERE Dept_1d=20;

BEGIN

FOR V_rec IN C_Employe

LOOP -2 ouverture implicite du curseur

DBMS _OUTPUT.PUT_LINE(V_rec.Emp_Nom || ' a pour salaire ' || V_rec.Salary);
END LOOP; - fermeture implicite du curseur

END;

MARIE a un salaire de 30680
JEAN a un salaire de 2508

Statement processed.

Sénart/ Fontainebleau

TRIGGER

Un trigger encore appelé déclencheur est un traitement qui se déclenche suite a
un evenement. Il permet une programmation evenementielle.

Deux types de trigger :

» Applicatif : créé et géré au niveau de I’application

> Base de données : stocké dans la base de données et associé aux
evenements qui surviennent sur des tables.

Les évenements peuvent étre :
» DML : insert, update, delete
» DDL : create, drop, alter ...
» BASE : erreur, logon...

70

Sénart/ Fontainebleau

Cas d’utilisations des triggers :

> Pour automatiser les traitements sur des évenements : déclencher une
commande lorsque le stock atteint un certain seuil

» Garantir une propreté dans la base de données : garantir par exemple que le
salaire d’un employé¢ soit toujours compris dans une certaine fourchette.

Niveaux de déclenchement d’un trigger
> Niveau ligne (row level) : se déclenche pour chaque ligne
> Niveau instruction : se déclenche une seule fois

71

Sénart/ Fontainebleau

Syntaxe :

CREATE OR REPLACE TRIGGER nom_trigger
{BEFORE | AFTER} événement

ON nom_table

REFERENCING OLD variable|]NEW variable
FOR {each row}

DECLARE

-- declaration variable , curseur ...

BEGIN

--traitement

EXCEPTION

--gestion des erreurs

END nom_trigger;

Sénart / Fontainebleau

72

BEFORE | AFTER : indique que le declencheur doit étre lancé avant | apres
I’exécution de I’événement.

BEFORE si le trigger doit :

- déterminer si l'instruction DML est autorisée

- "fabriquer" la valeur d'une colonne pour pouvoir ensuite la mettre dans la.
AFTER si on a besoin que l'instruction DML soit terminée pour exécuter le corps

du trigger

INSERT , DELETE : indique au déclencheur de s’exécuter lors d’une
insertion ou d’une supression dans la table

UPDATE [of colonne] : indique que le déclencheur doit étre lancé lors de
chaque mise a jour d’une des colonnes spécifi¢es. Si [of colonne] n’est pas
précise, n’importe quelle colonne de la table modifiee provoque le
déclenchement du trigger

73

Sénart/ Fontainebleau

ON nom_table : désigne le nom de la table associé a son schéma pour lequel
le trigger a été créé.

FOR EACH ROW : si spécifié => trigger de ligne. Le trigger se déclenche
pour toutes les lignes de la mise a jour. Si non specifié => trigger
d’instruction qui se déclenche une seule fois.

REFERENCING OLD variable[NEW variable : permet de renommer les
variables de corrélation OLD et NEW

WHEN (condition) : spécifie une restriction sur le trigger. La restriction est
une condition SQL qui doit étre satisfaite pour que le trigger se déclenche.

74

Sénart/ Fontainebleau

Pour un trigger niveau ligne, on peut avoir besoin d’acceder aux
données du tuple en cours de manipulation. Cela se fait via deux

records :old et :new qui ont la méme structure que la table sur
laquelle le trigger est defini.

Evénement |:OLD _ [:NEW
INSERT NULL Valeur en cours

d’insertion
UPDATE Ancienne valeur Nouvelle valeur
DELETE Valeur a NULL

supprimeée

I Ne sont pas des variables globales

75

Sénart/ Fontainebleau

Before trigger :

On peut écrire dans :new valeur mais on ne peut pas modifier :old
valeur.

After trigger :
On ne peut ecrire ni dans :new valeur ni dans :old valeur

Erreur obtenue en cas de mauvaise modification :
ORA-04084: cannot change NEW values for this trigger type

76

Considérons les tables ci-dessous : Table Employe et Table Department

DEPT_ID DEPT_NAME COUNTRY

10 ACCOUNTING PARIS

20 RESEARCH PARIS

30 SALES LYON

40 OPERATIONS PARIS

EMP_ID EMP_NOM EMP_JOB MANAGER HIRE_DATE SALARY DEPT_ID
100 MARTIN PRESIDENT - 22/06/01 6000 10

200 DUPONT MANAGER 100 22110/01 3000 30

300 MARIE MANAGER 100 22/11/01 3000 20

400 JEAN ANALYST 300 30/11/01 2200 20

Sénart/ Fontainebleau

77

Exemple 1:

CREATE OR REPLACE TRIGGER Verifie_salaire
BEFORE INSERT

ON Employe

FOR EACH ROW

WHEN (new.salary<1300)

BEGIN

raise_application_error(-20000, 'salaire incorrect, le salaire doit etre
superieur au SMIC");

END Verifie_salaire;

78

Sénart/ Fontainebleau

Exemple 1:

Insertion d’une nouvelle ligne

INSERT INTO Employe(Emp_Id , Emp_Nom , Emp_Job, Manager ,
Hire_Date , Salary , Dept_Id) VALUES (600, 'ANDREA', 'ANALYST"",
to_date('2010-07-22','yyyy-MM-dd"), 1000,10) ;

ORA-20000: salaire incorrect, le salaire doit etre supérieur au SMIC
ORA-86512: a "SYSTEM.VERIFIE_SALAIRE", ligne 2
ORA-84088: erreur lors d'exécution du déclencheur 'SYSTEM.VERIFIE_SALAIRE'

La ligne n’est pas ajoutée a la table
BEFORE INSERT : détermine si I’instruction DML est autorisée

79

Sénart/ Fontainebleau

EXEMPLE 2 : historisation des données lors de la suppression

CREATE OR REPLACE TRIGGER Archive_Employe

AFTER DELETE

ON Employe

FOR EACH ROW

BEGIN

INSERT INTO Archive_Employe VALUES (:old.Emp _id, :old.Emp_Nom,
:0ld.Emp_Job,:old.Manager, :old.Hire_Date,:old.Salary, :old.Dept_1d);
END Archive_Employe;

Suppression d’un employ¢ : DELETE FROM Employe where emp_id=500;
Contenu de la table Archive_employe

EMP_ID EMP_NAME EMP_JOB MANAGER HIRE_DATE SALARY DEPT_ID
200 LOUIS ANALYST - 22/06/10 2600 10

o oa 1 —_—— e —

Sénart/ Fontainebleau

Il est possible pour un déclencheur de tester I’événement déclencheur avec les
prédicats:

» If inserting then ...
» If deleting then ...
» If updating then ...
» |If updating [(colonne)] then ...

81

Sénart / Fontainebleau

Exemple
CREATE OR REPLACE TRIGGER test_even
AFTER INSERT OR UPDATE of SALARY OR DELETE
ON EMPLOYE
FOR EACH ROW
BEGIN
IF INSERTING THEN
IF :new.SALARY<1300 THEN
DBMS OUTPUT.PUT_LINE(‘attention le salaire est inferieur a 1300');
END IF;
END IF;
IF UPDATING THEN
IF :new.SALARY<1300 THEN
DBMS OUTPUT.PUT_ LINE(‘attention le salaire est inferieur a 1300');
END IF;
END IF;
IF DELETING THEN DBMS_OUTPUT.PUT_LINE(‘suppression');
END IF;
end test_even;

Sénart/ Fontainebleau

82

Une table mutante est une table en cours de modification du fait d’une
Instruction DML (update, delete, insert).

Considérons le schema ci-dessous.
La table X est appelée table mutante.

\DML instruction

-
e

Table X

Sénart/ Fontainebleau

-

TRIGGER - Table mutante

I Un trigger ne peut pas modifier la table concernée par I’instruction qui a
déclenchée le trigger.

Cet contrainte évite que 1’on ai des lectures incohérentes

Exemple :

CREATE OR REPLACE TRIGGER Test_Table Mutante

BEFORE UPDATE

ON EMPLOYE

FOR EACH ROW

BEGIN

UPDATE EMPLOYE SET SALARY = 3000 WHERE Emp_1d=100;
END Test Table Mutante;

UPDATE EMPLOYE SET SALARY = 3000 WHERE Emp_Id=100
*

ERROR at line 1:

PEH ORA-0UE91: table SYSTEM.EMPLOYE is mutating, trigger/function may not
see it

On peut créer des triggers pour des évenements au niveau de la
base de données Oracle

L’option After pour des évenements comme STARTUP,
SERVERERROR, LOGON

L’option Before pour des évenements comme LOGOFF,
SHUTDOWN

Exemple :

CREATE OR REPLACE TRIGGER Trace AFTER LOGON
BEGIN

INSERT INTO Trace_Table VALUES(user_name, sysdate);
END;

85

Gestion des triggers :

» DROP TRIGGER trigger_name : pour supprimer un trigger

» ALTER TRGGIER trigger_name {ENABLE | DISABLE}
pour activer ou desactiver un trigger. Lorsqu’un trigger est
cree, il est automatiguement activer. Desactiver un trigger ne
le supprime pas de la base.

» ALTER TABLE table_name {ENABLE | DISABLE} ALL
TRIGGERS : permet d’activer ou desactiver tous les triggers
d’une table

86

Sénart/ Fontainebleau

PACKAGES

87

Un package est un schema qui regroupe des objects PL/SQL (type, procédures,
fonctions...) logiquement li¢s.

Un package a deux parties :

» Specification : permet de déclarer les types, variables, procédures,
curscurs...

» Body : permet d’implémenter les éléments déclarés dans la specification
notamment les curseurs, procédures, fonctions.

88

Sénart/ Fontainebleau

La partie spécification est I’interface avec I’application

Application Package Database

o -
-

- | zpecification | - -

89

Sénart/ Fontainebleau

Speécification :

CREATE OR REPLACE PACKAGE package name
AS
--Declaration variables, curseurs,exceptions...

--Prototypes des procédures , fonctions

END package name

Sénart / Fontainebleau

90

BODY :

CREATE OR REPLACE PACKAGE BODY package_name

AS
Specifiction des fonctions, procédures

BEGIN
Commandes a exécuter

END package name

91

Sénart / Fontainebleau

EXEMPLE :

CREATE OR REPLACE PACKAGE pkg_Gestion_Employe

AS

-- declaration des variables globales

v_nbre_employe NUMBER,;

V_nbre_employe department NUMBER,;

--declaration des prototypes

FUNCTION Affiche_nbre_employe RETURN NUMBER;

FUNCTION Affiche_nbre_emp dep(Dept_id NUMBER) RETURN NUMBER,;
END pkg_Gestion_Employe;

92

Sénart/ Fontainebleau

EXEMPLE :

CREATE OR REPLACE PACKAGE BODY pkg_Gestion_Employe
IS

FUNCTION Affiche_nbre_employe

RETURN NUMBER

IS

v_total NUMBER;

BEGIN

SELECT COUNT(*) INTO v_total FROM Employe;
RETURN v_total;

END Affiche nbre_employe;

Sénart / Fontainebleau

93

FUNCTION Affiche_nbre_emp_dep(Dept_id NUMBER)
RETURN NUMBER

IS

v_total NUMBER;

BEGIN

SELECT COUNT(*) INTO v_total FROM Employe where Dept_ld=Dept _id;
RETURN v_total;

END Affiche nbre _emp_dep;

BEGIN

NULL ;

END pkg_Gestion_Employe;

Sénart / Fontainebleau

94

EXEMPLE:

DECLARE var NUMBER :=0;

BEGIN

var:=pkg_Gestion_Employe.Affiche _nbre_emp_dep(20);
DBMS OUTPUT.PUT_LINE(var);

END

Sénart / Fontainebleau

95

Sénart/ Fontainebleau

SQL DYNAMIQUE

96

Role du SQL Dynamique :

> Exécuter des ordres DDL (create, drop, alter...) dans un bloc PL/SQL

» Jusqu’a présent, tous les ordres SQL écrits dans du code PL/SQL étaient
statiques. I1 y a des cas ou I’ordre SQL n’est connu qu’a I’exécution. Par
exemple lorsque 1’on ne connait pas la table du select. Un ordre SQL peut
étre stocké dans une chaine de caracteres puis exéecute.

|

Ordre dynamique analysé a chague execution

97

Sénart/ Fontainebleau

EXECUTE IMMEDIATE permet d’analyser et d’exécuter immédiatement
une instruction SQL Dynamique ou un bloc anonyme

Syntaxe :

EXECUTE IMMEDIATE dynamic_string

[INTO {define_variable, define_variable ... | record}]
[USING [IN | OUT | IN OUT] bind_argument]
[{RETURNING | RETURN } INTO bind_argument]

Sénart/ Fontainebleau

98

Exemple :

DECLARE

sgl_stmt VARCHAR2(200);

v_id NUMBER :=2;

v_Cours VARCHAR2(50):= 'Mathématiques’;

V_id_ajoute NUMBER;

V_cours_ajoute VARCHAR2(50);

BEGIN

EXECUTE IMMEDIATE 'CREATE TABLE Cours (id NUMBER, Cours VARCHAR2(50))';

sgl_stmt :="INSERT INTO Cours VALUES (1, "Bases de données™)';

EXECUTE IMMEDIATE sgl_stmt;

sgl_stmt :="INSERT INTO Cours VALUES (:1, :2) RETURNING id, cours INTO :3, :4';

EXECUTE IMMEDIATE sqgl_stmt USING v_id, v_cours RETURNING INTO
v_id_ajoute,v_cours_ajoute;

dbms_output.put_line('Le cours ' || v_cours_ajoute || ' a été ajouté avec I"id ' ||v_id_ajoute);

EXECUTE IMMEDIATE 'DROP TABLE Cours';

END; Le cours Mathématiques a été ajouté avec 1'id 2

Statement processed. 99

Sénart/ Fontainebleau

DESCRIBE

» DESCRIBE : cette fonction permet de donner la description des objets.

SQL> DESCRIBE Show_Salary;
PROCEDURE Show_Salary
Argument Name In/Out Default?

P_EMP_ID NUMBER(10)
P_SALARY NUMBER

100

....... JUT

Sénart / Fontainebleau

« USER_OBJECTS : contient les objets oracle de 1’utilisateur

« USER_SOURCE : contient le code source des sous programmes de
I’utilisateur. Cette vue permet de retrouver le code des programmes stockeés

« USER_PROCEDURE : contient toutes les fonctions et procédures de
I’utilisateur.

« USER_CONSTRAINTS : contient toutes les contraintes définies sur les
tables de 1’utilisateur en cours.

Vous trouverez la liste des vues systemes oracle sur le site docs.oracle.com

101

Sénart/ Fontainebleau

Sénart/ Fontainebleau

BULK BINDING

102

Considérons le bloc ci-dessous, le traitement est fait ligne par ligne. Si il y’a 100 lignes
a mettre a jour, il y’aura 100 échanges entre les moteurs SQL et PL/SQL

DECLARE V_iter NUMBER :=0;
BEGIN

FOR V_Emp IN(SELECT Emp_Id, Emp_Nom, Salary FROM Employe WHERE Dept_ID=20)

LOOP
V_iter :=V_iter+1;

UPDATE Employe SET Salary=Salary+100 Where Emp_Id=V_Emp.Emp_Id ;
DBMS_OUTPUT.PUT_LINE('Itération No ' || V_iter ||': Augmentation du salaire de '||V_Emp.Emp_Nom);

END LOOP; _ -
PL/SQL Engine

END;

; . . . PLSOL F PLSQL —:;pmdum g;ﬁrgg:lall
Itération No 1: Augmentation du salaire de MARIE Block S Erecuter
Itération No 2: Augmentation du salaire de JEAN ~

"'\-\\
Statement processed. V
| S0L Statement Executor |
Oracle Server
e -

Solution : BULK binds (liaison en masse)

Sénart/ Fontainebleau

103

Pour faire de la liaison en masse (BULK BINDING), deux fonctionnalités disponibles :

» BULK COLLECT permet de recupérer toutes les données en une seule extraction (du
moteur SQL a PL/SQL) ;

Syntaxe : ... BULK COLLECT INTO collection_name

Dans le cas d’un curseur :
FETCH cursor_name BULK COLLECT INTO ... [LIMIT rows]

» FOREALL permet d’effectuer les opérations DML (INSERT,UPDATE, DELETE,
MERGE) sur toutes les données d’une collection en une seule fois (de PL/SQL vers

SQL)
Syntaxe : FOREALL index IN lower_bound..upper_bound
sgl_statement (insert | update | delete);

104

Sénart/ Fontainebleau

Exemple :

DECLARE TYPE Type _Emp_Id IS TABLE OF Number;

TYPE Type_Emp_Nom IS TABLE OF Employe.Emp_Nom%TYPE;
V_Emp_Id Type Emp_lId;

V_Emp_Nom Type_Emp_Nom;

V_index NUMBER;

BEGIN

SELECT Emp_Nom, Emp_ld BULK COLLECT INTO V_Emp_Nom,V_Emp_Id FROM Employe
WHERE Dept_ID=20;

DBMS_OUTPUT.PUT_LINE('Nombre de lignes retournées par le moteur SQL :' ||
V_Emp_Id.COUNT);

FORALL V_index INV_Emp_Nom.First..V_Emp_Nom.LAST

UPDATE Employe SET SALARY=SALARY+100 WHERE Emp_Ild=V_Emp_Id(V_index);
DBMS_OUTPUT.PUT_LINE('Nombre de lignes mise a jour :' || SQL%ROWCOUNT);
END; _—

Nombre de lignes retournées par le moteur SQL :2
Nombre de lignes mise a jour :2

Statement processed. 105

Sénart/ Fontainebleau

106

	Slide 1: PLSQL
	Slide 2: INTRODUCTION
	Slide 3: INTRODUCTION
	Slide 4: INTRODUCTION
	Slide 5: INTRODUCTION
	Slide 6: INTRODUCTION
	Slide 7: INTRODUCTION
	Slide 8: PL/SQL : contenu du cours
	Slide 9: BLOCS PL/SQL
	Slide 10: Les blocs PL/SQL
	Slide 11: Les blocs PL/SQL
	Slide 12: Les blocs PL/SQL
	Slide 13: Les blocs PL/SQL
	Slide 14: Les blocs PL/SQL
	Slide 15: TYPES DE DONNEES
	Slide 16: Type de données
	Slide 17: Type de données
	Slide 18: Type de données
	Slide 19: Type de données
	Slide 20: Type de données composés
	Slide 21: Type de données composés - RECORD
	Slide 22: Type de données composés
	Slide 23: Type de données composés
	Slide 24: Type de données composés
	Slide 25: Type de données composés
	Slide 26: Déclaration des constantes
	Slide 27: Déclaration des objets
	Slide 28: CONVERSION
	Slide 29: Commentaires
	Slide 30: TABLE DUAL
	Slide 31: SEQUENCE
	Slide 32: SEQUENCE
	Slide 33: SEQUENCE
	Slide 34: SEQUENCE
	Slide 35: STRUCTURES DE CONTROLE
	Slide 36: INSTRUCTION CONDITIONNELLE
	Slide 37: INSTRUCTION CONDITIONNELLE
	Slide 38: STRUCTURE CASE
	Slide 39: STRUCTURE CASE
	Slide 40: BOUCLE LOOP
	Slide 41: BOUCLE FOR
	Slide 42: BOUCLE WHILE
	Slide 43: EXCEPTION
	Slide 44: EXCEPTIONS
	Slide 45: EXCEPTIONS
	Slide 46: EXCEPTIONS
	Slide 47: EXCEPTIONS
	Slide 48: EXCEPTIONS
	Slide 49: EXCEPTIONS
	Slide 50: PROCEDURES
	Slide 51: Procédures
	Slide 52: Procédures
	Slide 53: Procédures
	Slide 54: Procédures
	Slide 55: Procédures
	Slide 56: Procédures
	Slide 57: Procédures – gestion des erreurs
	Slide 58: FONCTIONS
	Slide 59: Fonctions
	Slide 60: Fonctions
	Slide 61: Fonctions
	Slide 62: curseurs
	Slide 63: CURSEURS
	Slide 64: CURSEURS
	Slide 65: CURSEURS
	Slide 66: CURSEURS
	Slide 67: CURSEURS
	Slide 68: CURSEURS
	Slide 69: TRIGGER
	Slide 70: TRIGGER
	Slide 71: TRIGGER
	Slide 72: TRIGGER
	Slide 73: TRIGGER
	Slide 74: TRIGGER
	Slide 75: TRIGGER – variables de correlation
	Slide 76: TRIGGER
	Slide 77: EXEMPLES
	Slide 78: TRIGGER
	Slide 79: TRIGGER
	Slide 80: TRIGGER
	Slide 81: TRIGGER
	Slide 82: TRIGGER
	Slide 83: TRIGGER – Table mutante
	Slide 84: TRIGGER – Table mutante
	Slide 85: TRIGGER – Oracle
	Slide 86: TRIGGER
	Slide 87: PACKAGES
	Slide 88: PACKAGE
	Slide 89: PACKAGE
	Slide 90: PACKAGE
	Slide 91: PACKAGE
	Slide 92: PACKAGE
	Slide 93: PACKAGE
	Slide 94: PACKAGE
	Slide 95: PACKAGE
	Slide 96: SQL DYNAMIQUE
	Slide 97: SQL Dynamique
	Slide 98: SQL Dynamique : EXECUTE IMMEDIATE
	Slide 99: SQL Dynamique : EXECUTE IMMEDIATE
	Slide 100: DESCRIBE
	Slide 101: Quelques vue ORACLE
	Slide 102: BULK BINDING
	Slide 103: BULK BINDING
	Slide 104: BULK BINDING
	Slide 105: BULK BINDING
	Slide 106: Fin

