Dans la prochaine séquence de cours, nous allons tenter de répondre à la question suivante.
C'est quoi un ordinateur?
Cette question s'apparente à celle que ce sont posés philosophes et mathématiciens de Leibnitz à Turing en passant par Hilbert.
Qu'est-ce qu'une question à laquelle on peut répondre de manière mécanique par un calcul?
Nous allons explorer rapidement ce sujet en évoquant à la fois des modèles théoriques et des explication sur l'architecture matérielle et le fonctionnement d'ordinateurs modernes.
## Calcul Matériel.
Initialement, les "computer" sont des humains, qui s'aident de divers mécanisme pour faire des calculs rapidement en essayant de faire le moins d'erreurs possibles, par exemple avec un boulier ou des cordes nouées.
Les premières machines à calculer sont mécaniques et peuvent être discrètes (nombre fini de position avec par exemple des roues crantées) ou continues (position continue sur un astrolabe ou une table à tracer pour calculer des intégrales).
Les machines modernes possèdent différents composants electroniques et ce sont les transistors qui permettent de passer d'une information analogique/continue
> quelle est la puissance du courant?
à une information discrète, oui ou non, qu'on peut interpréter comme 0 ou 1.
> est-ce-que le courant dépasse un certain seuil?
On peut à l'aide de quelques composants de base faire des calculs sur ces valeurs 0 ou 1. On parle alors de calcul Booléen (du nom du logicien Boole).
### circuit booléen
consiste en
1. des entrées contenant des valeurs booléennes.
1. des portes logiques permettant de calculer
* le ET binaire (&)
* le OU binaire (v)
* la négation NON unaire (-)
1. des "cables" pour relier ces portes
1. des sorties correspondant à la sortie du calcul.
Au tableau
* table du ET
* table du OU
* table du NON
### exercices
1. Écrire la table de Non de x ou y.
1. Décrire un circuit permettant de tester si deux entrée x et y sont égales.
Le circuit doit renvoyer 1 si c'est le cas et 0 sinon.
NB. on peut noter cette opération <-> ou
2. Même question pour le circuit qui permet de calculer le XOR (Ou eXclusif).
3. Même question pour le circuit permettant de calculer la majorité de trois arguments
### Digression : le schéma de chiffrement de Vernam
Il s'agit d'un schéma très simple et incassable à moins de connaître la clé secrète.
L'inconvénient est qu'il faut fabriquer et partager avec son destinataire une clé secrète aussi longue que le message. On parle aussi de "one time pad" en anglais.
Pendant la seconde guerre mondiale, à Bletchley Park, des opératrices fabriquaient de telles clés mais en quantité trop réduite. Une tentative de mécanisation pour pallier à ce soucis a permis de générer des clés rapidement mais qui avaient une différence avec les véritables clés.
> "Oh. I am here, in a larger sense, because Mrs. Tenney, the vicar’s wife, has become sloppy, and forgot>ten to close her eyes when she takes the balls out of the bingo machine."