(19)

Europdisches
Patentamt

European
Patent Office

Office européen
des brevets

9

(11) EP 2 884 392 B1

(12) EUROPEAN PATENT SPECIFICATION
(45) Date of publication and mention (51) IntCl.:
of the grant of the patent: GOGF 11/14(2006.07) GOG6F 11/18 (2006.01)

(21)

(22)

15.08.2018 Bulletin 2018/33
Application number: 13290313.9

Date of filing: 13.12.2013

GO6F 11/07 (200607 GO6F 11/16 (2000.0%)

(54)

Triple software redundancy fault tolerant framework architecture

Fehlertolerante Rahmenarchitektur mit dreifacher Software-Redundanz

Architecture tolérante aux fautes basée sur une triple redondance logicielle

(84)

(43)

Designated Contracting States:
AL AT BE BG CH CY CZDE DKEE ES FIFRGB
GRHRHUIEISITLILTLULVMC MKMT NL NO
PL PT RO RS SE SI SK SM TR

Date of publication of application:
17.06.2015 Bulletin 2015/25

(56) References cited:

EP-A1- 0 977 395
US-A1- 2011 208 997

US-A1-2008 148 015

RICARDO PAHARSINGH ET AL: "An Availability
Model of a Virtual TMR System with Applications
in Cloud/Cluster Computing",
HIGH-ASSURANCE SYSTEMS ENGINEERING

(73) Proprietor: THALES (HASE), 2011 IEEE 13TH INTERNATIONAL
92400 Courbevoie (FR) SYMPOSIUM ON, IEEE, 10 November 2011
(2011-11-10), pages 261-268, XP032083396, DOI:
(72) Inventors: 10.1109/HASE.2011.11 ISBN: 978-1-4673-0107-7
¢ De Oliveira, Jaime JEFFERY C M ET AL: "A Flexible Approach to
91757 Palaiseau Cedex (FR) Improving System Reliability with Virtual
« Estaves, Guy Lockstep", IEEE TRANSACTIONS ON
31037 Toulouse (FR) DEPENDABLE AND SECURE COMPUTING, IEEE
¢ Tourteau, Fabian SERVICE CENTER, NEW YORK, NY, US, vol. 9,
31037 Toulouse (FR) no. 1, 1 January 2012 (2012-01-01) , pages 2-15,
¢ Scherrer, Christoph XP011398056, ISSN: 1545-5971, DOI:
1200 Wien (AT) 10.1109/TDSC.2010.53
JEFFERY C M ET AL: "Towards Byzantine Fault
(74) Representative: Esselin, Sophie Tolerance in Many-Core Computing Platforms”,

Marks & Clerk France

Conseils en Propriété Industrielle
Immeuble Visium

22 avenue Aristide Briand

94117 Arcueil Cedex (FR)

DEPENDABLE COMPUTING, 2007. PRDC 2007.
13TH PACIFIC RIM INTERNATIONAL
SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA,
17 December 2007 (2007-12-17), pages 256-259,
XP031234599, ISBN: 978-0-7695-3054-3

EP 2 884 392 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

1 EP 2 884 392 B1 2

Description
Technical Field

[0001] This patent relates to the field of digital data
processing and more particularly to the field of fault tol-
erance systems.

Background Art

[0002] Operating a processor in space, for example in
a satellite, is crucial for mission accomplishment and for
data integrity. Environmental constraints lead to try to
improve the control of systems’ tolerance to faults.
[0003] Currently, the radiation sensitivity technical
problem is mitigated with solutions based on Triple Mod-
ular Redundancy (TMR) architectures or/and specific
"rad-hard" (i.e. radiations hardened) digital integrated cir-
cuits. TMR architectures are well known fault tolerant
techniques applicable to digital integrated circuits design
up to system level architecture which consist in replicat-
ing three times a physical computing block performing
the same task and to vote their outputs. A rad-hard digital
integrated circuit is a (manufacturing level) approach
which consists in using particular process technologies
(e.g. Silicon-on-Insulator - SOI) or/and circuit design pat-
terns to improve the processor fault tolerance. Both ap-
proaches provide proven radiation fault tolerance effec-
tiveness but they present several disadvantages.
[0004] These approaches are extremely expensive
(for example in terms of acquisition costs and down-
stream engineering costs). They are based on old tech-
nologies offering very low processing power and do not
take profit of commercial high performance technologies.
[0005] They are also often mission dependant, i.e. not
designed for scalability and therefore not reusable.

The published patent document EP2498184 discloses a
device which has a software layer i.e. hypervisor (202),
centralizing exchanges between a processor and an ap-
plication (201) and implementing management mecha-
nisms of fault tolerances. A programmable electronic
component forms an interface between the processor
and a memory unit e.g. synchronous dynamic RAM and
adatainputand outputinterface. One of the mechanisms
is areset function at known state of the processor, where
the function is periodical with a configurable period. The
mechanism is reset to the known state by a resetting
signal issued by the programmable electronic compo-
nent. This approach presents limitations. The publication
by RICARDO PAHARSINGH ET AL: "An Availability
Model of a Virtual TMR System with Applications in
Cloud/Cluster Computing", HIGH-ASSURANCE SYS-
TEMS ENGINEERING (HASE), 2011 IEEE 13TH IN-
TERNATIONAL SYMPOSIUM ON, IEEE, 10 November
2011 (2011-11-10), pages 261-268, XP032083396, dis-
closes a model of a "Virtual TRM System with Applica-
tions in Cloud/ Cluster Computing", comprising executing
equivalent software on virtual machines. The patent doc-

10

15

20

25

30

35

40

45

50

55

ument US20080148015 discloses a system including a
plurality of multi-core processors, a table for managing
the processors and cores owned by the processors
[which] is provided and a single virtual server [which] is
formed by using cores owned by different processors
when generating the virtual server. According to the
number owned by processors, the number of processors
is varied, if a fault preecho in a processor is detected,
control is exercised so as not to deliver an execution
schedule of a virtualization mechanism to the processor
in which the fault preecho has been detected.

[0006] Thus, there is the need of solutions to solve the
aforementioned problems. Embodiments of the present
invention offer such solutions, at least in part.

Summary of the invention

[0007] The invention is defined by the appended inde-
pendent claims.
[0008] There is disclosed a computer implemented

method of detecting a fault in a system comprising the
steps of executing at least three virtual machines, each
virtual machine executing a same application software,
in separated and isolated memory segments and in a
dedicated core of a multi-core processor; said virtual ma-
chines being synchronized and concurrently executed
by a common hypervisor; wherein non-faulty virtual ma-
chines provide an identical output message within a pre-
defined time-interval; detecting a fault in an output of a
virtual machine, said fault corresponding to a different
output message of said faulty virtual machine. Develop-
ments include a distributed vote mechanism, pull/push
mechanisms, association of output vote messages with
a safety extension comprising identification information,
virtual machine recovery using data context.

[0009] Provided examples thus disclose a software
framework architecture relying on embedded virtualiza-
tion technologies allowing a combined fault tolerant
SW/HW architecture based on COTS multi-core proces-
sors. Advantages associated with embodiments of the
invention are numerous.

[0010] Cheaper and faster commercial processors
(off-the-shelf - COTS) can be used. Forexample, satellite
on-board payload applications can use modern proces-
sors, instead of traditional "rad-hard" digital integrated
circuits. In particular, multi-core processors can be used
(such processors are not manufactured for such radiation
conditions existing in Space domain). Some embodi-
ments thus enable high-bandwidth data processing and
algorithm intensive computation. The tolerance of these
multi-core processors to radiation-induced faults in
Space domain is improved.

[0011] Atthe same time, the payload Application Soft-
ware (application software (ASW)) tolerance to radiation-
induced faults (i.e. preserving tolerance to radiation-in-
duced faults) is preserved. In general, the integrity of out-
put datais guaranteed. COTS-based computing platform
according to embodiments of the invention achieve com-

3 EP 2 884 392 B1 4

parable levels of availability (and dependability) as with
redundant rad-hard hardware solutions.

[0012] On-board satellites engineering is reduced, as
well as purchase or acquisition costs while preserving
application payload fault tolerance effectiveness to radi-
ation-induced faults.

[0013] Embodiments of the invention in general pro-
vide flexible, scalable and reusable systems in Space
domain critical missions.

[0014] The described mixed SW/HW architecture is
missionindependent, i.e. generic and therefore reusable.
The "Size, Weight and Power" (SWaP) trade-off is opti-
mized. The performance/power consumption ratio and
reduction of hardware on-board size and weight is im-
proved. Computing boards can comprise less (and bet-
ter) chips which participates to reduce satellites size and
weight.

[0015] According to a first embodiment of the present
invention, there is provided a method as further described
in the appended independent claim 1.

[0016] A "virtual machine" is also called a "replica". In
one aspect of the invention the triplication mechanism is
introduced and is specifically implemented by way of vir-
tualization. Instead of having a standard friplication
where real hardware circuits are tripled, the triplication
according to embodiments of the invention is virtualized
in a special manner. As disclosed, the three virtual ma-
chines are executed in one multicore processor, using
different cores of it (i.e. different subparts of the processor
circuit). Each of the virtual machine a) executes a same
application software b) executes in separated and isolat-
ed memory segments and c) executes in a dedicated
core of a multi-core processor. In particular, it is notice-
able that the three virtual machines are executed in par-
allel. Virtual machines are independent machines. The
term "concurrently" can mean "simultaneously" in some
embodiments, underlining the temporal aspect of the co-
execution of virtual machines. Since the execution of an
application in a virtual machine is deterministic, one can
expect to get the same outputs from the three virtual ma-
chines and substantially the same execution durations
for the three replicas resulting from the same inputs.
Some lags can occur, due to the very complex underlying
execution of operations at CPU level for example and,
due to the competition regarding shared resources ac-
cesses at memory level for example. For example, CPU
branch predictions or events may in the end slightly differ
and a cascade of events may lead to a certain lag in time.
Associated thresholds (e.g. dimax) are introduced here-
inafter. The deterministic criterion is enforced with worst
case execution time estimations allowing the definition
of maximum duration boundaries. According to these ex-
amples, ranges (or time windows) are defined (e.g. wd-
time = dlmax - dlmin) for different portions of an applica-
tion to compute the same maximum execution duration
for the three replicas. Another way to express this notion
of replica determinism is that each virtual machine has
to react on the same input stream, in the same way, pro-

10

15

20

25

30

35

40

45

50

55

ducing the same output stream within the same time
frame (at least substantially for all of these criteria).
[0017] The parallel execution of the three virtual ma-
chines is to be underlined. Systems known in the prior
art, for example granted patent FR2972548 used se-
quential execution of one or more programs. It is to be
underlined that the introduction of a virtualization mech-
anism according to embodiments of the presentinvention
is not straightforward per se, for example starting from
this document FR2972548. Said document disclosed
three hardware circuits, instead of three software instanc-
es according to some embodiments of the present inven-
tion. A fortiori, the further combination of a triplication
mechanism with such a virtualization mechanism is a
challenge. Among many aspects, the triplication mech-
anism is mostly known and mastered by space engi-
neers, whileitis largely ignored for standard (non spatial)
information technology practitioners. The latter experts
are more focused on implementing "standard" virtualiza-
tion techniques. Embodiments of the invention disclose
a specific virtualization (building on top of "standard" vir-
tualization techniques). Such a specific virtualization, in
particular for synchronization purposes, raises specific
technical problems. Specific mechanisms have been
therefore introduced (e.g. synchronization)

[0018] The three virtual machines do share a common
hypervisor which can be assessed as the common de-
nominator between the different subsystems according
to the invention. A hypervisor is a software program, i.e.
executable instructions by a computer. Replicas are as-
sociated with a "behaviour", i.e. deterministic results or
outputs.

[0019] In one embodiment, the hypervisor can be a
type | (1, one) hypervisor. This type of hypervisor gener-
ally corresponds to a software program running directly
on top of the hardware layer, and is usually called "bare
metal" hypervisor. Itis generally a thin source code layer
with a small memory footprint and runtime overhead. The
advantage of this embodiment is that the small amount
of code involved can render the overall solution less
prone to errors. In another embodiment, the hypervisor
canbeatypell(2,two) hypervisor. This type of hypervisor
corresponds to a software program relying on an Oper-
ating System (OS), and is usually called Type Il hyper-
visor. Such hypervisors generally provide richer features,
are generally less hardware specific but they also gen-
erally lead to longer execution time. The amount of soft-
ware code involved is usually more important (but for
example lightweight operating system distributions sup-
porting virtualization are available and can blur the dif-
ference). In view of objective and foreseeable evolutions
of the architecture of hardware processors, a hypervisor
can be embodied as a firmware or digital integrated cir-
cuit, which can be more efficient (e.g. faster) than its soft-
ware equivalents.

[0020] Afaultcan be anerror message in the message
stream. A faulty behaviour can be associated with or re-
sult in a SEFI event (interrupt) or another abnormality.

5 EP 2 884 392 B1 6

Upon fault detection, some diagnosis and reaction oper-
ations can occur. A fault can be assessed at the expected
duration to produce an output by a virtual machine.
[0021] The virtual machine having produced a fault is
qualified as "faulty" virtual machine. The faultis assessed
by comparisons of output results of the (deterministic)
virtual machines.

[0022] The application software (ASW) is replicated on
a computing element (CE), - this expression encapsulat-
ing both processor core and memory segment - each of
these circuits subparts running a replica or virtual ma-
chine, each executing on a dedicated processor core,
and executing in isolated memory segments with defined
Inter-Partition Communication (IPC) links. These repli-
cas process the same data input context in a bounded
time and produce the output messages (data values) to
a Communication and Synchronization (CS) software
layer of the framework. This layer interfaces the (space)
application software (ASW) payload and synchronizes
all replicas and their data output values or output mes-
sages (e.g. sequence numbering, global time stamping),
structures them (e.g. header, payload, checksum, trailer
fields) following a communication protocol and appends
a specific (a.k.a. according to the replica number it re-
sides on) safety extension to the trailer field in order to
obtain a reliable message.

[0023] Inadevelopment,the method further comprises
the step of executing a distributed vote on output mes-
sages of the virtual machines to determine a voted output
message.

[0024] At the highest level of abstraction, the method
comprises a step of distributed vote. Such a method (and
its variants) is independently known in the art, but its com-
bination with embodiments of the invention is not. In one
aspect, the application software (ASW) output data re-
sults are first not transmitted outside all virtual machines
(associated computing platform (CP)). But they are
broadcasted to all computing elements (CEs means Rep-
licas) within the computing platform CP. For a system
external to the CP, the CEs or replicas act like one entity,
i.e. are not "visible", i.e. the CP is the only global system
to interact with. CEs/replicas are internal components.
Each partition has a local unique message with those
data ready to be sent to neighbouring replicas for vote.
The communication and synchronization (CS) software
layer of each replica deals with all inter-partitions’ point-
to-point message transmissions (e.g. redundancy of con-
nections, time control and protocols) relying on a local
communication stack.

[0025] In adevelopment, each virtual machine pulls or
pushes an output message to the other virtual machines.
[0026] In this specific development, each partition
starts exchanges in a sender state to push its local mes-
sage to all partitions (a.k.a. including the replica itself)
through each specific IPC link. Then to continue ex-
changes, each partition changes to receiver state to pull
all messages received from all partitions through their
links. In other words, the application software (ASW) out-

15

20

25

30

35

40

45

50

55

put data results are still inside the computing platform.
Each partition has the three instances of those data em-
bodies in three messages recorded in a deposit-box
ready for vote.

[0027] The voting software layer of the framework is
distributed around all partitions. In other words, each par-
tition embeds an instance of the voter which is able to
find an agreement and to commit data alone. The vote
essentially consists of comparison functions; one for the
data specified part of the whole message (e.g. a byte-
wise compare) and another that analyses integrity of par-
tial safety extension code. Finally, a voting function builds
a voted message with the full safety extension if at least
two messages have been identified correct.

[0028] In a further development, the output messages
of each virtual machine are collected in a deposit box
and a voted output message is determined out of the
output messages. The distributed vote is made in two
sub-steps. In one development, the distributed vote is
performed after a prior step of collecting each replica’s
voting messages in a deposit box before starting the vot-
ing method. In other words, each voter is also triplicated.
Since now, all replicas’ messages are set at disposal of
each partition in their deposit box and so all replicated
instances of voter can perform a vote on their own. This
means that three votes are performed in parallel on dif-
ferent cores, using the same redundant messages but
located in different memory regions.

[0029] Inadevelopment,the method further comprises
the step of communicating the voted output message to
an external system in communication with the system.
[0030] Asdiscussed, for an external system ininterac-
tion with the hardware circuit unit or CP, the replicas act
like one entity.

[0031] In a development, each virtual machine is pre-
defined as primary or as secondary, and wherein the vot-
ed output message is communicated by the primary vir-
tual machine or by the secondary virtual machine if the
primary virtual machine is faulty.

[0032] At this pointin time, each partition has a voted
message with application software (ASW) output data
messages or results ready to be sent outside the com-
puting platform. In order to decide which partition will
send it, by configuration, a partition is defined as primary
(a.k.a. master sender if fault free) and another as sec-
ondary (in case of faulty primary partition).

[0033] In a development, output messages of the vir-
tual machines are numbered and/or time stamped and/or
structured and/or annotated.

[0034] Inthis development, metadata ("data about the
data") is added to the data. For example, data can cor-
respond to the application payload and metadata can
correspond to a safety extension (e.g. a code according
to the replica number the application resides on). Re-
garding data, output messages can also be structured or
restructured (e.g. with header, payload, checksum, trailer
fields) for example by following a communication proto-
col.

7 EP 2 884 392 B1 8

[0035] Regarding metadata, data output values or out-
put messages of the replicas or virtual machines can be
numbered or ordered or time stamped (e.g. sequence
numbering, global time stamping). Additionally, output
messages can be annotated (metadata), i.e. a specific
safety extension or annotation can be appended to the
trailer field or associated with the output messages (a.k.a.
according to the replica number it resides on). The tech-
nical effect (consequence) is that reliable output mes-
sages are obtained.

[0036] In a development, the method of the preceding
claim further comprises the step of associating a safety
extension with an output message of a virtual machine,
said safety extension comprising identification informa-
tion about the virtual machine outputting the output mes-
sage.

[0037] In one particular embodiment, the method fur-
ther comprises the step of appending or associating a
safety extension as metadata. This safety extension for
example can the one disclosed in EP0977395 entitled
"Method of secure monochannel transfer of data be-
tween nodes of a network, computer network and com-
puter nodes". The safety attachment in one embodiment
is an extension made by the sender of a message which
allows the receiver to detect intentional or unintentional
changes brought to the message during the message
transfer. In one embodiment, one computation channel
(for example the primary or secondary sender) must pref-
erably not be able to calculate a valid message alone.
For computation of a valid message, at least two parti-
tions have to be involved to generate a valid message.
For that, in one embodiment, with a dedicated construc-
tion method, a safety extension can be appended to mes-
sages.

[0038] In an embodiment, the safety extension
presents a fixed configured length (four up to ten bytes)
to be added to metadata associated with a message. A
defined process can be used to prevent each voter to
calculate a valid message on their own. Each application
appends a corrupted safety appendix to the message by
omitting a part of the safety code corresponding to its
location. There can be appended a safety appendix with-
outthe n-th byte according to the replica number it resides
on. All instances of voter can get the messages from all
partitions (i.e. from the voter’s partition itself and from
neighbour partitions) with these partial safety signatures.
The voters can assemble the full message by filling in
the omitted parts of the single partitions. In order to con-
struct the complete safety code, each voter can use two
messages with different safety signatures (i.e. messages
providing from different partitions).Whenever the voter
has identified two messages according to user data and
(partial) safety extension to be correct, it can build a voted
message with the full safety extension. As a result, each
partition has a valid (i.e. voted) message with the correct
length.

[0039] Inadevelopment,the method further comprises
the step of recovering the faulty virtual machine. The re-

10

15

20

25

30

35

40

45

50

55

covery can be handled in various ways.

[0040] Inadevelopment,the method further comprises
a step of recovering the faulty virtual machine, which step
comprises using the data context of a non-faulty virtual
machine to replace the data context of the faulty virtual
machine.

[0041] In this development, contextual data of the ap-
plication is reinjected, for example to reboot a virtual ma-
chine. The data context or contextual data thus compris-
es data about the virtual machine itself (e.g. RAM allo-
cation, IP addresses, etc) and also data about the appli-
cation ASW (e.g. values of certain variables, states of
GUI windows, state of events buffer, etc). As temporary
buffers or memories or caches can be backed up, it is
possible to some extent to recover a previous state (or
"snapshot") in the recent past and to re-establish both
the states of the virtual machine and of the application
(atleast to a prior point in time before the point of failure).
Noticeably, such contextual data is finite, i.e. there are
de definite (and not infinite) set of parameters to be re-
stored to recover from the failure. Experiments and pro-
totypes have shown that a couple of tens of parameters
is manageable. In one embodiment, such data context
can be qualified by "functional data context".

[0042] In a development, the step of recovering the
faulty virtual machine is performed at a re-synchroniza-
tion point in time.

[0043] The recovery strategy proposed herein can use
an operational synchronization between the replicated
processes running in parallel. The virtual machines ex-
ecute in parallel and the synchronization can be handled
at some - predefined or not - synchronization points. In
one embodiment, the software executed in parallel within
the virtual machines can be partitioned in synchronized
slots. The partitioning in slots can provide the synchro-
nization points where parts (i.e. message broadcast,
vote, recovery) of algorithm are started.

[0044] Inadevelopment, the executionis sliced thanks
an external hardware event that provides event-driven
synchronization points.

[0045] An embodiment to partition execution periodi-
cally for instance is a timer that provides time-driven syn-
chronization points. One of these synchronization points
triggers, in the replicated processes running concurrently
in each virtual machine, the slot for the recovery strategy
execution.

[0046] Itis underlined that time synchronization points
are optional (they not required). They correspond to one
particular embodiment. In some embodiments, "heart-
beat" synchronization can be implemented (i.e. synchro-
nization occurs at defined time intervals, and not neces-
sarily regular). In yet other embodiments, the synchroni-
zation can be "event-driven" (i.e. particular events can
trigger one or more synchronizations between virtual ma-
chines). In other words, a "clock" or a "timer" (and the
like) are entirely optional and are absolutely not required.
[0047] In a development, a fault is associated with a
failure chosen from the list comprising: crash failure,

9 EP 2 884 392 B1 10

faulty value failure, byzantine failure, timer failure and
combinations thereof. In one embodiment, a voter solely
operates on message streams. It does vote upon redun-
dant messages and tries to find an agreement (i.e. vote
on these messages). All faulty behaviours of one given
replica manifest through abnormalities in the message
stream. A voter can detect these unusual messages and
can report back to the fault manager layer. The voter
diagnoses errors in the message flow based on detec-
tions during predefined time windows. The fault "crash
failure" designates a replica which does not send mes-
sages anymore, links between two replicas or sending
parts on a replica which are broken (no longer working),
software/hardware failure which leads to sending illegal
messages on one replica (the other replicas have to deal
with these erroneous messages). Such failures manifest
themselves in faults which can be permanent or transient
faults. Permanent faults are faults which influence the
transmission of messages permanently. Transient faults
are faults which influence the transmission of messages
within a given time and are measured in percentage.
[0048] There is disclosed a computer program com-
prising instructions for carrying out any one of the steps
of the method when said computer program is executed
on a suitable computer device. There is disclosed a com-
puter readable medium having encoded thereon such a
computer program. There is also disclosed a system
comprising means adapted to carry out any one of the
steps of the method.

Description of the drawings

[0049] Embodiments of the present invention will now
be described by way of example with reference to the
accompanying drawings in which like references denote
similar elements, and in which:

Figure 1 illustrates a system view of an exemplary
embodiment of the Triple Software Redundancy
(TSwR) Fault Tolerant Framework (FT-Fwk) archi-
tecture;

Figure 2 details the system view of the software
framework;

Figure 3 illustrates an example of a communication
and synchronization sequence;

Figure 4 illustrates the timeline of a Nominal and
Faulty dynamic exemplary scenario.

Detailed description of the invention

[0050] The following acronyms are used: Commercial
Off-The-Shelf (COTS); Single Event Upset (SEU); Single
Event Functional Interrupts (SEFI); Triple Modular Re-
dundancy (TMR); Application software (ASW); Comput-
ing Elements (CE); Computing Platform (CP); Triple Soft-

10

15

20

25

30

35

40

45

50

55

ware Redundancy (TSwR); Fault Tolerant Framework ar-
chitecture (FT-Fwk); Payload Data Unit (PDU).

[0051] An Single Event Upset (SEU) event corre-
sponds to a change in a state of a bit (an elementary item
of information) inside the processor caused by a particle,
for example a heavy ion.

[0052] A Single Event Functional Interrupts (SEFI)
event corresponds to a locking state of the processor.
This event can be a direct consequence of a Single Event
Upset (SEU) event which has brought about a change in
behaviour of the processor.

[0053] A Computing Platform (CP) is a hardware ma-
chine which comprises installed on the COTS multi-core
processor, memory units (e.g. RAM-based, EEPROM or
PROM) and data input/output (I/O) interfaces (e.g. Eth-
ernet, CAN, 12C buses).

[0054] Computing Elements (CE) are Virtual Machines
(a.k.a. Partitions) with a set of virtual hardware resources
such as one processing core, isolated memory segments
and a subset of input/output interfaces based on the par-
titioning of computing platform (CP) hardware resources.
[0055] Provided examples disclose a system level ap-
proach with a combined SW (software)/HW (hardware)
architecture to perform the computing platform radiation
sensitivity mitigation.

[0056] Embodiments of the methods and systems dis-
close Triple Software Redundancy (TSwR) Fault Toler-
ant Framework (FT-Fwk) architecture to operate the sat-
ellite payload application software (ASW) on a modern
COTS multi-core processor with virtualization technology
and EDAC-protected memory (i.e. Error Correction Code
- ECC mechanisms).

[0057] According to some embodiments, there is im-
plemented a triple-software redundancy with virtual ma-
chines running in separated (and isolated) memory seg-
ments and simultaneously on top of a hypervisor software
layerinstead of a classical TMR solution. For higher avail-
ability (and therefore dependability), the triplicate appli-
cation software (ASW) outputs are voted with a safety
distributed voting method.

[0058] Inadevelopment,the "voter"is"distributed” (i.e.
over the three virtual machines) in order to minimize soft-
ware single point of failure. This voter or these voters
operate on redundant messages (i.e. try to find an agree-
ment) with the ability of instantaneous detection of errors
that manifest in heavily used resources. Errors can be
corresponding to faulty behaviours resulting from SEU
(Single Event Upset) events which manifestin anomalies
on the message stream (for example "message is miss-
ing" or "message content is wrong") are detected and
masked.

[0059] According to another development, there is dis-
closed a synchronized "monitoring" of replicas which op-
erates on replicas’ deterministic behaviour; non-faulty
replicas provide an identical output behaviour within a
given time-interval (e.g. even increased such as the
Worst-Case Execution Time - WCET). At this end, the
invention makes mechanisms within framework and ex-

11 EP 2 884 392 B1 12

tension of application software (ASW) for replicas’ deter-
minism enforcement to cover potential non-determinism
behaviour of modern processors’ architecture. There-
fore, only the faulty behaviours resulting from SEFI
events that manifest in anomalies on the duration to pro-
duce messages (as examples: message synchronization
timeout expiration or no more replica’s response) are de-
tected, isolated and will be recovered.

[0060] In some embodiments, methods and systems
comprise a triple-software redundancy (a.k.a. logical in-
stead of physical) of Computing Elements (CEs) within
fault tolerant framework architecture executing a three-
fold space application software (ASW) payload on a
Computing Platform (CP). The principle is to use Virtual
Machines (VMs) as CEs over one commercial multi-core
processor-based computing platform (CP) instead of
several physical CEs to realize a triplication redundancy
of application software (ASW).

[0061] In some embodiments, there are executed
three synchronized replicas of a space application soft-
ware (ASW) payload. Each execution is monitored for
fault detection. Faulty replicas are recovered and votes
replicas are outputted with a safety distributed majority
voting method.

[0062] An Hypervisor software layer is used to prede-
fine virtual machines to run from separated and isolated
memory segments and to operate simultaneously on dif-
ferent processing cores. Both advantages reduce prob-
abilities of application payload locking situation.

[0063] There is defined a distributed software frame-
work to implement synchronization, communication and
usual fault tolerant functionalities such as fault manage-
ment (e.g. fault detection, diagnosis and reaction). This
approach contributes to reduce locking situation proba-
bilities by minimizing software single point of failure.
[0064] In a development, there is disclosed a method
of distributed voting (a.k.a. three instances of "2-out-of-
3" majority voter) which commits and finds an agreement
between application software (ASW) output messages
extended with safety protocol artefacts such as round
number, global time stamp and unique safety extension
code. This approach contributes to improve application
payload availability and to minimize software single point
of failure.

[0065] Inadevelopment, there is disclosed a recovery
strategy (and associated steps) The recovery is aredun-
dant data recovery type which uses the data context of
a valid replica to replace the incorrect data context of the
erroneous replica at a point in time (a.k.a. the recovery
strategy uses an operational synchronization between
the replicated processes running in parallel).

[0066] Theinventionoperatesonacomputing platform
which comprises a modern commercial multi-core proc-
essor, memory units and data input/outputinterfaces. An-
other aspect, on which the fault tolerant framework relies
on, is a Hypervisor software layer to allow executing sev-
eral VMs concurrently on this computing platform (CP).
[0067] The application software (ASW) is replicated on

10

15

20

25

30

35

40

45

50

55

each computing element (CE) which each contains a
dedicated processing core, isolated memory segments
and defined Inter-Partition Communication (IPC) links.
These replicas process the same data input context in a
bounded time and produces the data output values to a
Communication and Synchronization (CS) software layer
of the framework. This layer interfaces the space appli-
cation software (ASW) payload and synchronizes all rep-
licas and their data output values (e.g. sequence num-
bering, global time stamping), structures them (e.g. head-
er, payload, checksum, trailer fields) following a commu-
nication protocol and appends a specific (a.k.a. accord-
ing to the replica number it resides on) safety extension
to the trailer field in order to obtain a reliable message.

[0068] At this point in time, the application software
(ASW) output data results are not transmitted outside the
computing platform CP. Each partition has a local unique
message with those data ready to be sent to neighbouring
replicas for vote.

[0069] The CS software layer of each replica deals with
all inter-partitions’ point-to-point message transmissions
(e.g. redundancy of connections, time control and proto-
cols) relying on a local communication stack. Each par-
tition starts exchanges in a sender state to push its local
message to all partitions (a.k.a. including the replica it-
self) through each specific IPC link. Then to continue
exchanges, each partition changes to receiver state to
pull all messages received from all partitions through their
links.

[0070] At this point in time, the application software
(ASW) output data results are still inside the computing
platform. Each partition has the three instances of those
data embodies in three messages recorded in a deposit-
box ready for vote.

[0071] The voting software layer of the framework is
distributed around all partitions. In other words, each par-
tition embeds an instance of the voter which is able to
find an agreement and to commit data alone. The vote
essentially consists of comparison functions; one for the
data specified part of the whole message (e.g. a byte-
wise compare) and another that analyses integrity of par-
tial safety extension code. Finally, a voting function builds
a voted message with the full safety extension if at least
two messages have been identified correct.

[0072] At this pointin time, each partition has a voted
message with application software (ASW) output data
results ready to be sent outside the computing platform.
In order to decide which partition will send it, by config-
uration, a partition is defined as primary (a.k.a. master
sender if fault free) and another as secondary (in case
of faulty primary partition).

[0073] In some embodiments, commercially available
modern multi-core processors can be used for space ap-
plications (forexample, PowerPCs or DSPs Digital Signal
Processors). In particular, SEU and SEFI effects can be
managed by handling the following failures:

- Crash failures: a SEU/SEFI leads to either a replica

13 EP 2 884 392 B1 14

does not send any more messages; or both links
between two replicas are broken or a sending replica
is crashed/locked;

- Faulty value failure: a SEU leads to sending illegal
messages on one replica;

- Byzantine failure: a replica sends a different mes-
sage (but authenticated) to the neighbouring replicas
in the same round;

- Timer failure: a replica initiates a new synchroniza-
tion point before the minimum round period has ex-
pired.

[0074] Incase one ofthesefailures occurs, afault man-
agement software layer in charge of fault diagnosis and
fault reaction based on fault detection information report-
ed by different framework components can be used.
[0075] A recovery strategy can be used to reintegrate
a faulty replica during operation without interruption of
service: for example, the faulty replica can be reloaded
and restarted, with input data context from a correct rep-
lica (while neighbouring replicas make no progress for
example).

Figure 1 illustrates a system view of an exemplary em-
bodiment of the Triple Software Redundancy (TSwR)
Fault Tolerant Framework (FT-Fwk) architecture, with a
multi-core processor appropriately selected and wisely
configured:

The computing platform (CP) hardware and its parti-
tioned physical resources comprise a plurality of process-
ing cores (for example #1.1, #2.1, and #3.1); a plurality
of SDRAM-based (Synchronous Dynamic Random Ac-
cess Memory) memory segments (for example #1.2, #2.2
and #3.2); and a plurality of shared memory channels
(for example #12, #23, #31) and an /O interface (for ex-
ample #4.1).

The three-unit configuration is only an example. A com-
puting platform can comprise a higher number of units
(at least 3 and for example 186 units in replica configu-
ration, or any other number, in correspondence with the
number of cores of modern processors, whose roadmaps
include 1000-cores processors or even more)

For example, in one other embodiment, the processing
resource can be a quad-core processor (with one core
disabled or forced to idle state) with hardware virtualiza-
tion features (e.g. an additional privilege mode of execu-
tion at processor level), with one or two levels of cache
memory including protection mechanisms (e.g. parity
bits, an Error-Correcting Code - ECC) and with a Memory
Management Unit (MMU) which segments the address-
able memory space.

[0076] The Hypervisor (HV) software layer #4, appro-
priately chosen, creates and manages the CEs, allocates
physical resources to them and guarantees this alloca-
tion and their access during runtime.

[0077] Inone development, the Hypervisor #4 is a thin
software layer with services to manage events at proc-
essor level and in particular interrupts, running at the
highest privilege mode of execution and offering open

10

15

20

25

30

35

40

45

50

55

interfaces (APIs) for ad-hoc extensions.

[0078] The computing elements #1, #2 and #3 are par-
titions, defined with dedicated set of virtual hardware re-
sources based on the partitioning of actual hardware re-
sources and running replicas #10, #20 and #30 of the
application software (ASW) payload correctly interfaced
to instances #100, #200 and #300 of the Triple Software
Redundancy (TSwR) Fault Tolerant Framework (FT-
Fwk). In the example, the CE #3 is configured as primary
channel for outside transmissions and the CE #1 is con-
figured as secondary channel in case of CE #3 has been
detected faulty. The CE #2 does not necessary need out-
side transmission channel.

[0079] An exemplary embodiment of a space applica-
tion software (ASW) payload is described hereinafter for
replicas #10, #20 and #30. The principles behaviour and
interface of this payload application, necessary for inven-
tion understanding, are presented:

- the payload application is launched with a starting
data input context and it executes forever computing
rounds, updating each time the data input context,
to produce corresponding data output values (for the
outside). The time duration of a computing round is
finite and can be bounded.

- the data input comes from a memory segment (not
shown) identified by a known base address and an
address offset namely the context. Other data in-
coming variants may be envisioned such as period-
ical time-triggered data coming from an external in-
put/output interface.

- a computing round consists of processing the data
input of entry context, to produce corresponding data
output values to outside and to update the entry con-
text for next computing round. In case of time-trig-
gered data input, the context is replaced by synchro-
nous time period.

- the data output values which are the payload appli-
cation results are transmitted by a channel commu-
nicating with the outside through the input/output in-
terface. Several variants of this interface may be
used such as Ethernet, 12C or SPI buses.

[0080] Figure 2 details the system view of the software
framework.
[0081] The figure comprises an Application Runtime

Interface 200, a Health Monitoring component 210, a
Communication and Synchronization component 220, a
Distributed voter 230, a recovery management compo-
nent 240 and a Fault management component 250.

[0082] An Application Runtime component 200 is an
application component in charge of running the ASW in
a replicate manner through well defined interfaces that
minimize the ASW attachments to the TSwR framework
and to manage the Virtual Channel (equivalent to OCS
framework). As an example, it opens the Virtual Channel
and establishes all underlying sub-channels connec-
tions. "Application" identifies a group of components of

15 EP 2 884 392 B1 16

the TSwR framework interfacing with the domain ASW
and running at the user level (in opposition to super-user
and hypervisor).

[0083] A Health Monitoring component 210 is a com-
ponent in charge of implementing appropriate runtime
mechanisms to control the safety of system. As an ex-
ample, it monitors execution of hypervisor and replicas
(e.g. timeouts, watchdog).

[0084] A Communication & Synchronization compo-
nent 220 is a core component in charge of various as-
pects such as the message queues services, the syn-
chronicity of running ASW and the distribution of mes-
sages around all replicas. "Core" identifies a key layer of
the TSwWR framework to ensure deterministic behaviour
and messages consistency.

[0085] A Distributed Voter component 230 is a com-
ponent scattered around all replicas that is in charge of
finding an agreement on redundant messages from rep-
licated ASW. The software components of this block are
closely coupled with synchronization layer and fault man-
ager.

[0086] A Recovery Manager component 240 is a com-
ponent in charge of reintegrating a faulty ASW replica
during operation without interruption of service. As an
example, ittransfers the states and data information from
a correct replica while application makes no progress.
[0087] A Fault Manager component 250 is a core com-
ponent in charge of fault diagnosis and fault reaction
based on fault detection information reported by different
framework components. It is responsible for executing
the appropriate reaction upon faults and to handle redun-
dancy management. "Core" identifies a key component
of the TSwR framework to achieve fault tolerance need.
[0088] The figure illustrates a functional outline of the
software framework, comprising functional components,
specific mechanisms and software building blocks. The
figure shows a Computing Element CE #x (with its virtual
Hardware), wherein x is a number of a CE, an application
software (ASW) #x0 and a framework FT-Fwk #x00. This
functional outline of invention can indeed apply to any
Computing Element CE, application software (ASW) and
FT-Fwk of the software architecture. The overlap of Hy-
pervisor #4 and FT-Fwk #x00 illustrates that various var-
iants for the software static breakdown architecture can
be implemented.

[0089] An Application Runtime Interface 200 is a com-
ponent which can be in charge of running the application
software (ASW) payload in a replicate manner through
defined software interfaces which minimize the applica-
tion software (ASW) payload attachments to the TSWR
FT-Fwk architecture. For this purpose, the component
on the one hand provides an interface as entry point to
launch the application software (ASW) with the synchro-
nized (and correct) data input context, and on the other
hand provides a synchronization point interface which
shall be called by the application software (ASW) at the
end of each computing round with the produced data
output values. The latter interface formats the produced

10

15

20

25

30

35

40

45

50

55

data output values and round context information in a
Payload Data Unit (PDU) message to pass to the com-
munication and synchronization layer.

[0090] A Health Monitoring component 210 is a func-
tional component in charge of implementing appropriate
run-time mechanisms to control software and processor
operations. According to this fault tolerant feature, the
chosen processor provides a watchdog mechanism for
each core configured and managed at hypervisor privi-
lege level. For fault detection purposes, the component
monitors execution of hypervisor and of replicas (e.g.
timeout expiration, watchdog). At this end, it provides an
interface to ping, at a regular interval, the watchdog to
notify it which all is operating correctly. In the absence
of such ping call at the end of a predefined time period,
the watchdog resets the core (or respectively the proc-
essor) executing the Computing Element CE #x (or re-
spectively the Hypervisor #4) software. By this mecha-
nism, a hardware and /or software lock state is detected
and can be rectified. In some embodiments, this compo-
nent can comprise means (and corresponding interfac-
es) for computing delays and triggering timeout expira-
tion conditions (e.g. implementation of alarms or timers
- start/stop/interrupt handler/flags). In another embodi-
ment associated with such a health monitoring watchdog
feature, there is used an additional external hardware
watchdog mechanism for activating the processor reset.
The hypervisor sends, at a regular interval, a signal to
this external mechanism to notify it which it is operating
correctly. In absence of such a signal at the end of a
predefined time period, the external hardware watchdog
resets the processor.

[0091] A Communication & Synchronization compo-
nent 220 ("globalization module is a component which is
mainly in charge of synchronization between application
software (ASW) replicas (#10, #20 and #30), distribution
of application software (ASW) replicas redundant data
output values around all FT-Fwk instances (#100, #200
and #300). The computing platform (CP) is associated
with areplicated configuration. Replicate instances of ap-
plication software (ASW) are synchronized. In order to
define states in which itis possible to correlate redundant
output values with respect to message orders and data
contents, the synchronization takes place when the ap-
plication software (ASW) utilizes defined software inter-
faces, creating synchronous blocking points (also useful
for a faulty replica reintegration). The fault detection is
performed by comparison of the output behaviours which
include the message sending behaviour of the applica-
tion software (ASW) replicas (through the Application
Runtime Interface 200). The central service of the syn-
chronization layer module of FT-Fwk is
the "globalization" of messages. This service defines
which messages, available on one CE, are distributed.
The service distributes messages in such a way that
these messages are available in the same consistent
manner on all CEs in the computing platform (CP). For
that purpose, the strategy for invoking such globalization

17 EP 2 884 392 B1 18

activity is to allow each replica entity to initiate a synchro-
nization activity with the synchronous blocking point. All
partner replicas can immediately respond to the started
synchronization activity. In other words, the first replica
starting the globalization sets a defined delay (e.g. as
example using health monitoring services) and all re-
maining replicas have to respond to the started globali-
zation activity before the timeout expiration. In the ab-
sence of response from a replica, the health monitoring
detects it and this replica is marked "faulty" by the Fault
Management. In some embodiments, this globalization
module comprises means to build a computing platform
(CP) "global time" for messages time stamping which is
computed with fault-free (at this point in time) replicas
local time. Several equivalent implementation variants
are possible (for example by computing the average val-
ue or the median value). In some embodiments, this com-
ponent comprises means to exchange safety-relevant
data over different existing transmission media (e.g.
shared memory, Ethernet, I/Os Interface...). The com-
munication layer module of each FT-Fwk has an individ-
ual communication stack with a protocol layer, a data
integrity layer and a device layer. The protocol layer is
responsible for the control and the monitoring of the mes-
sage transfer procedure, while the data integrity layer
provides the received messages examination and the
messages’ construction for emission including the
unique safety extension code. The task of the device lay-
er consists essentially to structure and to monitor the
data exchange completion according to requirements of
existing transmission media cases.

[0092] A Distributed Voter (231,232,233) is a compo-
nent which is in charge of finding an agreement upon
redundant messages from Computing Elements (CE#1,
CE#2 and CE#3), determining and committing the correct
message to outside computing platform (CP). Each voter
is instantiated in each replica (within #100, #200 and
#300), associates corresponding messages and puts this
triplet in a deposit-box.

[0093] A voter (layer) module (231,232,233) is closely
coupled with the fault management component 250 for
error reporting reasons and with the communication and
synchronization component 220 for getting the received
messages in deposit-box and for transmitting outside the
voted message as well.

[0094] A Recovery Manager component 240 is a com-
ponent which is in charge of reintegrating a faulty replica
during operation without interruption of service. As an
example, it reloads and restarts a faulty replica providing
the input data context (a.k.a. a functional execution con-
text) from a correct replica while all application software
(ASW) (ASW#1, ASW#2 and ASW#3) make no progress.
This recovery feature intends to improve the availability
of payload application. This recovery by redundancy
takes its roots in systems which have redundancy prop-
erties. The principle characteristic carried on is the ex-
istence of several instances (duplication at minimum)
processing the same inputs and running simultaneously.

10

15

20

25

30

35

40

45

50

55

10

This is one of the invention aims.

This recovery strategy has to use the produced data of
a valid instance to replace the incorrect data of the erro-
neous instance at a pointin time. This replacement tech-
nique relies on an operational synchronization delivering
a defined steady state between the replicas which run in
parallel. This is one of the invention aims of the Commu-
nication and Synchronization component. It detects er-
roneous behaviour, reports this error to the Fault Man-
agement for a diagnosis and the suitable reaction. At this
end, the online reintegration operations are blocking (i.e.
recovery is not done in the background to payload appli-
cation activity): during this recovery time slot, the payload
application makes no progress, in order to maintain the
input data context coherency. According to one embod-
iment of invention, the recovery manager module is im-
plemented within the Hypervisor #4 software layer. Itruns
in privilege execution mode, called at the end of process-
ing round periods while replicas are waiting.

[0095] A Fault Management component 250 is a com-
ponent which is in charge of fault diagnosis and fault re-
action based on fault detection information reported by
different framework components. It is responsible for ex-
ecuting the proper reaction upon faults and to handle
redundancy management: the membership status. To
achieve a high level of SEU and SEFI fault tolerance, the
invention aims to handle the following failures:

"Crash failures": a SEU/SEFI leads to either areplica
does not send any more messages; or the link be-
tween two replicas is broken or a sending replica is
crashed/locked;

- "Faulty value failure": a SEU leads to sendingillegal
messages on one replica;

- "Byzantine failure": a replica sends a different mes-
sage (but authenticated) to the neighbouring replicas
in the same round;

- "Timer failure": a replica initiates a new synchroni-
zation point before the minimum round period has
expired.

The detection of these states is scattered around all
TSwR FT-Fwk functional components which are respon-
sible for fault reporting through a well defined fault man-
agement interface. The invention aims to improve the
payload application availability executed on a COTS
modern processor and for which purpose, the fault man-
agement manages the hereinafter kind of faults status
and respective actions:

- "Warning": the CE #x detects a fault issued by a
neighbourhood such as a missing message while
timeout expires. According to one embodiment of
invention, this leads to a status information with no
reaction for CE #Xx.

- "Severe Error": the CE #x generates a fault which it
detects such as a core watchdog expiration. Accord-
ing to one embodiment of invention, this leads to

19 EP 2 884 392 B1 20

redundancy management with an action for isolating
this faulty replica and a request for future reintegra-
tion.

- "Fatal Error": this fault corresponds to a non-recov-
erable SEU or SEFI which leads to a reset of entire
computing platform (CP). An example is a soft-
ware/hardware blocking state triggering the proces-
sor watchdog or voters did not find majority vote.

[0096] Along with the voter, the communication and
the synchronization supervision activities a membership
status of CEs (#1, #2 and #3) is managed. In case of a
CE fails the synchronization protocol (e.g. a timeout ex-
pires) or a CE’s message behaviour is detected faulty
(e.g. message content error), an error is reported to Fault
Management. This software layer diagnosis the status
and the erroneous CE becomes a non-member for dis-
tributed voters anditis isolated. Anon-member CE needs
to be recovered before becoming member again.
[0097] Figure 3 illustrates an example of a communi-
cation and synchronization sequence.

1. The replicate application software (ASW) enters
to synchronous blocking point passing the current
round Payload Data Unit (PDU);

2. The synchronization layer module synchronizes
this Payload Data Unit (PDU) with a global times-
tamp;

3. Then a communication layer module (321, 322,
323) formats it (e.g. header, payload, checksum,
trailer fields) and appends its own replica safety ex-
tension code (a.k.a. partial code according to the rep-
lica number it resides on) to the trailer field;

4. The message with this safety extension code is
dispatched according to protocol procedure by the
transmission media to others Computing Elements
(CEs) and by record in deposit-box of local voter
(231, 232, 233);

5. Each Computing Element (CE) records in own vot-
er deposit-box the transmitted messages (containing
redundant PDUs but different safety extension
codes) and launches the voting mechanism;
6.Eachlocalvoterlayer module (231,232, 233) com-
pares the correctness of their messages (e.g. byte-
wise data comparison and safety code examination)
then in case of agreement, an outside channel voted
message is built with a full extension safety code
(step 300);

7. The CE #3 configured as primary and not marked
as faulty (otherwise, it is the CE #1 configured as
secondary), sends the voted message to outside
channel through the selected 1/O interface media
(step 310).

[0098] The voting mechanism is now described.

[0099] Inthe example of Figure 3, exchanges of safety-
relevant Messages for "2003" Vote are illustrated. Each
voter (231,232, 233) is instantiated in each replica (within

10

15

20

25

30

35

40

45

50

55

1"

#100, #200 and #300). Each voter associates corre-
sponding messages and puts this triplet in a deposit-box.
The triplet messages in the deposit-box are voted with a
voting mode used for voting messages with a safety ex-
tension, for example with a "One Channel Safe" (OCS)
voting method. Faulty messages are detected and
masked along with the voting activities and anomalies
are reported to the Fault Management component 250.
This voting method can be defined for 2-out-of-3 late
commitment voting: two messages of the three messag-
es needto be identical and the agreed resultis committed
either when all messages have been received or a pre-
defined timeout expires. The comparison method and
the diagnosis method (in case of comparison error) dis-
tinguish between data field and safety extension.
[0100] An exemplary corresponding method or strate-
gy can be:

- comparing messages without safety extension (e.g.
bit-, byte- or word-wise logical AND). If at least two
messages are not considered to be correct so far, a
fatal error is reported;

- comparing the safety extensions of the messages
which are considered to be correct. If at least two
messages together with their safety extensions are
not correct, a fatal error is reported;

- generating a voted message with the full safety ex-
tension. If a voted message can - be built, the user
data are taken from a message which was not gen-
erated on the own Computing Element (CE) . More-
over the bytes to build the full safety extension are
to be taken from different messages.

[0101] There is described a software distributed ap-
proach (a.k.a. for single point failure avoidance) which
implies designing a fault management in two hierarchical
layers: one correlated to each voter (i.e. instantiated in
each replica entity) belonging to CEs and another within
the Hypervisor #4 dedicated to manage the overall com-
puting platform (CP). The latter one, is executed on de-
mand (a.k.a. call to report interface) on the calling core
which means which 1 to 3 instances may run at the same
time in highest privilege execution mode.

[0102] Figure4 illustratesthe timeline of a Nominal and
Faulty dynamic exemplary scenario. It represents an ex-
ample of a dynamic scenario of a TSWR FT-Fwk in a
nominal case (no SEU or SEFI event) and ain faulty case
(a SEFI occurs and stops the CE #3 replica execution).
The exemplary scenario is sliced in several stages iden-
tified with numbered references.

[0103] Three CEs are operated (CE#1, CE#2 and
CE#3) from separated memory segments on different
processing cores. The probability that a SEU or SEFI
event locks the processor is thereby reduced. The func-
tional components of the TSwWR FT-Fwk architecture in-
stantiated in each Computing Element (CE) detect and
mask SEU event impacting a data memory location. It
also detects SEFI eventon areplica and this faulty replica

21 EP 2 884 392 B1 22

is isolated and then it will be recovered.

[0104] In the example, the CE#3 is faulty. The de-
scribed methods and systems can reload completely the
erroneous CE (e.g. virtual hardware configuration, appli-
cation software (ASW) and FT-Fwk programs) and then
restart the initialization stage during which the input data
context is overwritten with correct ones coming from a
valid CE (which implies an existing one).

[0105] The stage 1 (step 401) corresponds to start-up
and initialization of the overall computing platform (CP).
The scenario starts from the power-up of computing plat-
form (CP) (time marked t0) with the full initialization of
computing platform (CP). The Hypervisor #4 layer loads
and starts all Computing Elements (CEs) using only one
program stored in a nonvolatile memory. According to
appropriately predefined virtual machines configuration,
the Hypervisor #4 loads three instances of this program
in three isolated RAM segments.

[0106] The ti,ReadyToStart is a point in time when all
replicas (#1, #2 and #3) call to distributed fault manage-
ment for diagnosis and reactions with respect to their
status.

[0107] The stage 2 (step 402) corresponds to fault
management steps which include the computing platform
(CP) state diagnosis and respective reactions. In this ex-
ample, replicas enter in this stage with a correct behav-
iour resulting in a nominal reaction; all replicas are voters’
membership and no recovery action is performed. The
ti,SynchroStart is a point in time when all replicas are
blocked waiting for a synchronization signal to start a
new processing round. The time duration (ti,Synchro-
Start - ti, ReadyToStart) is the time slot for distributed fault
management and recovery strategy. Such a time slot can
be mastered and advantageously limited. During this
synchronized blocking point, the global time, the round
number and the input data context are updated to each
replica.

[0108] The stage 3 (step 403) corresponds to the ap-
plication payload execution time slot. The behaviour cor-
rectness of application software (ASW) processing round
is monitored with a time window (a.k.a. allowing an exe-
cution time jitter) around the predefined ti,SynchroPoint
with @ minimum dImin and a maximum d/max delay to
reach this point. The ti,SynchroPoint is a point in time
when all application software (ASW) (ASW #10, ASW
#20 and ASW #30) have produced output data values
and they have called the Application Runtime Interface
to build PDU message for communication and synchro-
nization. Since ti,SynchroPoint until ti+1,SynchroStart,
the application payload is suspended. The processing
round time period [Tp=ti+1,SynchroStart-ti,Synchro-
Start] can be mastered and advantageously limited. This
duration is monitored and the failure to comply with is a
non-recoverable error.

[0109] The stage 4 (step 404) corresponds to globali-
zation, distributed vote and outside communication time
slot. Communication and synchronization layer of each
FT-Fwk (#100, 200 and #300) performs safety protocol

10

15

20

25

30

35

40

45

50

55

12

steps in order to dispatch (in a point-to-point way) own
messages to neighbouring replicas. Then, the voting
method rolls out with comparison, agreement and com-
mitment activities. This stage ends well and according to
the example, the Computing Element CE#3, primary out-
side channel owner, transmits outside its voted message
(including the full safety extension) before the ti+1,Read-
yToStart deadline. The ti+1,ReadyToStart is a synchro-
nization point in time when replicas (CE#1, CE#2 and
CE#3) call to distributed fault management for diagnosis
and reactions with respect to their status.

[0110] The stage 5 (step 405) corresponds to fault
management activities or steps which include also the
computing platform (CP) state diagnosis and respective-
ly reactions. In the example, FT-Fwk #100 and #200 ar-
rive approximately at the same time without any fault de-
tected, the FT-Fwk #300 enters in this stage after and
also without any fault detected. Therefore this correct
behaviour results in nominal reaction; all replicas stay
voters’ membership and no recovery strategy is needed.
[0111] The stage 6 (step 406) starts with ti+71,Synchro-
Start synchronization point when all applications payload
(ASW#10, ASW#20 and ASW#30) are suspended wait-
ing for a synchronization signal to start a new processing
round. The previous stage resumes each replica with
new computed global time, next round number and re-
corded input data context. In the example, there is a par-
ticle impact (radiation) on the physical processor and the
exemplary scenario assumes that this particle produces
a SEFI event on the processing core allocated to Com-
puting Element CE#3. The effect of the impact corre-
sponds to a locking state of the core which could result
either to an endless loop situation, a machine check ex-
ception or another blocking situation depending on the
selected processor architecture. During the application
payload execution time slot, the application software
(ASW) ASW#30 execution is corrupted and the associ-
ated core enters in a locking state which will be detected
by one of Health Monitoring mechanisms (e.g. watchdog,
exception handler, deadline timeout). In some embodi-
ments, the Health Monitoring component reports a Se-
vere Error status information to the Fault Management
componentwhich leads to redundancy management with
an action for isolating this replica. In the meantime, ap-
plication software (ASW) ASW#10 and ASW#20 contin-
ue their processing rounds to produce output data values
and then they call the Application Runtime Interface en-
tering to ti+1,SynchroPoint synchronization point. In one
embodiment, when a d/max timeout is triggered (for ex-
ample due to missing application software (ASW) #30),
then both FT-Fwk #100 and #200 reporta Warning status
information to the Fault Management component which
in turn- confirms the redundancy management action:
Computing Element CE#3 is then isolated from voters.
The stage 6 rolls out message globalization, distributed
vote and outside communication steps as introduced in
stage 4 (step 404). Remaining FT-Fwk #100 and #200
send own messages to each other. Then, the voting

23 EP 2 884 392 B1 24

method applies only on both remaining members. In the
example, the stage ends with Computing Element CE#1;
secondary outside channel owner, transmission ofits vot-
ed message to the outside. The recovery step is now
described. At the synchronization point ti+2,ReadyTo-
Start, both remaining replicas (#1 and #2) call to distrib-
uted fault management component which passes on to
Hypervisor #4 layered fault management.

[0112] The stage 7 (step 407) is mainly done by Hy-
pervisor #4 layer which contains the computing platform
(CP) fault management and recovery strategy compo-
nent. The computing platform (CP) fault management
diagnoses a Severe Error from CE#3 and then activates
the recovery strategy. The recovery can consist, for ex-
ample, for the Hypervisor #4 to load the program to pre-
defined RAM memory segment and to start over the pro-
gram from the beginning. This restarted Computing Ele-
ment CE#3 (re)joins the others replicas at the synchro-
nization point ti+2,SynchroStart.

Claims

1. Acomputerimplemented method of detecting a fault
in a system comprising the steps of:

executing atleast three virtual machines (1,2,3),
each virtual machine executing a same applica-
tion software (10), in separated and isolated
memory segments (1.2, 2.2, 3.2), and in a ded-
icated core (1.1, 2.1, 3.1) of a multi-core proc-
€ssor;

said virtual machines (1,2,3) being synchro-
nized and concurrently executed by a common
hypervisor (4); wherein non-faulty virtual ma-
chines provide an identical output message
within a predefined time-interval;

detecting a fault (250) in an output of a virtual
machine, said fault corresponding to a different
output message of said faulty virtual machine;
executing a distributed vote (230) on output
messages of the virtual machines to determine
a voted output message (400);

communicating the voted output message (400)
to an external system in communication with the
system;

wherein one virtual machine is predefined as pri-
mary and another one as secondary, and where-
in the voted output message (400) is communi-
cated by the primary virtual machine or by the
secondary virtual machine if the primary virtual
machine is faulty.

2. The method of claim 1 wherein each virtual machine
pulls or pushes an output message to the other virtual

machines.

3. The method of claim 2 wherein the output messages

10

15

20

25

30

35

40

45

50

55

13

of each virtual machine are collected in a deposit
box and a voted output message is determined out
of the output messages.

4. The method of any preceding claim wherein output
messages of the virtual machines are numbered
and/or time stamped and/or structured and/or anno-
tated.

5. The method of any preceding claim further compris-
ing the step of associating a safety extension with
an output message of a virtual machine, said safety
extension comprising identification information
about the virtual machine outputting the output mes-
sage.

6. The method of any preceding claim, further compris-
ing the step of recovering the faulty virtual machine.

7. The method of claim 6, wherein the step of recover-
ing the faulty virtual machine comprises using the
data context of a non-faulty virtual machine to re-
place the data context of the faulty virtual machine.

8. The method of claims 6 or 7, wherein the step of
recovering the faulty virtual machine is performed at
a re-synchronization point in time.

9. The method of any preceding claim wherein a fault
is associated with a failure chosen from the list com-
prising: crash failure, faulty value failure, byzantine
failure, timer failure and combinations thereof.

10. A computer program comprising instructions for car-
rying out the steps of the method according to any
one of claim 1 to 9 when said computer program is
executed on a suitable computer device.

11. A computer readable medium having encoded ther-
eon a computer program according to claim 10.

12. A system comprising means adapted to carry outthe
steps of the method according to any one of claims
1t09.

Patentanspriiche

1. Computerimplementiertes Verfahren zum Erfassen
eines Fehlers in einem System, umfassend die fol-
genden Schritte:

Ausfiihren zumindest dreier virtueller Maschi-
nen (1, 2, 3), wobei jede virtuelle Maschine je-
weils die selbe Anwendungssoftware (10) in ge-
trennten und isolierten Speichersegmenten
(1.2, 2.2, 3.2) und in einem dedizierten Kern
(1.1, 2.1, 3.1) eines Mehrkernprozessors aus-

25

fUhrt;

wobei die virtuellen Maschinen (1, 2, 3) synchro-
nisiert und gleichzeitig durch einen gemeinsa-
men Hypervisor (4) ausgefliihrt werden; wobei
nicht fehlerhafte virtuelle Maschinen eine iden-
tische Ausgangsnachricht innerhalb eines vor-
bestimmten Zeitintervalls bereitstellen;
Erfassen eines Fehlers (250) in einem Ausgang
einer virtuellen Maschine, wobei der Fehler ei-
ner unterschiedlichen Ausgangsnachricht der
fehlerhaften virtuellen Maschine entspricht;
Ausfiihren einer verteilten Auswahl (230) von
Ausgangsnachrichten der virtuellen Maschinen,
um eine ausgewahlte Ausgangsnachricht (400)
Zu bestimmen;

Kommunizieren der ausgewahlten Ausgangs-
nachricht (400) an ein externes System, wel-
ches mit dem System kommuniziert;

wobei eine virtuelle Maschine als primar und ei-
ne andere als sekundar vorbestimmtist, und wo-
bei die ausgewahlte Ausgangsnachricht (400)
durch die priméare virtuelle Maschine oder durch
die sekundare virtuelle Maschine kommuniziert
wird, falls die primare virtuelle Maschine fehler-
haft ist.

Verfahren nach Anspruch 1, wobei jede virtuelle Ma-
schine eine Ausgangsnachricht von oder zu den an-
deren virtuellen Maschinen pullt oder pusht.

Verfahren nach Anspruch 2, wobei die Ausgangs-
nachrichten jeder virtuellen Maschine in einer Abla-
gebox gesammelt werden und eine ausgewahlte
Ausgangsnachricht aus den Ausgangsnachrichten
bestimmt wird.

Verfahren nach einem der vorhergehenden Ansprii-
che, wobei Ausgangsnachrichten der virtuellen Ma-
schinen nummeriert und/oder zeitgestempelt
und/oder strukturiert und/oder annotiert werden.

Verfahren nach einem der vorhergehenden Ansprii-
che, ferner umfassend den Schritt des Zuordnens
einer Sicherheitserweiterung einer Ausgangsnach-
richt einer virtuellen Maschine, wobei die Sicher-
heitserweiterung ldentifizierungsinformationen tiber
die virtuelle Maschine umfasst, welche die Aus-
gangsnachricht ausgibt.

Verfahren nach einem der vorhergehenden Ansprii-
che, ferner umfassend den Schritt des Wiederher-
stellens der fehlerhaften virtuellen Maschine.

Verfahren nach Anspruch 6, wobei der Schritt des
Wiederherstellens der fehlerhaften virtuellen Ma-
schine das Verwenden des Datenkontextes einer
nichtfehlerhaften virtuellen Maschine umfasst, um
den Datenkontext der fehlerhaften virtuellen Maschi-

10

15

20

25

30

35

40

45

50

55

14

EP 2 884 392 B1

10.

1.

12.

26
ne zu ersetzen.

Verfahren nach Anspruch 6 oder 7, wobei der Schritt
des Wiederherstellens der fehlerhaften virtuellen
Maschine zu einem Neusynchronisationszeitpunkt
ausgefihrt wird.

Verfahren nach einem der vorhergehenden Anspri-
che, wobei ein Fehler einem Versagen zugeordnet
wird, ausgewahlt aus der Liste umfassend: Crash-
Versagen, fehlerhaftes Wertversagen, byzantini-
sches Versagen, Timerversagen, und Kombinatio-
nen davon.

Computerprogramm, umfassend Anweisungen zum
Ausfiihren der Schritte des Verfahrens nach einem
der Anspriiche 1 bis 9, wenn das Computerpro-
gramm auf einer geeigneten Computervorrichtung
ausgefihrt wird.

Computerlesbares Medium, auf welchem ein Com-
puterprogramm nach Anspruch 10 kodiert ist.

System, umfassend Mittel, welche ausgebildet sind,
um die Schritte des Verfahrens nach einem der An-
spriiche 1 bis 9 auszufiihren.

Revendications

1.

Procédé mis en oeuvre par ordinateur consistant a
détecter une panne dans un systeme, comprenant
les étapes qui sont constituées par :

I'exécution d’au moins trois machines virtuelles
(1, 2, 3), chaque machine virtuelle exécutant un
méme logiciel d’application (10), dans des seg-
ments de mémoire séparés et isolés (1.2, 2.2,
3.2), et dans un coeur dédié (1.1, 2.1, 3.1) d’'un
processeur multicoeur ;

lesdites machines virtuelles (1, 2, 3) étant syn-
chronisées et exécutées concurremment par un
hyperviseur commun (4) ; dans lequel des ma-
chines virtuelles non en panne fournissent un
message de sortie identique a l'intérieur d’'un
intervalle temporel prédéfini ;

la détection d’'une panne (250) dans une sortie
d’une machine virtuelle, ladite panne correspon-
dant a un message de sortie différent de ladite
machine virtuelle en panne ;

I'exécution d’'un vote distribué (230) sur des
messages de sortie des machines virtuelles de
maniére a déterminer un message de sortie voté
(400) ;

la communication du message de sortie voté
(400) a un systéme externe en communication
avec le systeme ;

dans lequel une machine virtuelle est prédéfinie

10.

27

en tant que machine virtuelle primaire et une
autre en tant que machine virtuelle secondaire,
et dans lequel le message de sortie voté (400)
est communiqué par la machine virtuelle primai-
re ou par la machine virtuelle secondaire si la
machine virtuelle primaire est en panne.

Procédé selon la revendication 1, dans lequel cha-
que machine virtuelle tire ou pousse un message de
sortie sur les autres machines virtuelles.

Procédé selon la revendication 2, dans lequel les
messages de sortie de chaque machine virtuelle
sont collectés dans une boite de dépbt et un mes-
sage de sortie voté est déterminé a partir des mes-
sages de sortie.

Procédé selon I'une quelconque des revendications
qui précedent, dans lequel des messages de sortie
des machines virtuelles sont numérotés et/ou es-
tampillés temporellement et/ou structurés et/ou an-
notés.

Procédé selon I'une quelconque des revendications
qui précédent, comprenant en outre I'étape qui est
constituée par I'association d’'une extension de sé-
curité a un message de sortie d'une machine virtuel-
le, ladite extension de sécurité comprenant une in-
formation d’'identification concernant la machine vir-
tuelle qui émet en sortie le message de sortie.

Procédé selon I'une quelconque des revendications
qui précédent, comprenant en outre I'étape qui est
constituée parlarégénération de lamachine virtuelle
en panne.

Procédé selon larevendication 6, dans lequel I'étape
qui est constituée par la régénération de la machine
virtuelle en panne comprend l'utilisation du contexte
de données d’une machine virtuelle non en panne
afin de remplacer le contexte de données de la ma-
chine virtuelle en panne.

Procédé selon les revendications 6 ou 7, dans lequel
I'étape qui est constituée par la régénération de la
machine virtuelle en panne est réalisée au niveau
d’un point temporel de resynchronisation.

Procédé selon I'une quelconque des revendications
qui précédent, dans lequel une panne est associée
a une défaillance qui est choisie parmi la liste qui
comprend : une défaillance par plantage, une dé-
faillance par valeur erronée, une défaillance byzan-
tine, une défaillance de temporisateur et des com-
binaisons afférentes.

Programme informatique comprenant des instruc-
tions pour mettre en oeuvre les étapes du procédé

10

15

20

25

30

35

40

45

50

55

15

EP 2 884 392 B1

1.

12.

28

selon 'une quelconque des revendications 1a9lors-
que ledit programme informatique est exécuté sur
un dispositif informatique approprié.

Support lisible par ordinateur comportant, codé sur
lui, un programme informatique selon la revendica-
tion 10.

Systeme comprenant un moyen qui est adapté pour
mettre en oeuvre les étapes du procédé selon l'une
quelconque des revendications 1 a 9.

EP 2 884 392 B1

T Tt I R L |
y CE#1 I 1 CE#3 1 &
1 1 1 1 <
1 L I I o
i L 1 13
P ASW #10 ti T ASW #30 1
| AR SR A ‘ | B 1 t P R S O \‘K ¥ l
1 ‘ K o ‘ a
I N NI -1
1 TSWRFTFwk | 1 TSwR FTFwk | 11 = TSWRFTFwk | 1|
I #100 11 #200 't #300 !
1 ; ; LN -
(. I A \: : | A (NI A :
[B 1 N B _
1 «wmw»lw«w\w SRR | i [— T]] l%@\h«ﬁmx%ﬁmﬁ\qwﬂ\m‘&?ﬂ» st {
N | 3 M » -
l Hypervisor #4 ' _
I i I o) | &
| T h e 13
__: 110, Interface_} L :11_ : 5
A CEX N I (o
| e 1 1 g
1. Point-to-pont 1PC #12 }l 1 I o
| - o b ! 0
1 { I Point-to-point fl g
I e ™ i { =
I 11 Pointto-poing IPC #31 ,E‘ @
| === SLI
1) 1 h) o
I ‘\Memory Region #1.2 J’ 1 ‘Memory Region #2.2 l i 1Memory Region #3.2 % I g
| e " gy R : IR : : i
: - Core H : ~ Core | : : Core ;‘
P #A o #21] o #34 i
L o o et e ST] e . e i i e e b

FIG.1

16

EP 2 884 392 B1

ASW #x0

- 200
[Application Runtime Interface —
210 ——lr ~ Y,
: () Communication & (\ 250
: o Synchronjzation = | 1/
! 5 ~ 230 £ |
1 = '/ Y
! g Distributed T o
: = Voter ‘ 5
| ..‘E 1’ =
| 5 — 240 | i
! T Il &
) Recovery j
! Management ;
: \ A R O NS
FT-Fwk #x00
Hypervisor #4
) i |
| i
: CE #x virtual Hardware i
1

oo o B]]] ..o -

FIG.2

17

EP 2 884 392 B1

Distribute

Distribute

Distribute

[

: CE#1 : CE #2 : CE#3

I [|

i | ASW #10 1 | ASW H20 1| ASW#30

[I i

1 data - 1 I data - | data " i
1 ' [f t ‘

[l 1

1 FT-Fwk #1900 1 FT-Fwk #290 1 FT-Fwk #300

| i \ 1

! [Application Runtime interface ! [Application Runtime Interface | I [Application Runtime Interface

I 1 t

[1 1

1 Communication & 1 Communication & 1 Communication &

: Synchronization ‘ : Synchronization : Synchronization
, p 321 ! 3221} | - 323
1 | datajo23 ! 1 | data [103 ” ' y | data 120 ‘

1 : 1 1

I I |

1 [1

[1 I

i t I

1 1 1

1 1 [

1 | |

d Voter d Voter d Voter !
231 23 233 : :
) L
data | 123 : data | 123 | : data | 123)
[: I - L !) L
1 T_ —F T_
Hypervigor #4 .
| . data | 023 | data | 103 data | 120 *
| 1 | |
:[CE #x}/irtual Hardware
! | 1 LI
=N | P
data lnsjl | 1 i data | 123_

ASW output

300

voted data #400~—"

FIG.3

18

EP 2 884 392 B1

ASW Processing Round Primary Outside

CP Power-up . . Channel SEFI
/ Reset maximum jitter for t; . neopoint
1 Secondary Outside
(a0 406 v
/403 Channel 407
&:: VQ_Bmx Q_Bmx »
1) 1 I I
S ! ! | [i [
) i . ; W L -
Pcem #100 §j #10 ata - J#100 Hata |- #100]4ata | data 1] %100 biata | "9{#100 Jgata| |} #100
’ — e e
' ! 23 123 ! 023 123 v
I i 1 i] 1
g A ! } . ! . o
beem & [rooflm0 Joata | [290 oty | 4 P#20feeta dots [#90 frta | [#200 foora f #200
=T 1 1 1 102 123 1 102 123 [1
o ! ! !) I "
1 ce#z | _38 __ #30 _ datay J#300biata | €P1#300 |dats | ' 300
Sm—— i 3 i 1
1 1 i 120 123 1 i I 1
N brocessing Round Period T, | 1 'Processing Round Period T, | |
t \A A\ A \4 i v
0 /Whénramﬁmn ﬁ.m«.:n:_‘ovoiﬁ ew.m<sn3«omﬂmr+p,m<:n3_‘o_uo§ @ngnramﬁm;
ﬁ‘xmmaﬁomﬁmn ﬁlbmw%@mﬁﬂ ﬁIN‘mmm%._dmﬁm:

FIG.4

19

EP 2 884 392 B1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

« EP 2498184 A [0005] » FR 2972548 [0017]
« US 20080148015 A [0005] « EP 0977395 A [0037]

Non-patent literature cited in the description

* An Availability Model of a Virtual TMR System with
Applications in Cloud/Cluster Computing. RICARDO
PAHARSINGH et al. HIGH-ASSURANCE SYS-
TEMS ENGINEERING (HASE), 2011 IEEE 13TH IN-
TERNATIONAL SYMPOSIUM ON. IEEE, 10 Novem-
ber 2011, 261-268 [0005]

20

	bibliography
	description
	claims
	drawings
	cited references

