Sensibilisation à l'ergonomie pour les interfaces homme machine Graphe Social

Florent Madelaine

Département Informatique

Qu'est-ce-que c'est un ordinateur?


Historique

•000000000000000

Qu'est-ce-que c'est un ordinateur?

Historique

Comment se sert-on d'un ordinateur?

Historique

00•000000000000

Emprunt de transparents

Les transparents qui ne ressemblent pas du tout dans leur style à ceux qui précèdent ne sont pas fabriqués par moi.

Ceux de ce cours sont tirés de documents du cours de Jean-Yves Antoine disponibles en intégralité sur sa page web, où vous pouvez trouver beaucoup d'autres choses que ce que je vais aborder.

> Exemple : IBM 7030 (CNAM, Musée des Arts & Métiers, Paris)

Exemple: Perforatrices de cartes

- BULL Pelerod (1950)
- BULL P112 (1966)

										ı																							ı	Ţ	•	0		
		g																																			ı	
			i						i																											ľ		
																																ä						ı
																																ä				ú		ı
		i	ij					ı	s																													
				i		ij	i																												ő	i		
																																		i				
		ı	ì	i	ĕ	ì			ñ																		Ÿ				ä							

Dispositifs d'entrée-sortie limités : pourtant le clavier est connu

- · Machine à écrire
- Calculatrices mécaniques puis électromécaniques ⇒ non spécialistes

Clavier direct (sans perforateur de bandes) : ordinateurs modernes (début des années 1970)

Pas d'évolution dans l'architecture des ordinateurs

- ✓ Architecture stable, augmentation de la puissance de calcul (loi de Moore)
- ✓ Principale modification : nouvaux usages applications et nouvelles formes d'interaction qui vont émerger ... très progressivement

Dispositifs d'entrée / sortie : mini-ordinateurs (années 1970)

- clavier
- écran alphanumérique
- Interaction: langage de commande
- ▶ Toujours réservé aux experts

Evolution de l'IHM : poids de l'existant

Coexistence de différents dispositifs d'E/S

Exemple: DEC PDP-11 (1970-1976)

Nouveaux dispositifs d'E/S: recherche

1959 Ecran cathodique pour affichage graphique

DEC PDP-1

- ▶ Ecran cathodique ... rond
- ▶ Périphérique optionnel utilisé uniquement en recherche
- Premier jeu vidéo (SpaceWar!) au MIT

Nouveaux dispositifs d'E/S: recherche

1962 stylo optique & écran graphique (Sktechpad: Ivan Sutherland, MIT)

- ▶ Suite des travaux sur PDP-1
- ▶ 1974 : intégration sur IBM 370

Doug Enghelbart, Standford

▶ 1981 : Xerox Star

Vers le grand public : interfaces graphiques et manipulation directe

GUI Graphical User Interface

• Interface WIMP Window Icon Menu Pointer

GUI WIMP : recherche

1964 souris, fenêtre1973 Xerox Alto : GUI

GUI WIMP : une idée « naturelle » ... longue à émerger commercialement

1981 Xerox 8010 Star

1982 Apple IIe, Apple Lisa ▶ Micro-informatique grand public

1984 Macintosh

1990 Windows 3.0

Une remarque en passant

000000000000000

L'avènement des interfaces graphiques correspond aussi à l'apparition d'un nouveau paradigme de programmation : la programmation événementielle (en anglais, event driven programming).

Les événements sont les messages qu'on retrouve en CPOO.

Bref

Historique 00000000000000

- Différence très marquée au cours de l'histoire des façons d'interagir avec un ordinateur.
- L'interface graphique se démocratise à partir des années 80
- Évolution très forte de la population typique qui interagit avec les ordinateurs.

Points importants

- Même si la ligne de commande c'est très bien (voir https://en.wikipedia.org/wiki/Ed_(text_editor) https://www.gnu.org/fun/jokes/ed-msg.html)
- l'utilisateur d'un logiciel va très probablement interagir avec le logiciel via une interface graphique
- Il faut aussi bien réfléchir à l'utilisateur typique de votre produit (You are not the user!)

Le cas d'une interface web

- Vous allez probablement un jour faire du dev web
- Tout ce que j'ai dit jusqu'à présent reste vrai avec une spécificité notable du web :
 - le « client »n'est pas captif
 - il a tendance à partir très vite d'un site
 - et de se plaindre très vite
- Une bonne interface central pour un site marchand

Comment mettre en oeuvre une interface adaptée?

- Pas simple
- Un domaine de recherche actif entre science cognitive, sociologie et informatique avec de l'expérimentation
- Un métier « artisanal » d'ergonome pour les interfaces homme machine

Les ingrédients

- Un mélange d'habitudes qui se sont imposées au fil du temps qu'on ne peut plus trop changer
- Des normes iso (ISO 9241, AFNOR Z67-133-1)
- Des directives
 - GNOME Human Interface Guidelines https://developer.gnome.org/hig/stable/
 - https://www.w3.org/TR/WD-WAI-PAGEAUTH/
 - https://webstyleguide.com/wsg3/ 3-information-architecture/
 - 4-presenting-information.html
- De l'évaluation de l'interface à toutes les étapes de la conception au même titre que des tests
- Beaucoup de bon sens

Attention

- Le choix des fontes, de la couleur et de l'organisation et position des choses dans l'interface sont importants mais
- Il ne faut pas réduire l'IHM à l'aspect « look and feel ».
- Exemple de chose à gérer : la gestion des erreurs.
- Il y a un buzz word qui explique bien ce qu'on veut vraiment faire : on parle maintenant de UX-design (User experience design).

IHM: UTILE?

Exemple: gestion des erreurs

IPhone (2011)

Windows Server (2012)

ADE Campus (2010-2012)

Liste de méthodes heuristiques pour améliorer l'usabilité

Concrètement, comme nous ne sommes pas des experts et ne pouvons pas lire toutes les directives, il y a des principes généraux qu'on peut suivre pour améliorer l'expérience utilisateur « dans les grandes lignes ».

•000000000

Par exemple, la liste en 10 points de Jakob Nielsen. https://www.nngroup.com/articles/ ten-usability-heuristics/

Pour ceux qui ont plus de temps, il y a des directives assez grand public comme par exemple celle-ci pour le dev web de pages « officielles » aux US.

https://webstandards.hhs.gov/guidelines/

QUALITE D'UN LOGICIEL: APPRENABILITE

Observabilité

Facilité offerte à l'utilisateur de vérifier les effets de ses actions

(5) observabilité directe vs. indirecte

Exemple – gestion de l'attente : informer l'utilisateur de l'avancement du travail

Attente prévisible	Recommandation d'affichage
2 à 6 secondes	icône d'attente (sablier, horloge)
6 à 30 secondes	Message avec marque d'avancement (% réalisé, temps d'attente)
> 30 secondes	Idem avec en outre un détail des actions en cours de réalisation

QUALITE D'UN LOGICIEL: APPRENABILITE

Observabilité : exemple

Glisser / Déposer (Drag & Drop): toujours montrer les effets du glissement, même dans le cas plus délicat du Web dynamique.

NetWibes (2012)

iGoogle (2012)

QUALITE D'UN LOGICIEL: FLEXIBILITE

Diversité des communautés d'utilisateurs : recommandations

- ▶ Ciblage Cerner en amont la cible du logiciel / du site Web : âge, genre ...
- Analyse des besoins Caractériser les besoins de la population ciblée : attentes (questionnaires), usages (observations) mais aussi capacités (expérience, caractéristiques cognitives)
- Conception Offrir aux différentes sous-communautés d'utilisateurs caractérisées des styles d'interaction qui leur sont adaptés.

QUALITE D'UN LOGICIEL: ROBUSTESSE

Rappel : fiabilité et conformité à la tâche

- √ complétude
- √ adéquation

Importance des erreurs

- Source principale d'anxiété et de rejet des utilisateurs
- Une erreur d'utilisation est aussi frustrante qu'un bug « simple »
- Influence des messages d'erreur sur l'acceptation du logiciel

Prévention des erreurs

 Une conception sérieuse d'un point de vue ergonomique limitera fortement les erreurs de l'utilisateur

Gestion et récupération des erreurs

 Rédaction essentielle des messages d'erreur : rassurer l'utilisateur et lui donner des pistes pour résoudre le problème rencontré

QUALITE D'UN LOGICIEL : ROBUSTESSE

Prévention des erreurs

Deux principes ergonomiques qui ne jouent pas que sur la robustesse

▶ Observabilité et causalité — erreurs réduites si on comprend ses actions et si en voit les conséquences

Exemple : navigation dans un système de fichier

- ▶ Guidage guider l'utilisateur pour lui éviter des erreurs
 - ✓ menus (rappel : option non sélectionnables grisées)
 - √ formulaire : fournir des valeurs attendues (listes, valeur par défaut),
 préciser le format de saisie, dire quels champs sont optionnels ou non.

Exemple : spécification d'horaire (transports)

QUALITE D'UN LOGICIEL: ROBUSTESSE

Formulation des messages d'erreur : recommandations

 Ne pas rappeler à l'utilisateur qu'il n'est pas informaticien : pas de termes techniques incompréhensibles

- Phrases plutôt que mots clés
- Éviter les verbes à la forme nominale (exemple : affichage)
- Forme active plutôt que forme passive

Vous ne pouvez pas quitter l'application sans avoir sauvegardé votre session Sauvegardez votre session de travail avant de quitter l'application

■ Éviter les formes négatives, sources d'erreurs 🗈

GENERAL GUIDELINES

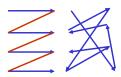
Organisation de l'interface

- · Zones d'accessibilité dépendant du mode de tenue
 - **Smartphone** Tenue à une main, interaction avec le pouce, plus rarement avec l'autre main. Tenue à 2 mains en mode paysage
 - Tablette Tenue sur un support, interaction généralement à une main
 - Visibilité : masquage par la main et l'avant-bras lors de la saisie tactile

· Visiblité - Masquage par la main et l'avant-bras

Pub

À ce sujet de taille d'écran, posture etc, regardez cette vidéo : https://youtu.be/ZhnN1CdwvTs?t=1108


VISION ET ORGANISATION DE L'INTERFACE

Directives liées à la lecture : listes, texte...

[Smith & Mosier, 1986]

• Exemple : liste présentée sur plusieurs colonnes

▶ Albanie	▶ Allemagne
▶ Andorre	▶ Belgique
▶ Bosnie	▶ Bulgarie
▶ Chypre	▶ Croatie

▶ Albanie	▶ Bosnie
▶ Allemagne	▶ Bulgarie
▶ Andorre	▶ Chypre
▶ Belgique	▶ Croatie

Comment?

En parallèle du processus de conception / modélisation classique

- Analyser la tâche, l'interaction et la communauté de l'utilisateur
- Conception + respect de principes d'ergonomie
- etc

On peut tester et évaluer pas mal de choses même si le produit n'est pas fini.

Exemples

En amont:

- méthode des cartes pour trouver / améliorer les labels d'un menu
- expérimentation pour vérifier si un utilisateur trouve rapidement des choses dans une arborescence

À la conception.

- Mise en oeuvre de maquettes qui accompagnent scénarios et diagrammes de séguences (wireframe, wireflow).
- expérimentation pour vérifier si un utilsateur clique au bon endroit sur une maguette (first clic test)

Pour vous relaxer

- Direct keyboard input to computers http://www.computerhistory.org/timeline/1956/
- SAGE Air Defense System : Network Pioneer http://www.computerhistory.org/timeline/1958/

Besides networking SAGE also helps pioneer interactive computing and multi-user systems. Hundreds of people use the system simultaneously, interacting through groundbreaking graphical consoles. Each console has its own large screen, pointing device (a light gun), a telephone, and an ashtray. Ever on the alert for a Soviet attack, SAGE operators would describe the experience as endless hours of boredom...broken by seconds of sheer terror. [...]