
1

PLSQL

Maggie LEKPA

2

INTRODUCTION

Une base de données est un ensemble de fichiers.

Les fichiers peuvent

➢ stockés des données structurées → on parle de bases de données

relationnelles

➢ stockées des données non structurées → on parle de bases de données

NoSQL

Un langage unique pour interroger les bases de données structurées : SQL

3

INTRODUCTION

SQL : Structured Query Langage - Langage structuré de requête

Le langage SQL est un langage déclaratif et non un langage de

« programmation ». Il permet d’effectuer des requêtes dans un langage simple.

Cependant, il ne permet pas de définir des fonctions ou des variables ou encore

d’effectuer une boucle…

Le traitement des données se fait au niveau de l’application

4

INTRODUCTION

SQL : Structured Query Langage

 Langage structuré de requête

Comment ça se passe ?

Le traitement des données se passe au niveau de l’application cliente

Multiples connexion au serveur de données

Client

Code

Traitement de la

données (boucle,

condition…)

Serveur

Données

Connexion + requête SQL

Données résultat de la requête

5

INTRODUCTION

Besoin d’un langage qui permettra de définir des fonctions, procédures

ou encore de faire des itérations…

→ PL/SQL

6

INTRODUCTION

PL/SQL : Programming Langage / Structured Query Langage

PL/SQL est un langage procédural qui intègre SQL. Il permet de définir un ensemble

de commandes contenues dans des blocs pl/sql;

Traitement des données se fait côté serveur. Volume de données réduit entre le client et

le serveur. Code PL/SQL portable

Client

Code

+

Appel procédure

(blocs pl/sql)

Serveur

Procédures stockées-fonctions (

traitement)

Données

Résultat procédure

Connexion + appel

7

INTRODUCTION

PL/SQL : Programming Langage / Structured Query Langage

Coté serveur :

➢ Blocs d’instructions anonymes et non persistants

➢ Procédures et fonctions : persistants

➢ Triggers : déclencheurs sur DML-DDL-ERREUR

➢ Paquetages :persistants

Coté client :

Outils clients utilisant PL/SQL

PL/SQL : contenu du cours

➢ Blocs PL/SQL

➢ Types de données

➢ Structures de contrôle

➢ Exceptions

➢ Procédures

➢ Fonctions

➢ Curseurs

➢ Triggers

➢ Package

➢ SQL dynamique

8

BLOCS PL/SQL

9

10

Les blocs PL/SQL

Un bloc PL/SQL est l’unité de programmation du PL/SQL

Deux types de blocs :

➢ Bloc anonyme : ensemble d’instructions qui s’exécute à l’endroit où il existe.

➢ Bloc nommé : procedure ou une fonction, pouvant être appelées autant de fois

que necessaire.

Parties d’un bloc PL/SQL :

➢ Partie declarative (facultative): permet de declarer les variables et de les

initialiser; ne contient pas d’exécutable…

➢ Partie d’execution (obligatoire) : contient les instructions d’éxécution

➢ Partie de gestion des erreurs (facultative) : contient le code à executer en cas

d’erreur.

11

Les blocs PL/SQL

Structure d’un bloc

[<Entête de bloc>] (valable pour les fonctions, procedures package)

[DECLARE

Constantes

,variables

,Cursors]

BEGIN

Instructions – partie d’exécution

EXCEPTION

gestion des erreurs

END;

12

Les blocs PL/SQL

Exemple

-- Déclaration des variables

DECLARE v_variable VARCHAR(255):= 'bienvenu au premier cours de BD';

-- Instructions à exécuter

BEGIN

DBMS_OUTPUT.PUT_LINE(v_variable); -- affiche le contenu de la variable

END;

13

Les blocs PL/SQL

Les blocs PL/SQL peuvent être imbriqués

[<Entête de bloc>]

[DECLARE

BEGIN

DECLARE

BEGIN

DECLARE

BEGIN

…

END

END;

END;

14

Les blocs PL/SQL

Exemple :

DECLARE v_premiere_variable VARCHAR(50):='première variable';

BEGIN

DECLARE v_seconde_variable VARCHAR(50):='seconde variable';

BEGIN

DBMS_OUTPUT.PUT_LINE(v_seconde_variable);

END;

DBMS_OUTPUT.PUT_LINE(v_premiere_variable);

END;

TYPES DE DONNEES

15

16

Type de données

➢ Types scalaires

▪ CHAR(taille) : chaine de caractère de longeur fixe, 2000 max

▪ VARCHAR2(taille) : chaine de caractère de longeur variable (4000 max)

▪ NCHAR et NVARCHAR2 : pour les caractères unicode

▪ NUMBER: numérique positif et négatif. A pour sous type INT, SMALLINT,

REAL, DECIMAL

▪ DATE

▪ BOOLEAN: TRUE, FALSE

17

Type de données

➢ Type implicite

Le type implicite fait reference à une entité déjà existante.

%TYPE permet de faire reference à un type existant

%ROWTYPE permet de faire reference à la structure d’une table existante

Exemple :

Variable de même type que la colonne Name de la table Etudiant

DECLARE V_variable Etudiant.Name%type;

Variable faisant reference à une structure entière d’une table

DECLARE V_Rec Employe%ROWTYPE

18

Type de données

➢ Types définis par l’utilisateur

Exemple :

DECLARE SUBTYPE Type_Date IS DATE;

V_var Type_Date;

BEGIN

SELECT sysdate INTO V_var FROM DUAL;

DBMS_OUTPUT.PUT_LINE(V_var);

END;

19

Type de données

➢ Types définis par l’utilisateur

Exemple :

DECLARE SUBTYPE type_varchar IS VARCHAR(100);

v_variable type_varchar:=‘Faites le moi savoir si ça ne vous semble pas
clair;

BEGIN

DBMS_OUTPUT.PUT_LINE(v_ variable);

END;

20

Type de données composés

Deux types composes : Record et Table

21

Type de données composés - RECORD

➢ Type RECORD : il permet de définir un enrégistrement

Syntaxe
DECLARE TYPE type_record IS RECORD(champ1 type1, champ2 type2… champn typen);

DECLARE v_variable First_Record; -- declare une variable de type type_record

BEGIN

--assigne des valeurs aux différents champs

v_variable.champ1 := valeur;

…

v_variable.champn:=valeur;

….

END;

22

Type de données composés

Exemple :

DECLARE TYPE type_record IS RECORD (nom varchar(50), age int);

v_variable type_record;

BEGIN

v_variable.nom :='Maggie';

v_variable.age:=90;

DBMS_OUTPUT.PUT_LINE(v_variable.nom ||' est agée de ' || v_variable.age || ' ans');

END;

23

Type de données composés

➢ Type Table

C’est un vecteur d’éléments de même type (scalaire ou record) accessible au moyen d’un

indice préalablement déclaré.

Syntaxe

DECLARE TYPE Nom_Type IS TABLE OF type_donnee [NOT NULL] INDEX BY

[BINARY_INTEGER | PLS_INTEGER |VARCHAR2(size limit)]

Exemple

DECLARE TYPE Type_Table IS TABLE OF VARCHAR2(50) INDEX BY BINARY_INTEGER;

First_Table Type_Table ;

BEGIN

First_Table(1):=‘Première Valeur’ ;

First_Table(2):=‘Seconde Valeur’ ;

DBMS_OUTPUT.PUT_LINE('First_Table(1) a pour valeur :' || First_Table(1) || ' et First_Table(2) a pour valeur :'

|| First_Table(2));

END;

24

Type de données composés

Manipulation du type compose TABLE

TableName.count : nombre d’élèments

TableName.Exists(i) = TRUE si i-ième élément existe

TableName.First et TableName.Last : indice du premier et dernier élément si pas vide

TableName.next(i) et TableName.prior(i): renvoie l’indice qui suit ou precede la ième

case. Vaut null si elle est vide

TableName.delete : supprime tous les éléments

TableName.extend(p) : allonge la table de p éléments.

25

Type de données composés

Exemple

DECLARE TYPE First_Table IS TABLE OF VARCHAR2(50) INDEX BY VARCHAR2(50);

V_First_Table First_Table;

BEGIN

V_First_Table(1):='Première Valeur';

V_First_Table(2):='Seconde Valeur';

V_First_Table(4):='Quatrieme Valeur';

DBMS_OUTPUT.PUT_LINE(V_First_Table.count);

DBMS_OUTPUT.PUT_LINE(V_First_Table(4));

DBMS_OUTPUT.PUT_LINE(V_First_Table.next(2));

END;

26

Déclaration des constantes

Constantes locales

Syntaxe :

DECLARE Nom_Variable [CONSTANT] type [NOT NULL]:=expression

Le mot clè CONSTANT permet de définir une constante; une initialization est obligatoire

et la valeur ne pourra être changée.

Exemple :

DECLARE V_variable1 VARCHAR2(5);

DECLARE V_variable2 VARCHAR2(5):=‘OK’

DECLARE V_variable3 CONSTANT VARCHAR2(5):=‘OK’

27

Déclaration des objets

Pensez à bien préfixer vos objects pour une bonne lisibilité :

Variables : V_Nom_Variable

Exception : E_Nom_Exception

Curseur : C_Nom_Curseur

Paramètre : P_Nom_Paramètre

28

CONVERSION

➢ Conversion explicite

Utilisation des fonctions prédéfinies (TO_NUMBER, TO_CHAR, TO_DATE…)

DECLARE V_number NUMBER(10,5) :=TO_NUMBER(‘15,40’);

➢ Conversion implicite

DECLARE V_number NUMBER(10,5) :=‘15,40’ –conversion implicite de la chaine de caractère

! Conseillé de faire des conversions explicites

Commentaires

• Commentaires multi-lignes

/* Je

Suis un commentaire

Multi-lignes*/

• Commentaire sur une ligne

-- Je suis un commentaire sur une ligne

29

30

TABLE DUAL

La table DUAL est une table d’une colonne et d’une ligne utilisée dans des

select qui ne nécessitent pas une clause FROM.

! L’instruction SELECT doit toujours avoir une clause FROM en Oracle.

31

SEQUENCE

Une séquence est un objet utilisé pour générer un entier unique.

Elle permet de générer automatiquement des clés primaires.

Lorsqu’un entier est généré, la séquence est incrémentée

automatiquement.

Une séquence peut être utilisée pour plusieurs tables et par

plusieurs utilisateurs.

32

SEQUENCE

Syntaxe :

CREATE SEQUENCE sequence_name

[INCREMENTE BY interval] -- default value is 1

[START WITH first_number]

[MAXVALUE maxvalue | NOMAXVALUE]

[MINVALUE minvalue | NOMINVALUE]

[CYCLE | NOCYCLE]

[CACHE cache_size | NOCACHE]

[ORDER | NOORDER]

33

SEQUENCE

L’option CYCLE indique si la séquence continue à générer des

valeurs après avoir atteint ses bornes; si la borne maximale est

atteinte, la prochaine valeur qui sera générée sera la borne

minimale qui sera ensuite incrémentée d’où le cycle.

L’option CACHE indique la taille de la mémoire qui sera

allouée à la séquence en mémoire pour un accès rapide

34

SEQUENCE

Pseudo-column

NEXTVAL : permet d’obtenir la valeur suivante

CURRVAL : permet d’obtenir la valeur courante

Exemple :

CREATE SEQUENCE seq_test

INCREMENT BY 2

START WITH 10

NOCYCLE

NOCACHE;

STRUCTURES DE CONTROLE

35

36

INSTRUCTION CONDITIONNELLE

Instruction conditionnelle : permet de faire des tests
conditionnels

Exemple

IF condition THEN

ELSIF condition THEN

ELSIF condition THEN

ELSE séquence THEN → une seule et optionnelle

END IF;

Optionnelle

37

INSTRUCTION CONDITIONNELLE

Exemple

DECLARE V_nbre NUMBER:=2;

BEGIN IF V_nbre>=10

 THEN DBMS_OUTPUT.PUT_LINE('Je suis une valeur supérieure
ou égale à 10');

ELSIF V_nbre<10 AND V_nbre>=0

 THEN DBMS_OUTPUT.PUT_LINE('Je suis une valeur inférieure à
10 et supérieure ou égale à 0');

ELSE DBMS_OUTPUT.PUT_LINE('Je suis une valeur négative');

END IF;

END;

STRUCTURE CASE

Structure case : Permet aussi de mettre en place
les tests conditionnels

Syntaxe :

Var

CASE Var

 WHEN condion1 sur Var THEN instruction1;

 WHEN condition2 sur Var THEN instruction2;

…

 WHEN ConditionN sur Var THEN instructionN;

ELSE instruction

END CASE

38

STRUCTURE CASE

Exemple

DECLARE V_nbre NUMBER:=13;

BEGIN

CASE V_nbre

WHEN 10 THEN DBMS_OUTPUT.PUT_LINE('je suis une valeur égale à
10');

WHEN 11 THEN DBMS_OUTPUT.PUT_LINE('je suis une valeur égale à
11');

ELSE DBMS_OUTPUT.PUT_LINE('Je suis une valeur différente de 10
et 11');

END CASE;

END;

39

BOUCLE LOOP

La boucle LOOP : permet de faire une boucle avec une condition
de sortie définit avec EXIT WHEN

Syntaxe :

LOOP

 instruction

EXIT WHEN condition

END LOOP;

Exemple
DECLARE V_nbre NUMBER:=0;

BEGIN

LOOP

V_nbre:=V_nbre+1; DBMS_OUTPUT.PUT_LINE(V_nbre);

EXIT WHEN V_nbre=2;

END LOOP;

DBMS_OUTPUT.PUT_LINE('la condition de sortie a été atteinte');

END;
40

BOUCLE FOR

La boucle FOR : permet de faire une boucle avec une condition de
sortie définir au départ

Syntaxe :

FOR counter IN [REVERSE] borne_inf…borne_supérieure

LOOP

 instruction

END LOOP;

Exemple
DECLARE V_nbre NUMBER:=0;

BEGIN

FOR V_nbre in 1..3

LOOP

DBMS_OUTPUT.PUT_LINE(V_nbre);

END LOOP;

DBMS_OUTPUT.PUT_LINE('Fin de la boucle');

END;
41

Incrémentation automatique

contrairement à la boucle

Loop

BOUCLE WHILE

La boucle WHILE: permet de faire une boucle avec une évaluation
de la condition au début de chaque itération

Syntaxe :

WHILE condition

LOOP

Instruction

END LOOP;

Exemple

DECLARE V_nbre NUMBER:=0;

BEGIN

WHILE V_nbre <=3

LOOP

DBMS_OUTPUT.PUT_LINE(V_nbre); V_nbre:=V_nbre+1;

END LOOP;

DBMS_OUTPUT.PUT_LINE('Fin de la boucle');

END;
42

EXCEPTION

43

44

EXCEPTIONS

Lors du traitement d’un bloc PL/SQL, une erreur peut se produire; ce

sont des exceptions. Lorsqu’elles ne sont pas traitées, ells provoquent l’échec du

bloc PL/SQL.

La gestion des exceptions se fait dans la section EXCEPTION du bloc

PL/SQL et permet de transformer un échec en “succés”.

Exceptions internes: ce sont celles detectées implicitement par ORACLE. Elles

sont de la forme ORA-XXX.

Exceptions externes: détectées explicitement par le développeur; elles sont

définies dans la section DECLARE.

EXCEPTIONS

Exemple :

Sans gestion d’erreur Avec gestion d’erreur

45

DECLARE V_Result NUMBER;

V_Num NUMBER :=100;

V_Deno NUMBER :=0;

BEGIN

V_Result := V_Num / V_Deno ;

EXCEPTION

WHEN ZERO_DIVIDE THEN

DBMS_OUTPUT.PUT_LINE(‘Attention division par

zéro');

END;

Résultat:

DECLARE V_Result NUMBER;

V_Num NUMBER :=100;

V_Deno NUMBER :=0;

BEGIN

V_Result := V_Num / V_Deno ;

END;

Résultat :

EXCEPTIONS

Exceptions les plus courantes

➢ DUP_VAL_ON_INDEX (ORA-00001) : le tuple existe déjà; si une table

n’admet pas de doublons, l’ajout d’un tuple déjà existant lève cet

exception.

➢ NO_DATA_FOUND : pas de données

➢ TOO_MANY_ROWS : retour de plusieurs ligne par le SELECT

➢ VALUE_ERROR : n’est pas de même type ou NULL

➢ ZERO_DIVIDE : division par zéro

➢ INVALID_CURSOR : curseur n’est pas autorisé

➢ INVALID_NUMBER : échec d’une conversion d’une chaine de caractère

en un nombre

➢ OTHERS : exceptions non définies

46

EXCEPTIONS

Il est aussi possible de définir un message d’erreur.

Syntaxe : RAISE_APPLICATION_ERROR(error_number, message)

Error_number : nombre négatif dont la valeur absolue est comprise entre 20000 et 20999

Exemple :

DECLARE

v_empno NUMBER := 9999;

v_sal NUMBER;

BEGIN

select salary into v_sal from employe where Emp_id = v_empno;

DBMS_OUTPUT.PUT_LINE(v_sal);

EXCEPTION

WHEN ZERO_DIVIDE THEN

 DBMS_OUTPUT.PUT_LINE('Division par zero');

WHEN OTHERS THEN

 raise_application_error(-20102, 'Je suis une erreur définie');

END;

47

48

EXCEPTIONS

Il est possible de définir une exception (dans la section

déclarative) et de la gérer ensuite dans la section exception.

Syntaxe : DECLARE EXCEPTION nom_exception;

49

EXCEPTIONS

Exemple :

DECLARE

E_division_par_zero EXCEPTION;

v_numerateur NUMBER :=10;

v_denominateur NUMBER :=0;

BEGIN

IF v_denominateur=0 THEN RAISE E_division_par_zero;

ELSE DBMS_OUTPUT.PUT_LINE(v_numerateur/v_denominateur);

END IF;

EXCEPTION

WHEN E_division_par_zero THEN DBMS_OUTPUT.PUT_LINE('le

dénominateur doit être différent de zéro');

END;

PROCEDURES

50

Procédures

C’est le code PL/SQL compilé et stocké dans le dictionnaire Oracle.

Syntaxe :

CREATE [OR REPLACE] PROCEDURE Nom_Procedure(P_p1 type, P_p2

type,…) IS

BEGIN

-- Instruction

EXCEPTION

--Gestion des erreurs

END Nom_Procedure;

REPLACE : remplace une procédure existante (suppression puis recréation

51

Procédures

Différents modes des paramètres

➢ IN (mode par défaut) → en entrée, lecture seule

➢ OUT → en sortie, écriture

➢ IN OUT → en entrée/sortie , lecture et écriture

Appel d’une procédure

EXECUTE Nom_Procedure(p1, p2…);

CALL Nom_Procedure(p1,p2…);

BEGIN

 Nom_Procedure(p1,p2…)

END;

52

Procédures

Exemple 1 : Compter le nombre d’employés de l’entreprise

CREATE OR REPLACE PROCEDURE Compte_Emp

IS

V_Nbre_Employe INT;

BEGIN

SELECT COUNT(*) INTO V_Nbre_Employe FROM Employe;

DBMS_OUTPUT.PUT_LINE(CONCAT('Nombre employé =', V_Nbre_Employe));

END Compte_Emp;

53

Procédures

Exemple 2 : Compter le nombre d’employé d’un département

CREATE OR REPLACE PROCEDURE Nbre_Emp_Dept(P_Dept_Name VARCHAR2)

IS

V_Nbre_Emp INT;

BEGIN

SELECT COUNT(*) INTO V_Nbre_Emp FROM Employe E

INNER JOIN Department D ON E.Dept_Id = D.Dept_ID

WHERE D.Dept_Name=P_Dept_Name;

DBMS_OUTPUT.PUT_LINE('Nombre employé du département '|| P_Dept_Name ||’ est : ' ||

V_Nbre_Emp);

END Nbre_Emp_Dept;

54

Procédures

Exemple 3: Afficher le salaire d’un employé

CREATE OR REPLACE PROCEDURE Show_Salary(P_Emp_Id Employe.Emp_Id%TYPE ,

P_Salary OUT NUMBER)

IS

V_Emp_Name Employe.Emp_Nom%TYPE;

BEGIN

SELECT Salary, Emp_Nom INTO P_Salary , V_Emp_Name

FROM Employe WHERE Emp_Id=P_Emp_Id;

DBMS_OUTPUT.PUT_LINE('Le salaire de ' || V_Emp_Name || ' est de '|| P_Salary);

END Show_Salary;

55

Procédures

Exemple 3: Afficher le salaire d’un employé

56

Procédures – gestion des erreurs

Exemple 3: Afficher le salaire d’un employé

57

CREATE OR REPLACE PROCEDURE Show_Salary(P_Emp_Id Employe.Emp_Id%TYPE, P_Salary

OUT NUMBER) IS

V_Emp_Name Employe.Emp_Nom%TYPE;

V_Salary Employe.Salary%TYPE;

BEGIN

 SELECT Salary, Emp_Nom INTO P_salary, V_Emp_Name

 FROM Employe WHERE Emp_Id=P_Emp_Id;

 DBMS_OUTPUT.PUT_LINE('Le salaire de ' || V_Emp_Name || ' est de '|| P_salary);

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('L''employé ' || V_Emp_Name || ' n''existe pas');

END Show_Salary;

FONCTIONS

58

59

Fonctions

Les fonctions retournent une valeur (number, integer, varchar2, booléen, date, …).

Son appel peut se faire via un ordre SQL Select, une procédure ou une fonction.

Syntaxe :

CREATE OR REPLACE FUNCTION function_name(P_p1 type …)

RETURN type

IS

BEGIN

instruction

RETURN

EXCEPTION

END function_name;

60

Fonctions

Exemple : Afficher le salaire des employés

CREATE OR REPLACE FUNCTION Function_Show_Salary(P_Emp_Id

NUMBER)

RETURN NUMBER

IS

V_Salary NUMBER;

BEGIN

SELECT Salary INTO V_Salary FROM Employe WHERE Emp_Id=P_Emp_Id;

RETURN V_Salary;

END Function_Show_Salary;

61

Fonctions

Exemple : Afficher le salaire des employés

curseurs

62

CURSEURS

Un curseur est une zone mémoire (un vecteur)
dans laquelle les informations de traitement sont
sauvegardées.

Il existe des curseurs implicites et explicites.

63

CURSEURS

CURSEUR IMPLICITE : déclaré automatiquement
par Oracle lors de l’exécution des requêtes.

Lors d’un SELECT, un seul enregistrement doit être
résultat.

64

CURSEURS

CURSEUR EXPLICITE : déclaré et géré par les

utilisateurs. Il permet de consulter plusieurs lignes et d’y
effectuer des traitement sur chaque ligne.

Syntaxe déclaration d’un curseur:

DECLARE CURSOR nom_curseur [(P_param1, P_param2..)] IS
SELECT statement;

Ouverture d’un curseur :

OPEN nom_curseur[(P_param1, P_param2…)]

Accès aux lignes d’un curseur :

FETCH nom_curseur INTO variable1, variable2…;

Fermeture du curseur :

CLOSE nom_curseur

65

CURSEURS

La commande FETCH permet d’assigner le contenu de la ligne courante dans

des variables et déplace le pointeur à la ligne suivante.

La commande CLOSE nom_curseur permet de libérer l’espace mémoire

alloué au curseur

Attributs d’un curseur :

Nom_curseur%ROWCOUNT : nombre de lignes affectées

Nom_curseur%FOUND : prend la valeur TRUE si une ligne est

trouvée,FALSE si non.

Nom_curseur%NOTFOUND : prend la valeur TRUE si aucune ligne n’est

retournée, FALSE si non

Nom_curseur%ISOPEN =TRUE si le curseur est ouvert;

66

CURSEURS

Exemple :
DECLARE CURSOR C_Employe IS SELECT Emp_Nom, Salary FROM Employe WHERE

Dept_Id=20;

V_Emp_Nom Employe.Emp_Nom%TYPE;

V_Salary Employe.Salary%TYPE;

BEGIN

OPEN C_employe;

LOOP

FETCH C_employe INTO V_Emp_Nom, V_Salary;

DBMS_OUTPUT.PUT_LINE(V_Emp_Nom || ' a un salaire de '||V_Salary);

EXIT WHEN C_employe%NOTFOUND;

END LOOP;

CLOSE C_employe;

END

67

CURSEURS

PL/SQL permet de faire une boucle SQL spéciale pour les curseurs. Elle prend en

charge les opérations du curseur : OPEN, FETCH, EXIT and CLOSE.

Exemple :

DECLARE CURSOR C_Employe IS SELECT Emp_Nom, Salary FROM Employe

WHERE Dept_Id=20;

BEGIN

FOR V_rec IN C_Employe

LOOP → ouverture implicite du curseur

DBMS_OUTPUT.PUT_LINE(V_rec.Emp_Nom || ' a pour salaire ' || V_rec.Salary);

END LOOP; → fermeture implicite du curseur

END;

68

TRIGGER

69

TRIGGER

Un trigger encore appelé déclencheur est un traitement qui se déclenche suite à

un évènement. Il permet une programmation évènementielle.

Deux types de trigger :

➢ Applicatif : créé et géré au niveau de l’application

➢ Base de données : stocké dans la base de données et associé aux

évènements qui surviennent sur des tables.

Les évènements peuvent être :

➢ DML : insert, update, delete

➢ DDL : create, drop, alter …

➢ BASE : erreur, logon…

70

TRIGGER

Cas d’utilisations des triggers :

➢ Pour automatiser les traitements sur des évènements : déclencher une

commande lorsque le stock atteint un certain seuil

➢ Garantir une propreté dans la base de données : garantir par exemple que le

salaire d’un employé soit toujours compris dans une certaine fourchette.

Niveaux de déclenchement d’un trigger

➢ Niveau ligne (row level) : se déclenche pour chaque ligne

➢ Niveau instruction : se déclenche une seule fois

71

TRIGGER

Syntaxe :

CREATE OR REPLACE TRIGGER nom_trigger

{BEFORE | AFTER} évènement

ON nom_table

REFERENCING OLD variable|NEW variable

FOR {each row}

DECLARE

-- déclaration variable , curseur…

BEGIN

--traitement

EXCEPTION

--gestion des erreurs

END nom_trigger;

72

TRIGGER

BEFORE | AFTER : indique que le déclencheur doit être lancé avant | après

l’exécution de l’évènement.

BEFORE si le trigger doit :

- déterminer si l'instruction DML est autorisée

- "fabriquer" la valeur d'une colonne pour pouvoir ensuite la mettre dans la.

AFTER si on a besoin que l'instruction DML soit terminée pour exécuter le corps

du trigger

INSERT , DELETE : indique au déclencheur de s’exécuter lors d’une

insertion ou d’une supression dans la table

UPDATE [of colonne] : indique que le déclencheur doit être lancé lors de

chaque mise à jour d’une des colonnes spécifiées. Si [of colonne] n’est pas

précisé, n’importe quelle colonne de la table modifiée provoque le

déclenchement du trigger

73

TRIGGER

ON nom_table : désigne le nom de la table associé à son schéma pour lequel

le trigger a été créé.

FOR EACH ROW : si spécifié => trigger de ligne. Le trigger se déclenche

pour toutes les lignes de la mise à jour. Si non spécifié => trigger

d’instruction qui se déclenche une seule fois.

REFERENCING OLD variable|NEW variable : permet de renommer les

variables de corrélation OLD et NEW

WHEN (condition) : spécifie une restriction sur le trigger. La restriction est

une condition SQL qui doit être satisfaite pour que le trigger se déclenche.

74

TRIGGER – variables de correlation

Pour un trigger niveau ligne, on peut avoir besoin d’accèder aux

données du tuple en cours de manipulation. Cela se fait via deux

records :old et :new qui ont la même structure que la table sur

laquelle le trigger est défini.

! Ne sont pas des variables globales

75

Evènement :OLD :NEW

INSERT NULL Valeur en cours
d’insertion

UPDATE Ancienne valeur Nouvelle valeur

DELETE Valeur a
supprimée

NULL

TRIGGER

Before trigger :

On peut écrire dans :new valeur mais on ne peut pas modifier :old

valeur.

After trigger :

On ne peut écrire ni dans :new valeur ni dans :old valeur

Erreur obtenue en cas de mauvaise modification :

ORA-04084: cannot change NEW values for this trigger type

76

77

EXEMPLES

Considérons les tables ci-dessous : Table Employe et Table Department

TRIGGER

Exemple 1 :

CREATE OR REPLACE TRIGGER Verifie_salaire

BEFORE INSERT

ON Employe

FOR EACH ROW

WHEN (new.salary<1300)

BEGIN

raise_application_error(-20000, 'salaire incorrect, le salaire doit etre

supérieur au SMIC');

END Verifie_salaire;

78

TRIGGER

Exemple 1 :

Insertion d’une nouvelle ligne

INSERT INTO Employe(Emp_Id , Emp_Nom , Emp_Job , Manager ,

Hire_Date , Salary , Dept_Id) VALUES (600, 'ANDREA', 'ANALYST','',

to_date('2010-07-22','yyyy-MM-dd'), 1000,10) ;

La ligne n’est pas ajoutée à la table

BEFORE INSERT : détermine si l’instruction DML est autorisée

79

TRIGGER

EXEMPLE 2 : historisation des données lors de la suppression

CREATE OR REPLACE TRIGGER Archive_Employe

AFTER DELETE

ON Employe

FOR EACH ROW

BEGIN

INSERT INTO Archive_Employe VALUES (:old.Emp_id, :old.Emp_Nom,

:old.Emp_Job,:old.Manager, :old.Hire_Date,:old.Salary, :old.Dept_Id);

END Archive_Employe;

Suppression d’un employé : DELETE FROM Employe where emp_id=500;

Contenu de la table Archive_employe

80

TRIGGER

Il est possible pour un déclencheur de tester l’évènement déclencheur avec les

prédicats:

➢ If inserting then …

➢ If deleting then …

➢ If updating then …

➢ If updating [(colonne)] then …

81

TRIGGER

Exemple

CREATE OR REPLACE TRIGGER test_even

AFTER INSERT OR UPDATE of SALARY OR DELETE

ON EMPLOYE

FOR EACH ROW

BEGIN

IF INSERTING THEN

IF :new.SALARY<1300 THEN

DBMS_OUTPUT.PUT_LINE(‘attention le salaire est inferieur a 1300');

END IF;

END IF;

IF UPDATING THEN

IF :new.SALARY<1300 THEN

DBMS_OUTPUT.PUT_LINE(‘attention le salaire est inferieur a 1300');

END IF;

END IF;

IF DELETING THEN DBMS_OUTPUT.PUT_LINE(‘suppression');

END IF;

end test_even;

82

TRIGGER – Table mutante

Une table mutante est une table en cours de modification du fait d’une

instruction DML (update, delete, insert).

Considérons le schema ci-dessous.

La table X est appelée table mutante.

83

DML instruction

Rows

Action

Trigger for each rowTable X

Erreur table mutante

TRIGGER – Table mutante

! Un trigger ne peut pas modifier la table concernée par l’instruction qui a

déclenchée le trigger.

Cet contrainte évite que l’on ai des lectures incohérentes

Exemple :

CREATE OR REPLACE TRIGGER Test_Table_Mutante

BEFORE UPDATE

ON EMPLOYE

FOR EACH ROW

BEGIN

UPDATE EMPLOYE SET SALARY = 3000 WHERE Emp_Id=100;

END Test_Table_Mutante;

84

TRIGGER – Oracle

On peut créer des triggers pour des événements au niveau de la

base de données Oracle

L’option After pour des évènements comme STARTUP,

SERVERERROR, LOGON

L’option Before pour des évènements comme LOGOFF,

SHUTDOWN

Exemple :

CREATE OR REPLACE TRIGGER Trace AFTER LOGON

BEGIN

INSERT INTO Trace_Table VALUES(user_name, sysdate);

END;

85

TRIGGER

Gestion des triggers :

➢ DROP TRIGGER trigger_name : pour supprimer un trigger

➢ ALTER TRGGIER trigger_name {ENABLE | DISABLE}

pour activer ou desactiver un trigger. Lorsqu’un trigger est

créé, il est automatiquement activer. Desactiver un trigger ne

le supprime pas de la base.

➢ ALTER TABLE table_name {ENABLE | DISABLE} ALL

TRIGGERS : permet d’activer ou desactiver tous les triggers

d’une table

86

PACKAGES

87

PACKAGE

Un package est un schema qui regroupe des objects PL/SQL(type, procédures,

fonctions…) logiquement liés.

Un package a deux parties :

➢ Specification : permet de déclarer les types, variables, procédures,

curseurs…

➢ Body : permet d’implémenter les éléments déclarés dans la specification

notamment les curseurs, procédures, fonctions.

88

PACKAGE

La partie spécification est l’interface avec l’application

89

PACKAGE

Spécification :

CREATE OR REPLACE PACKAGE package_name

AS

--Declaration variables, curseurs,exceptions…

--Prototypes des procédures , fonctions

END package_name

90

PACKAGE

BODY :

CREATE OR REPLACE PACKAGE BODY package_name

AS

Specifiction des fonctions, procédures

BEGIN

Commandes a exécuter

END package_name

91

PACKAGE

EXEMPLE :

CREATE OR REPLACE PACKAGE pkg_Gestion_Employe

AS

-- declaration des variables globales

v_nbre_employe NUMBER;

V_nbre_employe_department NUMBER;

--declaration des prototypes

FUNCTION Affiche_nbre_employe RETURN NUMBER;

FUNCTION Affiche_nbre_emp_dep(Dept_id NUMBER) RETURN NUMBER;

END pkg_Gestion_Employe;

92

PACKAGE

EXEMPLE :

CREATE OR REPLACE PACKAGE BODY pkg_Gestion_Employe

IS

FUNCTION Affiche_nbre_employe

RETURN NUMBER

IS

v_total NUMBER;

BEGIN

SELECT COUNT(*) INTO v_total FROM Employe;

RETURN v_total;

END Affiche_nbre_employe;

93

PACKAGE

FUNCTION Affiche_nbre_emp_dep(Dept_id NUMBER)

RETURN NUMBER

IS

v_total NUMBER;

BEGIN

SELECT COUNT(*) INTO v_total FROM Employe where Dept_Id=Dept_id;

RETURN v_total;

END Affiche_nbre_emp_dep;

BEGIN

NULL ;

END pkg_Gestion_Employe;

94

PACKAGE

EXEMPLE :

DECLARE var NUMBER :=0;

BEGIN

var:=pkg_Gestion_Employe.Affiche_nbre_emp_dep(20);

DBMS_OUTPUT.PUT_LINE(var);

END

95

SQL DYNAMIQUE

96

97

SQL Dynamique

Rôle du SQL Dynamique :

➢ Exécuter des ordres DDL (create, drop, alter…) dans un bloc PL/SQL

➢ Jusqu’à présent, tous les ordres SQL écrits dans du code PL/SQL étaient

statiques. Il y a des cas où l’ordre SQL n’est connu qu’à l’exécution. Par

exemple lorsque l’on ne connait pas la table du select. Un ordre SQL peut

être stocké dans une chaîne de caractères puis exécuté.

Ordre dynamique analysé à chaque exécution

98

SQL Dynamique : EXECUTE IMMEDIATE

EXECUTE IMMEDIATE permet d’analyser et d’exécuter immédiatement

une instruction SQL Dynamique ou un bloc anonyme

Syntaxe :

EXECUTE IMMEDIATE dynamic_string

[INTO {define_variable, define_variable … | record}]

[USING [IN | OUT | IN OUT] bind_argument]

[{RETURNING | RETURN } INTO bind_argument]

99

SQL Dynamique : EXECUTE IMMEDIATE

Exemple :

DECLARE

sql_stmt VARCHAR2(200);

v_id NUMBER :=2;

v_Cours VARCHAR2(50):= 'Mathématiques';

V_id_ajoute NUMBER;

V_cours_ajoute VARCHAR2(50);

BEGIN

EXECUTE IMMEDIATE 'CREATE TABLE Cours (id NUMBER, Cours VARCHAR2(50))';

sql_stmt := 'INSERT INTO Cours VALUES (1, ''Bases de données'')';

EXECUTE IMMEDIATE sql_stmt;

sql_stmt := 'INSERT INTO Cours VALUES (:1, :2) RETURNING id , cours INTO :3, :4';

EXECUTE IMMEDIATE sql_stmt USING v_id, v_cours RETURNING INTO

v_id_ajoute,v_cours_ajoute;

dbms_output.put_line('Le cours ' || v_cours_ajoute || ' a été ajouté avec l''id ' ||v_id_ajoute);

EXECUTE IMMEDIATE 'DROP TABLE Cours';

END;

DESCRIBE

➢ DESCRIBE : cette fonction permet de donner la description des objets.

100

Quelques vue ORACLE

• USER_OBJECTS : contient les objets oracle de l’utilisateur

• USER_SOURCE : contient le code source des sous programmes de

l’utilisateur. Cette vue permet de retrouver le code des programmes stockés

• USER_PROCEDURE : contient toutes les fonctions et procédures de

l’utilisateur.

• USER_CONSTRAINTS : contient toutes les contraintes définies sur les

tables de l’utilisateur en cours.

Vous trouverez la liste des vues systèmes oracle sur le site docs.oracle.com

101

BULK BINDING

102

BULK BINDING

Considérons le bloc ci-dessous, le traitement est fait ligne par ligne. Si il y’a 100 lignes

à mettre à jour, il y’aura 100 échanges entre les moteurs SQL et PL/SQL

DECLARE V_iter NUMBER :=0;

BEGIN

FOR V_Emp IN(SELECT Emp_Id, Emp_Nom, Salary FROM Employe WHERE Dept_ID=20)

LOOP

V_iter :=V_iter+1;

UPDATE Employe SET Salary=Salary+100 Where Emp_Id=V_Emp.Emp_Id ;

DBMS_OUTPUT.PUT_LINE('Itération No ' || V_iter ||': Augmentation du salaire de '||V_Emp.Emp_Nom);

END LOOP;

END;

Solution : BULK binds (liaison en masse)
103

BULK BINDING

Pour faire de la liaison en masse (BULK BINDING), deux fonctionnalités disponibles :

➢ BULK COLLECT permet de récupérer toutes les données en une seule extraction (du

moteur SQL à PL/SQL) ;

 Syntaxe : … BULK COLLECT INTO collection_name

Dans le cas d’un curseur :

 FETCH cursor_name BULK COLLECT INTO … [LIMIT rows]

➢ FOREALL permet d’effectuer les opérations DML (INSERT,UPDATE, DELETE,

MERGE) sur toutes les données d’une collection en une seule fois (de PL/SQL vers

SQL)

Syntaxe : FOREALL index IN lower_bound..upper_bound

 sql_statement (insert | update | delete);

104

BULK BINDING

Exemple :

DECLARE TYPE Type_Emp_Id IS TABLE OF Number;

TYPE Type_Emp_Nom IS TABLE OF Employe.Emp_Nom%TYPE;

V_Emp_Id Type_Emp_Id;

V_Emp_Nom Type_Emp_Nom;

V_index NUMBER;

BEGIN

SELECT Emp_Nom, Emp_Id BULK COLLECT INTO V_Emp_Nom,V_Emp_Id FROM Employe

WHERE Dept_ID=20;

DBMS_OUTPUT.PUT_LINE('Nombre de lignes retournées par le moteur SQL :' ||

V_Emp_Id.COUNT);

FORALL V_index IN V_Emp_Nom.First..V_Emp_Nom.LAST

UPDATE Employe SET SALARY=SALARY+100 WHERE Emp_Id=V_Emp_Id(V_index);

DBMS_OUTPUT.PUT_LINE('Nombre de lignes mise à jour :' || SQL%ROWCOUNT);

END;

105

106

Fin

	Slide 1: PLSQL
	Slide 2: INTRODUCTION
	Slide 3: INTRODUCTION
	Slide 4: INTRODUCTION
	Slide 5: INTRODUCTION
	Slide 6: INTRODUCTION
	Slide 7: INTRODUCTION
	Slide 8: PL/SQL : contenu du cours
	Slide 9: BLOCS PL/SQL
	Slide 10: Les blocs PL/SQL
	Slide 11: Les blocs PL/SQL
	Slide 12: Les blocs PL/SQL
	Slide 13: Les blocs PL/SQL
	Slide 14: Les blocs PL/SQL
	Slide 15: TYPES DE DONNEES
	Slide 16: Type de données
	Slide 17: Type de données
	Slide 18: Type de données
	Slide 19: Type de données
	Slide 20: Type de données composés
	Slide 21: Type de données composés - RECORD
	Slide 22: Type de données composés
	Slide 23: Type de données composés
	Slide 24: Type de données composés
	Slide 25: Type de données composés
	Slide 26: Déclaration des constantes
	Slide 27: Déclaration des objets
	Slide 28: CONVERSION
	Slide 29: Commentaires
	Slide 30: TABLE DUAL
	Slide 31: SEQUENCE
	Slide 32: SEQUENCE
	Slide 33: SEQUENCE
	Slide 34: SEQUENCE
	Slide 35: STRUCTURES DE CONTROLE
	Slide 36: INSTRUCTION CONDITIONNELLE
	Slide 37: INSTRUCTION CONDITIONNELLE
	Slide 38: STRUCTURE CASE
	Slide 39: STRUCTURE CASE
	Slide 40: BOUCLE LOOP
	Slide 41: BOUCLE FOR
	Slide 42: BOUCLE WHILE
	Slide 43: EXCEPTION
	Slide 44: EXCEPTIONS
	Slide 45: EXCEPTIONS
	Slide 46: EXCEPTIONS
	Slide 47: EXCEPTIONS
	Slide 48: EXCEPTIONS
	Slide 49: EXCEPTIONS
	Slide 50: PROCEDURES
	Slide 51: Procédures
	Slide 52: Procédures
	Slide 53: Procédures
	Slide 54: Procédures
	Slide 55: Procédures
	Slide 56: Procédures
	Slide 57: Procédures – gestion des erreurs
	Slide 58: FONCTIONS
	Slide 59: Fonctions
	Slide 60: Fonctions
	Slide 61: Fonctions
	Slide 62: curseurs
	Slide 63: CURSEURS
	Slide 64: CURSEURS
	Slide 65: CURSEURS
	Slide 66: CURSEURS
	Slide 67: CURSEURS
	Slide 68: CURSEURS
	Slide 69: TRIGGER
	Slide 70: TRIGGER
	Slide 71: TRIGGER
	Slide 72: TRIGGER
	Slide 73: TRIGGER
	Slide 74: TRIGGER
	Slide 75: TRIGGER – variables de correlation
	Slide 76: TRIGGER
	Slide 77: EXEMPLES
	Slide 78: TRIGGER
	Slide 79: TRIGGER
	Slide 80: TRIGGER
	Slide 81: TRIGGER
	Slide 82: TRIGGER
	Slide 83: TRIGGER – Table mutante
	Slide 84: TRIGGER – Table mutante
	Slide 85: TRIGGER – Oracle
	Slide 86: TRIGGER
	Slide 87: PACKAGES
	Slide 88: PACKAGE
	Slide 89: PACKAGE
	Slide 90: PACKAGE
	Slide 91: PACKAGE
	Slide 92: PACKAGE
	Slide 93: PACKAGE
	Slide 94: PACKAGE
	Slide 95: PACKAGE
	Slide 96: SQL DYNAMIQUE
	Slide 97: SQL Dynamique
	Slide 98: SQL Dynamique : EXECUTE IMMEDIATE
	Slide 99: SQL Dynamique : EXECUTE IMMEDIATE
	Slide 100: DESCRIBE
	Slide 101: Quelques vue ORACLE
	Slide 102: BULK BINDING
	Slide 103: BULK BINDING
	Slide 104: BULK BINDING
	Slide 105: BULK BINDING
	Slide 106: Fin

