
Mixing Search Strategies for Multi-Player Games

Inon Zuckerman

Computer Science Department
Bar-Ilan University

Ramat-Gan, Israel 92500
zukermi@cs.biu.ac.il

Ariel Felner

Information Systems Engineering
Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel 85104
felner@bgu.ac.il

Sarit Kraus

Computer Science Department
Bar-Ilan University

Ramat-Gan, Israel 92500
sarit@cs.biu.ac.il

Abstract

There are two basic approaches to generalize the propa-
gation mechanism of the two-player Minimax search al-
gorithm to multi-player (3 or more) games: the MaxN
algorithm and the Paranoid algorithm. The main short-
coming of these approaches is that their strategy is fixed.
In this paper we suggest a new approach (called MP-
Mix) that dynamically changes the propagation strategy
based on the players’ relative strengths between MaxN,
Paranoid and a newly presented offensive strategy. In
addition, we introduce the Opponent Impact factor for
multi-player games, which measures the players’ ability
to impact their opponents’ score, and show its relation
to the relative performance of our new MP-Mix strategy.
Experimental results show that MP-Mix outperforms all
other approaches under most circumstances.

1 Introduction and Background
From the early days of Artificial Intelligence research, game
playing has been one of the prominent directions of research,
since outplaying a human player has been viewed as a prime
example of an intelligent behavior.

The main building block of game playing engines is the
adversarial search algorithm, which defines a search strategy
for the next action selection. When a player needs to select
an action, he spans a search tree where nodes correspond to
states of the game, edges correspond to moves and the root of
the tree corresponds to the current location. We refer to the
player whose turn it is to move as the root player.

In two-player, zero-sum sequential turn taking games, val-
ues from the leaves are propagated according to the minimax
principle. That is, in levels of the root player, it takes the max-
imum among the children while in levels of the opponent, it
takes the minimum among the children. A multi-player game
with n > 2 players, where the players take turns in a round
robin fashion, is more complicated. The assumption is that
for each node the evaluation function returns a vector H of
n values where hi estimates the merit of player i. In multi-
player games, two search strategies were suggested to prop-
agate values from H: MaxN [Luckhart and Irani, 1986] and
Paranoid [Sturtevant and Korf, 2000].

The straightforward generalization of the two-player min-
imax algorithm to the multi-player case is the MaxN algo-
rithm. It assumes that each player will try to maximize its

own heuristic value (in the heuristic vector), while disregard-
ing the values of other players. That is, when it is player i’s
turn the best hi value of all children is propagated. Minimax
can be seen as a specific instance of MaxN, where n = 2.

A different approach is the Paranoid algorithm where the
root player assumes that the opponent players will work in a
coalition against it and will try to minimize its heuristic value.
The strategy is that when it is player i’s turn, it will select the
action with the lowest score for the root player (and not the
action with the highest score for player i as in MaxN). In two
players zero sum games these two approaches converge, be-
cause what’s best for one player is worst for the other. The
Paranoid strategy allows the root player to reduce the game to
a two-player game: the root player (me) against a meta player
which will include all the other players (them). The reduction
gives Paranoid a technical advantage over MaxN since it can
apply the deep pruning (i.e., full alpha-beta punning) tech-
nique. Korf [1991] found that the most significant part of the
alpha-beta pruning procedure for two player games (called
deep pruning) cannot be generalized to MaxN with 3 or more
players. Thus, Paranoid may visit a smaller number of nodes
for a given depth of the search.

As seen in [Sturtevant, 2002] there is no definite answer
of which strategy is better, as the answer is probably domain
dependent. Nevertheless, both algorithms are fixed in the way
they propagate values throughout the game. However, neither
of these assumptions is reasonable for the entire duration of
the game. There are situations where it is more appropriate
to follow the MaxN strategy, while on other occasions the
Paranoid strategy might seem to be the appropriate one.

In this paper we focus on multi-player games where there is
a single winner and no reward is given to the losers (they are
all equal losers regardless of their relative position). We call
these single-winner games. Assume that all players play ac-
cording to the MaxN strategy and consider a situation where
one player becomes stronger than the others and advances to-
wards a winning state. The understanding that there is no
difference whether a losing player ends up second or last (as
only the winner is rewarded) should trigger a losing player to
take explicit actions to prevent the leader from winning, even
if the actions temporarily worsen its own situation. This form
of reasoning should lead to a dynamic change in the search
strategy to our newly suggested offensive strategy, in which
a non leading player selects the actions that worsen the sit-
uation of the leading player. At the same time, the leading

646

player also understands the situation and might switch to a
more defensive strategy and use the Paranoid strategy, as its
underlying assumption does reflect the real game situation.

We therefore introduce the MaxN-Paranoid mixture (MP-
Mix) algorithm which is a multi-player adversarial search al-
gorithm that switches search strategies dynamically accord-
ing to the game situation. The MP-Mix algorithm examines
the current situation and decides, whether the player should
propagate values from the leaves of the game tree to the root
according to the MaxN, Paranoid, or the newly presented Di-
rected Offensive strategy.

To evaluate the algorithm we implemented MP-Mix in two
single-winner multi-player games: the Hearts card game, and
the Risk strategy board game. We conducted extensive exper-
iments and the results show that the MP-Mix’s winning rate
is higher in most settings. In addition, we introduce the Op-
ponent Impact factor (OI) which is a game specific property
describing the scope of impact a single player has on the per-
formance and score of other players. We measure the OI val-
ues experimentally and discuss its influence and relation on
the performance of MP-Mix.

2 The Directed Offensive Search Strategy
Before discussing the MP-Mix algorithm we first introduce
a new propagation strategy called the Directed Offensive
strategy (denoted offensive) which complements the Paranoid
strategy in an offensive manner. In this new strategy the root
player first chooses a target opponent it wishes to attack. It
then explicitly selects the path which results in the lowest
evaluation score for the target opponent. Therefore, while
traversing the search tree the root player assumes that the op-
ponents are trying to maximize their own utility (just as they
do in the MaxN algorithm), but on its own tree levels it se-
lects the lowest value for the target opponent. Our new of-
fensive strategy actually uses the Paranoid assumption but in
an offensive manner and complements the defensive Paranoid
strategy suggested by [Sturtevant, 2002]. In fact, a defensive
Paranoid behavior is reasonable only if there are indeed rea-
sons to believe that others will try to attack the root player.
Another attempt to complement the Paranoid behavior was
done in [Lorenz and Tscheuschner, 2006] with the coalition-
mixer (comixer) player that examines coalitions.

�

�������

�	�

���

���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�����
� �����
� �������

�����
� ���
��� ������������
� ������� �
�����

Figure 1: 3-players Offensive game tree (target = player3)

Figure 1 shows an example of a 3-player game tree, when
the root player runs a directed offensive strategy targeted at
player 3, (labeled 3t). In this case, player 2 will select the
best nodes with respect to its own evaluation. Thus, it will
choose the left node in all three subtrees, a, b and c (as 3 > 2,

5 > 4 and 4 > 3). Now, the root player will select node c as
it contains the lowest value for player 3t (as 0 < 2).

3 The MP-Mixed Algorithm

The MP-Mix algorithm is a high-level decision mechanism.
When it is the player’s turn to move, it examines the situation
and decides which propagation strategy to activate: MaxN,
Offensive or Paranoid. The chosen strategy is activated and
the player takes its selected move.

Algorithm 1: MP-Mix(Td, To)
foreach i ∈ Players do

H[i] = evaluate(i);
end
sort(H); // decreasing order sorting
leadingEdge = H[1]−H[2];
leader = identity of player with highest score;
if (leader = root player) then

if (leadingEdge ≥ Td) then
Paranoid(...);

end

else
if (leadingEdge ≥ To) then

Offensive(...);
end

end
MaxN(...);

The pseudo code for MP-Mix is presented in algorithm
1. It receives two numbers as input, Td and To, which de-
note defensive and offensive thresholds. First, it evaluates the
score value of each player (H[i]) via the evaluate() function.
Next, it computes the leadingEdge, which is the score dif-
ference between the two highest valued players and identifies
the leading player (leader). If the root player is the leader
and leadingEdge > Td, it will activate the Paranoid strategy
(i.e., assuming that others will want to hurt it). If someone
else is leading and leadingEdge > To, it will choose to play
the offensive strategy and attack the leader. Otherwise, the
MaxN search strategy will be selected.

When computing the leadingEdge, the algorithm only
considers the heuristic difference between the leader and the
second player (and not the differences between all oppo-
nents). This difference provides the most important informa-
tion about the game’s dynamics - a point where one leading
player is too strong. To justify this, consider a situation where
the leading edge between the first two players is rather small,
but they both lead the other opponents by a large margin.
This situation does not yet require explicit offensive moves
towards one of the leaders, since they can still weaken each
other in their own struggle for victory, while, at the same time,
the weaker players can narrow the gap.

The values Td and To have a significant effect on the be-
havior of an MP-Mix player. These values can be estimated
using machine learning algorithms, expert knowledge or sim-
ple trial-and-error procedures. Decreasing these thresholds
will yield a player that is more sensitive to the game’s dynam-
ics and reacts by changing its search strategy more often. In
addition, when setting To = 0 and Td > 0, the player will al-
ways act offensively when it is not leading. When setting the

647

value in the opposite way, To > 0, Td = 0 the player will al-
ways play defensive strategy when leading. When setting the
thresholds to values that are higher than the maximal value of
the heuristic function, we will get a pure MaxN player.

4 Experimental Results

In order to evaluate the performance of MP-Mix, we imple-
mented players that use MaxN, Paranoid and MP-Mix algo-
rithms in two popular games: the Hearts card game and the
Risk strategic board game.1 The offensive strategy is not rea-
sonable as a stand alone and was only used by MP-Mix. We
ran a series of experiments with different settings and envi-
ronment variables in order to test the MP-Max algorithm.

We used two methods to bound the search tree. The first
method was to perform a full width search up to a given depth.
This provided a fair comparison to the logical behavior of the
different strategies. However, since the Paranoid strategy can
perform deep pruning we also performed experiments which
limited the number of nodes visited. This provided a fair
comparison to the actual performance as Paranoid can search
deeper for a given number of nodes. To do this, we used itera-
tive deepening to search for game trees as described by [Korf,
1991]. The player builds the search tree to increasingly larger
depths, where at the end of each iteration it saves the current
best move. During the iterations it keeps track of the number
of nodes it visited, and if this number exceeds the node limit,
it immediately stops the search and runs the current best move
(which was found in the previous iteration).

4.1 Experiments Using Hearts
Game description

Hearts is a multi-player, partial-information, trick-taking
card game designed to be played by exactly 4 players. A stan-
dard 52 card deck is used, with the cards in each suit ranking
in decreasing order from Ace (highest) down to Two (lowest).
At the beginning of a game the cards are distributed evenly
between the players, face down. The game begins when the
player holding the Two of clubs card starts the first trick. The
next trick is started by the winner of the previous trick. The
other players, in clockwise order, must play a card of the same
suit that started the trick, if they have any. If they do not have
a card of that suit, they may play any card. The player who
played the highest card of the suit which started the trick,
wins the trick (and starts the next trick).

Normally, each player scores penalty points for cards in the
tricks they won (therefore players usually want to avoid tak-
ing tricks). Each heart card scores one point, and the queen of
spades card scores 13 points (tricks which contain points are
called “painted” tricks).2 Each single game has 13 tricks and
distributes 26 points among the players. Usually, the game
does not end after the deck has been fully played. Hearts
is usually played as a tournament, where the game continues
until one of the players has reached or exceeded 100 points (a
predefined limit) at the conclusion of a trick. The player with
the lowest score is declared the winner.

1Rules for Risk can be found at http://www.hasbro.com/risk/
Hearts rules can be found at http://games.yahoo.com/help/he

2In our variation of the game we did not use the “shoot the moon”
rule in order to simplify the heuristic construction process.

While there are no formal partnerships in Hearts it is a
very interesting domain due to the specific point-taking rules.
When playing Hearts in a tournament, players might find that
their best interest is to help each other and oppose the leader.
For example, when one of the players is leading by a large
margin, it will be in the best interest of its opponents to give it
points, as it will decrease its advantage. Similarly, when there
is a weak player whose point status is close to the tournament
limit, its opponents might sacrifice by taking painted tricks
themselves, as a way to assure that the tournament will not
end (which keeps their hopes of winning alive). This internal
structure of the game calls for use of the MP-Mix algorithm.

Experiments’ design

We implemented a Hearts playing environment and experi-
mented with the following players:
(1) Random (RND) - This player selects the next move ran-
domly from the set of allowable moves.
(2) Weak rational (WRT) - This player picks the lowest pos-
sible card if it is starting or following a trick, and picks the
highest card if it does not need to follow suit.
(3) MaxN (MAXN) - Runs the MaxN algorithm.
(4) Paranoid (PAR) - Runs the Paranoid algorithm.
(5) MP-Mix (MIX) - Runs the MP-Mix algorithm (thresh-
olds are given as input).

The heuristic function was manually tuned and contained
the following features: the number of cards which will duck
or take tricks, the number of points taken by the players, the
current score in the tournament, the number of empty suits in
the hand (the higher the better) and the numeric sum of the
playing hand (where lower is better).

In Hearts, players can not view their opponent’s hands. In
order to deal with the imperfect nature of the game the algo-
rithm uses a Monte-Carlo sampling based technique (adopted
from [Ginsberg, 2001]) with a uniform distribution function
on the cards. It randomly simulates the opponent’s cards a
large number of times, runs the search on each of the simu-
lated hands and selects a card to play. The card finally played
is the one that was selected the most among all simulations.
The sampling technique is crucial in order to avoid naive and
erroneous plays, due to improbable card distribution.

Experiment 1: Fixed setting, To = ∞, Td ∈ [0, 50]
Our intention was to compare the performance of MIX

with that of MAXN and PAR. In our first set of experiments
we arbitrarily set three of the players to always be (PAR, PAR,
MAXN). The fourth player was varied as follows. We first
used MIX as the fourth player and varied its defensive thresh-
old, Td, from 0 to 50. To evaluate the advantages of a defen-
sive play when leading, the offensive threshold, To, was set
to ∞. We then used MAXN and PAR players as the fourth
player, in order to compare their performance in the same set-
ting. The depth of the search was set to 6 and the technical
advantage of Paranoid (deep pruning) was thus neglected.

For each variation of the fourth player we ran 800 tourna-
ments, where the limit of the tournament points was set to 100
(each tournament usually includes 7-13 games). The results
in figure 2 show the difference in the tournaments’ winning
percentages of the fourth player and the best player among
the other three fixed players. A positive value means that the
fourth player was the best player as it achieved the highest

648

���

���

��

��

��

��

�

�

�

�

�

	

� � �

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�
�
�

����������������������� ��

�
��
��
��
�
!
�
��
��
�"
��
�
��
#
�$

Figure 2: Experiment 1 - Difference in winning percentage

winning percentage, whereas a negative value means that it
was not the player with the highest winning percentage.

The results show that PAR was the worst player (in this
case a total of 3 PAR players participated in the experiment)
resulting in around−11% winning less than the leader (which
in this case was the MAXN player). The other extreme case
is presented in the rightmost bar, where the fourth player was
a MAXN player.3 In this case it lost by a margin of only 5%
less than the winner. When setting the fourth player to a MIX
player and the defensive threshold at 0 and 5, it still came
in second. However, when the threshold values increased to
10 or higher, the MIX player managed to attain the highest
winning percentage, which increased almost linearly with the
threshold. The best performance was measured when Td was
set to 25, as the MIX player performed significantly better
than both MAXN and PAR players, as it attained a positive
winning difference of 11% (6 − (−5)) or 17% (6 − (−11)),
respectively (P < 0.05).

Experiment 2: Random setting, To = ∞, Td = 25
In this experiment we did not have a fixed environment but

independently randomized four players for each tournament
from the following set of players {RND, WRT, PAR, MAXN,
MIX}. The MIX player had To = ∞, Td = 25. This would
result in games which are random in their players’ compo-
sition and in their relative position (i.e., 54 for 625 possible
combinations). We set the search bound to 20K nodes. Here,
Paranoid can apply deep pruning and thus search deeper. We
kept a record of the winner and losers of each tournament
and counted the number of wins and losses of each player.
We performed 1200 random tournaments.

The winning percentage of each player was computed as
wins

wins+losses . 4 The MIX player led the other players with
43% winning games, the MAXN had 38%, PAR 34% , WRT
12% and RND 1% . Here again the MP-Mix strategy attained
the best average performance. It is important to note that
while PAR had the deep pruning advantage, it still came in
last among the minimax based players.

Experiment 3: Adding the offensive strategy

In our third experiment we used the following players:
{MAXN, PAR, OMIX, DMIX, MIX}. Where OMIX is an
offensive oriented MP-Mix player with To = 20, Td = ∞,

3When Td is very large it converges to the MAX player as it will
never switch the strategy. In contrast, low Td values are closer to
PAR as the switch happens more often.

4Note that the winning percentages did not add up to 100%, as
each player played a different number of games.

DMIX is a defensive oriented MP-Mix player with To =
∞, Td = 20 and MIX is an MP-Mix player with To =
20, Td = 20. The environment was fixed with 3 players
of the MAXN type and for the fourth player we plugged in
each of the MP-Mix players described above. In addition,
we changed the fixed depth limitation to a 50K node limit.
Here too, the Paranoid search would be able to perform deep
pruning and search deeper.

�����

�����

������

������

������

������

������

������

	
��
��
��� �
��
��

�
��
�
��
�
��
�
��
�
�
��
�
�

Figure 3: Experiment 3 - Winning percentage per player

The results from running 500 tournaments for each MIX
player are presented in figure 3. The best player was the MIX
player that won over 32% of the tournaments. The DMIX
came in second with 28%, while the MAXN player in the
same environment managed to win only around 23% of the
tournaments. The PAR player won slightly over 20% of the
tournaments. Surprisingly, the OMIX player was the worst
one, winning only 16% of the tournaments. The reason for
this was that the OMIX player took only offensive moves
against 3 MAXN players. This was not the best option due
to the fact that when it attacks the leading player it weakens
its own score but at the same time the other players advance
faster towards the winning state. Thus, in this situation the
OMIX player sacrifices himself for the benefit of the others.

4.2 Experiments Using Risk
Our next experimental domain is a multilateral interaction in
the form of the Risk board game.

Game description

The game is a full-information, strategy board game that in-
corporates probabilistic elements and strategic reasoning in
various forms. The game is a sequential turn-based game for
two to six players, which is played on a world map where
each player controls an army, and the goal is to conquer the
world (i.e., occupying all 42 territories is equivalent to elim-
inating all other players). Each turn consists of three phases:
Reinforcement, Attack and Fortification.

Risk is too complicated to formalize and solve using classi-
cal search methods. First, each turn has a different number of
possible actions which changes during the turn, as the player
can decide at any time to cease its attack or to continue if it
has territory with at least 2 troops. Second, the number of
opening moves for all 6 players is huge (≈ 3.3 ∗ 1024) com-
pared to two-player games (400 in Chess and 144, 780 in Go).

In order be able to work in this complex domain, we re-
duced the branching factor of the search tree to 3 by only
expanding the 3 most promising moves (called the highest
bids in [Johansson and Olsson, 2006]). Each of these moves
were not a single attacking action, but a list of countries to

649

conquer from the source (which the player held at the time),
to a specific destination (which it wanted to conquer).

Before continuing with the technical details we would like
to exemplify the intuition of the need to use MP-Mix in the
Risk game domain. In the early stages of the Risk game, ra-
tional players tend to expand their borders locally, usually
trying to capture a continent and increase the bonus troops
they receive at each round. In more advanced stages, perhaps
one player will become considerably stronger than the rest
of the players (e.g. it might control 3 continents which will
give it a large bonus every round). The other players, hav-
ing the knowledge that there is only a single winner, might
understand that unless they put some effort into attacking the
leader (which might not be their best actions heuristically), it
will soon be impossible for them to change the tide, and the
leading player will win. In such situations, the leading player
might understand that it is reasonable to assume that every-
body is against him, and switch to a Paranoid play (which
might yield defensive moves to guard its borders). In case the
situation changes and this player is no longer a threat (as it
was weakened by its opponents), it should switch its strategy
again to its regular self maximization strategy, namely MaxN.

Experiments’ design

We worked with the Lux Delux 5 environment and imple-
mented three types of players: MAXN, PAR and MIX. Our
evaluation function was based on the one described in [Jo-
hansson and Olsson, 2006].

Experiment 1: Fixed setting, To = ∞, Td ∈ [0, 40]
In our first experiment we ran environments containing 6

players, 2 of each of the following types: MIX, MAXN and
PAR and we used the “lux classic” map without bonus cards.
In addition, the starting territories were selected at random
and the initial placement of the troops was uniform.

��

��

���

���

���

���

���

���

���

���

� � �� �� �� �� �� �� ��

	
��

���������

�
��
�
��
�
��
�
��
�
�
��
�
�

��� ���� ���

Figure 4: Risk experiment 1 - results

Figure 4 presents the results for this environment where we
varied the defensive threshold value (Td) of the MIX players
from 0 to 40, while To = ∞ in order to study the impact of
defensive behavior and the best value for Td. The numbers
in the figure are the average wining percentage per player
type for 750 games. The peak performance of the MIX al-
gorithm occurred with Td = 10 where it won 43% of the
games. In contrast PAR won 30% and MAXN won 27%. The
MIX player continued to be the leading player as the thresh-
old increased to around 30. Nonetheless, above this threshold
the performances converged to that of MAXN since the high
thresholds almost never resulted in Paranoid searches.

5http://sillysoft.net/lux/

Experiment 2: Random setting, To = 10, Td = 10
In the second experiment we used 3 specialized expert

knowledge players (not search oriented) with different dif-
ficulty levels to create a varied environment. All three play-
ers were part of the basic Lux Delux game package: the An-
gry player was a player under the “easy” difficulty level, the
Yakool was considered “medium” and EvilPixie was a “hard”
player in terms of difficulty levels. These new players, to-
gether with the search based players: PAR, MAXN, and MIX
(where Td = 10, To = 10) played a total of 750 games with
the same environment setting as the first experiment.

The results show that in this setting again, the MIX player
achieved the best performance, winning 27% of the games,
EvilPixie was runner-up winning 20% of the games, followed
by the MAXN and PAR players winning 19% and 17%, re-
spectively. Yakool achieved 15% and Angry won 2%.

5 Opponent Impact
The experimental results clearly show that MP-Mix improved
the players’ performances. However, we can see that the im-
provement in the Risk domain is much more impressive than
in the Hearts domain. An important question that emerged
is under what conditions and game properties would the MP-
Mix algorithm be more effective and advantageous? For this
purpose we defined the Opponent Impact factor (OI), which
measures the impact that a single player has on the outcome
of the other players.

Definition 5.1 (Influential State) A game state for player A
with respect to player B is called an influential state, if action
α exists such that the heuristic evaluation of B is reduced
after activating α by A.

We can now define InfluentialStates(G,H) for a game G
and a heuristic function H , to be a function that returns the set
of influential states with respect to any two players. Similarly,
TotalStates(G, H) will return the set of all game states.

Definition 5.2 (Opponent Impact)
Let G be a game, H be a heuristic function, then
OI(G, H) = |InfluentialStates(G ,H)|/|TotalStates(G ,H)|

The OI factor of the game is defined as the percentage of
influential states in the game with respect to all players. The
intuition behind the OI is as follows. Consider the popular
game, Bingo. In this game each player has a board filled with
different numbers, and numbers are randomly selected one at
a time. The first player to fill its playing board is the winner.
It is easy to see that in Bingo, there is no way for one player to
impact the heuristic score of another player. Thus, the OI of
that game would be zero (as |InfluentialStates(G ,H)| = 0).

In another game, called GoFish, the objective of the game
is to collect “books”, which are sets of four cards of the same
rank, by asking other players for cards the player thinks they
might have. The winner is the player who has collected the
highest number of books when no cards are left in the players’
hands or in the deck. Here, theoretically, at any given state the
player can decide to impact a player’s well being by asking
him for a card. The opponent’s impact value of GoFish is
equal to 1 (as |InfluentialStates(G ,H)| = |TotalStates|).

In addition, there are games that can be divided into
two parts with respect to their OI value. For example, in

650

Backgammon, both players can usually hit the opponent’s
pawns if they are open (“blot”), yielding a game with a posi-
tive OI value. However, the final stage of a game (called “the
race”), when the opponent’s pawns have passed each other
and have no further contact, is a zero OI game.

When trying to understand and estimate the OI values for
both games we encounter the following phenomenon. When
playing Risk, one has a direct impact on the merit of other
players when they share borders, as they can directly attack
one another. Sharing a border is common since, when view-
ing the world map as an undirected graph there are 42 nodes
(territories), each with at least two edges. In contrast, in
Hearts, a player’s ability to directly hurt a specific player is
considerably limited and occurs only on rare occasions.

Computing the exact value of OI is impractical in games
with a large (exponential) number of states. However, we
can estimate it by calculating it for a large sample of random
states. In order to estimate the Opponent Impact of Hearts
and Risk we did the following. Before initiating a search to
select the action to play, the player iterated over all the other
players as target opponents. For each move of the root player,
it computed the evaluation function for the selected target op-
ponent. We then counted the number of game states in which
the root player’s action could result in more than a single
heuristic value for one of the target opponents. For example,
consider a game state in which the root player has 5 possible
actions. If the root player’s actions would result in at least
two different heuristic values for one of the target players, we
would count this state as an influential one, otherwise, (all 5
actions result in the same target player’s heuristic value), we
would count it as a non-influential state. In both domains, we
ran 100 tournaments for each search depth, and computed the
OI factor by counting the percentage of influential states.

�

��

��

��

��

���

� � � � 	 �
 � �

�
������
���

�
�
�
�
�

�
��
��
�
��
�

������ �	�

Figure 5: Opponent Impact Measure

The results in figure 5 show that the OI for Hearts is valued
very low when the depth is lower than 4 (4% in depth 1, and
8% in depth 2). For larger depth limits the OI values mono-
tonically increase but do not exceed 40%. The OI for the Risk
board game starts higher than 80% (83.12% in depth 1) and
it manages to climb to around 88.53% in depth 9. From these
results we can conclude the following OI ordering:

OI(Bingo)=0≺OI(Hearts)≈ 0.35≺OI(Risk)≈0.85≺OI(GoFish)=1

The fact that Risk has a higher opponent impact factor is
highly reflected in the experiment results, as the relative per-
formance of MIX is much higher than in the Hearts domain.
In Risk players have a larger number of opportunities to act

against the leading player than in Hearts. In Hearts even af-
ter reasoning that there is a leading player that should be the
main target for painted tricks, the number of states which one
could choose as an action against the leader, is limited.

6 Conclusions
We presented the MP-Mix algorithm that dynamically
changes its search strategy according to the game situation.
MP-Mix decides before the turn begins whether to use Para-
noid, MaxN or the newly presented Directed Offensive search
strategy. We experimented in the Hearts and Risk games and
demonstrated the advantages that players gain by using the
MP-Mix algorithm. Moreover, our results suggest that the
benefit of using the MP-Mix algorithm in Risk is much higher
than in Hearts. The reason for this difference is related to
a game property, which we defined as the Opponent Impact
(OI) factor. We hypothesize that MP-Mix will perform better
in games with a high OI.

In terms of future research it would be interesting to ap-
ply machine learning techniques in order to learn the optimal
threshold values for different functions. In addition, more re-
search should be performed in order to thoroughly understand
the influence of the OI value on the algorithm’s performance
in different games. It would also be interesting to provide
a comprehensive classification of various multi-player games
according to their OI value.

Acknowledgments
This work was supported in part by the Israeli Science Foun-
dation under Grants #1357/07 and #728/06 and in part by
the National Science Foundation under Grant 0705587. Sarit
Kraus is also affiliated with UMIACS.

References

[Ginsberg, 2001] Matthew L. Ginsberg. Gib: Imperfect in-
formation in a computationally challenging game. JAIR,
14:303–358, 2001.

[Johansson and Olsson, 2006] Stefan J. Johansson and
Fredrik Olsson. Using multi-agent system technology in
risk bots. In AIIDE, pages 42–47, 2006.

[Korf, 1991] Richard E. Korf. Multi-player alpha-beta prun-
ing. Artificial Intelligence, 49(1):99–111, 1991.

[Lorenz and Tscheuschner, 2006] Ulf Lorenz and Tobias
Tscheuschner. Player modeling, search algorithms and
strategies in multi-player games. In ACG, pages 210–224,
2006.

[Luckhart and Irani, 1986] Carol A. Luckhart and Keki B.
Irani. An algorithmic solution of n-person games. In Proc.
of AAAI-86, pages 158–162, 1986.

[Sturtevant and Korf, 2000] Nathan R. Sturtevant and
Richard E. Korf. On pruning techniques for multi-player
games. In AAAI, pages 201–207, 2000.

[Sturtevant, 2002] Nathan R. Sturtevant. A comparison of
algorithms for multi-player games. In Computers and
Games, pages 108–122, 2002.

651

