‘ DATE : 02/02/2026

RAPPORT

DUCREUX Clémence, GENTIL William, JANNAIRE Clément,
KARA-MOSTEFA Riad, VAISSE Alistair

Sommaire

Introduction 2
Méthodologie 3
Les taches 4
Les bots 5
Diagrammes de classes 6/7
Conclusion individuelle 8

Conclusion collective g

Introduction

Dans le cadre de ce projet de BUT3, nous avons réalisé un jeu de plateau
implémenté en Java en utilisant I'API fournie par le département. Le jeu choisi est
Hex, un jeu de stratégie & information parfaite, opposant deux joueurs dont
I'objectif est de relier deux cétés opposés du plateau par une chaine continue de
pions.

L'objectif principal de ce projet était de concevoir un moteur de jeu fonctionnel,
accompagné de tests, ainsi que de bots capables de jouer automatiquement,
dont au moins un bot utilisant une approche algorithmique avancée (alpha-béta,
Monte Carlo ou fonction d'évaluation). Le projet devait également respecter des
contraintes de qualité logicielle telles que la documentation du code,
I'organisation du dépét Git et la capacité a déployer et tester facilement
I'application sur une machine de I'lUT.

Le jeu Hex se joue & deux joueurs sur un plateau hexagonal. Chaque joueur
dispose d'une couleur et joue & tour de réle en plagant un pion sur une case libre
du plateau. Chaque joueur cherche & relier deux cétés opposés du plateau

\ N ! . ! . . . 1
correspondant & sa couleur & I'aide d'un chemin continu de pions. Il n'y a pas de
match nul possible dans Hex : la partie se termine obligatoirement par la victoire
de I'un des deux joueurs dés qu’'un chemin continu est formé.

‘ Méthodologie

Notre groupe est composé de cing membres. Afin de travailler efficacement et
de limiter les conflits lors du développement, nous avons choisi de diviser le
projet en quatre grandes taches, dont 'une a été réalisée par deux personnes en
collaboration. Cette organisation nous a permis de répartir le travail de maniére
équilibrée et de travailler en paralléle sur différentes parties du projet.

Pour faciliter la collaboration, nous avons utilisé Git comme outil principal de
gestion de versions. Chaque tache disposait de sa propre branche, permettant &
chaque membre (ou binéme) de ftravailler de maniére indépendante sans
impacter directement le travail des autres. Les fonctionnalités étaient ensuite
intégrées progressivement dans la branche principale aprés validation.

Le dépét Git reflete cette organisation & travers |'utilisation de branches dédiées
ainsi que la présence de téches/tickets permettant de suivre I'avancement du
projet. Les classes principales sont documentées & l'aide de Javadoc, et un
README explique clairement comment lancer les démonstrations et tests du
programme sur une machine de I'lUT.

Tout au long du projet, nous avons adopté une approche itérative, en privilégiant
d'abord une version fonctionnelle du moteur de jeu avant d'ajouter
progressivement des améliorations, notamment sur les bots et les outils de test.
Cette démarche nous a permis d'identifier rapidement les problémes de
conception et de valider les choix techniques étape par étape, plutét que de
chercher a implémenter toutes les fonctionnalités dés le départ.

Cette méthodologie présente plusieurs points positifs, notamment une bonne
séparation des responsabilités, une réduction des conflits lors des fusions et une
meilleure lisibilité globale du projet. En revanche, certaines intégrations ont
nécessité des ajustements, et certaines décisions techniques prises t6t dans le
projet ont parfois limité les possibilités d'évolution sans modifications importantes
du code.

Dans I'ensemble, cette organisation nous a permis de mener le projet & son
terme de maniére structurée, tout en acquérant une premiére expérience
concréte de travail collaboratif sur un projet de développement logiciel.

‘ Les taches

Le projet a permis de développer un jeu de Hex fonctionnel en Java, en
s'appuyant sur |'APl fournie par le département. Le moteur de jeu est
principalement implémenté dans les classes HexBoard et HexPly. Il gére
correctement la représentation du plateau, la validité des coups, I'alternance des
joueurs ainsi que la détection des conditions de fin de partie.

Un affichage textuel du plateau a été mis en place via la méthode toString() de
HexBoard. Cet affichage, utilisé en console, a servi d'outil de debug tout au long
du projet afin de visualiser I'état du jeu & chaque tour et de faciliter la vérification
du comportement du moteur et des bots.

Des tests fonctionnels et démonstrations ont été réalisés & travers plusieurs
méthodes main, notamment dans la classe HexMain. Le programme peut étre
lancé en mode interactif, avec un joueur humain, ou en mode automatique gréce
a l'option autoplay, permettant de simuler des parties complétes sans intervention
humaine. Ces tests ont permis de valider la stabilité générale du moteur et le bon
enchainement des coups.

Concernant les bots, un bot simple ainsi qu'un bot plus avancé basé sur une
recherche Minimax & profondeur limitée ont été implémentés. Ce dernier est
développé dans la classe Simulation et repose sur deux fonctions récursives
(explMAX et expIMIN) qui explorent l'arbre des coups possibles jusqu'a une
profondeur maximale fixée & 6. Le meilleur coup est sélectionné a la racine de la
recherche et stocké afin d'étre joué. L'évaluation des positions reste
volontairement simple et se base principalement sur les états terminaux, ce qui
permet d'obtenir un comportement cohérent tout en conservant des temps de
calcul raisonnables.

Le projet respecte également les exigences liées a |'organisation du dépét Git. Le
travail a été réparti en tdches avec des branches dédiées, des commits réguliers,
une documentation des classes principales via Javadoc et un README décrivant
la procédure pour lancer les démonstrations et tests du programme.

Certaines fonctionnalités prévues ou envisagées n'ont toutefois pas été
entiérement réalisées. En particulier, le bot Minimax ne dispose pas d'optimisation
par élagage alpha-béta et sa fonction d'évaluation pourrait étre enrichie. Une
approche basée sur Monte Carlo a été envisagée mais n'a pas été finalisée dans
le temps imparti. Ces éléments constituent des pistes d'amélioration naturelles du
projet.

‘ Les bots

Plusieurs bots ont été développés afin de tester le moteur de jeu et de
comparer différentes approches de prise de décision. Ces bots vont d'un
comportement aléatoire & des algorithmes de recherche plus avancés. Parmi
ces différentes implémentations, le bot basé sur une recherche Minimax avec
élagage alpha-béta est le plus abouti et constitue le meilleur bot du projet.

Notre meilleur bot : recherche Minimax a
profondeur limitée

Le bot principal du projet est implémenté dans la classe Simulation. Il s'appuie sur une
recherche de type Minimax : & partir d'un état de plateay, il simule les coups possibles en
alternant deux comportements :

e explMAX(...) cherche le meilleur scénario pour PLAYERT (maximise le score),

* expIMIN(...) cherche le meilleur scénario pour PLAYER2 (minimise le score).
La recherche est limitée par une profondeur maximale (MAXDEPTH = &) afin d'éviter une
explosion du nombre de positions explorées. A chaque nceud, le bot parcourt les cases du
plateau et ne consideére que les coups légaux (position.isLegal(...)). Le coup choisi au niveau
racine est stocké dans bestmove et joué ensuite pendant la simulation.

Fonction d'évaluation utilisée
Dans |'état actuel, 'évaluation est volontairement simple et se base surtout sur les fins de
partie :

* sila position est gagnante (du point de vue de PLAYERI) : score +],

* sielle est perdante : score -1,

* sila profondeur limite est atteinte : score 0.
Cela permet déja d'obtenir un bot cohérent sur des plateaux de taille raisonnable : il
privilégie les lignes de jeu menant & une victoire rapide ou évite des pertes évidentes. En
contrepartie, I'absence d'une heuristique plus fine (ex : connectivité, distance aux bords,
“ponts” typiques de Hex) rend le bot moins performant dés qu'il faut départager des

positions non terminales.

‘ Diagrammes de classes

API fournie
IBoard
= = = i AbstractBoard AbstractPly
et nt g -
I | S ayer() + Player getCurrentPlayer() = -int row
+ boolean isLegal(AbsractPty) + void doPly(ActPY) _
+ void doPly(AbsractPly) + void undoPly) - int col
+ void undoPly() + boolean isGameOver() o
+ boolean isGameOver() + Result getResut() '
+ Result getResut() AT A (Y AbstractGame
+ [terator<AbsractPhy=> iterator ']]
: e et Result run(})
IBoard safeCo N
i Py0 AbstractPly -
i
Implémentation du jeu Hex
HexBoard. < : » Player
o : PLAYERL.1 PER2Z
- int size 0.1 '0..1 —
- Player[]] cells)
- static final int[]1] MeicHaoRS — HexBoard L. | + wiN
f:} N = int row : Egii
-HeXPI}f{Iﬂ;mt} + DNGOING
AbstractGamePlayer ; fa
- Scanner in ' :
HexPly 0.1 ;
a ~HexPly(int, int) j
i + int getRow() HexMain
AbstractGame +int getCol()
-— - . ;
+ String toStin o
+ Rlever run() e b n %0
T-r construit (entrée console) 0.2
HexBoard 02| 0.2 Simulation
- int size > ;
0.1 - HexPly bestmove {hidden)
- Player[]] celis i
- static final int[]) NEIGHBORS A "“a,t me
A ! - static final int MAXDEPTH = &
: utilises!{uuupsj - unkedu§tﬂlnmgarﬂ>mkan
. ; = |Board simCurentBoard
HumanConsolePlayer i - EnumMan<Player, AbstactGamePlayers)
- Scanner in ¢ 5| -SimmapPlayers
= AbstractPly giveYourMove L 0.2
‘T 4—— autoplay
1 ' 1
HexMain » HexMain
1 | + main(String[])

Diagrammes de classes

Le projet s'appuie sur I'API fournie (GameAPI) qui impose une structure classique :
un plateau (IBoard / AbstractBoard), des coups (AbstractPly), des joueurs
(AbstractGamePlayer) et une boucle de jeu (AbstractGame). Le jeu de Hex est
ensuite implémenté en spécialisant ces abstractions avec des classes concrétes.
La classe centrale c6té “modéle” est HexBoard, qui représente I'état du plateau
(taille size et grille cells). Elle implémente les opérations essentielles du moteur :
vérifier la légalité d'un coup (isLegal), appliquer/annuler un coup (doPly, undoPly),
produire les coups possibles via l'itérateur (iterator) et déterminer la fin de partie
(isGameOver, getResult). L'affichage de debug repose directement sur toString(),
ce qui permet d'inspecter rapidement une position en console.

Les coups sont représentés par HexPly, une classe simple qui stocke les
coordonnées (row, col). Elle sert d'objet de transfert entre les joueurs (humains ou
bots) et le moteur, et elle est utilisée partout ou I'API attend un AbstractPly.

Pour les joueurs, HumanConsolePlayer hérite de AbstractGamePlayer et fournit
une implémentation concréte de giveYourMove(IBoard). Ce joueur lit une entrée
console, vérifie que le format est correct et retourne un HexPly. Cela a été
particulierement utile pendant le développement pour tester le moteur “a la
main”.

Enfin, la classe Simulation est votre partie “bot”. Elle hérite de AbstractGame
mais redéfinit run() pour piloter la partie de maniére automatique. Concrétement,
au lieu d'appeler giveYourMove des joueurs, Simulation calcule un coup avec
GiveBestMove, qui déclenche une recherche Minimax via explMAX et explMIN
(profondeur limitée par MAXDEPTH = 6). Le choix du meilleur coup est conservé
dans bestmove au niveau racine, puis appliqué sur simCurrentBoard. Une liste
taken garde une trace des coups joués (utile pour debug/trace console).

La classe HexMain sert de point d’entrée : elle instancie un HexBoard, construit la
map de joueurs (EnumMap<Player, AbstractGamePlayers) et lance soit une partie
“classique” avec AbstractGame, soit une partie automatique via Simulation quand
I'argument autoplay est fourni.

‘ Conclusion individuelle

Clémence : Ce projet m'a permis de mieux comprendre la mise en place d'un
moteur de jeu et |'implémentation d'un bot. Il m'a également aidé & progresser sur
I'organisation du code et le travail collaboratif avec Git.

William :

Clément : Ce projet m'a permis de mieux comprendre les aspects théoriques liés
a la représentation d'un jeu comme Hex, notamment la gestion du plateau et des
reégles. Il m'a aussi montré I'importance d’'une conception rigoureuse pour garantir
la cohérence du jeu et faciliter le travail des autres parties du projet.

Riad :

Alistair :

‘ Conclusion collective

Ce projet a permis & notre groupe de mettre en pratique les notions vues en cours,
aussi bien sur le plan algorithmique que sur le plan méthodologique. Malgré certaines
difficultés liées & la coordination et & l'intégration des différentes parties, nous avons
réussi & produire un projet fonctionnel, documenté et conforme aux attentes.

La répartition des taches et |'utilisation de branches Git dédiées ont été des éléments
clés dans la réussite du projet. Ce travail nous a permis de mieux appréhender les
enjeux d'un développement collaboratif sur un projet de taille moyenne.

