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Different types of games

Perfect Information

Deterministic
checkers, othello, chess, go,
diplomacy

With Chance
backgammon, monopoly, risk

Imperfect Information

Deterministic
battleships, stratego,
diplomacy

With Chance
bridge, poker, scrabble, risk
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Game tree

I Nodes: game configuration

I Successors: configuration reachable in one ply

I Leafs: are endgame position labelled by a payoff function, e.g.
Loss= −1, Draw= 0 and Win= +1.

Remark
The game tree of a minimax game is finite.



Example: Tic-Tac-Toe
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Minimax

I Perfect play for deterministic, perfect-information games.

I strategy: choose move to position with highest minimax value

I It is the best achievable payoff against best play.
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The algorithm

Minimax(currentState)

if currentState is a terminal state then
return payoff (currentState)

else if I am to move then
return maxnextState{Minimax(nextState)}

else
return minnextState{Minimax(nextState)}

end if



With one function for each player

ExploreMax(currentState)

if currentState is a terminal state then
return payoff (currentState)

else
return max

nextState
{ExploreMin(nextState)}

end if



With one function for each player

ExploreMin(currentState)

if currentState is a terminal state then
return payoff (currentState)

else
return min

nextState
{ExploreMax(nextState)}

end if



With one function for each player

First call
ExploreMax(currentState)

ExploreMax ExploreMin

Remark
I the two functions are calling each other recursively until a leaf of the

game tree is reached

I the values are propagated upward



Example

I Try some applets available on the web.

I For example with minimax on a complete tree with nodes of degree
3 and height 2 (beware the variables are called differently in the
applet and in the rest of this lecture: their b denotes de degree and
their d the depth).

I You can also enter evaluation for the nodes, try for example

1, 0, 1, 1,−1, 0, 0,−1, 0.

I Note that, there is no pruning mechanism implemented (e.g. when
reaching Win).

I If you use the algorithm Minimax alpha beta, some pruning
occurs.



With one function for each player

First call
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Further remarks

Warning

I the tree is never fully stored on the computer

I some parts of it are stored in RAM

I Essentially by the call stack of the two functions.

Implementation issues

I the max and min in these functions are implemented by loops of
recursive calls

I to avoid pointless computing, if we find a maximal value in a max
loop (or a minimal value in a min loop) we can stop the loop early.

I in an object oriented framework, the passing of state as arguments
will probably not be needed



Cutting off search

Implementation Issues

I With two functions ExploreMax and ExploreMin, note that both
will need a cut-off test

I If a cut-off is added, we also need to implement an evaluation
function f.

I In a two player game, it is recommended to keep this function f
symmetric.

I In this case, the simplest evaluation function is +∞ for a win, −∞
for a loss and 0 otherwise (essentially every game that has not been
simulated until the end is treated as a draw by the AI in its analysis).
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