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Part I

Recap from last lecture on
games
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Minimax Games

The games we will focus on will have the following
properties.
• Zero-sum (The players are adversaries: there is no point

in collaborating).
• Perfect information (no secret)
• A player has always only finitely many possible moves.
• The game always ends after a finite sequence of moves.
• Deterministic (no chance).
• Two players alternate play

We will call such games minimax games for short.
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Game tree

• Nodes: game configuration
• Successors: configuration reachable in one ply
• Leafs: are endgame position labelled by a payoff

function, e.g. Loss= −1, Draw= 0 and Win= +1.

Remark

The game tree of a minimax game is finite.
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Example: Tic-Tac-Toe
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Strategy

• A strategy is a method that allows a player to choose a
move from any legal game position.

• Using our game tree model, it is simply a function from
the set of nodes of the game tree which selects a
successor of a node.

• A winning strategy for a player is a strategy which allows
him to win all the time no matter what the other
player does.

• A non losing strategy for a player is a strategy which
allows him to never lose (win or draw) all the time no
matter what the other player does.



What is the best strategy?
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• The first player tries to maximise his payoff.
• The second player tries to minimise the first player’s

payoff.

Remark

The method works also when the pay off is not just win, draw
or lose.
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Minimax

• Perfect play for deterministic, perfect-information games.
• strategy: choose move to position with highest minimax

value
• It is the best achievable payoff against best play.
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How do we compute the best strategy?

• Drawing the game tree for a machine would mean to
write in memory the whole tree.

• The game tree is usually very big.
• Instead we will only remember some of the tree and

work out the best branch recursively in a
depth-first-search fashion.
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Properties

• In theory, the previous algorithm decides in finite time if
the starting player has a winning strategy, provided that
the tree is finite

• complexity (d = number of possible moves, h = height of
the tree)
• time: O(dh)
• space: O(h)
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Part II

Today : advanced
techniques to deal with

huge game trees
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How to reduce search?

• We can use information about the game like symmetries
of the board.

• There are a number of techniques which do not depend
of the game. For example,
• at a max node, we can abort search as soon as we know

that one of the siblings gives us a win; and,
• at a min node, we can abort search as soon as we know

that one of the siblings gives us a loss.
• We can extend this idea to use more fully the information

from the part of the tree we have explored: this is called
α − β-pruning.
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Properties of α − β

• Pruning does not affect final result.
• Good move ordering improves effectiveness of pruning.
• With “perfect ordering,” time complexity = O(dh/2).
• This effectively doubles the depth of search.
• We can easily reach depth 8 and start playing good

chess.
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Why is it called α − β?

..

..

..

MAX

MIN

MAX

MIN V

• α is the best value (to max) found
so far off the current path

• If V is worse than α, max will avoid
it and prune that branch.

• Define β similarly for min.
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Recall Minimax with cutoff
ExploreMax(currentState,remainingDepth)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: bestOutcome := −∞
7: for each successor nextState do
8: Outcome := ExploreMin(nextState,remainingDepth− 1)
9: if Outcome > bestOutcome then

10: bestOutcome := Outcome
11: end if
12: end for
13: return bestOutcome
14: end if
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From Max nodes: increasing α
ExploreMaxAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localα := α// generalises bestOutcome.
7: for each successor nextState do
8: Outcome := ExploreMinAlphBet(nextState,remainingDepth−

1,Localα, β)
9: if Outcome > localα then

10: localα := Outcome
11: if Localα ≥ β then
12: //further up in the exploration, my opponent(min) can play

β
// which is at least as bad for me.

13: end if
14: end if
15: end for
16: return Localα
17: end if
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From Max nodes: increasing α
ExploreMaxAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localα := α// generalises bestOutcome.
7: for each successor nextState do
8: Outcome := ExploreMinAlphBet(nextState,remainingDepth−

1,Localα, β)
9: if Outcome > localα then

10: localα := Outcome
11: if Localα ≥ β then
12: //pruning step
13: end if
14: end if
15: end for
16: return Localα
17: end if
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From Max nodes: increasing α
ExploreMaxAlphaBeta(currentState,remainingDepth,α,β)
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From Max nodes: increasing α
ExploreMaxAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localα := α// generalises bestOutcome.
7: for each successor nextState do
8: Outcome := ExploreMinAlphBet(nextState,remainingDepth−

1,Localα, β)
9: if Outcome > localα then

10: localα := Outcome
11: if Localα ≥ β then
12: //pruning step
13: return Localα
14: end if
15: end if
16: end for
17: return Localα
18: end if
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From Min nodes: decreasing β
ExploreMinAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localβ := β// generalises worstOutcome
7: for each successor nextState do
8: Outcome := ExploreMxAlphBet(nextState,remainingDepth−

1, α,Localβ)
9: if Outcome < localβ then

10: localβ := Outcome
11: if localβ ≤ α then
12: //further up in the exploration, I (max) can play α

// which is at least as good for me.
13: end if
14: end if
15: end for
16: return Localβ
17: end if
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From Min nodes: decreasing β
ExploreMinAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localβ := β// generalises worstOutcome
7: for each successor nextState do
8: Outcome := ExploreMxAlphBet(nextState,remainingDepth−

1, α,Localβ)
9: if Outcome < localβ then

10: localβ := Outcome
11: if localβ ≤ α then
12: //pruning step
13: end if
14: end if
15: end for
16: return Localβ
17: end if
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From Min nodes: decreasing β
ExploreMinAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localβ := β// generalises worstOutcome
7: for each successor nextState do
8: Outcome := ExploreMxAlphBet(nextState,remainingDepth−

1, α,Localβ)
9: if Outcome < localβ then

10: localβ := Outcome
11: if localβ ≤ α then
12: //pruning step
13: return ≤ α
14: end if
15: end if
16: end for
17: return Localβ
18: end if
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From Min nodes: decreasing β
ExploreMinAlphaBeta(currentState,remainingDepth,α,β)

1: if currentState is a terminal state then
2: return payoff (currentState)
3: else if remainingDepth = 0 then
4: return e(currentState)
5: else
6: Localβ := β// generalises worstOutcome
7: for each successor nextState do
8: Outcome := ExploreMxAlphBet(nextState,remainingDepth−

1, α,Localβ)
9: if Outcome < localβ then

10: localβ := Outcome
11: if localβ ≤ α then
12: //pruning step
13: return Localβ
14: end if
15: end if
16: end for
17: return Localβ
18: end if
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What if your AI still plays badly?

• α − β allows to search deeper since we are not wasting
time doing the same things.

• However, in many games, it is usual that we still play
badly because we miss the information that lies after the
cut off and because our evaluation heuristic can be quite
bad sometimes.

• This is called the horizon effect.
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Fighting the horizon effect

• Use every technology
available.

• Use common knowledge of
the problem.

• Improve the cutoff to
something less naive than
fixed depth.
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Use every technology available

• Dedicated hardware: allows to search further (brute
force).

• Transposition table: use hash table to store every
position we compute, together with its evaluation
(dynamic programming).

• Endgame database: precompute as many endgame as
possible and store them.

• Machine Learning: play many games against yourself to
learn from your mistake.
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Use Common Knowledge of the Problem

• Optimal Opening Table: store all the usual opening
together with the agreed reply and their variants, e.g. ,
ouverture à la sicilienne.

• Evaluation function: get this je ne sais quoi out of grand
masters and put it into your evaluation function.

• Learn from your opponent: store all the games your
opponent has ever played in an official competition and
precompute games to find in advance way of beating
him.
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Quiescent Search

• A position is quiescent when it is unlikely to exhibit wild
swings in the near future.

• It is dangerous when the search is cut off on a non
quiescent positions.

• More sophisticated cutoff tests are needed: add a
quiescence search.

• e.g. for chess, if the evaluation function involves
counting material, then the quiescence search involves
considering only capture moves
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Other Search Improvements

• Singular extensions: expand nodes which are clearly
better.

• Forward pruning: use heuristic to remove moves
(dangerous).

• Futility pruning: helps decide in advance which move will
cause a beta cutoff in the successor nodes.
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Checkers

Boring now: perfect play
leads to a draw.

• Chinook ended 40-year-reign
of human world champion
Marion Tinsley in 1994.

• Used an endgame database
defining perfect play for all
positions involving 8 or fewer
pieces on the board, a total of
443,748,401,247 positions
(1995).

• A lot of work later: Perfect
play by both sides leads to a
draw (2007).
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Chess

Better or same level as grand Masters.

• Deep Blue defeated human
world champion Gary
Kasparov in a six-game
match in 1997.

• Deep Blue searches 200
million positions per second,
uses very sophisticated
evaluation, and undisclosed
methods for extending some
lines of search up to 40 ply.
• Major advance are also due to the improvement of the

software: in 2002, the eight game match between
Vladimir Kramnik and a mere PC ended in a draw.
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Othello

Humans too bad and Computers too good.

• The search space is relatively
small: 5 ≤ b ≤ 15 and m = 64.

• There was little expertise to
develop the evaluation
function.

• But now, the human
champions refuse to compete
against computers, who are
too good.
• Recent advances: very advanced evaluation functions

were designed using a vast number of automatically
generated patterns and Neural Networks techniques to
learn optimal weights for the evaluation functions (Buro
1997).
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Werbung

Stefan Zweig “Schachnovelle”

Und da ich nichts anderes hatte als dies unsinnige Spiel gegen mich
selbst, fuhr meine Wut, meine Rachelust fanatisch in dieses Spiel
hinein. Etwas in mir wollte Recht behalten, und ich hatte doch nur
dieses andere Ich in mir, das ich bekämpfen konnte; so steigerte ich
mich während des Spiels in eine fast manische Erregung.
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A digression: genetic methods to learn to
play better

The idea: survival of the fittest

• Start with a population: an individual
is represented by a chromosome.

• Look at the fitness of each individual
• Select some of the individuals

(according to their fitness)
• Alter the population (crossover &

mutations).
• Start over.
• Population = heuristics for the game (based on a single

heuristic)
• chromosome = values of the weights

• Fitness of individual  = ♯gameswonby
∑

j∈Population ♯gameswonbyj
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Go
Computers were very poor last millenium

• One of the oldest known
strategy game, from China,
now mostly played in Japan.

• The search space is huge: the
board is very large 192 = 361
and initially b > 300, so most
programs use pattern
knowledge bases to suggest
plausible moves.

• The human champions refused to compete against
computers until 2000, who were really too bad.
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Interesting new method different from
α − β

Monte Carlo Tree Search

• Recent new method in planning (multiarmed bandit
problem, Auer et. al 2002).

• Can be applied to games
(Kocsis et. al 2006).

• It is much more efficient for
Go than α − β and has lead to
dramatic improvements
(Teytaud et. al).

• It can be stopped at any time
contrarily to α − β
(breadth-first search rather
than depth-first search)
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Go

Humans and Computers as good as one another (on a
9x9)

• Currently, MoGo the world
champion of programs has
not only managed to win
games against strong
amateurs but has managed a
draw (2 games each) versus
Motoki Noguchi a
professional, the current
French number 1 (December
2008, IUT Clermont-Ferrand).
• However, it is only on a 9x9 board and using enormous

ressources (25% of the national dutch supercomputer).
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Nondeterministic games: backgammon
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Nondeterministic games in general

• In nondeterministic games, chance is introduced by dice,
card-shuffling ...

• Simplified example with coin-flipping.
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Algorithm for nondeterministic games

• In the context of games with chance, perfect play is the
strategy with the best expected utility.

• We can not do much against an opponent who is too
lucky but on average over many games we will win some
money if our strategy gives us a positive expected utility.

• Expectiminimax gives perfect play.
• It works just like Minimax, except we must also handle

chance nodes.
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Expectiminimax

ExpectMinimax(currentState)

if currentState is a terminal state then
return payoff (currentState)

else if Chance Node then
return vergenextState{ExpectMinimx(nextState)}

else if I am to move then
return mxnextState{ExpectMinimx(nextState)}

else
return minnextState{ExpectMinimx(nextState)}

end if
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Nondeterministic games in practice

• Dice rolls increase the degree d: 21 possible rolls with 2
dice

• Backgammon ≈ 20 legal moves (can be 6,000 with 1-1
roll)

depth 4 = 20 × (21 × 20)3 ≈ 1.2 × 109

• As depth increases, the probability of reaching a given
node shrinks, so the value of lookahead is diminished

• This means that α–β pruning is much less effective
• TDGammon uses depth-2 search + a very good Eval and

is roughly at world-champion level.
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Exact values don’t matter for
deterministic games

• Behaviour is preserved under any monotonic
transformation of Eval

• Only the order matters: the payoff in deterministic
games acts as an ordinal utility function.
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Exact values DO matter for Games with
Chance

• Behaviour is preserved only by a positive linear
transformation of Eval

• Hence Eval should be proportional to the expected
payoff.
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Conclusion

• Perfect play is not practically possible for a number of
interesting games.

• But, an opportunistic mix of good algorithmic methods
and good. implementation of Human know-How leads to
very good play.

• Games are unarguably a major success of AI.
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La Fin

Sacha Guitry “Mémoires d’un tricheur”

Ce que les gens qui ne jouent pas ne savent pas, ce qu’ils ignorent,
ce sont les bienfaits du jeu. Ses inconvénients, je les connais
comme eux. Certes, c’est un danger, mais qu’est-ce qui n’est pas
un danger dans la vie! Or, il ne faut pas contester l’influence
excellente que le jeu peut avoir sur le moral. L’homme qui vient de
gagner mille francs, ce n’est pas un billet de mille francs qu’il a
gagné - c’est la possibilité d’en gagner cent fois plus. Il n’a pas
gagné mille francs - il a gagné! Quand il perd mille francs, il n’a
perdu que mille francs. Quand il les gagne, il a gagné les premiers
mille francs d’une fortune incalculable. Tous les espoirs lui sont
permis - et voyez cette confiance en lui qu’il a, c’est magnifique! En
amour, en affaires, pendant vingt-quatre heures, il va tout oser - et
ce début d’une fortune, dû au hasard uniquement, peut le mener à
la fortune véritable.
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