Les blocs de code exécutables

I Procédures :

1. Qu'est-ce qu'une procédure en PL/SQL ?

Une procédure en PL/SQL est un bloc de code qui effectue une tache
spécifique. Elle peut accepter des paramétres, exécuter des instructions SQL et
retourner des valeurs.

2. Création d'une procédure

La syntaxe de base pour créer une procédure est la suivante :

CREATE OR REPLACE PROCEDURE nom_procedure (paraml TYPE, param2
TYPE) AS
BEGIN

END nom_procedure;

3. Définition d o

e [N : Paramétre d'entrée (par défaut).
OUT : Paramétre de sortie.
IN OUT : Paramétre d'entrée et de sortie.

4. Exemple de création d'une procédure

Voici un exemple simple qui calcule le carré d'un nombre :

CREATE OR REPLACE PROCEDURE calculer_carre (nombre IN NUMBER,
resultat OUT NUMBER) AS
BEGIN
resultat := nombre * nombre;
END calculer_carre;

5. Appel d'une procédure

Pour appeler une procédure, utilisez la syntaxe suivante :

DECLARE
v_resultat NUMBER;
BEGIN

calculer carre(5, v_resultat);
DBMS_OUTPUT.PUT_LINE('Le carré : ' || v_resultat);
END;

6. Exemples supplémentaires

e Procédure avec plusieurs paramétres :

CREATE OR REPLACE PROCEDURE ajouter_nombres (a IN NUMBER, b IN
NUMBER, somme OUT NUMBER) AS
BEGIN

somme := a + b;
END ajouter_nombres;

e Appel de la procédure :

DECLARE
v_somme NUMBER;
BEGIN
ajouter _nombres(10, 20, v_somme);
DBMS_OUTPUT.PUT_LINE('La somme est : ' || v_somme);
END;

Il. Les fonctions :

1. Qu'est-ce qu'une fonction en PL/SQL ?

Une fonction en PL/SQL est un bloc de code qui effectue une tache
spécifique et retourne une valeur. Contrairement aux procédures, les fonctions
doivent toujours retourner une valeur.

2. Création d'une fonction

La syntaxe de base pour créer une fonction est la suivante :

CREATE OR REPLACE FUNCTION nom_fonction (paraml TYPE, param2 TYPE)
RETURN TYPE AS
BEGIN

RETURN valeur;

END nom_fonction;

3. Définition des paramétres

Les paramétres peuvent étre définis comme suit :

e [N : Paramétre d'entrée (par défaut).
OUT : Non utilisé dans les fonctions, car elles retournent une valeur.
IN OUT : Non utilisé dans les fonctions, car elles retournent une valeur.

4. Exemple de création d'une fonction

Voici un exemple simple qui calcule le carré d'un nombre :

CREATE OR REPLACE FUNCTION calculer_carre (nombre IN NUMBER) RETURN
NUMBER AS
BEGIN

RETURN nombre * nombre;
END calculer_carre;

5. Appel d'une fonction

Pour appeler une fonction, utilisez la syntaxe suivante :

DECLARE
v_resultat NUMBER;
BEGIN
v_resultat := calculer_carre(5);
DBMS_OUTPUT.PUT_LINE('Le carré est : ' || v_resultat);
END;

6. Exemples supplémentaires

e Fonction avec plusieurs parametres :

CREATE OR REPLACE FUNCTION ajouter_nombres (a IN NUMBER, b IN NUMBER)
RETURN NUMBER AS
BEGIN
RETURN a + b;
END ajouter_nombres;

e Appel de la fonction :

DECLARE
v_somme NUMBER;
BEGIN

v_somme := ajouter_nombres(10, 20);
DBMS_OUTPUT.PUT_LINE('La somme est : ' || v_somme);
END;

1. Les Trigger

1. Qu'est-ce qu'un trigger ?

Un trigger est un bloc de code PL/SQL qui s'exécute automatiquement en
réponse a certains événements sur une table ou une vue. Les triggers sont utilisés
pour maintenir l'intégrité des données, effectuer des audits, ou automatiser des
actions.

2. Types de triggers

e DML Triggers : S'exécutent lors des opérations DML (INSERT, UPDATE,
DELETE).

e DDL Triggers : S'exécutent lors des opérations DDL (CREATE, ALTER,
DROP).

e LOGON/LOGOFF Triggers : S'exécutent lors des connexions ou
déconnexions d'un utilisateur.

3. Création d'un trigger

La syntaxe de base pour créer un trigger est la suivante :

CREATE OR REPLACE TRIGGER nom_trigger
{BEFORE | AFTER} {INSERT | UPDATE | DELETE} ON nom_table
FOR EACH ROW

BEGIN

END nom_trigger;

4. Exemple de création d'un trigger DML

Voici un exemple de trigger qui enregistre les modifications sur une table employes :

CREATE OR REPLACE TRIGGER trg audit employes
AFTER INSERT OR UPDATE OR DELETE ON employes
FOR EACH ROW
BEGIN
INSERT INTO audit_employes (action, employe id, date_action)
VALUES (CASE
WHEN INSERTING THEN 'INSERT'

WHEN UPDATING THEN 'UPDATE'
WHEN DELETING THEN ‘DELETE
END,
:NEW. id,
SYSDATE) ;
END trg_audit_employes;

5. Appel d'un trigger

Les triggers s'exécutent automatiquement en réponse a I'événement spécifié.
Par exemple, lorsque tu inséres, mets a jour ou supprime un enregistrement dans la

table employes, le trigger [HgSCIehRaRRIIY s'exécute automatiquement.

. Exempl lémentair

e Trigger pour valider des données :

CREATE OR REPLACE TRIGGER trg valider salaire
BEFORE INSERT OR UPDATE ON employes
FOR EACH ROW
BEGIN
IF :NEW.salaire < © THEN

RAISE _APPLICATION ERROR(-20001, 'Le salaire ne peut pas étre
négatif.');
END IF;
END trg valider_salaire;

e Trigger pour mettre a jour une colonne :

CREATE OR REPLACE TRIGGER trg_mise_a_jour_date
BEFORE UPDATE ON employes
FOR EACH ROW
BEGIN
:NEW.date_modification := SYSDATE;

END trg mise a jour_ date;

IV. Les packages
1. Qu'est-ce qu'un package ?

Un package en PL/SQL est un conteneur qui regroupe des objets liés, tels
que des procédures, des fonctions, des variables, des types, et des curseurs. Les
packages permettent d'organiser le code, de le rendre modulaire et de faciliter la
réutilisation.

2. Composants d'un package

Un package se compose de deux parties :

e Spécification du package : Déclare les objets publics (procédures, fonctions,
variables) accessibles a I'extérieur.

e Corps du package : Contient I'implémentation des objets déclarés dans la
spécification.

3. Création d'un package

La syntaxe de base pour créer un package est la suivante :

Spécification :

CREATE OR REPLACE PACKAGE nom_package AS

END nom_package;

Corps :

CREATE OR REPLACE PACKAGE BODY nom_package AS

END nom_package;

4. Exemple de création d'un package
Voici un exemple simple d'un package qui gére des opérations sur des employés :

Spécification :

CREATE OR REPLACE PACKAGE pkg_employes AS
PROCEDURE ajouter _employe(nom IN VARCHAR2, salaire IN NUMBER);
FUNCTION obtenir_salaire(id IN NUMBER) RETURN NUMBER;

END pkg _employes;

Corps :

CREATE OR REPLACE PACKAGE BODY pkg employes AS
PROCEDURE ajouter_employe(nom IN VARCHAR2, salaire IN NUMBER) IS
BEGIN
INSERT INTO employes (nom, salaire) VALUES (nom, salaire);
END ajouter employe;

FUNCTION obtenir_salaire(id IN NUMBER) RETURN NUMBER IS

v_salaire NUMBER;
BEGIN
SELECT salaire INTO v_salaire FROM employes WHERE id = id;
RETURN v_salaire;
END obtenir salaire;
END pkg_employes;

5. Appel d'un package
Pour appeler les procédures et fonctions d'un package, utilise la syntaxe suivante :

BEGIN
pkg_employes.ajouter_employe('Alice', 50000);
DBMS_OUTPUT.PUT_LINE('Salaire d\'Alice : ' ||

pkg employes.obtenir_salaire(1));
END;

6. Avantages des packages

e Modularité : Regroupe des objets liés, facilitant la gestion du code.

e Encapsulation : Cache les détails d'implémentation, exposant uniquement les
objets nécessaires.

e Performance : Charge le package en mémoire une seule fois, améliorant les
performances lors des appels.

V. SQL Dynamique

1. Introduction

Le SQL statique est précompilé, ce qui signifie que sa structure est connue et
validée a la compilation. Cependant, le SQL dynamique permet d'écrire des
instructions SQL qui ne peuvent pas étre déterminées a 'avance.

Pourquoi utiliser le SQL dynamique ?

e Gérer des tables ou colonnes dynamiques.
e Exécuter des requétes personnalisées en fonction des besoins utilisateurs.
e Construire des utilitaires génériques (comme des scripts de migration).

2. Méthodes d'exécution

En PL/SQL, le SQL dynamique peut étre implémenté via deux mécanismes
principaux :

2.1. EXECUTE IMMEDIATE

La méthode la plus simple et recommandée pour exécuter des instructions SQL
dynamiques. Elle prend en charge toutes les opérations SQL (a I'exception des commandes
SELECT INTO avec plusieurs lignes).

Syntaxe de base :

EXECUTE IMMEDIATE '<instruction SQL>';

Avec liaison de variables :

EXECUTE IMMEDIATE ‘<instruction SQL>'

USING <valeurl>, <valeur2>, ...;

Exemple :

DECLARE
v_table name VARCHAR2(50) := 'EMPLOYEES';
v_sql VARCHAR2(200) ;
BEGIN
v_sql := 'CREATE TABLE ' || v_table name || ' (ID NUMBER, NAME
VARCHAR2(100))';
EXECUTE IMMEDIATE v_sql;
END;

2.2. DBMS_SQL

Une alternative plus complexe mais plus puissante. DBMS_SQL est utile pour
exécuter des instructions dynamiques qui nécessitent un traitement plus poussé,
comme des curseurs dynamiques ou des instructions complexes.

Exemple :

DECLARE
v_cursor INTEGER;
v_status INTEGER;
v_sql VARCHAR2(200);
BEGIN
v_sql := 'CREATE TABLE DYNAMIC_TABLE (ID NUMBER, NAME

VARCHAR2(100))';
v_cursor := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(v_cursor, v_sgl, DBMS SQL.NATIVE);
v_status := DBMS_SQL.EXECUTE(v_cursor);
DBMS_SQL.CLOSE_CURSOR(v_cursor);

3. Manipulation dynamique des données

3.1. Exécution de requétes DML

Les commandes comme INSERT, UPDATE ou DELETE peuvent étre exécutées
dynamiquement.

Exemple :

DECLARE
v_table name VARCHAR2(50) := 'EMPLOYEES';
v_sql VARCHAR2(200) ;

BEGIN

v_sql := "INSERT INTO ' || v_table name || ' (ID, NAME) VALUES (1,
"'John Doe'')"';

EXECUTE IMMEDIATE v_sql;
END;

3.2. Exécution de requétes SELECT

Pour exécuter des requétes SELECT dynamiques, EXECUTE IMMEDIATE est utilisé
avec INTO pour stocker les résultats.

Exemple :

DECLARE
v_table_name VARCHAR2(50) := 'EMPLOYEES';
v_sql VARCHAR2(200) ;
V_name VARCHAR2(100) ;

BEGIN
v_sql := 'SELECT NAME FROM ' || v_table_name || ' WHERE ID =
EXECUTE IMMEDIATE v_sql INTO v_name;
DBMS_OUTPUT.PUT_LINE('Name: ' || v_name);

END;

4. Bonnes pratiques

1. Validation des entrées utilisateur : Protégez votre code contre les injections SQL.
o Utilisez des parameétres liés dans EXECUTE IMMEDIATE.
o Exemple:

EXECUTE IMMEDIATE 'SELECT NAME FROM EMPLOYEES WHERE ID = :1' INTO v_name
USING v_id;

2. Gestion des exceptions : Ajoutez des blocs EXCEPTION pour gérer les erreurs.

Exemple :

BEGIN
EXECUTE IMMEDIATE 'DROP TABLE NON_EXISTENT TABLE';
EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Erreur : ' || SQLERRM);

END;

3. Privileges minimaux : Assurez-vous que I'utilisateur dispose des priviléges
nécessaires pour exécuter le SQL dynamique.
4. Debugging : Ajoutez des journaux pour suivre I'exécution.
o Utilisez DBMS_OUTPUT .PUT_LINE ou des tables de log pour enregistrer les
commandes SQL exécutées.

5. Cas d'utilisation avancés
5.1. Gestion de structures dynamiques
Création ou modification de tables a la volée en fonction des besoins.

Exemple :

DECLARE
v_sql VARCHAR2(200);
BEGIN

v_sql := 'ALTER TABLE EMPLOYEES ADD (AGE NUMBER)';
EXECUTE IMMEDIATE v_sql;
END;

5.2. Curseurs dynamiques avec DBMS_SQL
Pour exécuter des instructions avec un nombre inconnu de colonnes ou de paramétres.

Exemple :

DECLARE
v_cursor INTEGER;
v_sql VARCHAR2(200) ;
v_columns VARCHAR2(2090);
v_desc DBMS_SQL .DESC_TAB;
v_col cnt INTEGER;
BEGIN
v_sql := 'SELECT * FROM EMPLOYEES';
v_cursor := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(v_cursor, v_sql, DBMS_SQL.NATIVE);

DBMS_SQL .DESCRIBE_COLUMNS(v_cursor, v_col cnt, v _desc);
DBMS_OUTPUT.PUT_LINE('Nombre de colonnes : ' || v_col cnt);

DBMS_SQL.CLOSE_CURSOR(v_cursor);

e Performance : Les instructions dynamiques sont compilées a l'exécution, ce qui peut
étre plus lent.

e Lisibilité : Le code peut devenir difficile a lire et & maintenir.
e Gestion des droits : L'exécution dynamique peut étre bloquée si les priviléges ne sont
pas correctement configurés.

	Les blocs de code exécutables
	I.​Procédures :
	1. Qu'est-ce qu'une procédure en PL/SQL ?
	2. Création d'une procédure
	3. Définition des paramètres
	4. Exemple de création d'une procédure
	5. Appel d'une procédure
	6. Exemples supplémentaires

	II.​Les fonctions :
	1. Qu'est-ce qu'une fonction en PL/SQL ?
	2. Création d'une fonction
	3. Définition des paramètres
	4. Exemple de création d'une fonction
	5. Appel d'une fonction
	6. Exemples supplémentaires

	III.​Les Trigger
	1. Qu'est-ce qu'un trigger ?
	2. Types de triggers
	3. Création d'un trigger
	4. Exemple de création d'un trigger DML
	5. Appel d'un trigger
	6. Exemples supplémentaires

	
	IV.​Les packages
	1. Qu'est-ce qu'un package ?
	2. Composants d'un package
	3. Création d'un package
	4. Exemple de création d'un package
	5. Appel d'un package
	6. Avantages des packages

	V.​SQL Dynamique
	1. Introduction
	Pourquoi utiliser le SQL dynamique ?

	2. Méthodes d'exécution
	2.1. EXECUTE IMMEDIATE
	Syntaxe de base :
	Avec liaison de variables :
	Exemple :
	Exemple :

	3. Manipulation dynamique des données
	3.1. Exécution de requêtes DML
	
	Exemple :

	3.2. Exécution de requêtes SELECT
	Exemple :

	4. Bonnes pratiques
	5. Cas d'utilisation avancés
	5.1. Gestion de structures dynamiques
	Exemple :

	5.2. Curseurs dynamiques avec DBMS_SQL
	Exemple :

	6. Limitations

