
Design of AI for games
Students Survival Pack

IUT de Sénart Fontainebleau
Département Informatique

Different types of games

Perfect Information

Deterministic
checkers, othello, chess, go,
diplomacy

With Chance
backgammon, monopoly, risk

Imperfect Information

Deterministic
battleships, stratego,
diplomacy

With Chance
bridge, poker, scrabble, risk

Different types of games

Perfect Information

Deterministic
checkers, othello, chess, go,
diplomacy

With Chance
backgammon, monopoly, risk

Imperfect Information

Deterministic
battleships, stratego,
diplomacy

With Chance
bridge, poker, scrabble, risk

Game tree

I Nodes: game configuration

I Successors: configuration reachable in one ply

I Leafs: are endgame position labelled by a payoff function, e.g.
Loss= −1, Draw= 0 and Win= +1.

Remark
The game tree of a minimax game is finite.

Example: Tic-Tac-Toe

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Minimax

I Perfect play for deterministic, perfect-information games.

I strategy: choose move to position with highest minimax value

I It is the best achievable payoff against best play.

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

The algorithm

Minimax(currentState)

if currentState is a terminal state then
return payoff (currentState)

else if I am to move then
return maxnextState{Minimax(nextState)}

else
return minnextState{Minimax(nextState)}

end if

With one function for each player

ExploreMax(currentState)

if currentState is a terminal state then
return payoff (currentState)

else
return max

nextState
{ExploreMin(nextState)}

end if

With one function for each player

ExploreMin(currentState)

if currentState is a terminal state then
return payoff (currentState)

else
return min

nextState
{ExploreMax(nextState)}

end if

With one function for each player

First call
ExploreMax(currentState)

ExploreMax ExploreMin

Remark
I the two functions are calling each other recursively until a leaf of the

game tree is reached

I the values are propagated upward

Example

I Try some applets available on the web.

I For example with minimax on a complete tree with nodes of degree
3 and height 2 (beware the variables are called differently in the
applet and in the rest of this lecture: their b denotes de degree and
their d the depth).

I You can also enter evaluation for the nodes, try for example

1, 0, 1, 1,−1, 0, 0,−1, 0.

I Note that, there is no pruning mechanism implemented (e.g. when
reaching Win).

I If you use the algorithm Minimax alpha beta, some pruning
occurs.

With one function for each player

First call
ExploreMax(currentState)

ExploreMax ExploreMin

Remark
I the two functions are calling each other recursively until a leaf of the

game tree is reached

I the values are propagated upward

Further remarks

Warning

I the tree is never fully stored on the computer

I some parts of it are stored in RAM

I Essentially by the call stack of the two functions.

Implementation issues

I the max and min in these functions are implemented by loops of
recursive calls

I to avoid pointless computing, if we find a maximal value in a max
loop (or a minimal value in a min loop) we can stop the loop early.

I in an object oriented framework, the passing of state as arguments
will probably not be needed

Cutting off search

Implementation Issues

I With two functions ExploreMax and ExploreMin, note that both
will need a cut-off test

I If a cut-off is added, we also need to implement an evaluation
function f.

I In a two player game, it is recommended to keep this function f
symmetric.

I In this case, the simplest evaluation function is +∞ for a win, −∞
for a loss and 0 otherwise (essentially every game that has not been
simulated until the end is treated as a draw by the AI in its analysis).

	History
	

	What is a game?
	

	Strategy
	

	Minimax
	

	Combinatorial Explosion
	

	Using human knowledge
	

