
Les blocs de code exécutables

I.​ Procédures :

1. Qu'est-ce qu'une procédure en PL/SQL ?

Une procédure en PL/SQL est un bloc de code qui effectue une tâche
spécifique. Elle peut accepter des paramètres, exécuter des instructions SQL et
retourner des valeurs.

2. Création d'une procédure

La syntaxe de base pour créer une procédure est la suivante :

CREATE OR REPLACE PROCEDURE nom_procedure (param1 TYPE, param2

TYPE) AS​
BEGIN​
 -- Instructions SQL​
END nom_procedure;

3. Définition des paramètres

●​ IN : Paramètre d'entrée (par défaut).
●​ OUT : Paramètre de sortie.
●​ IN OUT : Paramètre d'entrée et de sortie.

4. Exemple de création d'une procédure

Voici un exemple simple qui calcule le carré d'un nombre :

CREATE OR REPLACE PROCEDURE calculer_carre (nombre IN NUMBER,

resultat OUT NUMBER) AS​
BEGIN​
 resultat := nombre * nombre;​
END calculer_carre;

5. Appel d'une procédure

Pour appeler une procédure, utilisez la syntaxe suivante :

DECLARE​
 v_resultat NUMBER;​
BEGIN​
 calculer_carre(5, v_resultat);​
 DBMS_OUTPUT.PUT_LINE('Le carré est : ' || v_resultat);​
END;

6. Exemples supplémentaires

●​ Procédure avec plusieurs paramètres :

CREATE OR REPLACE PROCEDURE ajouter_nombres (a IN NUMBER, b IN

NUMBER, somme OUT NUMBER) AS​
BEGIN​
 somme := a + b;​
END ajouter_nombres;

●​ Appel de la procédure :

DECLARE​
 v_somme NUMBER;​
BEGIN​
 ajouter_nombres(10, 20, v_somme);​
 DBMS_OUTPUT.PUT_LINE('La somme est : ' || v_somme);​
END;

II.​ Les fonctions :

1. Qu'est-ce qu'une fonction en PL/SQL ?

Une fonction en PL/SQL est un bloc de code qui effectue une tâche
spécifique et retourne une valeur. Contrairement aux procédures, les fonctions
doivent toujours retourner une valeur.

2. Création d'une fonction

La syntaxe de base pour créer une fonction est la suivante :

CREATE OR REPLACE FUNCTION nom_fonction (param1 TYPE, param2 TYPE)

RETURN TYPE AS​
BEGIN​
 -- Instructions SQL​
 RETURN valeur;​
END nom_fonction;

3. Définition des paramètres

Les paramètres peuvent être définis comme suit :

●​ IN : Paramètre d'entrée (par défaut).
●​ OUT : Non utilisé dans les fonctions, car elles retournent une valeur.
●​ IN OUT : Non utilisé dans les fonctions, car elles retournent une valeur.

4. Exemple de création d'une fonction

Voici un exemple simple qui calcule le carré d'un nombre :

CREATE OR REPLACE FUNCTION calculer_carre (nombre IN NUMBER) RETURN

NUMBER AS​
BEGIN​
 RETURN nombre * nombre;​
END calculer_carre;

5. Appel d'une fonction

Pour appeler une fonction, utilisez la syntaxe suivante :

DECLARE​
 v_resultat NUMBER;​
BEGIN​
 v_resultat := calculer_carre(5);​
 DBMS_OUTPUT.PUT_LINE('Le carré est : ' || v_resultat);​
END;

6. Exemples supplémentaires

●​ Fonction avec plusieurs paramètres :

CREATE OR REPLACE FUNCTION ajouter_nombres (a IN NUMBER, b IN NUMBER)

RETURN NUMBER AS​
BEGIN​
 RETURN a + b;​
END ajouter_nombres;

●​ Appel de la fonction :

DECLARE​
 v_somme NUMBER;​
BEGIN​
 v_somme := ajouter_nombres(10, 20);​
 DBMS_OUTPUT.PUT_LINE('La somme est : ' || v_somme);​
END;

III.​ Les Trigger

1. Qu'est-ce qu'un trigger ?

Un trigger est un bloc de code PL/SQL qui s'exécute automatiquement en
réponse à certains événements sur une table ou une vue. Les triggers sont utilisés
pour maintenir l'intégrité des données, effectuer des audits, ou automatiser des
actions.

2. Types de triggers

●​ DML Triggers : S'exécutent lors des opérations DML (INSERT, UPDATE,
DELETE).

●​ DDL Triggers : S'exécutent lors des opérations DDL (CREATE, ALTER,
DROP).

●​ LOGON/LOGOFF Triggers : S'exécutent lors des connexions ou
déconnexions d'un utilisateur.

3. Création d'un trigger

La syntaxe de base pour créer un trigger est la suivante :

CREATE OR REPLACE TRIGGER nom_trigger​
{BEFORE | AFTER} {INSERT | UPDATE | DELETE} ON nom_table​
FOR EACH ROW​
BEGIN​
 -- Instructions PL/SQL​
END nom_trigger;

4. Exemple de création d'un trigger DML

Voici un exemple de trigger qui enregistre les modifications sur une table employes :

CREATE OR REPLACE TRIGGER trg_audit_employes​
AFTER INSERT OR UPDATE OR DELETE ON employes​
FOR EACH ROW​
BEGIN​
 INSERT INTO audit_employes (action, employe_id, date_action)​
 VALUES (CASE ​
 WHEN INSERTING THEN 'INSERT'​
 WHEN UPDATING THEN 'UPDATE'​
 WHEN DELETING THEN 'DELETE'​
 END, ​
 :NEW.id, ​
 SYSDATE);​
END trg_audit_employes;

5. Appel d'un trigger

Les triggers s'exécutent automatiquement en réponse à l'événement spécifié.
Par exemple, lorsque tu insères, mets à jour ou supprime un enregistrement dans la
table employes, le trigger trg_audit_employes s'exécute automatiquement.

6. Exemples supplémentaires

●​ Trigger pour valider des données :

CREATE OR REPLACE TRIGGER trg_valider_salaire​
BEFORE INSERT OR UPDATE ON employes​
FOR EACH ROW​
BEGIN​
 IF :NEW.salaire < 0 THEN​
 RAISE_APPLICATION_ERROR(-20001, 'Le salaire ne peut pas être

négatif.');​
 END IF;​
END trg_valider_salaire;

●​ Trigger pour mettre à jour une colonne :

CREATE OR REPLACE TRIGGER trg_mise_a_jour_date​
BEFORE UPDATE ON employes​
FOR EACH ROW​
BEGIN​
 :NEW.date_modification := SYSDATE;​
END trg_mise_a_jour_date;

IV.​ Les packages

1. Qu'est-ce qu'un package ?

Un package en PL/SQL est un conteneur qui regroupe des objets liés, tels
que des procédures, des fonctions, des variables, des types, et des curseurs. Les
packages permettent d'organiser le code, de le rendre modulaire et de faciliter la
réutilisation.

2. Composants d'un package

Un package se compose de deux parties :

●​ Spécification du package : Déclare les objets publics (procédures, fonctions,
variables) accessibles à l'extérieur.

●​ Corps du package : Contient l'implémentation des objets déclarés dans la
spécification.

3. Création d'un package

La syntaxe de base pour créer un package est la suivante :

Spécification :

CREATE OR REPLACE PACKAGE nom_package AS​
 -- Déclarations des objets publics​
END nom_package;

Corps :

CREATE OR REPLACE PACKAGE BODY nom_package AS​
 -- Implémentations des objets​
END nom_package;

4. Exemple de création d'un package

Voici un exemple simple d'un package qui gère des opérations sur des employés :

Spécification :

CREATE OR REPLACE PACKAGE pkg_employes AS​
 PROCEDURE ajouter_employe(nom IN VARCHAR2, salaire IN NUMBER);​
 FUNCTION obtenir_salaire(id IN NUMBER) RETURN NUMBER;​
END pkg_employes;

Corps :

CREATE OR REPLACE PACKAGE BODY pkg_employes AS​
 PROCEDURE ajouter_employe(nom IN VARCHAR2, salaire IN NUMBER) IS​
 BEGIN​
 INSERT INTO employes (nom, salaire) VALUES (nom, salaire);​
 END ajouter_employe;​
​
 FUNCTION obtenir_salaire(id IN NUMBER) RETURN NUMBER IS​
 v_salaire NUMBER;​
 BEGIN​
 SELECT salaire INTO v_salaire FROM employes WHERE id = id;​
 RETURN v_salaire;​
 END obtenir_salaire;​
END pkg_employes;

5. Appel d'un package

Pour appeler les procédures et fonctions d'un package, utilise la syntaxe suivante :

BEGIN​
 pkg_employes.ajouter_employe('Alice', 50000);​
 DBMS_OUTPUT.PUT_LINE('Salaire d\'Alice : ' ||

pkg_employes.obtenir_salaire(1));​
END;

6. Avantages des packages

●​ Modularité : Regroupe des objets liés, facilitant la gestion du code.
●​ Encapsulation : Cache les détails d'implémentation, exposant uniquement les

objets nécessaires.
●​ Performance : Charge le package en mémoire une seule fois, améliorant les

performances lors des appels.

V.​ SQL Dynamique

1. Introduction

Le SQL statique est précompilé, ce qui signifie que sa structure est connue et
validée à la compilation. Cependant, le SQL dynamique permet d'écrire des
instructions SQL qui ne peuvent pas être déterminées à l'avance.

Pourquoi utiliser le SQL dynamique ?

●​ Gérer des tables ou colonnes dynamiques.
●​ Exécuter des requêtes personnalisées en fonction des besoins utilisateurs.
●​ Construire des utilitaires génériques (comme des scripts de migration).

2. Méthodes d'exécution

En PL/SQL, le SQL dynamique peut être implémenté via deux mécanismes
principaux :

2.1. EXECUTE IMMEDIATE

La méthode la plus simple et recommandée pour exécuter des instructions SQL
dynamiques. Elle prend en charge toutes les opérations SQL (à l'exception des commandes
SELECT INTO avec plusieurs lignes).

Syntaxe de base :

EXECUTE IMMEDIATE '<instruction SQL>';

Avec liaison de variables :

EXECUTE IMMEDIATE '<instruction SQL>'​

USING <valeur1>, <valeur2>, ...;

Exemple :

DECLARE​
 v_table_name VARCHAR2(50) := 'EMPLOYEES';​
 v_sql VARCHAR2(200);​
BEGIN​
 v_sql := 'CREATE TABLE ' || v_table_name || ' (ID NUMBER, NAME

VARCHAR2(100))';​
 EXECUTE IMMEDIATE v_sql;​
END;

2.2. DBMS_SQL

Une alternative plus complexe mais plus puissante. DBMS_SQL est utile pour
exécuter des instructions dynamiques qui nécessitent un traitement plus poussé,
comme des curseurs dynamiques ou des instructions complexes.

Exemple :

DECLARE​
 v_cursor INTEGER;​
 v_status INTEGER;​
 v_sql VARCHAR2(200);​
BEGIN​
 v_sql := 'CREATE TABLE DYNAMIC_TABLE (ID NUMBER, NAME

VARCHAR2(100))';​
 v_cursor := DBMS_SQL.OPEN_CURSOR;​
 DBMS_SQL.PARSE(v_cursor, v_sql, DBMS_SQL.NATIVE);​
 v_status := DBMS_SQL.EXECUTE(v_cursor);​
 DBMS_SQL.CLOSE_CURSOR(v_cursor);​
END;

3. Manipulation dynamique des données

3.1. Exécution de requêtes DML

Les commandes comme INSERT, UPDATE ou DELETE peuvent être exécutées
dynamiquement.

Exemple :

DECLARE​
 v_table_name VARCHAR2(50) := 'EMPLOYEES';​
 v_sql VARCHAR2(200);​
BEGIN​
 v_sql := 'INSERT INTO ' || v_table_name || ' (ID, NAME) VALUES (1,

''John Doe'')';​
 EXECUTE IMMEDIATE v_sql;​
END;

3.2. Exécution de requêtes SELECT

Pour exécuter des requêtes SELECT dynamiques, EXECUTE IMMEDIATE est utilisé
avec INTO pour stocker les résultats.

Exemple :

DECLARE​
 v_table_name VARCHAR2(50) := 'EMPLOYEES';​
 v_sql VARCHAR2(200);​
 v_name VARCHAR2(100);​
BEGIN​
 v_sql := 'SELECT NAME FROM ' || v_table_name || ' WHERE ID = 1';​
 EXECUTE IMMEDIATE v_sql INTO v_name;​
 DBMS_OUTPUT.PUT_LINE('Name: ' || v_name);​
END;

4. Bonnes pratiques

1.​ Validation des entrées utilisateur : Protégez votre code contre les injections SQL.
○​ Utilisez des paramètres liés dans EXECUTE IMMEDIATE.
○​ Exemple :

EXECUTE IMMEDIATE 'SELECT NAME FROM EMPLOYEES WHERE ID = :1' INTO v_name

USING v_id;

2.​ Gestion des exceptions : Ajoutez des blocs EXCEPTION pour gérer les erreurs.

Exemple :​

BEGIN​
 EXECUTE IMMEDIATE 'DROP TABLE NON_EXISTENT_TABLE';​
EXCEPTION​
 WHEN OTHERS THEN​
 DBMS_OUTPUT.PUT_LINE('Erreur : ' || SQLERRM);​
END;

3.​ Privilèges minimaux : Assurez-vous que l'utilisateur dispose des privilèges
nécessaires pour exécuter le SQL dynamique.

4.​ Debugging : Ajoutez des journaux pour suivre l'exécution.
○​ Utilisez DBMS_OUTPUT.PUT_LINE ou des tables de log pour enregistrer les

commandes SQL exécutées.

5. Cas d'utilisation avancés

5.1. Gestion de structures dynamiques

Création ou modification de tables à la volée en fonction des besoins.

Exemple :

DECLARE​
 v_sql VARCHAR2(200);​
BEGIN​
 v_sql := 'ALTER TABLE EMPLOYEES ADD (AGE NUMBER)';​
 EXECUTE IMMEDIATE v_sql;​
END;

5.2. Curseurs dynamiques avec DBMS_SQL

Pour exécuter des instructions avec un nombre inconnu de colonnes ou de paramètres.

Exemple :

DECLARE​
 v_cursor INTEGER;​
 v_sql VARCHAR2(200);​
 v_columns VARCHAR2(200);​
 v_desc DBMS_SQL.DESC_TAB;​
 v_col_cnt INTEGER;​
BEGIN​
 v_sql := 'SELECT * FROM EMPLOYEES';​
 v_cursor := DBMS_SQL.OPEN_CURSOR;​
 DBMS_SQL.PARSE(v_cursor, v_sql, DBMS_SQL.NATIVE);​
​
 -- Décrire les colonnes​
 DBMS_SQL.DESCRIBE_COLUMNS(v_cursor, v_col_cnt, v_desc);​
 DBMS_OUTPUT.PUT_LINE('Nombre de colonnes : ' || v_col_cnt);​
​
 DBMS_SQL.CLOSE_CURSOR(v_cursor);​
END;

6. Limitations

●​ Performance : Les instructions dynamiques sont compilées à l'exécution, ce qui peut
être plus lent.

●​ Lisibilité : Le code peut devenir difficile à lire et à maintenir.
●​ Gestion des droits : L'exécution dynamique peut être bloquée si les privilèges ne sont

pas correctement configurés.

	Les blocs de code exécutables
	I.​Procédures :
	1. Qu'est-ce qu'une procédure en PL/SQL ?
	2. Création d'une procédure
	3. Définition des paramètres
	4. Exemple de création d'une procédure
	5. Appel d'une procédure
	6. Exemples supplémentaires

	II.​Les fonctions :
	1. Qu'est-ce qu'une fonction en PL/SQL ?
	2. Création d'une fonction
	3. Définition des paramètres
	4. Exemple de création d'une fonction
	5. Appel d'une fonction
	6. Exemples supplémentaires

	III.​Les Trigger
	1. Qu'est-ce qu'un trigger ?
	2. Types de triggers
	3. Création d'un trigger
	4. Exemple de création d'un trigger DML
	5. Appel d'un trigger
	6. Exemples supplémentaires

	
	IV.​Les packages
	1. Qu'est-ce qu'un package ?
	2. Composants d'un package
	3. Création d'un package
	4. Exemple de création d'un package
	5. Appel d'un package
	6. Avantages des packages

	V.​SQL Dynamique
	1. Introduction
	Pourquoi utiliser le SQL dynamique ?

	2. Méthodes d'exécution
	2.1. EXECUTE IMMEDIATE
	Syntaxe de base :
	Avec liaison de variables :
	Exemple :
	Exemple :

	3. Manipulation dynamique des données
	3.1. Exécution de requêtes DML
	
	Exemple :

	3.2. Exécution de requêtes SELECT
	Exemple :

	4. Bonnes pratiques
	5. Cas d'utilisation avancés
	5.1. Gestion de structures dynamiques
	Exemple :

	5.2. Curseurs dynamiques avec DBMS_SQL
	Exemple :

	6. Limitations

