
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

82
6

53
0

A
2

(Cont. next page)

TEPZZ 8 65¥ZA T
(11) EP 2 826 530 A2

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
21.01.2015 Bulletin 2015/04

(21) Application number: 14186898.4

(22) Date of filing: 04.12.2008

(51) Int Cl.:
A63F 13/00 (2014.01) H04N 21/238 (2011.01)

H04N 21/2383 (2011.01) H04N 21/24 (2011.01)

H04N 21/27 (2011.01) H04N 21/478 (2011.01)

H04N 21/6587 (2011.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
RO SE SI SK TR

(30) Priority: 05.12.2007 US 999594

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
08860777.5 / 2 238 565

(71) Applicant: OL2, Inc.
Mountain View, CA 94043 (US)

(72) Inventor: The designation of the inventor has not
yet been filed

(74) Representative: WP Thompson
8th Floor
1 Mann Island
Liverpool L3 1BP (GB)

Remarks:
This application was filed on 29-09-2014 as a
divisional application to the application mentioned
under INID code 62.

(54) System and method for protecting certain types of multimedia data transmitted over a
communication channel

(57) A system and method are described for encoding certain types of multimedia data transmitted over a commu-
nication channel. For example, one embodiment of a computer-implemented method comprises: logically subdividing
each of a sequence of images into a plurality of tiles, each of the tiles having a defined position within each of the
sequence of images, the defined position remaining the same between successive images; encoding one or more of
the tiles in each image of the sequence of images using a first compression format and encoding the reminder of the
tiles in each image using the second compression format, the second compression format dependent on tiles previously-
encoded by the first and/or the second compression formats. Additionally, a forward error correction (FEC) code may
be generated for tiles encoded using the first compression format.

EP 2 826 530 A2

2

EP 2 826 530 A2

3

5

10

15

20

25

30

35

40

45

50

55

Description

RELATED APPLICATION

[0001] This application is a continuation-in-part (CIP)
application of Serial No. 10/315, 460 filed December 10,
2002 entitled, "APPARATUS AND METHOD FOR
WIRELESS VIDEO GAMING", which is assigned to the
assignee of the present CIP application.

TECHNICAL FIELD

[0002] The present disclosure relates generally to the
field of data processing systems that improve a users’
ability to manipulate and access audio and video media.

BACKGROUND

[0003] Recorded audio and motion picture media has
been an aspect of society since the days of Thomas Ed-
ison. At the start of the 20th century there was wide dis-
tribution of recorded audio media (cylinders and records)
and motion picture media (nickelodeons and movies),
but both technologies were still in their infancy. In the late
1920s motion pictures were combined with audio on a
mass-market basis, followed by color motion pictures
with audio. Radio broadcasting gradually evolved into a
largely advertising-supported form of broadcast mass-
market audio media. When a television (TV) broadcast
standard was established in the mid-1940s, television
joined radio as a form of broadcast mass-market media
bringing previously recorded or live motion pictures into
the home.
[0004] By the middle of the 20th century, a large per-
centage of US homes had phonograph record players
for playing recorded audio media, a radio to receive live
broadcast audio, and a television set to play live broad-
cast audio / video (A/V) media. Very often these 3 "media
players" (record player, radio and TV) were combined
into one cabinet sharing common speakers that became
the "media center" for the home. Although the media
choices were limited to the consumer, the media "eco-
system" was quite stable. Most consumers knew how to
use the "media players" and were able to enjoy the full
extent of their capabilities. At the same time, the publish-
ers of the media (largely the motion picture and televi-
sions studios, and the music companies) were able to
distribute their media both to theaters and to the home
without suffering from widespread piracy or "second
sales", i.e., the resale of used media. Typically publishers
do not derive revenue from second sales, and as such,
it reduces revenue that publishers might otherwise derive
from the buyer of used media for new sales. Although
there certainly were used records sold during the middle
of the 20th century, such sales did not have a large impact
on record publishers because, unlike a motion picture or
video program -- which is typically watched once or only
a few times by an adult -- a music track may be listened

to hundreds or even thousands of times. So, music media
is far less "perishable" (i.e., it has lasting value to an adult
consumer) than motion picture/video media. Once a
record was purchased, if the consumer liked the music,
the consumer was likely to keep it a long time.
[0005] From the middle of the 20th century through the
present day, the media ecosystem has undergone a se-
ries of radical changes, both to the benefit and the det-
riment of consumers and publishers. With the wide-
spread introduction of audio recorders, especially cas-
sette tapes with high-quality stereo sound, there certainly
was a higher degree of consumer convenience. But it
also marked the beginning of what is now a widespread
practice with consumer media: piracy. Certainly, many
consumers used the cassette tapes for taping their own
records purely for convenience, but increasingly con-
sumers (e.g., students in a dormitory with ready access
to each others’ record collections) would make pirated
copies. Also, consumers would tape music played over
the radio rather than buying a record or tape from the
publisher.
[0006] The advent of the consumer VCR led to even
more consumer convenience, since now a VCR could be
set to record a TV show which could be watched at a
later time, and it also led to the creation of the video rental
business, where movies as well as TV programming
could be accessed on an "on demand" basis. The rapid
development of mass-market home media devices since
the mid-1980s has led to an unprecedented level of
choice and convenience for the consumer, and also has
led to a rapid expansion of the media publishing market.
[0007] Today, consumers are faced with a plethora of
media choices as well as a plethora of media devices,
many of which are tied to particular forms of media or
particular publishers. An avid consumer of media may
have a stack of devices connected to TVs and computers
in various rooms of the house, resulting in a "rat’s nest"
of cables to one or more TV sets and/or personal com-
puters (PCs) as well as a group of remote controls. (In
the context of the present application, the term "personal
computer" or "PC" refers to any sort of computer suitable
for us in the home or office, including a desktop, a Mac-
intosh® or other non-Windows computers, Windows-
compatible devices, Unix variations, laptops, etc.) These
devices may include a video game console, VCR, DVD
player, audio surround-sound processor/amplifier, satel-
lite set-top box, cable TV set-top box, etc. And, for an
avid consumer, there may be multiple similar-function
devices because of compatibility issues. For example, a
consumer may own both a HD-DVD and a Blu-ray DVD
player, or both a Microsoft Xbox® and a Sony Playsta-
tion® video game system. Indeed, because of incompat-
ibility of some games across versions of game consoles,
the consumer may own both an XBox and a later version,
such as an Xbox 360®. Frequently, consumers are be-
fuddled as to which video input and which remote to use.
Even after a disc is placed into the correct player (e.g.,
DVD, HD-DVD, Blu-ray, Xbox or Playstation), the video

1 2

EP 2 826 530 A2

4

5

10

15

20

25

30

35

40

45

50

55

and audio input is selected for that the device, and the
correct remote control is found, the consumer is still faced
with technical challenges. For example, in the case of a
wide-screen DVD, the user may need to first determine
and then set the correct aspect ratio on his TV or monitor
screen (e.g., 4:3, Full, Zoom, Wide Zoom, Cinema Wide,
etc.). Similarly, the user may need to first determine and
then set the correct audio surround sound system format
(e.g., AC-3, Dolby Digital, DTS, etc.). Often times, the
consumer is unaware that they may not be enjoying the
media content to the full capability of their television or
audio system (e.g., watching a movie squashed at the
wrong aspect ratio, or listening to audio in stereo rather
than in surround sound).
[0008] Increasingly, Internet-based media devices
have been added to the stack of devices. Audio devices
like the Sonos® Digital Music system stream audio di-
rectly from the Internet. Likewise, devices like the Sling-
box™ entertainment player record video and stream it
through a home network or out through the Internet where
it can be watched remotely on a PC. And Internet Protocol
Television (IPTV) services offer cable TV-like services
through Digital Subscriber Line (DSL) or other home In-
ternet connections. There have also been recent efforts
to integrate multiple media functions into a single device,
such as the Moxi® Media Center and PCs running Win-
dows XP Media Center Edition. While each of these de-
vices offers an element of convenience for the functions
that it performs, each lacks ubiquitous and simple access
to most media. Further, such devices frequently cost hun-
dreds of dollars to manufacture, often because of the
need for expensive processing and/or local storage. Ad-
ditionally, these modern consumer electronic devices
typically consume a great deal of power, even while idle,
which means they are expensive over time and wasteful
of energy resources. For example, a device may continue
to operate if the consumer neglects to turn it off or switch-
es to a different video input. And, because none of the
devices is a complete solution, it must be integrated with
the other stack of devices in the home, which still leaves
the user with a rat’s nest of wires and a sea of remote
controls.
[0009] Furthermore, when many newer Internet-based
devices do work properly, they typically offer media in a
more generic form than it might otherwise be available.
For example, devices that stream video through the In-
ternet often stream just the video material, not the inter-
active "extras" that often accompany DVDs, like the
"making of" videos, games, or director’s commentary.
This is due to the fact that frequently the interactive ma-
terial is produced in a particular format intended for a
particular device that handles interactivity locally. For ex-
ample, each of DVD, HD-DVDs and Blu-ray discs have
their own particular interactive format. Any home media
device or local computer that might be developed to sup-
port all of the popular formats would require a level of
sophistication and flexibility that would likely make it pro-
hibitively expensive and complex for the consumer to op-

erate.
[0010] Adding to the problem, if a new format were
introduced later in the future the local device may not
have the hardware capability to support the new format,
which would mean that the consumer would have to pur-
chase an upgraded local media device. For example, if
higher-resolution video or stereoscopic video (e.g., one
video stream for each eye) were introduced at a later
date, the local device may not have the computational
capability to decode the video, or it may not have the
hardware to output the video in the new format (e.g., as-
suming stereoscopy is achieved through 120fps video
synchronized with shuttered glasses, with 60fps deliv-
ered to each eye, if the consumer’s video hardware can
only support 60fps video, this option would be unavaila-
ble absent an upgraded hardware purchase).
[0011] The issue of media device obsolescence and
complexity is a serious problem when it comes to sophis-
ticated interactive media, especially video games.
[0012] Modern video game applications are largely di-
vided into four major non-portable hardware platforms:
Sony PlayStation® 1, 2 and 3 (PS1, PS2, and PS3); Mi-
crosoft Xbox® and Xbox 360®; and Nintendo
Gamecube® and Wii™; and PC-based games. Each of
these platforms is different than the others so that games
written to run on one platform usually do not run on an-
other platform. There may also be compatibility problems
from one generation of device to the next. Even though
the majority of software game developers create software
games that are designed independent of a particular plat-
form, in order to run a particular game on a specific plat-
form a proprietary layer of software (frequently called a
"game development engine") is needed to adapt the
game for use on a specific platform. Each platform is sold
to the consumer as a "console" (i.e., a standalone box
attached to a TV or monitor/speakers) or it is a PC itself.
Typically, the video games are sold on optical media such
as a Blu-ray DVD, DVD-ROM or CD-ROM, which con-
tains the video game embodied as a sophisticated real-
time software application. As home broadband speeds
have increased, video games are becoming increasingly
available for download.
[0013] The specificity requirements to achieve plat-
form-compatibility with video game software is extremely
exacting due to the real-time nature and high computa-
tional requirements of advanced video games. For ex-
ample, one might expect full game compatibility from one
generation to the next of video games (e.g., from XBox
to XBox 360, or from Playstation 2 ("PS2") to Playstation
3 ("PS3"), just as there is general compatibility of pro-
ductivity applications (e.g., Microsoft Word) from one PC
to another with a faster processing unit or core. However,
this is not the case with video games. Because the video
game manufacturers typically are seeking the highest
possible performance for a given price point when a video
game generation is released, dramatic architectural
changes to the system are frequently made such that
many games written for the prior generation system do

3 4

EP 2 826 530 A2

5

5

10

15

20

25

30

35

40

45

50

55

not work on the later generation system. For example,
XBox was based upon the x86-family of processors,
whereas XBox 360 was based upon a PowerPC-family.
[0014] Techniques can be utilized to emulate a prior
architecture, but given that video games are real-time
applications, it is often unfeasible to achieve the exact
same behavior in an emulation. This is a detriment to the
consumer, the video game console manufacturer and
the video game software publisher. For the consumer, it
means the necessity of keeping both an old and new
generation of video game consoles hooked up to the TV
to be able to play all games. For the console manufacturer
it means cost associated with emulation and slower
adoption of new consoles. And for the publisher it means
that multiple versions of new games may have to be re-
leased in order to reach all potential consumers -- not
only releasing a version for each brand of video game
(e.g., XBox, Playstation), but often a version for each
version of a given brand (e.g., PS2 and PS3). For exam-
ple, a separate version of Electronic Arts’ "Madden NFL
08" was developed for XBox, XBox 360, PS2, PS3,
Gamecube, Wii, and PC, among other platforms.
[0015] Portable devices, such as cellular ("cell")
phones and portable media players also present chal-
lenges to game developers. Increasingly such devices
are connected to wireless data networks and are able to
download video games. But, there are a wide variety of
cell phones and media devices in the market, with a wide
range of different display resolutions and computing ca-
pabilities. Also, because such devices typically have
power consumption, cost and weight constraints, they
typically lack advanced graphics acceleration hardware
like a Graphics Processing Unit ("GPU"), such as devices
made by NVIDIA of Santa Clara, CA. Consequently,
game software developers typically develop a given
game title simultaneously for many different types of port-
able devices. A user may find that a given game title is
not available for his particular cell phone or portable me-
dia player.
[0016] In the case of home game consoles, hardware
platform manufacturers typically charge a royalty to the
software game developers for the ability to publish a
game on their platform. Cell phone wireless carriers also
typically charge a royalty to the game publisher to down-
load a game into the cell phone. In the case of PC games,
there is no royalty paid to publish games, but game de-
velopers typically face high costs due to the higher cus-
tomer service burden to support the wide range of PC
configurations and installation issues that may arise. Al-
so, PCs typically present less barriers to the piracy of
game software since they are readily reprogrammable
by a technically-knowledgeable user and games can be
more easily pirated and more easily distributed (e.g.,
through the Internet). Thus, for a software game devel-
oper, there are costs and disadvantages in publishing on
game consoles, cell phones and PCs.
[0017] For game publishers of console and PC soft-
ware, costs do not end there. To distribute games through

retail channels, publishers charge a wholesale price be-
low the selling price for the retailer to have a profit margin.
The publisher also typically has to pay the cost of man-
ufacturing and distributing the physical media holding the
game. The publisher is also frequently charged a "price
protection fee" by the retailer to cover possible contin-
gencies such as where the game does not sell, or if the
game’s price is reduced, or if the retailer must refund part
or all of the wholesale price and/or take the game back
from a buyer. Additionally, retailers also typically charge
fees to publishers to help market the games in advertising
flyers. Furthermore, retailers are increasingly buying
back games from users who have finished playing them,
and then sell them as used games, typically sharing none
of the used game revenue with the game publisher. Add-
ing to the cost burden placed upon game publishers is
the fact that games are often pirated and distributed
through the Internet for users to download and make free
copies.
[0018] As Internet broadband speeds have been in-
creasing and broadband connectivity has become more
widespread in the US and worldwide, particularly to the
home and to Internet "cafes" where Internet-connected
PCs are rented, games are increasingly being distributed
via downloads to PCs or consoles. Also, broadband con-
nections are increasingly used for playing multiplayer and
massively multiplayer online games (both of which are
referred to in the present disclosure by the acronym
"MMOG"). These changes mitigate some of the costs
and issues associated with retail distribution. Download-
ing online games addresses some of the disadvantages
to game publishers in that distribution costs typically are
less and there are little or no costs from unsold media.
But downloaded games are still subject to piracy, and
because of their size (often many gigabytes in size) they
can take a very long time to download. In addition, mul-
tiple games can fill up small disk drives, such as those
sold with portable computers or with video game con-
soles. However, to the extent games or MMOGs require
an online connection for the game to be playable, the
piracy problem is mitigated since the user is usually re-
quired to have a valid user account. Unlike linear media
(e.g., video and music) which can be copied by a camera
shooting video of the display screen or a microphone
recording audio from the speakers, each video game ex-
perience is unique, and can not be copied using simple
video/audio recording. Thus, even in regions where cop-
yright laws are not strongly enforced and piracy is ram-
pant, MMOGs can be shielded from piracy and therefore
a business can be supported. For example, Vivendi SA’s
"World of Warcraft" MMOG has been successfully de-
ployed without suffering from piracy throughout the world.
And many online or MMOG games, such as Linden Lab’s
"Second Life" MMOG generate revenue for the games’
operators through economic models built into the games
where assets can be bought, sold, and even created us-
ing online tools. Thus, mechanisms in addition to con-
ventional game software purchases or subscriptions can

5 6

EP 2 826 530 A2

6

5

10

15

20

25

30

35

40

45

50

55

be used to pay for the use of online games.
[0019] While piracy can be often mitigated due to the
nature of online or MMOGs, online game operator still
face remaining challenges. Many games require sub-
stantial local (i.e., in-home) processing resources for on-
line or MMOGs to work properly. If a user has a low per-
formance local computer (e.g., one without a GPU, such
as a low-end laptop), he may not be able to play the
game. Additionally, as game consoles age, they fall fur-
ther behind the state-of-the-art and may not be able to
handle more advanced games. Even assuming the us-
er’s local PC is able to handle the computational require-
ments of a game, there are often installation complexi-
ties. There may be driver incompatibilities (e.g., if a new
game is downloaded, it may install a new version of a
graphics driver that renders a previously-installed game,
reliant upon an old version of the graphics driver, inop-
erable). A console may run out of local disk space as
more games are downloaded. Complex games typically
receive downloaded patches over time from the game
developer as bugs are found and fixed, or if modifications
are made to the game (e.g., if the game developer finds
that a level of the game is too hard or too easy to play).
These patches require new downloads. But sometimes
not all users complete downloading of all the patches.
Other times, the downloaded patches introduce other
compatibility or disk space consumption issues.
[0020] Also, during game play, large data downloads
may be required to provide graphics or behavioral infor-
mation to the local PC or console. For example, if the
user enters a room in a MMOG and encounters a scene
or a character made up of graphics data or with behaviors
that are not available on the user’s local machine, then
that scene or character’s data must be downloaded. This
may result in a substantial delay during game play if the
Internet connection is not fast enough. And, if the en-
countered scene or character requires storage space or
computational capability beyond that of the local PC or
console, it can create a situation where the user can not
proceed in the game, or must continue with reduced-
quality graphics. Thus, online or MMOG games often limit
their storage and/or computational complexity require-
ments. Additionally, they often limit the amount of data
transfers during the game. Online or MMOG games may
also narrow the market of users that can play the games.
[0021] Furthermore, technically-knowledgeable users
are increasingly reverse-engineering local copies of
games and modifying the games so that they can cheat.
The cheats maybe as simple as making a button press
repeat faster than is humanly possible (e.g., so as to
shoot a gun very rapidly). In games that support in-game
asset transactions the cheating can reach a level of so-
phistication that results in fraudulent transactions involv-
ing assets of actual economic value. When an online or
MMOGs economic model is based on such asset trans-
actions, this can result in substantial detrimental conse-
quences to the game operators.
[0022] The cost of developing a new game has grown

as PCs and consoles are able to produce increasingly
sophisticated games (e.g., with more realistic graphics,
such as real-time ray-tracing, and more realistic behav-
iors, such as real-time physics simulation). In the early
days of the video game industry, video game develop-
ment was a very similar process to application software
development; that is, most of the development cost was
in the development of the software, as opposed to the
development of the graphical, audio, and behavioral el-
ements or "assets", such as those that may be developed
for a motion picture with extensive special effects. Today,
many sophisticated video game development efforts
more closely resemble special effects-rich motion picture
development than software development. For instance,
many video games provide simulations of 3-D worlds,
and generate increasingly photorealistic (i.e., computer
graphics that seem as realistic as live action imagery shot
photographically) characters, props, and environments.
One of the most challenging aspects of photorealistic
game development is creating a computer-generated hu-
man face that is indistinguishable from a live action hu-
man face. Facial capture technologies such Contour™
Reality Capture developed by Mova of San Francisco,
CA captures and tracks the precise geometry of a per-
former’s face at high resolution while it is in motion. This
technology allows a 3D face to be rendered on a PC or
game console that is virtually indistinguishable from a
captured live action face. Capturing and rendering a
"photoreal" human face precisely is useful in several re-
spects. First, highly recognizable celebrities or athletes
are often used in video games (often hired at a high cost),
and imperfections may be apparent to the user, making
the viewing experience distracting or unpleasant. Fre-
quently, a high degree of detail is required to achieve a
high degree of photorealism -- requiring the rendering of
a large number of polygons and high-resolution textures,
potentially with the polygons and/or textures changing
on a frame-by-frame basis as the face moves.
[0023] When high polygon-count scenes with detailed
textures change rapidly, the PC or game console sup-
porting the game may not have sufficient RAM to store
enough polygon and texture data for the required number
of animation frames generated in the game segment.
Further, the single optical drive or single disk drive typi-
cally available on a PC or game console is usually much
slower than the RAM, and typically can not keep up with
the maximum data rate that the GPU can accept in ren-
dering polygons and textures. Current games typically
load most of the polygons and textures into RAM, which
means that a given scene is largely limited in complexity
and duration by the capacity of the RAM. In the case of
facial animation, for example, this may limit a PC or a
game console to either a low resolution face that is not
photoreal, or to a photoreal face that can only be animat-
ed for a limited number of frames, before the game paus-
es, and loads polygons and textures (and other data) for
more frames.
[0024] Watching a progress bar move slowly across

7 8

EP 2 826 530 A2

7

5

10

15

20

25

30

35

40

45

50

55

the screen as a PC or console displays a message similar
to "Loading..." is accepted as an inherent drawback by
today’s users of complex video games. The delay while
the next scene loads from the disk ("disk" herein, unless
otherwise qualified, refers to non-volatile optical or mag-
netic media, as well non-disk media such as semicon-
ductor "Flash" memory) can take several seconds or
even several minutes. This is a waste of time and can be
quite frustrating to a game player. As previously dis-
cussed, much or all of the delay may be due to the load
time for polygon, textures or other data from a disk, but
it also may be the case that part of the load time is spent
while the processor and/or GPU in the PC or console
prepares data for the scene. For example, a soccer video
game may allow the players to choose among a large
number of players, teams, stadiums and weather condi-
tions. So, depending on what particular combination is
chosen, different polygons, textures and other data (col-
lectively "objects") may be required for the scene (e.g.,
different teams have different colors and patterns on their
uniforms). It may be possible to enumerate many or all
of the various permutations and pre-compute many or all
of the objects in advance and store the objects on the
disk used to store the game. But, if the number of per-
mutations is large, the amount of storage required for all
of the objects may be too large to fit on the disk (or too
impractical to download). Thus, existing PC and console
systems are typically constrained in both the complexity
and play duration of given scenes and suffer from long
load times for complex scenes.
[0025] Another significant limitation with prior art video
game systems and application software systems is that
they are increasingly using large databases, e.g., of 3D
objects such as polygons and textures, that need to be
loaded into the PC or game console for processing. As
discussed above, such databases can take a long time
to load when stored locally on a disk. Load time, however,
is usually far more severe if the database is stored a
remote location and is accessed through the Internet. In
such a situation it may take minutes, hours, or even days
to download a large database. Further, such databases
are often created a great expense (e.g., a 3D model of
a detailed tall-masted sailing ship for use in a game, mov-
ie, or historical documentary) and are intended for sale
to the local end-user. However, the database is at risk of
being pirated once it has been downloaded to the local
user. In many cases, a user wants to download a data-
base simply for the sake of evaluating it to see if it suits
the user’s needs (e.g., if a 3D costume for a game char-
acter has a satisfactory appearance or look when the
user performs a particular move). A long load time can
be a deterrent for the user evaluating the 3D database
before deciding to make a purchase.
[0026] Similar issues occur in MMOGs, particularly as
games that allow users to utilize increasingly customized
characters. For a PC or game console to display a char-
acter it needs to have access to the database of 3D ge-
ometry (polygons, textures, etc.) as well as behaviors

(e.g., if the character has a shield, whether the shield is
strong enough to deflect a spear or not) for that character.
Typically, when a MMOG is first played by a user, a large
number of databases for characters are already available
with the initial copy of the game, which is available locally
on the game’s optical disk or downloaded to a disk. But,
as the game progresses, if the user encounters a char-
acter or object whose database is not available locally
(e.g., if another user has created a customized charac-
ter), before that character or object can be displayed, its
database must be downloaded. This can result in a sub-
stantial delay of the game.
[0027] Given the sophistication and complexity of vid-
eo games, another challenge for video game developers
and publishers with prior art video game consoles, is that
it frequently takes 2 to 3 years to develop a video game
at a cost of tens of millions of dollars. Given that new
video game console platforms are introduced at a rate
of roughly once every five years, game developers need
to start development work on those games years in ad-
vance of the release of the new game console in order
to have video games available concurrently when the
new platform is released. Several consoles from com-
peting manufactures are sometimes released around the
same time (e.g., within a year or two of each other), but
what remains to be seen is the popularity of each console,
e.g., which console will produce the largest video game
software sales. For example, in a recent console cycle,
the Microsoft XBox 360, the Sony Playstation 3, and the
Nintendo Wii were scheduled to be introduced around
the same general timeframe. But years before the intro-
ductions the game developers essentially had to "place
their bets" on which console platforms would be more
successful than others, and devote their development
resources accordingly. Motion picture production com-
panies also have to apportion their limited production re-
sources based on what they estimate to be the likely suc-
cess of a movie well in advance of the release of the
movie. Given the growing level of investment required
for video games, game production is increasingly becom-
ing like motion picture production, and game production
companies routinely devote their production resources
based on their estimate of the future success of a partic-
ular video game. But, unlike they motion picture compa-
nies, this bet is not simply based on the success of the
production itself; rather, it is predicated on the success
of the game console the game is intended to run on.
Releasing the game on multiple consoles at once may
mitigate the risk, but this additional effort increases cost,
and frequently delays the actual release of the game.
[0028] Application software and user environments on
PCs are becoming more computationally intensive, dy-
namic and interactive, not only to make them more vis-
ually appealing to users, but also to make them more
useful and intuitive. For example, both the new Windows
Vista™ operating system and successive versions of the
Macintosh® operating system incorporate visual anima-
tion effects. Advanced graphics tools such as Maya™

9 10

EP 2 826 530 A2

8

5

10

15

20

25

30

35

40

45

50

55

from Autodesk, Inc., provide very sophisticated 3D ren-
dering and animation capability which push the limits of
state-of-the-art CPUs and GPUs. However, the compu-
tational requirements of these new tools create a number
of practical issues for users and software developers of
such products.
[0029] Since the visual display of an operating system
(OS) must work on a wide range of classes of computers
-- including prior-generation computers no longer sold,
but still upgradeable with the new OS - the OS graphical
requirements are limited to a large degree by a least com-
mon denominator of computers that the OS is targeted
for, which typically includes computers that do not include
a GPU. This severely limits the graphics capability of the
OS. Furthermore, battery-powered portably computers
(e.g., laptops) limit the visual display capability since high
computational activity in a CPU or GPU typically results
in higher power consumption and shorter battery life.
Portable computers typically include software that auto-
matically lowers processor activity to reduce power con-
sumption when the processor is not utilized. In some
computer models the user may lower processor activity
manually. For example, Sony’s VGN-SZ280P laptop
contains a switch labeled "Stamina" on one side (for low
performance, more battery life) and "Speed" on the other
(for high performance, less battery life). An OS running
on a portable computer must be able to function usably
even in the event the computer is running at a fraction of
its peak performance capability. Thus, OS graphics per-
formance often remains far below the state-of-the-art
available computational capability.
[0030] High-end computationally-intense applications
like Maya are frequently sold with the expectation that
they will be used on high-performance PCs. This typically
establishes a much higher performance, and more ex-
pensive and less portable, least common denominator
requirement. As a consequence, such applications have
a much more limited target audience than a general pur-
pose OS (or general purpose productivity application, like
Microsoft Office) and typically sell in much lower volume
than general purpose OS software or general purpose
application software. The potential audience is further
limited because often times it is difficult for a prospective
user to try out such computationally-intense applications
in advance. For example, suppose a student wants to
learn how to use Maya or a potential buyer already knowl-
edgeable about such applications wants to try out Maya
before making the investment in the purchase (which
may well involve also buying a high-end computer capa-
ble of running Maya). While either the student or the po-
tential buyer could download, or get a physical media
copy of, a demo version of Maya, if they lack a computer
capable of running Maya to its full potential (e.g., handling
a complex 3D scene), then they will be unable to make
an fully-informed assessment of the product. This sub-
stantially limits the audience for such high-end applica-
tions. It also contributes to a high selling price since the
development cost is usually amortized across a much

smaller number of purchases than those of a general-
purpose application.
[0031] High-priced applications also create more in-
centive for individuals and businesses to use pirated cop-
ies of the application software. As a result, high-end ap-
plication software suffers from rampant piracy, despite
significant efforts by publishers of such software to miti-
gate such piracy through various techniques. Still, even
when using pirated high-end applications, users cannot
obviate the need to invest in expensive state-of-the-art
PCs to run the pirated copies. So, while they may obtain
use of a software application for a fraction of its actual
retail price, users of pirated software are still required to
purchase or obtain an expensive PC in order to fully utilize
the application.
[0032] The same is true for users of high-performance
pirated video games. Although pirates may get the
games at fraction of their actual price, they are still re-
quired to purchase expensive computing hardware (e.g.,
a GPU-enhanced PC, or a high-end video game console
like the XBox 360) needed to properly play the game.
Given that video games are typically a pastime for con-
sumers, the additional cost for a high-end video game
system can be prohibitive. This situation is worse in coun-
tries (e.g., China) where the average annual income of
workers currently is quite low relative to that of the United
States. As a result, a much smaller percentage of the
population owns a high-end video game system or a high-
end PC. In such countries, "Internet cafes", in which users
pay a fee to use a computer connected to the Internet,
are quite common. Frequently, such Internet cafes have
older model or low-end PCs without high performance
features, such as a GPU, which might otherwise enable
players to play computationally-intensive video games.
This is a key factor in the success of games that run on
low-end PCs, such as Vivendi’s "World of Warcraft" which
is highly successful in China, and is commonly played in
Internet cafes there. In contrast, a computationally-inten-
sive game, like "Second Life" is much less likely to be
playable on a PC installed in a Chinese Internet café.
Such games are virtually inaccessible to users who only
have access to low-performance PCs in Internet cafes.
[0033] Barriers also exist for users who are considering
purchasing a video game and would first like to try out a
demonstration version of the game by downloading the
demo through the Internet to their home. A video game
demo is often a full-fledged version of the game with
some features disabled, or with limits placed on the
amount of game play. This may involve a long process
(perhaps hours) of downloading gigabytes of data before
the game can be installed and executed on either a PC
or a console. In the case of a PC, it may also involve
figuring out what special drivers are needed (e.g., DirectX
or OpenGL drivers) for the game, downloading the cor-
rect version, installing them, and then determining wheth-
er the PC is capable of playing the game. This latter step
may involve determining whether the PC has enough
processing (CPU and GPU) capability, sufficient RAM,

11 12

EP 2 826 530 A2

9

5

10

15

20

25

30

35

40

45

50

55

and a compatible OS (e.g., some games run on Windows
XP, but not Vista). Thus, after a long process of attempt-
ing to run a video game demo, the user may well find out
that the video game demo can’t be possibly played, given
the user’s PC configuration. Worse, once the user has
downloaded new drivers in order to try the demo, these
driver versions may be incompatible with other games or
applications the user uses regularly on the PC, thus the
installation of a demo may render previously operable
games or applications inoperable. Not only are these bar-
riers frustrating for the user, but they create barriers for
video game software publishers and video game devel-
opers to market their games.
[0034] Another problem that results in economic inef-
ficiency has to do with the fact that given PC or game
console is usually designed to accommodate a certain
level of performance requirement for applications and/or
games. For example, some PCs have more or less RAM,
slower or faster CPUs, and slower or faster GPUs, if they
have a GPUs at all. Some games or applications make
take advantage of the full computing power of a given
PC or console, while many games or applications do not.
If a user’s choice of game or application falls short of the
peak performance capabilities of the local PC or console,
then the user may have wasted money on the PC or
console for unutilized features. In the case of a console,
the console manufacturer may have paid more than was
necessary to subsidize the console cost.
[0035] Another problem that exists in the marketing
and enjoyment of video games involves allowing a user
to watch others playing games before the user commits
to the purchase of that game. Several prior art approach-
es exist for the recording of video games for replay at a
later time. For example, U.S. Patent No. 5,558,339 teach-
es recording game state information, including game
controller actions, during "gameplay" in the video game
client computer (owned by the same or different user).
This state information can be used at a later time to replay
some or all of the game action on a video game client
computer (e.g., PC or console). A significant drawback
to this approach is that for a user to view the recorded
game, the user must possess a video game client com-
puter capable of playing the game and must have the
video game application running on that computer, such
that the gameplay is identical when the recorded game
state is replayed. Beyond that, the video game applica-
tion has to be written in such a way that there is no pos-
sible execution difference between the recorded game
and the played back game.
[0036] For example, game graphics are generally com-
puted on a frame-by-frame basis. For many games, the
game logic sometimes may take shorter or longer than
one frame time to compute the graphics displayed for the
next frame, depending on whether the scene is particu-
larly complex, or if there are other delays that slow down
execution (e.g., on a PC, another process may be running
that takes away CPU cycles from the game applications).
In such a game, a "threshold" frame that is computed in

slightly less than one frame time (say a few CPU clock
cycles less) can eventually occur. When that same scene
is computed again using the exact same game state in-
formation, it could easily take a few CPU clock cycles
more than one frame time (e.g., if an internal CPU bus
is slightly out of phase with the an external DRAM bus
and it introduces a few CPU cycle times of delay, even
if there is no large delay from another process taking
away milliseconds of CPU time from game processing).
Therefore, when the game is played back the frame gets
calculated in two frame times rather than a single frame
time. Some behaviors are based on how often the game
calculates a new frame (e.g., when the game samples
the input from the game controllers). While the game is
played, this discrepancy in the time reference for different
behaviors does not impact game play, but it can result in
the played-back game producing a different result. For
example, if a basketball’s ballistics are calculated at a
steady 60 fps rate, but the game controller input is sam-
pled based on rate of computed frames, the rate of com-
puted frames may be 53 fps when the game was record-
ed, but 52 fps when the game is replayed, which can
make the difference between whether the basketball is
blocked from going into the basket or not, resulting in a
different outcome. Thus, using game state to record vid-
eo games requires very careful game software design to
ensure that the replay, using the same game state infor-
mation, produces the exact same outcome.
[0037] Another prior art approach for recording video
game is to simply record the video output of a PC or video
game system (e.g., to a VCR, DVD recorder, or to a video
capture board on a PC). The video then can be rewound
and replayed, or alternatively, the recorded video upload-
ed to the Internet, typically after being compressed. A
disadvantage to this approach is that when a 3D game
sequence is played back, the user is limited to viewing
the sequence from only the point of view from which the
sequence was recorded. In other words, the user cannot
change the point of view of the scene.
[0038] Further, when compressed video of a recorded
game sequence played on a home PC or game console
is made available to other users through the Internet,
even if the video is compressed in real-time, it may be
impossible to upload the compressed video in real-time
to the Internet. The reason why is because many homes
in the world that are connected to the Internet have highly
asymmetric broadband connections (e.g., DSL and cable
modem typically have far higher downstream bandwidth
than upstream bandwidth). Compressed high resolution
video sequences often have higher bandwidths than the
upstream bandwidth capacity of the network, making
them impossible to upload in real-time. Thus, there would
be a significant delay after the game sequence is played
(perhaps minutes or even hours) before another user on
the Internet would be able to view the game. Although
this delay is tolerable in certain situations (e.g., to watch
a game player’s accomplishments that occurred at a prior
time), it eliminates the ability to watch a game live (e.g.,

13 14

EP 2 826 530 A2

10

5

10

15

20

25

30

35

40

45

50

55

a basketball tournament, played by champion players)
or with "instant replay" capability as the game is played
live.
[0039] Another prior art approach allows a viewer with
a television receiver to watch video games live, but only
under the control of the television production crew. Some
television channels, in both the US and in other countries
provide video game viewing channels, where the televi-
sion viewing audience is able to watch certain video game
users (e.g., top-rated players playing in tournaments) on
video game channels. This is accomplished by having
the video output of the video game systems (PCs and/or
consoles) fed into the video distribution and processing
equipment for the television channel. This is not unlike
when the television channel is broadcasting a live bas-
ketball game in which several cameras provide live feeds
from different angles around the basketball court. The
television channel then is able to make use of their vid-
eo/audio processing and effects equipment to manipu-
late the output from the various video game systems. For
example, the television channel can overlay text on top
of the video from a video game that indicates the status
of different players (just as they might overlay text during
a live basketball game), and the television channel can
overdub audio from a commentator who can discuss the
action occurring during the games. Additionally, the video
game output can be combined with cameras recording
video of the actual players of the games (e.g., showing
their emotional response to the game).
[0040] One problem with this approach is that such live
video feeds must be available to the television channel’s
video distribution and processing equipment in real-time
in order for it to have the excitement of a live broadcast.
As previously discussed, however, this is often impossi-
ble when the video game system is running from the
home, especially if part of the broadcast includes live
video from a camera that is capturing real-world video of
the game player. Further, in a tournament situation, there
is a concern that an in-home gamer may modify the game
and cheat, as previously described. For these reasons,
such video game broadcasts on television channels are
often arranged with players and video game systems ag-
gregated at a common location (e.g., at a television studio
or in an arena) where the television production equipment
can accept video feeds from multiple video game sys-
tems and potentially live cameras.
[0041] Although such prior art video game television
channels can provide a very exciting presentation to the
television viewing audience that is an experience akin to
a live sporting event, e.g., with the video game players
presented as "athletes", both in terms of their actions in
the video game world, and in terms of their actions in the
real world, these video game systems are often limited
to situations where players are in close physical proximity
to one another. And, since television channels are broad-
casted, each broadcasted channel can only show one
video stream, which is selected by the television chan-
nel’s production crew. Because of these limitations and

the high cost of broadcast time, production equipment
and production crews, such television channels typically
only show top-rated players playing in top tournaments.
[0042] Additionally, a given television channel broad-
casting a full-screen image of a video game to the entire
television viewing audience shows only one video game
at a time. This severely limits a television viewer’s choic-
es. For example, a television viewer may not be interest-
ed in the game(s) shown at a given time. Another viewer
may only be interested in watching the game play of a
particular player that is not featured by the television
channel at a given time. In other cases, a viewer may
only be interested in watching a how an expert player
handles a particular level in a game. Still other viewers
may wish to control the viewpoint that a video game is
seen from, which is different from that chosen by the pro-
duction team, etc. In short, a television viewer may have
a myriad of preferences in watching video games that
are not accommodated by the particular broadcast of a
television network, even if several different television
channels are available. For all of the aforementioned rea-
sons, prior art video game television channels have sig-
nificant limitations in presenting video games to television
viewers.
[0043] Another drawback of prior art video games sys-
tems and application software systems is that they are
complex, and commonly suffer from errors, crashes
and/or unintended and undesired behaviors (collectively,
"bugs"). Although games and applications typically go
through a debugging and tuning process (frequently
called "Software Quality Assurance" or SQA) before re-
lease, almost invariably once the game or application is
released to a wide audience in the field bugs crop up.
Unfortunately, it is difficult for the software developer to
identify and track down many of the bugs after release.
It can be difficult for software developers to become
aware of bugs. Even when they learn about a bug, there
may only be a limited amount of information available to
them to identify what caused the bug. For example, a
user may call up a game developer’s customer service
line and leave a message stating that when playing the
game, the screen started to flash, then changed to a solid
blue color and the PC froze. That provides the SQA team
with very little information useful in tracking down a bug.
Some games or applications that are connected online
can sometimes provide more information in certain cas-
es. For example, a "watchdog" process can sometimes
be used to monitor the game or application for "crashes".
The watchdog process can gather statistics about the
status of the game or applications process (e.g., the sta-
tus of the stack, of the memory usage, how far the game
or applications has progressed, etc.) when it crashes and
then upload that information to the SQA team via the
Internet. But in a complex game or application, such in-
formation can take a very long time to decipher in order
to accurately determine what the user was doing at the
time of the crash. Even then, it may be impossible to
determine what sequence of events led to the crash.

15 16

EP 2 826 530 A2

11

5

10

15

20

25

30

35

40

45

50

55

[0044] Yet another problem associated with PCs and
game consoles is that they are subject to service issues
which greatly inconvenience the consumer. Service is-
sues also impact the manufacturer of the PC or game
console since they typically are required to send a special
box to safely ship the broken PC or console, and then
incur the cost of repair if the PC or console is in warranty.
The game or application software publisher can also be
impacted by the loss of sales (or online service use) by
PCs and/or consoles being in a state of repair.
[0045] Figure 1 illustrates a prior art video gaming sys-
tem such as a Sony Playstation® 3, Microsoft Xbox 360®,
Nintendo Wii™, Windows-based personal computer or
Apple Macintosh. Each of these systems includes a cen-
tral processing unit (CPU) for executing program code,
typically a graphical processing unit (GPU) for performing
advanced graphical operations, and multiple forms of in-
put/output (I/O) for communicating with external devices
and users. For simplicity, these components are shown
combined together as a single unit 100. The prior art vid-
eo gaming system of Figure 1 also is shown including an
optical media drive 104 (e.g., a DVD-ROM drive); a hard
drive 103 for storing video game program code and data;
a network connection 105 for playing multi-player games,
for downloading games, patches, demos or other media;
a random access memory (RAM) 101 for storing program
code currently being executed by the CPU/GPU 100; a
game controller 106 for receiving input commands from
the user during gameplay; and a display device 102 (e.g.,
a SDTV/HDTV or a computer monitor).
[0046] The prior art system shown in Figure 1 suffers
from several limitations. First, optical drives 104 and hard
drives 103 tend to have much slower access speeds as
compared to that of RAM 101. When working directly
through RAM 101, the CPU/GPU 100 can, in practice,
process far more polygons per second than is possible
when the program code and data is read directly off of
hard drive 103 or optical drive 104 due to the fact that
RAM 101 generally has much higher bandwidth and does
not suffer from the relatively long seek delays of disc
mechanisms. But only a limited amount of RAM is pro-
vided in these prior art systems (e.g., 256-512Mbytes).
Therefore, a "Loading..." sequence in which RAM 101 is
periodically filled up with the data for the next scene of
the video game is often required.
[0047] Some systems attempt to overlap the loading
of the program code concurrently with the gameplay, but
this can only be done when there is a known sequence
of events (e.g., if a car is driving down a road, the geom-
etry for the approaching buildings on the roadside can
be loaded while the car is driving). For complex and/or
rapid scene changes, this type of overlapping usually
does not work. For example, in the case where the user
is in the midst of a battle and RAM 101 is completely filled
with data representing the objects within view at that mo-
ment, if the user moves the view rapidly to the left to view
objects that are not presently loaded in RAM 101, a dis-
continuity in the action will result since there not be

enough time to load the new objects from Hard Drive 103
or Optical Media 104 into RAM 101.
[0048] Another problem with the system of Figure 1
arises due to limitations in the storage capacity of hard
drives 103 and optical media 104. Although disk storage
devices can be manufactured with a relatively large stor-
age capacity (e.g., 50 gigabytes or more), they still do
not provide enough storage capacity for certain scenarios
encountered in current video games. For example, as
previously mentioned, a soccer video game might allow
the user to choose among dozens of teams, players and
stadiums throughout the world. For each team, each
player and each stadium a large number of texture maps
and environment maps are needed to characterize the
3D surfaces in the world (e.g., each team has a unique
jersey, with each requiring a unique texture map).
[0049] One technique used to address this latter prob-
lem is for the game to pre-compute texture and environ-
ment maps once they are selected by the user. This may
involve a number of computationally-intensive process-
es, including decompressing images, 3D mapping, shad-
ing, organizing data structures, etc. As a result, there
may be a delay for the user while the video game is per-
forming these calculations. On way to reduce this delay,
in principle, is to perform all of these computations-in-
cluding every permutation of team, player roster, and sta-
dium - when the game was originally developed. The
released version of the game would then include all of
this pre-processed data stored on optical media 104, or
on one or more servers on the Internet with just the se-
lected pre-processed data for a given team, player roster,
stadium selection downloaded through the Internet to
hard drive 103 when the user makes a selection. As a
practical matter, however, such pre-loaded data of every
permutation possible in game play could easily be tera-
bytes of data, which is far in excess of the capacity of
today’s optical media devices. Furthermore, the data for
a given team, player roster, stadium selection could eas-
ily be hundreds of megabytes of data or more. With a
home network connection of, say, 10Mbps, it would take
longer to download this data through network connection
105 than it would to compute the data locally.
[0050] Thus, the prior art game architecture shown in
Figure 1 subjects the user to significant delays between
major scene transitions of complex games.
[0051] Another problem with prior art approaches such
as that shown in Figure 1 is that over the years video
games tend to become more advanced and require more
CPU/GPU processing power. Thus, even assuming an
unlimited amount of RAM, video games hardware re-
quirements go beyond the peak level of processing pow-
er available in these systems. As a result, users are re-
quired to upgrade gaming hardware every few years to
keep pace (or play newer games at lower quality levels).
One consequence of the trend to ever more advanced
video games is that video game playing machines for
home use are typically economically inefficient because
their cost is usually determined by the requirements of

17 18

EP 2 826 530 A2

12

5

10

15

20

25

30

35

40

45

50

55

the highest performance game they can support. For ex-
ample, an XBox 360 might be used to play a game like
"Gears of War", which demands a high performance
CPU, GPU, and hundreds of megabytes of RAM, or the
XBox 360 might be used to play Pac Man, a game from
the 1970s that requires only kilobytes of RAM and a very
low performance CPU. Indeed, an XBox 360 has enough
computing power to host many simultaneous Pac Man
games at once.
[0052] Video games machines are typically turned off
for most of the hours of a week. According to a July 2006
Nielsen Entertainment study of active gamers 13 years
and older, on average, active gamers spend fourteen
hours/week playing console video games, or just 12% of
the total hours in a week. This means that the average
video game console is idle 88% of the time, which is an
inefficient use of an expensive resource. This is particu-
larly significant given that video game consoles are often
subsidized by the manufacturer to bring down the pur-
chase price (with the expectation that the subsidy will be
earned back by royalties from future video game software
purchases).
[0053] Video game consoles also incur costs associ-
ated with almost any consumer electronic device. For
instance, the electronics and mechanisms of the systems
need to be housed in an enclosure. The manufacturer
needs to offer a service warranty. The retailer who sells
the system needs to collect a margin on either the sale
of the system and/or on the sale of video game software.
All of these factors add to the cost of the video game
console, which must either be subsidized by the manu-
facturer, passed along to the consumer, or both.
[0054] In addition, piracy is a major problem for the
video game industry. The security mechanisms utilized
on virtually every major video gaming system have been
"cracked" over the years, resulting in unauthorized cop-
ying of video games. For example, the Xbox 360 security
system was cracked in July 2006 and users are now able
to download illegal copies online. Games that are down-
loadable (e.g., games for the PC or the Mac) are partic-
ularly vulnerable to piracy. In certain regions of the world
where piracy is weakly policed there is essentially no
viable market for standalone video game software be-
cause users can buy pirated copies as readily as legal
copies for a tiny fraction of the cost. Also, in many parts
of the world the cost of a game console is such a high
percentage of income that even if piracy were controlled,
few people could afford a state-of-the-art gaming system.
[0055] In addition, the used game market reduces rev-
enue for the video game industry. When a user has be-
come tired of a game, they can sell the game to a store
which will resell the game to other users. This unauthor-
ized but common practice significantly reduces revenues
of game publishers. Similarly, a reduction in sales on the
order of 50% commonly occurs when there is a platform
transition every few years. This is because users stop
buying games for the older platforms when they know
that the newer version platform is about to be released

(e.g., when Playstation 3 is about to be released, users
stop buying Playstation 2 games). Combined, the loss of
sales and increased development costs associated with
the new platforms can have a very significant adverse
impact on the profitability of game developers.
[0056] New game consoles are also very expensive.
The Xbox 360, the Nintendo Wii, and the Sony Playsta-
tion 3 all retail for hundreds of dollars. High powered per-
sonal computer gaming systems can cost up to $8000.
This represents a significant investment for users, par-
ticularly considering that the hardware becomes obsolete
after a few years and the fact that many systems are
purchased for children.
[0057] One approach to the foregoing problems is on-
line gaming in which the gaming program code and data
are hosted on a server and delivered to client machines
on-demand as compressed video and audio streamed
over a digital broadband network. Some companies such
as G-Cluster in Finland (now a subsidiary of Japan’s
SOFTBANK Broadmedia) currently provide these serv-
ices online. Similar gaming services have become avail-
able in local networks, such as those within hotels and
offered by DSL and cable television providers. A major
drawback of these systems is the problem of latency, i.e.,
the time it takes for a signal to travel to and from the game
server, which is typically located in an operator’s "head-
end". Fast action video games (also known as "twitch"
video games) require very low latency between the time
the user performs an action with the game controller and
the time the display screen is updated showing the result
of the user action. Low latency is needed so that the user
has the perception that the game is responding "instant-
ly". Users may be satisfied with different latency intervals
depending on the type of game and the skill level of the
user. For example, 100ms of latency may be tolerable
for a slow casual game (like backgammon) or a slow-
action role playing game, but in a fast action game a
latency in excess of 70 or 80ms may cause the user to
perform more poorly in the game, and thus is unaccept-
able. For instance, in a game that requires fast reaction
time there is a sharp decline in accuracy as latency in-
creases from 50 to 100ms.
[0058] When a game or application server is installed
in a nearby, controlled network environment, or one
where the network path to the user is predictable and/or
can tolerate bandwidth peaks, it is far easier to control
latency, both in terms of maximum latency and in terms
of the consistency of the latency (e.g., so the user ob-
serves steady motion from digital video streaming
through the network). Such level of control can be
achieved between a cable TV network head-end to a
cable TV subscriber’s home, or from a DSL central office
to DSL subscriber’s home, or in a commercial office Local
Area Network (LAN) environment from a server or a user.
Also, it is possible to obtain specially-graded point-to-
point private connections between businesses which
have guaranteed bandwidth and latency. But in a game
or application system that hosts games in a server center

19 20

EP 2 826 530 A2

13

5

10

15

20

25

30

35

40

45

50

55

connected to the general Internet and then streams com-
pressed video to the user through a broadband connec-
tion, latency is incurred from many factors, resulting in
severe limitations in the deployment of prior art systems.
[0059] In a typical broadband-connected home, a user
may have a DSL or cable modem for broadband service.
Such broadband services commonly incur as much as a
25ms round-trip latency (and at times more) between the
user’s home and the general Internet. In addition, there
are round-trip latencies incurred from routing data
through the Internet to a server center. The latency
through the Internet varies based on the route that the
data is given and the delays it incurs as it is routed. In
addition to routing delays, round-trip latency is also in-
curred due to the speed of light traveling through the op-
tical fiber that interconnects most of the Internet. For ex-
ample, for each 1000 miles, approximately 22ms is in-
curred in round-trip latency due to the speed of light
through the optical fiber and other overhead.
[0060] Additional latency can occur due to the data rate
of the data streamed through the Internet. For example,
if a user has DSL service that is sold as "6Mbps DSL
service", in practice, the user will probably get less than
5Mbps of downstream throughput at best, and will likely
see the connection degrade periodically due to various
factors such as congestion during peak load times at the
Digital Subscriber Line Access Multiplexer (DSLAM). A
similar issue can occur reducing a the data rate of a cable
modem is used for a connection sold as "6Mbps cable
modem service" to far less than that, if there is congestion
in the local shared coaxial cable looped through the
neighborhood, or elsewhere in the cable modem system
network. If data packets at a steady rate of 4Mbps are
streamed as one-way in User Datagram Protocol (UDP)
format from a server center through such connections, if
everything is working well, the data packets will pass
through without incurring additional latency, but if there
is congestion (or other impediments) and only 3.5Mbps
is available to stream data to the user, then in a typical
situation either packets will be dropped, resulting in lost
data, or packets will queue up at the point of congestion,
until they can be sent, thereby introducing additional la-
tency. Different points of congestion have different queu-
ing capacity to hold delayed packets, so in some cases
packets that can’t make it through the congestion are
dropped immediately. In other cases, several megabits
of data are queued up and eventually be sent. But, in
almost all cases, queues at points of congestion have
capacity limits, and once those limits are exceeded, the
queues will overflow and packets will be dropped. Thus,
to avoid incurring additional latency (or worse, loss of
packets), it is necessary to avoid exceeding the data rate
capacity from the game or application server to the user.
[0061] Latency is also incurred by the time required to
compress video in the server and decompress video in
the client device. Latency is further incurred while a video
game running on a server is calculating the next frame
to be displayed. Currently available video compression

algorithms suffer from either high data rates or high la-
tency. For example, motion JPEG is an intraframe-only
lossy compression algorithm that is characterized by low-
latency. Each frame of video is compressed independ-
ently of each other frame of video. When a client device
receives a frame of compressed motion JPEG video, it
can immediately decompress the frame and display it,
resulting in very low latency. But because each frame is
compressed separately, the algorithm is unable to exploit
similarities between successive frames, and as a result
intraframe-only video compression algorithms suffer
from very high data rates. For example, 60 fps (frames
per second) 640x480 motion JPEG video may require
40Mbps (megabits per second) or more of data. Such
high data rates for such low resolution video windows
would be prohibitively expensive in many broadband ap-
plications (and certainly for most consumer Internet-
based applications). Further, because each frame is
compressed independently, artifacts in the frames that
may result from the lossy compression are likely to ap-
pear in different places in successive frames. This can
results in what appears to the viewer as a moving visual
artifacts when the video is decompressed.
[0062] Other compression algorithms, such as
MPEG2, H.264 or VC9 from Microsoft Corporation as
they are used in prior art configurations, can achieve high
compression ratios, but at the cost of high latency. Such
algorithms utilize interframe as well as intraframe com-
pression. Periodically, such algorithms perform an intra-
frame-only compression of a frame. Such a frame is
known as a key frame (typically referred to as an "I"
frame). Then, these algorithms typically compare the I
frame with both prior frames and successive frames.
Rather than compressing the prior frames and succes-
sive frames independently, the algorithm determines
what has changed in the image from the I frame to the
prior and successive frames, and then stores those
changes as what are called "B" frames for the changes
preceding the I frame and "P" frames for the changes
following the I frame. This results in much lower data
rates than intraframe-only compression. But, it typically
comes at the cost of higher latency. An I frame is typically
much larger than a B or P frame (often 10 times larger),
and as a result, it takes proportionately longer to transmit
at a given data rate.
[0063] Consider, for example, a situation where the I
frames are 10X the size of B and P frames, and there
are 29 B frames + 30 P frames = 59 interframes for every
single I intraframe, or 60 frames total for each "Group of
Frames" (GOP). So, at 60 fps, there is 1 60-frame GOP
each second. Suppose the transmission channel has a
maximum data rate of 2Mbps. To achieve the highest
quality video in the channel, the compression algorithm
would produce a 2Mbps data stream, and given the
above ratios, this would result in 2 Megabits (Mb) /
(59+10) = 30,394 bits per intraframe and 303,935 bits
per I frame. When the compressed video stream is re-
ceived by the decompression algorithm, in order for the

21 22

EP 2 826 530 A2

14

5

10

15

20

25

30

35

40

45

50

55

video to play steadily, each frame needs to decom-
pressed and displayed at a regular interval (e.g., 60 fps).
To achieve this result, if any frame is subject to transmis-
sion latency, all of the frames need to be delayed by at
least that latency, so the worst-case frame latency will
define the latency for every video frame. The I frames
introduce the longest transmission latencies since they
are largest, and an entire I frame would have to be re-
ceived before the I frame could be decompressed and
displayed (or any interframe dependent on the I frame).
Given that the channel data rate is 2Mbps, it will take
303,935/2Mb = 145ms to transmit an I frame.
[0064] An interframe video compression system as de-
scribed above using a large percentage of the bandwidth
of the transmission channel will be subject to long laten-
cies due to the large size of an I frame relative to the
average size of a frame. Or, to put it another way, while
prior art interframe compression algorithms achieve a
lower average per-frame data rate than intraframe-only
compression algorithms (e.g., 2Mbps vs. 40Mbps), they
still suffer from a high peak per-frame data rate (e.g.,
303,935 * 60 = 18.2Mbps) because of the large I frames.
Bear in mind, though that the above analysis assumes
that the P and B frames are all much smaller than the I
frames. While this is generally true, it is not true for frames
with high image complexity uncorrelated with the prior
frame, high motion, or scene changes. In such situations,
the P or B frames can become as large as I frames (if a
P or B frame gets larger than an I frame, a sophisticated
compression algorithm will typically "force" an I frame
and replace the P or B frame with an I frame). So, I frame-
sized data rate peaks can occur at any moment in a digital
video stream. Thus, with compressed video, when the
average video data rate approaches data rate capacity
of the transmission channels (as is frequently the case,
given the high data rate demands for video) the high peak
data rates from I frames or large P or B frames result in
a high frame latency.
[0065] Of course, the above discussion only charac-
terizes the compression algorithm latency created by
large B, P or I frames in a GOP. If B frames are used,
the latency will be even higher. The reason why is be-
cause before a B frame can be displayed, all of the B
frames after the B frame and the I frame must be received.
Thus, in a group of picture (GOP) sequence such as
BBBBBIPPPPPBBBBBIPPPPP, where there are 5 B
frames before each I frame, the first B frame can not be
displayed by the video decompressor until the subse-
quent B frames and I frame are received. So, if video is
being streamed at 60fps (i.e., 16.67ms/frame), before
the first B frame can be decompressed, five B frames
and the I frame will take 16.67 * 6 = 100ms to receive,
no matter how fast the channel bandwidth is, and this is
with just 5 B frames. Compressed video sequences with
30 B frames are quite common. And, at a low channel
bandwidth like 2Mbps, the latency impact caused by the
size of the I frame is largely additive to the latency impact
due to waiting for B frames to arrive. Thus, on a 2Mbps

channel, with a large number of B frames it is quite easy
to exceed 500ms of latency or more using prior art video
compression technology. If B frames are not used (at the
cost of a lower compression ratio for given quality level),
the B frame latency is not incurred, but the latency caused
by the peak frame sizes, described above, is still incurred.
[0066] The problem is exacerbated by very the nature
of many video games. Video compression algorithms uti-
lizing the GOP structure described above have been
largely optimized for use with live video or motion picture
material intended for passive viewing. Typically, the cam-
era (whether a real camera, or a virtual camera in the
case of a computer-generated animation) and scene is
relatively steady, simply because if the camera or scene
moves around too jerkily, the video or movie material is
(a) typically unpleasant to watch and (b) if it is being
watched, usually the viewer is not closely following the
action when the camera jerks around suddenly (e.g., if
the camera is bumped when shooting a child blowing out
the candles on a birthday cake and suddenly jerks away
from the cake and back again, the viewers are typically
focused on the child and the cake, and disregard the brief
interruption when the camera suddenly moves). In the
case of a video interview, or a video teleconference, the
camera may be held in a fixed position and not move at
all, resulting in very few data peaks at all. But 3D high
action video games are characterized by constant motion
(e.g., consider a 3D racing, where the entire frame is in
rapid motion for the duration of the race, or consider first-
person shooters, where the virtual camera is constantly
moving around jerkily). Such video games can result in
frame sequences with large and frequent peaks where
the user may need to clearly see what is happening dur-
ing those sudden motions. As such, compression arti-
facts are far less tolerable in 3D high action video games.
Thus, the video output of many video games, by their
nature, produces a compressed video stream with very
high and frequent peaks.
[0067] Given that users of fast-action video games
have little tolerance for high latency, and given all of the
above causes of latency, to date there have been limita-
tions to server-hosted video games that stream video on
the Internet. Further, users of applications that require a
high degree of interactivity suffer from similar limitations
if the applications are hosted on the general Internet and
stream video. Such services require a network configu-
ration in which the hosting servers are set up directly in
a head end (in the case of cable broadband) or the central
office (in the case of Digital Subscriber Lines (DSL)), or
within a LAN (or on a specially-graded private connec-
tion) in a commercial setting, so that the route and dis-
tance from the client device to the server is controlled to
minimize latency and peaks can be accommodated with-
out incurring latency. LANs (typically rated at 100Mbps-
1Gbps) and leased lines with adequate bandwidth typi-
cally can support peak bandwidth requirements (e.g.,
18Mbps peak bandwidth is a small fraction of a 100Mbps
LAN capacity).

23 24

EP 2 826 530 A2

15

5

10

15

20

25

30

35

40

45

50

55

[0068] Peak bandwidth requirements can also be ac-
commodated by residential broadband infrastructure if
special accommodations are made. For example, on a
cable TV system, digital video traffic can be given dedi-
cated bandwidth which can handle peaks, such as large
I frames. And, on a DSL system, a higher speed DSL
modem can be provisioned, allowing for high peaks, or
a specially-graded connection can provisioned which can
handle a higher data rates. But, conventional cable mo-
dem and DSL infrastructure attached to the general In-
ternet have far less tolerance for peak bandwidth require-
ments for compressed video. So, online services that
host video games or applications in server centers a long
distance from the client devices, and then stream the
compressed video output over the Internet through con-
ventional residential broadband connections suffer from
significant latency and peak bandwidth limitations - par-
ticularly with respect to games and applications which
require very low latency (e.g., first person shooters and
other multi-user, interactive action games, or applica-
tions requiring a fast response time).

BRIEF DESCRIPTION OF THE DRAWINGS

[0069] The present disclosure will be understood more
fully from the detailed description that follows and from
the accompanying drawings, which however, should not
be taken to limit the disclosed subject matter to the spe-
cific embodiments shown, but are for explanation and
understanding only.

FIG. 1 illustrates an architecture of a prior art video
gaming system.
FIGS. 2a-b illustrate a high level system architecture
according to one embodiment.
FIG. 3 illustrates actual, rated, and required data
rates for communication between a client and a serv-
er.
FIG. 4a illustrates a hosting service and a client em-
ployed according to one embodiment.
FIG. 4b illustrates exemplary latencies associated
with communication between a client and hosting
service.
FIG 4c illustrates a client device according to one
embodiment.
FIG 4d illustrates a client device according to another
embodiment.
FIG 4e illustrates an example block diagram of the
client device in Figure 4c.
FIG 4f illustrates an example block diagram of the
client device in Figure 4d.
FIG. 5 illustrates an example form of video compres-
sion which may be employed according to one em-
bodiment.
FIG. 6a illustrates an example form of video com-
pression which may be employed in another embod-
iment.
FIG. 6b illustrates peaks in data rate associated with

transmitting a low complexity, low action video se-
quence.
FIG. 6c illustrates peaks in data rate associated with
transmitting a high complexity, high action video se-
quence.
FIGS. 7a-b illustrate example video compression
techniques employed in one embodiment.
FIG. 8 illustrates additional example video compres-
sion techniques employed in one embodiment.
FIGS. 9a-c illustrate example techniques employed
in one embodiment for alleviating data rate peaks.
FIGS. 10a-b illustrate one embodiment which effi-
ciently packs image tiles within packets.
FIGS. 11a-d illustrate embodiments which employ
forward error correction techniques.
FIG. 12 illustrates one embodiment which uses multi-
core processing units for compression.
FIGS. 13a-b illustrate geographical positioning and
communication between hosting services according
to various embodiments.
FIG. 14 illustrates exemplary latencies associated
with communication between a client and a hosting
service.
FIG. 15 illustrates an example hosting service server
center architecture.
FIG. 16 illustrates an example screen shot of one
embodiment of a user interface which includes a plu-
rality of live video windows.
FIG. 17 illustrates the user interface of Figure 16
following the selection of a particular video window.
FIG. 18 illustrates the user interface of Figure 17
following zooming of the particular video window to
full screen size.
FIG. 19 illustrates an example collaborative user vid-
eo data overlaid on the screen of a multiplayer game.
FIG. 20 illustrates an example user page for a game
player on a hosting service.
FIG. 21 illustrates an example 3D interactive adver-
tisement.
FIG. 22 illustrates an example sequence of steps for
producing a photoreal image having a textured sur-
face from surface capture of a live performance.
FIG. 23 illustrates an example user interface page
that allows for selection of linear media content.
FIG. 24 is a graph that illustrates the amount of time
that elapses before the web page is live versus con-
nection speed.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[0070] In the following description specific details are
set forth, such as device types, system configurations,
communication methods, etc., in order to provide a thor-
ough understanding of the present disclosure. However,
persons having ordinary skill in the relevant arts will ap-
preciate that these specific details may not be needed to
practice the embodiments described.
[0071] Figures 2a-b provide a high-level architecture

25 26

EP 2 826 530 A2

16

5

10

15

20

25

30

35

40

45

50

55

of two embodiments in which video games and software
applications are hosted by a hosting service 210 and ac-
cessed by client devices 205 at user premises 211 (note
that the "user premises" means the place wherever the
user is located, including outdoors if using a mobile de-
vice) over the Internet 206 (or other public or private net-
work) under a subscription service. The client devices
205 may be general-purpose computers such as Micro-
soft Windows- or Linux-based PCs or Apple, Inc. Macin-
tosh computers with a wired or wireless connection to
the Internet either with internal or external display device
222, or they may be dedicated client devices such as a
set-top box (with a wired or wireless connection to the
Internet) that outputs video and audio to a monitor or TV
set 222, or they may be mobile devices, presumably with
a wireless connection to the Internet.
[0072] Any of these devices may have their own user
input devices (e.g., keyboards, buttons, touch screens,
track pads or inertial-sensing wands, video capture cam-
eras and/or motion-tracking cameras, etc.), or they may
use external input devices 221 (e.g., keyboards, mice,
game controllers, inertial sensing wand, video capture
cameras and/or motion tracking cameras, etc.), connect-
ed with wires or wirelessly. As described in greater detail
below, the hosting service 210 includes servers of vari-
ous levels of performance, including those with high-pow-
ered CPU/GPU processing capabilities. During playing
of a game or use of an application on the hosting service
210, a home or office client device 205 receives keyboard
and/or controller input from the user, and then it transmits
the controller input through the Internet 206 to the hosting
service 210 that executes the gaming program code in
response and generates successive frames of video out-
put (a sequence of video images) for the game or appli-
cation software (e.g., if the user presses a button which
would direct a character on the screen to move to the
right, the game program would then create a sequence
of video images showing the character moving to the
right). This sequence of video images is then com-
pressed using a low-latency video compressor, and the
hosting service 210 then transmits the low-latency video
stream through the Internet 206. The home or office client
device then decodes the compressed video stream and
renders the decompressed video images on a monitor
or TV. Consequently, the computing and graphical hard-
ware requirements of the client device 205 are signifi-
cantly reduced. The client 205 only needs to have the
processing power to forward the keyboard/controller in-
put to the Internet 206 and decode and decompress a
compressed video stream received from the Internet 206,
which virtually any personal computer is capable of doing
today in software on its CPU (e.g., a Intel Corporation
Core Duo CPU running at approximately 2GHz is capable
of decompressing 720p HDTV encoded using compres-
sors such as H.264 and Windows Media VC9). And, in
the case of any client devices, dedicated chips can also
perform video decompression for such standards in real-
time at far lower cost and with far less power consumption

than a general-purpose CPU such as would be required
for a modern PC. Notably, to perform the function of for-
warding controller input and decompressing video, home
client devices 205 do not require any specialized graph-
ics processing units (GPUs), optical drive or hard drives,
such as the prior art video game system shown in Figure
1.
[0073] As games and applications software become
more complex and more photo-realistic, they will require
higher-performance CPUs, GPUs, more RAM, and larger
and faster disk drives, and the computing power at the
hosting service 210 may be continually upgraded, but
the end user will not be required to update the home or
office client platform 205 since its processing require-
ments will remain constant for a display resolution and
frame rate with a given video decompression algorithm.
Thus, the hardware limitations and compatibility issues
seen today do not exist in the system illustrated in Figures
2a-b.
[0074] Further, because the game and application soft-
ware executes only in servers in the hosting service 210,
there never is a copy of the game or application software
(either in the form of optical media, or as downloaded
software) in the user’s home or office ("office" as used
herein unless otherwise qualified shall include any non-
residential setting, including, schoolrooms, for example).
This significantly mitigates the likelihood of a game or
application software being illegally copied (pirated), as
well as mitigating the likelihood of a valuable database
that might be use by a game or applications software
being pirated. Indeed, if specialized servers are required
(e.g., requiring very expensive, large or noisy equipment)
to play the game or application software that are not prac-
tical for home or office use, then even if a pirated copy
of the game or application software were obtained, it
would not be operable in the home or office.
[0075] In one embodiment, the hosting service 210
provides software development tools to the game or ap-
plication software developers (which refers generally to
software development companies, game or movie studi-
os, or game or applications software publishers) 220
which design video games so that they may design
games capable of being executed on the hosting service
210. Such tools allow developers to exploit features of
the hosting service that would not normally be available
in a standalone PC or game console (e.g., fast access
to very large databases of complex geometry ("geome-
try" unless otherwise qualified shall be used herein to
refer to polygons, textures, rigging, lighting, behaviors
and other components and parameters that define 3D
datasets)).
[0076] Different business models are possible under
this architecture. Under one model, the hosting service
210 collects a subscription fee from the end user and
pays a royalty to the developers 220, as shown in Figure
2a. In an alternate implementation, shown in Figure 2b,
the developers 220 collects a subscription fee directly
from the user and pays the hosting service 210 for hosting

27 28

EP 2 826 530 A2

17

5

10

15

20

25

30

35

40

45

50

55

the game or application content. These underlying prin-
ciples are not limited to any particular business model
for providing online gaming or application hosting.

COMPRESSED VIDEO CHARACTERISTICS

[0077] As discussed previously, one significant prob-
lem with providing video game services or applications
software services online is that of latency. A latency of
70-80ms(from the point a input device is actuated by the
user to the point where a response is displayed on the
display device) is at the upper limit for games and appli-
cations requiring a fast response time. However, this is
very difficult to achieve in the context of the architecture
shown in Figures 2a and 2b due to a number of practical
and physical constraints.
[0078] As indicated in Figures 3, when a user sub-
scribes to an Internet service, the connection is typically
rated by a nominal maximum data rate 301 to the user’s
home or office. Depending on the provider’s policies and
routing equipment capabilities, that maximum data rate
may be more or less strictly enforced, but typically the
actual available data rate is lower for one of many differ-
ent reasons. For example, there may be too much net-
work traffic at the DSL central office or on the local cable
modem loop, or there may be noise on the cabling caus-
ing dropped packets, or the provider may establish a
maximum number of bits per month per user. Currently,
the maximum downstream data rate for cable and DSL
services typically ranges from several hundred Kilo-
bits/second (Kbps) to 30 Mbps. Cellular services are typ-
ically limited to hundreds of Kbps of downstream data.
However, the speed of the broadband services and the
number of users who subscribe to broadband services
will increase dramatically over time. Currently, some an-
alysts estimate that 33% of US broadband subscribers
have a downstream data rate of 2Mbps or more. For ex-
ample, some analysts predict that by 2010, over 85% of
US broadband subscribers will have a data rate of 2Mbps
or more.
[0079] As indicated in Figure 3, the actual available
max data rate 302 may fluctuate over time. Thus, in a
low-latency, online gaming or application software con-
text it is sometimes difficult to predict the actual available
data rate for a particular video stream. If the data rate
303 required to sustain a given level of quality at given
number of frames-per-second (fps) at a given resolution
(e.g., 640 x 480 @ 60 fps) for a certain amount of scene
complexity and motion rises above the actual available
max data rate 302 (as indicated by the peak in Figure 3),
then several problems may occur. For example, some
internet services will simply drop packets, resulting in lost
data and distorted/lost images on the user’s video
screen. Other services will temporarily buffer (i.e., queue
up) the additional packets and provide the packets to the
client at the available data rate, resulting in an increase
in latency - an unacceptable result for many video games
and applications. Finally, some Internet service providers

will view the increase in data rate as a malicious attack,
such as a denial of service attack (a well known technique
user by hackers to disable network connections), and will
cut off the user’s Internet connection for a specified time
period. Thus, the embodiments described herein take
steps to ensure that the required data rate for a video
game does not exceed the maximum available data rate.

HOSTING SERVICE ARCHITECTURE

[0080] Figure 4a illustrates an architecture of the host-
ing service 210 according to one embodiment. The host-
ing service 210 can either be located in a single server
center, or can be distributed across a plurality of server
centers (to provide for lower latency connections to users
that have lower latency paths to certain server centers
than others, to provide for load balancing amongst users,
and to provide for redundancy in the case one or more
server centers fail). The hosting service 210 may even-
tually include hundreds of thousands or even millions of
servers 402, serving a very large user base. A hosting
service control system 401 provides overall control for
the hosting service 210, and directs routers, servers, vid-
eo compression systems, billing and accounting sys-
tems, etc. In one embodiment, the hosting service control
system 401 is implemented on a distributed processing
Linux-based system tied to RAID arrays used to store
the databases for user information, server information,
and system statistics. In the foregoing descriptions, the
various actions implemented by the hosting service 210,
unless attributed to other specific systems, are initiated
and controlled by the hosting service control system 401.
[0081] The hosting service 210 includes a number of
servers 402 such as those currently available from Intel,
IBM and Hewlett Packard, and others. Alternatively, the
servers 402 can be assembled in a custom configuration
of components, or can eventually be integrated so an
entire server is implemented as a single chip. Although
this diagram shows a small number of servers 402 for
the sake of illustration, in an actual deployment there may
be as few as one server 402 or as many as millions of
servers 402 or more. The servers 402 may all be config-
ured in the same way (as an example of some of the
configuration parameters, with the same CPU type and
performance; with or without a GPU, and if with a GPU,
with the same GPU type and performance; with the same
number of CPUs and GPUs; with the same amount of
and type/speed of RAM; and with the same RAM config-
uration), or various subsets of the servers 402 may have
the same configuration (e.g., 25% of the servers can be
configured a certain way, 50% a different way, and 25%
yet another way), or every server 402 may be different.
[0082] In one embodiment, the servers 402 are disk-
less, i.e., rather than having its own local mass storage
(be it optical or magnetic storage, or semiconductor-
based storage such as Flash memory or other mass stor-
age means serving a similar function), each server ac-
cesses shared mass storage through fast backplane or

29 30

EP 2 826 530 A2

18

5

10

15

20

25

30

35

40

45

50

55

network connection. In one embodiment, this fast con-
nection is a Storage Area Network (SAN) 403 connected
to a series of Redundant Arrays of Independent Disks
(RAID) 405 with connections between devices imple-
mented using Gigabit Ethernet. As is known by those of
skill in the art, a SAN 403 may be used to combine many
RAID arrays 405 together, resulting in extremely high
bandwidth-approaching or potentially exceeding the
bandwidth available from the RAM used in current gam-
ing consoles and PCs. And, while RAID arrays based on
rotating media, such as magnetic media, frequently have
significant seek-time access latency, RAID arrays based
on semiconductor storage can be implemented with
much lower access latency. In another configuration,
some or all of the servers 402 provide some or all of their
own mass storage locally. For example, a server 402
may store frequently-accessed information such as its
operating system and a copy of a video game or appli-
cation on low-latency local Flash-based storage, but it
may utilize the SAN to access RAID Arrays 405 based
on rotating media with higher seek latency to access large
databases of geometry or game state information on a
less frequent bases.
[0083] In addition, in one embodiment, the hosting
service 210 employs low-latency video compression log-
ic 404 described in detail below. The video compression
logic 404 may be implemented in software, hardware, or
any combination thereof (certain embodiments of which
are described below). Video compression logic 404 in-
cludes logic for compressing audio as well as visual ma-
terial.
[0084] In operation, while playing a video game or us-
ing an application at the user premises 211 via a key-
board, mouse, game controller or other input device 421,
control signal logic 413 on the client 415 transmits control
signals 406a-b (typically in the form of UDP packets) rep-
resenting the button presses (and other types of user
inputs) actuated by the user to the hosting service 210.
The control signals from a given user are routed to the
appropriate server (or servers, if multiple servers are re-
sponsive to the user’s input device) 402. As illustrated in
Figure 4a, control signals 406a may be routed to the
servers 402 via the SAN. Alternatively or in addition, con-
trol signals 406b may be routed directly to the servers
402 over the hosting service network (e.g., an Ethernet-
based local area network). Regardless of how they are
transmitted, the server or servers execute the game or
application software in response to the control signals
406a-b. Although not illustrated in Figure 4a, various net-
working components such as a firewall(s) and/or gate-
way(s) may process incoming and outgoing traffic at the
edge of the hosting service 210 (e.g., between the hosting
service 210 and the Internet 410) and/or at the edge of
the user premises 211 between the Internet 410 and the
home or office client 415. The graphical and audio output
of the executed game or application software- i.e., new
sequences of video images-are provided to the low-la-
tency video compression logic 404 which compresses

the sequences of video images according to low-latency
video compression techniques, such as those described
herein and transmits a compressed video stream, typi-
cally with compressed or uncompressed audio, back to
the client 415 over the Internet 410 (or, as described be-
low, over an optimized high speed network service that
bypasses the general Internet). Low-latency video de-
compression logic 412 on the client 415 then decom-
presses the video and audio streams and renders the
decompressed video stream, and typically plays the de-
compressed audio stream, on a display device 422 Al-
ternatively, the audio can be played on speakers sepa-
rate from the display device 422 or not at all. Note that,
despite the fact that input device 421 and display device
422 are shown as free-standing devices in Figures 2a
and 2b, they may be integrated within client devices such
as portable computers or mobile devices.
[0085] Home or office client 415 (described previously
as home or office client 205 in Figures 2a and 2b) may
be a very inexpensive and low-power device, with very
limited computing or graphics performance and may well
have very limited or no local mass storage. In contrast,
each server 402, coupled to a SAN 403 and multiple
RAIDs 405 can be an exceptionally high performance
computing system, and indeed, if multiple servers are
used cooperatively in a parallel-processing configura-
tion, there is almost no limit to the amount of computing
and graphics processing power that can be brought to
bear. And, because of the low-latency video compression
404 and low-latency video compression 412, perceptu-
ally to the user, the computing power of the servers 402
is being provided to the user. When the user presses a
button on input device 421, the image on display 422 is
updated in response to the button press perceptually with
no meaningful delay, as if the game or application soft-
ware were running locally. Thus, with a home or office
client 415 that is a very low performance computer or just
an inexpensive chip that implements the low-latency vid-
eo decompression and control signal logic 413, a user is
provided with effectively arbitrary computing power from
a remote location that appears to be available locally.
This gives users the power to play the most advanced,
processor-intensive (typically new) video games and the
highest performance applications.
[0086] Figure 4c shows a very basic and inexpensive
home or office client device 465. This device is an em-
bodiment of home or office client 415 from Figures 4a
and 4b. It is approximately 2 inches long. It has an Eth-
ernet jack 462 that interfaces with an Ethernet cable with
Power over Ethernet (PoE), from which it derives its pow-
er and its connectivity to the Internet. It is able to run
Network Address Translation (NAT) within a network that
supports NAT. In an office environment, many new Eth-
ernet switches have PoE and bring PoE directly to a Eth-
ernet jack in an office. It such a situation, all that is re-
quired is an Ethernet cable from the wall jack to the client
465. If the available Ethernet connection does not carry
power (e.g., in a home with a DSL or cable modem, but

31 32

EP 2 826 530 A2

19

5

10

15

20

25

30

35

40

45

50

55

no PoE), then there are inexpensive wall "bricks" (i.e.,
power supplies) available that will accept an unpowered
Ethernet cable and output Ethernet with PoE.
[0087] The client 465 contains control signal logic 413
(of Figure 4a) that is coupled to a Bluetooth wireless in-
terface, which interfaces with Bluetooth input devices
479, such as a keyboard, mouse, game controller and/or
microphone and/or headset. Also, one embodiment of
client 465 is capable of outputting video at 120fps coupled
with a display device 468 able to support 120fps video
and signal (typically through infrared) a pair of shuttered
glasses 466 to alternately shutter one eye, then the other
with each successive frame. The effect perceived by the
user is that of a stereoscopic 3D image that "jumps out"
of the display screen. One such display device 468 that
supports such operation is the Samsung HL-T5076S.
Since the video stream for each eye is separate, in one
embodiment two independent video streams are com-
pressed by the hosting service 210, the frames are inter-
leaved in time, and the frames are decompressed as two
independent decompression processes within client 465.
[0088] The client 465 also contains low latency video
decompression logic 412, which decompresses the in-
coming video and audio and output through the HDMI
(High-Definition Multimedia Interface),connector 463
which plugs into an SDTV (Standard Definition Televi-
sion) or HDTV (High Definition Television) 468, providing
the TV with video and audio, or into a monitor 468 that
supports HDMI. If the user’s monitor 468 does not support
HDMI, then an HDMI-to-DVI (Digital Visual Interface) can
be used, but the audio will be lost. Under the HDMI stand-
ard, the display capabilities (e.g. supported resolutions,
frame rates) 464 are communicated from the display de-
vice 468, and this information is then passed back
through the Internet connection 462 back to the hosting
service 210 so it can stream compressed video in a for-
mat suitable for the display device.
[0089] Figure 4d shows a home or office client device
475 that is the same as the home or office client device
465 shown in Figure 4c except that is has more external
interfaces. Also, client 475 can accept either PoE for pow-
er, or it can run off of an external power supply adapter
(not shown) that plugs in the wall. Using client 475 USB
input, video camera 477 provides compressed video to
client 475, which is uploaded by client 475 to hosting
service 210 for use described below. Built into camera
477 is a low-latency compressor utilizing the compres-
sion techniques described below.
[0090] In addition to having an Ethernet connector for
its Internet connection, client 475 also has an 802.11 g
wireless interface to the Internet. Both interfaces are able
to use NAT within a network that supports NAT.
[0091] Also, in addition to having an HDMI connector
to output video and audio, client 475 also has a Dual Link
DVI-I connector, which includes analog output (and with
a standard adapter cable will provide VGA output). It also
has analog outputs for composite video and S-video.
[0092] For audio, the client 475 has left/right analog

stereo RCA jacks, and for digital audio output it has a
TOSLINK output.
[0093] In addition to a Bluetooth wireless interface to
input devices 479, it also has USB jacks to interface to
input devices.
[0094] Figure 4e shows one embodiment of the internal
architecture of client 465. Either all or some of the devices
shown in the diagram can be implemented in an Field
Programmable Logic Array, an custom ASIC or in several
discrete devices, either custom designed or off-the-shelf.
[0095] Ethernet with PoE 497 attaches to Ethernet In-
terface 481. Power 499 is derived from the Ethernet with
PoE 497 and is connected to the rest of the devices in
the client 465. Bus 480 is a common bus for communi-
cation between devices.
[0096] Control CPU 483 (almost any small CPU, such
as a MIPS R4000 series CPU at 100MHz with embedded
RAM is adequate) running a small client control applica-
tion from Flash 476 implements the protocol stack for the
network (i.e. Ethernet interface) and also communicates
with the Hosting Service 210, and configures all of the
devices in the client 465. It also handles interfaces with
the input devices 469 and sends packets back to the
hosting service 210 with user controller data, protected
by Forward Error Correction, if necessary. Also, Control
CPU 483 monitors the packet traffic (e.g. if packets are
lost or delayed and also timestamps their arrival). This
information is sent back to the hosting service 210 so
that it can constantly monitor the network connection and
adjust what it sends accordingly. Flash memory 476 is
initially loaded at the time of manufacture with the control
program for Control CPU 483 and also with a serial
number that is unique to the particular Client 465 unit.
This serial number allows the hosting service 210 to
uniquely identify the Client 465 unit.
[0097] Bluetooth interface 484 communicates to input
devices 469 wirelessly through its antenna, internal to
client 465.
[0098] Video decompressor 486 is a low-latency video
decompressor configured to implement the video decom-
pression described herein. A large number of video de-
compression devices exist, either off-the-shelf, or as In-
tellectual Property (IP) of a design that can be integrated
into an FPGA or a custom ASIC. One company offering
IP for an H.264 decoder is Ocean Logic of Manly, NSW
Australia. The advantage of using IP is that the compres-
sion techniques used herein do not conform to compres-
sion standards. Some standard decompressors are flex-
ible enough to be configured to accommodate the com-
pression techniques herein, but some can not. But, with
IP, there is complete flexibility in redesigning the decom-
pressor as needed.
[0099] The output of the video decompressor is cou-
pled to the video output subsystem 487, which couples
the video to the video output of the HDMI interface 490.
[0100] The audio decompression subsystem 488 is im-
plemented either using a standard audio decompressor
that is available, or it can be implemented as IP, or the

33 34

EP 2 826 530 A2

20

5

10

15

20

25

30

35

40

45

50

55

audio decompression can be implemented within the
control processor 483 which could, for example, imple-
ment the Vorbis audio decompressor.
[0101] The device that implements the audio decom-
pression is coupled to the audio output subsystem 489
that couples the audio to the audio output of the HDMI
interface 490
[0102] Figure 4f shows one embodiment of the internal
architecture of client 475. As can be seen, the architec-
ture is the same as that of client 465 except for additional
interfaces and optional external DC power from a power
supply adapter that plugs in the wall, and if so used, re-
places power that would come from the Ethernet PoE
497. The functionality that is in common with client 465
will not be repeated below, but the additional functionality
is described as follows.
[0103] CPU 483 communicates with and configures
the additional devices.
[0104] WiFi subsystem 482 provides wireless Internet
access as an alternative to Ethernet 497 through its an-
tenna. WiFi subsystems are available from a wide range
of manufacturers, including Atheros Communications of
Santa Clara, CA.
[0105] USB subsystem 485 provides an alternative to
Bluetooth communication for wired USB input devices
479. USB subsystems are quite standard and readily
available for FPGAs and ASICs, as well as frequently
built into off-the-shelf devices performing other functions,
like video decompression.
[0106] Video output subsystem 487 produces a wider
range of video outputs than within client 465. In addition
to providing HDMI 490 video output, it provides DVI-I
491, S-video 492, and composite video 493. Also, when
the DVI-I 491 interface is used for digital video, display
capabilities 464 are passed back from the display device
to the control CPU 483 so that it can notify the hosting
service 210 of the display device 478 capabilities. All of
the interfaces provided by the video output subsystem
487 are quite standard interfaces and readily available
in many forms.
[0107] Audio output subsystem 489 outputs audio dig-
itally through digital interface 494 (S/PDIF and/or Toslink)
and audio in analog form through stereo analog interface
495.

ROUND-TRIP LATENCY ANALYSIS

[0108] Of course, for the benefits of the preceding par-
agraph to be realized, the round trip latency between a
user’s action using input device 421 and seeing the con-
sequence of that action on display device 420 should be
no more than 70-80ms. This latency must take into ac-
count all of the factors in the path from input device 421
in the user premises 211 to hosting service 210 and back
again to the user premises 211 to display device 422.
Figure 4b illustrates the various components and net-
works over which signals must travel, and above these
components and networks is a timeline that lists exem-

plary latencies that can be expected in a practical imple-
mentation. Note that Figure 4b is simplified so that only
the critical path routing is shown. Other routing of data
used for other features of the system is described below.
Double-headed arrows (e.g., arrow 453) indicate round-
trip latency and a single-headed arrow (e.g., arrow 457)
indicate one-way latency, and "∼" denote an approximate
measure. It should be pointed out that there will be real-
world situations where the latencies listed can not be
achieved, but in a large number of cases in the US, using
DSL and cable modem connections to the user premises
211, these latencies can be achieved in the circumstanc-
es described in the next paragraph. Also, note that, while
cellular wireless connectivity to the Internet will certainly
work in the system shown, most current US cellular data
systems (such as EVDO) incur very high latencies and
would not be able to achieve the latencies shown in Fig-
ure 4b. However, these underlying principles may be im-
plemented on future cellular technologies that may be
capable of implementing this level of latency.
[0109] Starting from the input device 421 at user
premises 211, once the user actuates the input device
421, a user control signal is sent to client 415 (which may
be a standalone device such a set-top box, or it may be
software or hardware running in another device such as
a PC or a mobile device), and is packetized (in UDP for-
mat in one embodiment) and the packet is given a des-
tination address to reach hosting service 210. The packet
will also contain information to indicate which user the
control signals are coming from. The control signal pack-
et(s) are then forwarded through Firewall/Router/NAT
(Network Address Translation) device 443 to WAN inter-
face 442. WAN interface 442 is the interface device pro-
vided to the user premises 211 by the User’s ISP (Internet
Service Provider). The WAN interface 442 may be a Ca-
ble or DSL modem, a WiMax transceiver, a Fiber trans-
ceiver, a Cellular data interface, an Internet Protocol-
over-powerline interface, or any other of many interfaces
to the Internet. Further, Firewall/Router/NAT device 443
(and potentially WAN interface 442) may be integrated
into the client 415. An example of this would be a mobile
phone, which includes software to implement the func-
tionality of home or office client 415, as well as the means
to route and connect to the Internet wirelessly through
some standard (e.g., 802.11 g).
[0110] WAN Interface 442 then routes the control sig-
nals to what shall be called herein the "point of presence"
441 for the user’s Internet Service Provider (ISP) which
is the facility that provides an interface between the WAN
transport connected to the user premises 211 and the
general Internet or private networks. The point of pres-
ence’s characteristics will vary depending upon nature
of the Internet service provided. For DSL, it typically will
be a telephone company Central Office where a DSLAM
is located. For cable modems, it typically will be a cable
Multi-System Operator (MSO) head end. For cellular sys-
tems, it typically will be a control room associated with
cellular tower. But whatever the point of presence’s na-

35 36

EP 2 826 530 A2

21

5

10

15

20

25

30

35

40

45

50

55

ture, it will then route the control signal packet(s) to the
general Internet 410. The control signal packet(s) will
then be routed to the WAN Interface 441 to the hosting
service 210, through what most likely will be a fiber trans-
ceiver interface. The WAN 441 will then route the control
signal packets to routing logic 409 (which may be imple-
mented in many different ways, including Ethernet
switches and routing servers), which evaluates the user’s
address and routes the control signal(s) to the correct
server 402 for the given user.
[0111] The server 402 then takes the control signals
as input for the game or application software that is run-
ning on the server 402 and uses the control signals to
process the next frame of the game or application. Once
the next frame is generated, the video and audio is output
from server 402 to video compressor 404. The video and
audio may be output from server 402 to compressor 404
through various means. To start with, compressor 404
may be built into server 402, so the compression may be
implemented locally within server 402. Or, the video
and/or audio may be output in packetized form through
a network connection such as an Ethernet connection to
a network that is either a private network between server
402 and video compressor 404, or a through a shared
network, such as SAN 403. Or, the video may be output
through a video output connector from server 402, such
as a DVI or VGA connector, and then captured by video
compressor 404. Also, the audio may be output from
server 402 as either digital audio (e.g., through a
TOSLINK or S/PDIF connector) or as analog audio,
which is digitized and encoded by audio compression
logic within video compressor 404.
[0112] Once video compressor 404 has captured the
video frame and the audio generated during that frame
time from server 402, then video compressor will com-
press the video and audio using techniques described
below. Once the video and audio is compressed it is pack-
etized with an address to send it back to the user’s client
415, and it is routed to the WAN Interface 441, which
then routes the video and audio packets through the gen-
eral Internet 410, which then routes the video and audio
packets to the user’s ISP point of presence 441, which
routes the video and audio packets to the WAN Interface
442 at the user’s premises, which routes the video and
audio packets to the Firewall/Router/NAT device 443,
which then routes the video and audio packets to the
client 415.
[0113] The client 415 decompresses the video and au-
dio, and then displays the video on the display device
422 (or the client’s built-in display device) and sends the
audio to the display device 422 or to separate amplifi-
er/speakers or to an amplifier/speakers built in the client.
[0114] For the user to perceive that the entire process
just described is perceptually without lag, the round-trip
delay needs be less than 70 or 80ms. Some of the latency
delays in the described round-trip path are under the con-
trol of the hosting service 210 and/or the user and others
are not. Nonetheless, based on analysis and testing of

a large number of real-world scenarios, the following are
approximate measurements.
[0115] The one-way transmission time to send the con-
trol signals 451 is typically less than 1 ms, the roundtrip
routing through the user premises 452 is typically accom-
plished, using readily available consumer-grade Fire-
wall/Router/NAT switches over Ethernet in about 1 ms.
User ISPs vary widely in their round trip delays 453, but
with DSL and cable modem providers, we typically see
between 10 and 25ms. The round trip latency on the gen-
eral Internet 410 can vary greatly depending on how traf-
fic is routed and whether there are any failures on the
route (and these issues are discussed below), but typi-
cally the general Internet provides fairly optimal routes
and the latency is largely determined by speed of light
through optical fiber, given the distance to the destina-
tion. As discussed further below, we have established
1000 miles as a roughly the furthest distance that we
expect to place a hosting service 210 away from user
premises 211. At 1000 miles (2000 miles round trip) the
practical transit time for a signal through the Internet is
approximately 22ms. The WAN Interface 441 to the host-
ing service 210 is typically a commercial-grade fiber high
speed interface with negligible latency. Thus, the general
Internet latency 454 is typically between 1 and 10ms.
The one-way routing 455 latency through the hosting
service 210 can be achieved in less than 1 ms. The server
402 will typically compute a new frame for a game or an
application in less than one frame time (which at 60fps
is 16.7ms) so 16ms is a reasonable maximum one-way
latency 456 to use. In an optimized hardware implemen-
tation of the video compression and audio compression
algorithms described herein, the compression 457 can
be completed in 1 ms. In less optimized versions, the
compression may take as much as 6ms (of course even
less optimized versions could take longer, but such im-
plementations would impact the overall latency of the
round trip and would require other latencies to be shorter
(e.g., the allowable distance through the general Internet
could be reduced) to maintain the 70-80ms latency tar-
get). The round trip latencies of the Internet 454, User
ISP 453, and User Premises Routing 452 have already
been considered, so what remains is the video decom-
pression 458 latency which, depending on whether the
video decompression 458 is implemented in dedicated
hardware, or if implemented in software on a client device
415 (such as a PC or mobile device) it can vary depending
upon the size of the display and the performance of the
decompressing CPU. Typically, decompression 458
takes between 1 and 8ms.
[0116] Thus, by adding together all of the worst-case
latencies seen in practice, we can determine the worst-
case round trip latency that can be expected to be expe-
rience by a user of the system shown in Figure 4a. They
are: 1+1+25+22+1+16+6+8 = 80ms. And, indeed, in
practice (with caveats discussed below), this is roughly
the round trip latency seen using prototype versions of
the system shown in Figure 4a, using off-the-shelf Win-

37 38

EP 2 826 530 A2

22

5

10

15

20

25

30

35

40

45

50

55

dows PCs as client devices and home DSL and cable
modem connections within the US. Of course, scenarios
better than worst case can result in much shorter laten-
cies, but they can not be relied upon in developing a
commercial service that is used widely.
[0117] To achieve the latencies listed in Figures 4b
over the general Internet, requires the video compressor
404 and video decompressor 412 from Figure 4a in the
client 415 to generate a packet stream which very par-
ticular characteristics, such that the packet sequence
generated through entire path from the hosting service
210 to the display device 422 is not subject to delays or
excessive packet loss and, in particular, consistently falls
with the constraints of the bandwidth available to the user
over the user’s Internet connection through WAN inter-
face 442 and Firewall/Router/NAT 443. Further, the video
compressor must create a packet stream which is suffi-
ciently robust so that it can tolerate the inevitable packet
loss and packet reordering that occurs in normal Internet
and network transmissions.

LOW-LATENCY VIDEO COMPRESSION

[0118] To accomplish the foregoing goals, one embod-
iment takes a new approach to video compression which
decreases the latency and the peak bandwidth require-
ments for transmitting video. Prior to the description of
these embodiments, an analysis of current video com-
pression techniques will be provided with respect to Fig-
ure 5 and Figures 6a-b. Of course, these techniques may
be employed in accordance with underlying principles if
the user is provided with sufficient bandwidth to handle
the data rate required by these techniques. Note that
audio compression is not addressed herein other than to
state that it is implemented simultaneously and in syn-
chrony with the video compression. Prior art audio com-
pression techniques exist that satisfy the requirements
for this system.
[0119] Figure 5 illustrates one particular prior art tech-
nique for compressing video in which each individual vid-
eo frame 501-503 is compressed by compression logic
520 using a particular compression algorithm to generate
a series of compressed frames 511-513. One embodi-
ment of this technique is "motion JPEG" in which each
frame is compressed according to a Joint Pictures Expert
Group (JPEG) compression algorithm, based upon the
discrete cosine transform (DCT). Various different types
of compression algorithms may be employed, however,
while still complying with these underlying principles
(e.g., wavelet-based compression algorithms such as
JPEG-2000).
[0120] One problem with this type of compression is
that it reduces the data rate of each frame, but it does
not exploit similarities between successive frames to re-
duce the data rate of the overall video stream. For ex-
ample, as illustrated in Figure 5, assuming a frame rate
of 640x480x24bits/pixel = 640*480*24/8/1024=900 Kilo-
bytes/frame (KB/frame), for a given quality of image, mo-

tion JPEG may only compress the stream by a factor of
10, resulting in a data stream of 90 KB/frame. At 60
frames/sec, this would require a channel bandwidth of
90 KB * 8 bits * 60 frames/sec = 42.2Mbps, which would
be far too high bandwidth for almost all home Internet
connections in the US today, and too high bandwidth for
many office Internet connections. Indeed, given that it
would demand a constant data stream at such a high
bandwidth, and it would be just serving one user, even
in an office LAN environment, it would consume a large
percentage of a 100Mbps Ethernet LAN’s bandwidth and
heavily burden Ethernet switches supporting the LAN.
Thus, the compression for motion video is inefficient
when compared with other compression techniques
(such as those described below). Moreover, single frame
compression algorithms like JPEG and JPEG-2000 that
use lossy compression algorithms produce compression
artifacts that may not be noticeable in still images (e.g.,
an artifact within dense foliage in the scene may not ap-
pear as an artifact since the eye does not know exactly
how the dense foliage should appear). But, once the
scene is in motion, an artifact can stand out because the
eye detects that the artifact changed from frame-to-
frame, despite the fact the artifact is in an area of the
scene where it might not have been noticeable in a still
image. This results in the perception of "background
noise" in the sequence of frames, similar in appearance
to the "snow" noise visible during marginal analog TV
reception. Of course, this type of compression may still
be used in certain embodiments described herein, but
generally speaking, to avoid background noise in the
scene, a high data rate (i.e., a low compression ratio) is
required for a given perceptual quality.
[0121] Other types of compression, such as H.264, or
Windows Media VC9, MPEG2 and MPEG4 are all more
efficient at compressing a video stream because they
exploit the similarities between successive frames.
These techniques all rely upon the same general tech-
niques to compress video. Thus, although the H.264
standard will be described, but the same general princi-
ples apply to various other compression algorithms. A
large number of H.264 compressors and decompressor
are available, including the x264 open source software
library for compressing H.264 and the FFmpeg open
source software libraries for decompressing H.264.
[0122] Figures 6a and 6b illustrate an exemplary prior
art compression technique in which a series of uncom-
pressed video frames 501-503, 559-561 are compressed
by compression logic 620 into a series of "I frames" 611,
671; "P frames" 612-613; and "B frames" 670. The ver-
tical axis in Figure 6a generally signifies the resulting size
of each of the encoded frames (although the frames are
not drawn to scale). As described above, video coding
using I frames, B frames and P frames is well understood
by those of skill in the art. Briefly, an I frame 611 is a
DCT-based compression of a complete uncompressed
frame 501 (similar to a compressed JPEG image as de-
scribed above). P frames 612-613 generally are signifi-

39 40

EP 2 826 530 A2

23

5

10

15

20

25

30

35

40

45

50

55

cantly smaller in size than I frames 611 because they
take advantage of the data in the previous I frame or P
frame; that is, they contain data indicating the changes
between the previous I frame or P frame. B frames 670
are similar to that of P frames except that B frames use
the frame in the following reference frame as well as po-
tentially the frame in the preceding reference frame.
[0123] For the following discussion, it will be assumed
that the desired frame rate is 60 frames/second, that each
I frame is approximately 160 Kb, the average P frame
and B frame is 16 Kb and that a new I frame is generated
every second. With this set of parameters, the average
data rate would be: 160 Kb + 16 Kb * 59 = 1.1 Mbps. This
data rate falls well within the maximum data rate for many
current broadband Internet connections to homes and
offices. This technique also tends to avoid the back-
ground noise problem from intraframe-only encoding be-
cause the P and B frames track differences between the
frames, so compression artifacts tend not to appear and
disappear from frame-to-frame, thereby reducing the
background noise problem described above.
[0124] One problem with the foregoing types of com-
pression is that although the average data rate is rela-
tively low (e.g., 1.1 Mbps), a single I frame may take
several frame times to transmit. For example, using prior
art techniques a 2.2 Mbps network connection (e.g., DSL
or cable modem with 2.2Mbps peak of max available data
rate 302 from Figure 3a) would typically be adequate to
stream video at 1.1 Mbps with a 160Kbps I frame each
60 frames. This would be accomplished by having the
decompressor queue up 1 second of video before de-
compressing the video. In 1 second, 1.1 Mb of data would
be transmitted, which would be easily accommodated by
a 2.2Mbps max available data rate, even assuming that
the available data rate might dip periodically by as much
as 50%. Unfortunately, this prior art approach would re-
sult in a 1-second latency for the video because of the
1-second video buffer at the receiver. Such a delay is
adequate for many prior art applications (e.g., the play-
back of linear video), but is far too long a latency for fast
action video games which cannot tolerate more than
70-80ms of latency.
[0125] If an attempt were made to eliminate the 1-sec-
ond video buffer, it still would not result in an adequate
reduction in latency for fast action video games. For one,
the use of B frames, as previously described, would ne-
cessitate the reception of all of the B frames preceding
an I frame as well as the I frame. If we assume the 59
non-I frames are roughly split between P and B frames,
then there would be at least 29 B frames and an I frame
received before any B frame could be displayed. Thus,
regardless of the available bandwidth of the channel, it
would necessitate a delay of 29+1=30 frames of 1/60th

second duration each, or 500ms of latency. Clearly that
is far too long.
[0126] Thus, another approach would be to eliminate
B frames and only use I and P frames. (One consequence
of this is the data rate would increase for a given quality

level, but for the sake of consistency in this example, let’s
continue to assume that each I frame is 160Kb and the
average P frame is 16Kb in size, and thus the data rate
is still 1.1 Mbps) This approach eliminates the unavoid-
able latency introduced by B frames, since the decoding
of each P frame is only reliant upon the prior received
frame. A problem that remains with this approach is that
an I frame is so much larger than an average P frame,
that on a low bandwidth channel, as is typical in most
homes and in many offices, the transmission of the I
frame adds substantial latency. This is illustrated in Fig-
ure 6b. The video stream data rate 624 is below the avail-
able max data rate 621 except for the I frames, where
the peak data rate required for the I frames 623 far ex-
ceeds the available max data rate 622 (and even the
rated max data rate 621). The data rate required by the
P frames is less than the available max data rate. Even
if the available max data rate peaks at 2.2Mbps remains
steadily at its 2.2Mbps peak rate, it will take
160Kb/2.2Mb=71 ms to transmit the I frame, and if the
available max data rate 622 dips by 50% (1.1 Mbps), it
will take 142ms to transmit the I frame. So, the latency
in transmitting the I frame will fall somewhere in between
71-142ms. This latency is additive to the latencies iden-
tified in Figure 4b, which in the worst case added up to
70 ms, so this would result in a total round trip latency of
141-222ms from the point the user actuates input device
421 until an image appears on display device 422, which
is far too high. And if the available max data rate dips
below 2.2Mbps, the latency will increase further.
[0127] Note also that there generally are severe con-
sequences to "jamming" an ISP with peak data rate 623
that are far in excess of the available data rate 622. The
equipment in different ISPs will behave differently, but
the following behaviors are quite common among DSL
and cable modem ISPs when receiving packets at much
higher data rate than the available data rate 622: (a) de-
laying the packets by queuing them (introducing latency),
(b) dropping some or all of the packets, (c) disabling the
connection for a period of time (most likely because the
ISP is concerned it is a malicious attack, such as "denial
of service" attack). Thus, transmitting a packet stream at
full data rate with characteristics such as those shown in
Figure 6b is not a viable option. The peaks 623 may be
queued up at the hosting service 210 and sent at a data
rate below the available max data rate, introducing the
unacceptable latency described in the preceding para-
graph.
[0128] Further, the video stream data rate sequence
624 shown in Figure 6b is a very "tame" video stream
data rate sequence and would be the sort of data rate
sequence that one would expect to result from compress-
ing the video from a video sequence that does not change
very much and has very little motion (e.g., as would be
common in video teleconferencing where the cameras
are in a fixed position and have little motion, and the
objects, in the scene, e.g., seated people talking, show
little motion).

41 42

EP 2 826 530 A2

24

5

10

15

20

25

30

35

40

45

50

55

[0129] The video stream data rate sequence 634
shown in Figure 6c is a sequence typical to what one
would expect to see from video with far more action, such
as might be generated in a motion picture or a video
game, or in some application software. Note that in ad-
dition to the I frame peaks 633, there are also P frame
peaks such as 635 and 636 that are quite large and ex-
ceed the available max data rate on many occasions.
Although these P frame peaks are not quite as large as
the I frame peaks, they still are far too large to be carried
by the channel at full data rate, and as with the I frame
peaks, they P frame peaks must be transmitted slowly
(thereby increasingly latency).
[0130] On a high bandwidth channel (e.g., a 100Mbps
LAN, or a high bandwidth 100Mbps private connection)
the network would be able to tolerate large peaks, such
as I frame peaks 633 or P frame peaks 636, and in prin-
ciple, low latency could be maintained. But, such net-
works are frequently shared amongst many users (e.g.,
in an office environment), and such "peaky" data would
impact the performance of the LAN, particularly if the
network traffic was routed to a private shared connection
(e.g., from a remote data center to an office). To start
with, bear in mind that this example is of a relatively low
resolution video stream of 640x480 pixels at 60fps. HDTV
streams of 1920x1080 at 60fps are readily handled by
modern computers and displays, and 2560x1440 reso-
lution displays at 60fps are increasingly available (e.g.,
Apple, Inc.’s 30" display). A high action video sequence
at 1920x1080 at 60fps may require 4.5 Mbps using H.264
compression for a reasonable quality level. If we assume
the I frames peak at 10X the nominal data rate, that would
result in 45Mbps peaks, as well as smaller, but still con-
siderable, P frame peak. If several users were receiving
video streams on the same 100Mbps network (e.g., a
private network connection between an office and data
center), it is easy to see how the peaks from several
users’ video stream could happen to align, overwhelming
the bandwidth of the network, and potentially overwhelm-
ing the bandwidth of the backplanes of the switches sup-
porting the users on the network. Even in the case of a
Gigabit Ethernet network, if enough users had enough
peaks aligned at once, it could overwhelm the network
or the network switches. And, once 2560x1440 resolution
video becomes more commonplace, the average video
stream data rate may be 9.5Mbps, resulting in perhaps
a 95Mbps peak data rate. Needless to say, a 100Mbps
connection between a data center and an office (which
today is an exceptionally fast connection) would be com-
pletely swamped by the peak traffic from a single user.
Thus, even though LANs and private network connec-
tions can be more tolerant of peaky streaming video, the
streaming video with high peaks is not desirable and
might require special planning and accommodation by
an office’s IT department.
[0131] Of course, for standard linear video applications
these issues are not a problem because the data rate is
"smoothed" at the point of transmission and the data for

each frame below the max available data rate 622, and
a buffer in the client stores a sequence of I, P and B
frames before they are decompressed. Thus, the data
rate over the network remains close to the average data
rate of the video stream. Unfortunately, this introduces
latency, even if B frames are not used, that is unaccept-
able for low-latency applications such as video games
and applications require fast response time.
[0132] One prior art solution to mitigating video
streams that have high peaks is to use a technique often
referred to as "Constant Bit Rate" (CBR) encoding. Al-
though the term CBR would seem to imply that all frames
are compressed to have the same bit rate (i.e., size),
what it usually refers to is a compression paradigm where
a maximum bit rate across a certain number of frames
(in our case, 1 frame) is allowed. For example, in the
case of Figure 6c, if a CBR constraint were applied to
the encoding that limited the bit rate to, for example, 70%
of the rated max data rate 621, then the compression
algorithm would limit the compression of each of the
frames so that any frame that would normally be com-
pressed using more than 70% of the rated max data rate
621 would be compressed with less bits. The result of
this is that frames that would normally require more bits
to maintain a given quality level would be "starved" of
bits and the image quality of those frames would be worse
than that of other frames that do not require more bits
than the 70% of the rate max data rate 621. This approach
can produce acceptable results for certain types of com-
pressed video where there (a) little motion or scene
changes are expected and (b) the users can accept pe-
riodic quality degradation. A good example of a CBR-
suited application is video teleconferencing since there
are few peaks, and if the quality degrades briefly (for
example, if the camera is panned, resulting in significant
scene motion and large peaks, during the panning there
may not be enough bits for high-quality image compres-
sion, which would result in degraded image quality), it is
acceptable for most users. Unfortunately, CBR is not
well-suited for many other applications which have
scenes of high complexity or a great deal of motion and/or
where a reasonably constant level of quality is required.
[0133] The low-latency compression logic 404 em-
ployed in one embodiment uses several different tech-
niques to address the range of problems with streaming
low-latency compressed video, while maintaining high
quality. First, the low-latency compression logic 404 gen-
erates only I frames and P frames, thereby alleviating
the need to wait several frame times to decode each B
frame. In addition, as illustrated in Figure 7a, in one em-
bodiment, the low-latency compression logic 404 subdi-
vides each uncompressed frame 701-760 into a series
of "tiles" and individually encodes each tile as either an
I frame or a P frame. The group of compressed I frames
and P frames are referred to herein as "R frames"
711-770. In the specific example shown in Figure 7a,
each uncompressed frame is subdivided into a 4 x 4 ma-
trix of 16 tiles. However, these underlying principles are

43 44

EP 2 826 530 A2

25

5

10

15

20

25

30

35

40

45

50

55

not limited to any particular subdivision scheme.
[0134] In one embodiment, the low-latency compres-
sion logic 404 divides up the video frame into a number
of tiles, and encodes (i.e., compresses) one tile from each
frame as an I frame (i.e., the tile is compressed as if it is
a separate video frame of 1/16th the size of the full image,
and the compression used for this "mini" frame is I frame
compression) and the remaining tiles as P frames (i.e.,
the compression used for each "mini" 1/16th frame is P
frame compression). Tiles compressed as I frames and
as P frames shall be referred to as "I tiles" and "P tiles",
respectively. With each successive video frame, the tile
to be encoded as an I tile is changed. Thus, in a given
frame time, only one tile of the tiles in the video frame is
an I tile, and the remainder of the tiles are P tiles. For
example, in Figure 7a, tile 0 of uncompressed frame 701
is encoded as I tile I0 and the remaining 1-15 tiles are
encoded as P tiles P1 through P15 to produce R frame
711. In the next uncompressed video frame 702, tile 1 of
uncompressed frame 701 is encoded as I tile I1 and the
remaining tiles 0 and 2 through 15 are encoded as P tiles,
P0 and P2 through P15, to produce R frame 712. Thus,
the I tiles and P tiles for tiles are progressively interleaved
in time over successive frames. The process continues
until a R tile 770 is generated with the last tile in the matrix
encoded as an I tile (i.e., I15). The process then starts
over, generating another R frame such as frame 711 (i.e.,
encoding an I tile for tile 0) etc. Although not illustrated
in Figure 7a, in one embodiment, the first R frame of the
video sequence of R frames contains only I tiles (i.e., so
that subsequent P frames have reference image data
from which to calculate motion). Alternatively, in one em-
bodiment, the startup sequence uses the same I tile pat-
tern as normal, but does not include P tiles for those tiles
that have not yet been encoded with an I tile. In other
words, certain tiles are not encoded with any data until
the first I tile arrives, thereby avoiding startup peaks in
the video stream data rate 934 in Figure 9a, which is
explained in further detail below. Moreover, as described
below, various different sizes and shapes may be used
for the tiles while still complying with these underlying
principles.
[0135] The video decompression logic 412 running on
the client 415 decompresses each tile as if it is a separate
video sequence of small I and P frames, and then renders
each tile to the frame buffer driving display device 422.
For example, I0 and P0 from R frames 711 to 770 are
used to decompress and render tile 0 of the video image.
Similarly, I1 and P1 from R frames 711 to 770 are used
to reconstruct tile 1, and so on. As mentioned above,
decompression of I frames and P frames is well known
in the art, and decompression of I tiles and P tiles can be
accomplished by having a multiple instances of a video
decompressor running in the client 415. Although multi-
plying processes would seem to increase the computa-
tional burden on client 415, it actually doesn’t because
the tile themselves are proportionally smaller relative to
the number of additional processes, so the number of

pixels displayed is the same as if there were one process
and using conventional full sized I and P frames.
[0136] This R frame technique significantly mitigates
the bandwidth peaks typically associated with I frames
illustrated in Figures 6b and 6c because any given frame
is mostly made up of P frames which are typically smaller
than I frames. For example, assuming again that a typical
I frame is 160Kb, then the I tiles of each of the frames
illustrated in Figure 7a would be roughly 1/16 of this
amount or 10Kb. Similarly, assuming that a typical P
frame is 16 Kb, then the P frames for each of the tiles
illustrated in Figure 7a may be roughly 1 Kb The end
result is an R frame of approximately 10Kb + 15 * 1 Kb
= 25Kb. So, each 60-frame sequence would be 25Kb *
60 = 1.5Mbps. So, at 60 frames/second, this would re-
quire a channel capable of sustaining a bandwidth of
1.5Mbps, but with much lower peaks due to I tiles being
distributed throughout the 60-frame interval.
[0137] Note that in previous examples with the same
assumed data rates for I frames and P frames, the aver-
age data rate was 1.1 Mbps. This is because in the pre-
vious examples, a new I frame was only introduced once
every 60 frame times, whereas in this example, the 16
tiles that make up an I frame cycle through in 16 frames
times, and as such the equivalent of an I frame is intro-
duced every 16 frame times, resulting in a slightly higher
average data rate. In practice, though, introducing more
frequent I frames does not increase the data rate linearly.
This is due to the fact that a P frame (or a P tile) primarily
encodes the difference from the prior frame to the next.
So, if the prior frame is quite similar to the next frame,
the P frame will be very small, if the prior frame is quite
different from the next frame, the P frame will be very
large. But because a P frame is largely derived from the
previous frame, rather than from the actual frame, the
resulting encoded frame may contain more errors (e.g.,
visual artifacts) than an I frame with an adequate number
of bits. And, when one P frame follows another P frame,
what can occur is an accumulation of errors that gets
worse when there is a long sequence of P frames. Now,
a sophisticated video compressor will detect the fact that
the quality of the image is degrading after a sequence of
P frames and, if necessary, it will allocate more bits to
subsequent P frames to bring up the quality or, if it is the
most efficient course of action, replace a P frame with an
I frame. So, when long sequences of P frames are used
(e.g., 59 P frames, as in prior examples above) particu-
larly when the scene has a great deal of complexity and/or
motion, typically, more bits are needed for P frames as
they get further removed from an I frame.
[0138] Or, to look at P frames from the opposite point
of view, P frames that closely follow an I frame tend to
require less bits than P frames that are further removed
from an I frame. So, in the example shown in Figure 7a,
no P frame is further than 15 frames removed from an I
frame that precedes it, where as in the prior example, a
P frame could be 59 frames removed from an I frame.
Thus, with more frequent I frames, the P frames are

45 46

EP 2 826 530 A2

26

5

10

15

20

25

30

35

40

45

50

55

smaller. Of course, the exact relative sizes will vary based
on the nature of the video stream, but in the example of
Figure 7a, if an I tile is 10Kb, P tiles on average, may be
only 0.75kb in size resulting in 10Kb + 15 * 0.75Kb =
21.25Kb, or at 60 frames per second, the data rate would
be 21.25Kb * 60 = 1.3Mbps, or about 16% higher data
rate than a stream with an I frame followed by 59 P frames
at 1.1 Mbps. Once, again, the relative results between
these two approaches to video compression will vary de-
pending up on the video sequence, but typically, we have
found empirically that using R-frames require about 20%
more bits for a given level of quality than using I /P frame
sequences. But, of course, R frames dramatically reduce
the peaks which make the video sequences usable with
far less latency than I/P frame sequences.
[0139] R frames can be configured in a variety of dif-
ferent ways, depending upon the nature of the video se-
quence, the reliability of the channel, and the available
data rate. In an alternative embodiment, a different
number of tiles is used than 16 in a 4x4 configuration.
For example 2 tiles may be used in a 2x1 or 1 x2 config-
uration, 4 tiles may be used in a 2x2, 4x1 or 1 x4 config-
uration, 6 tiles may be used in a 3x2, 2x3, 6x1 or 1 x6
configurations or 8 tiles may be used in a 4x2 (as shown
in Figure 7b), 2x4, 8x1 or 1 x8 configuration. Note that
the tiles need not be square, nor must the video frame
be square, or even rectangular. The tiles can be broken
up into whatever shape best suits the video stream and
the application used.
[0140] In another embodiment, the cycling of the I and
P tiles is not locked to the number of tiles. For example,
in an 8-tile 4x2 configuration, a 16-cycle sequence can
still be used as illustrated in Figure 7b. Sequential un-
compressed frames 721, 722, 723 are each divided into
8 tiles, 0-7 and each tile is compressed individually. From
R frame 731, only tile 0 is compressed as an I tile, and
the remaining tiles are compressed as P tiles. For sub-
sequent R frame 732 all of the 8 tiles are compressed as
P tiles, and then for subsequent R frame 733, tile 1 is
compressed as an I tile and the other tiles are all com-
pressed as P tiles. And, so the sequencing continues for
16 frames, with an I tile generated only every other frame,
so the last I tile is generated for tile 7 during the 15th

frame time (not shown in Figure 7b) and during the 16th

frame time R frame 780 is compressed using all P tiles.
Then, the sequence begins again with tile 0 compressed
as an I tile and the other tiles compressed as P tiles. As
in the prior embodiment, the very first frame of the entire
video sequence would typically be all I tiles, to provide a
reference for P tiles from that point forward. The cycling
of I tiles and P tiles need not even be an even multiple
of the number of tiles. For example, with 8 tiles, each
frame with an I tile can be followed by 2 frames with all
P tiles, before another I tile is used. In yet another em-
bodiment, certain tiles may be sequenced with I tiles more
often than other tiles if, for example, certain areas of the
screen are known to have more motion requiring from
frequent I tiles, while others are more static (e.g., showing

a score for a game) requiring less frequent I tiles. More-
over, although each frame is illustrated in Figures 7a-b
with a single I tile, multiple I tiles may be encoded in a
single frame (depending on the bandwidth of the trans-
mission channel). Conversely, certain frames or frame
sequences may be transmitted with no I tiles (i.e., only
P tiles).
[0141] The reason the approaches of the preceding
paragraph works well is that while not having I tiles dis-
tributed across every single frame would seem to be re-
sult in larger peaks, the behavior of the system is not that
simple. Since each tile is compressed separately from
the other tiles, as the tiles get smaller the encoding of
each tile can become less efficient, because the com-
pressor of a given tile is not able to exploit similar image
features and similar motion from the other tiles. Thus,
dividing up the screen into 16 tiles generally will result in
a less efficient encoding than dividing up the screen into
8 tiles. But, if the screen is divided into 8 tiles and it causes
the data of a full I frame to be introduced every 8 frames
instead of every 16 frames, it results in a much higher
data rate overall. So, by introducing a full I frame every
16 frames instead of every 8 frames, the overall data rate
is reduced. Also, by using 8 larger tiles instead of 16
smaller tiles, the overall data rate is reduced, which also
mitigates to some degree the data peaks caused by the
larger tiles.
[0142] In another embodiment, the low-latency video
compression logic 404 in Figures 7a and 7b controls the
allocation of bits to the various tiles in the R frames either
by being pre-configured by settings, based on known
characteristics of the video sequence to be compressed,
or automatically, based upon an ongoing analysis of the
image quality in each tile. For example, in some racing
video games, the front of the player’s car (which is rela-
tively motionless in the scene) takes up a large part of
the lower half of the screen, whereas the upper half of
the screen is entirely filled with the oncoming roadway,
buildings and scenery, which is almost always in motion.
If the compression logic 404 allocates an equal number
of bits to each tile, then the tiles on the bottom half of the
screen (tiles 4-7) in uncompressed frame 721 in Figure
7b, will generally be compressed with higher quality than
tiles than the tiles in the upper half of the screen (tiles
0-3) in uncompressed frame 721 in Figure 7b. If this par-
ticular game, or this particular scene of the game is known
to have such characteristics, then the operators of the
hosting service 210 can configure the compression logic
404 to allocate more bits to the tiles in the top of the
screen than to tiles at the bottom of the screen. Or, the
compression logic 404 can evaluate the quality of the
compression of the tiles after frames are compressed
(using one or more of many compression quality metrics,
such as Peak Signal-To-Noise Ratio (PSNR)) and if it
determines that over a certain window of time, certain
tiles are consistently producing better quality results, then
it gradually allocates more bits to tiles that are producing
lower quality results, until the various tiles reach a similar

47 48

EP 2 826 530 A2

27

5

10

15

20

25

30

35

40

45

50

55

level of quality. In an alternative embodiment, the com-
pressor logic 404 allocates bits to achieve higher quality
in a particular tile or group of tiles. For example, it may
provide a better overall perceptual appearance to have
higher quality in the center of the screen than at the edg-
es.
[0143] In one embodiment, to improve resolution of
certain regions of the video stream, the video compres-
sion logic 404 uses smaller tiles to encode areas of the
video stream with relatively more scene complexity
and/or motion than areas of the video stream with rela-
tively less scene complexity and/or motion. For example,
as illustrated in Figure 8, smaller tiles are employed
around a moving character 805 in one area of one R
frame 811 (potentially followed by a series of R frames
with the same tile sizes (not shown)). Then, when the
character 805 moves to a new area of the image, smaller
tiles are used around this new area within another R
frame 812, as illustrated. As mentioned above, various
different sizes and shapes may be employed as "tiles"
while still complying with these underlying principles.
[0144] While the cyclic I/P tiles described above sub-
stantially reduce the peaks in the data rate of a video
stream, they do not eliminate the peaks entirely, partic-
ularly in the case of rapidly-changing or highly complex
video imagery, such as occurs with motion pictures, video
games, and some application software. For example,
during a sudden scene transition, a complex frame may
be followed by another complex frame that is completely
different. Even though several I tiles may have preceded
the scene transition by only a few frame times, they don’t
help in this situation because the new frame’s material
has no relation to the previous I tiles. In such a situation
(and in other situations where even though not everything
changes, much of the image changes), the video com-
pressor 404 will determine that many, if not all, of the P
tiles are more efficiently coded as I tiles, and what results
is a very large peak in the data rate for that frame.
[0145] As discussed previously, it is simply the case
that with most consumer-grade Internet connections
(and many office connections), it simply is not feasible
to "jam" data that exceeds the available maximum data
rate shown as 622 in Figure 6c, along with the rated max-
imum data rate 621. Note that the rated maximum data
rate 621 (e.g., "6Mbps DSL") is essentially a marketing
number for users considering the purchase of an Internet
connection, but generally it does not guarantee a level
of performance. For the purposes of this application, it is
irrelevant, since our only concern is the available maxi-
mum data rate 622 at the time the video is streamed
through the connection. Consequently, in Figures 9a and
9c, as we describe a solution to the peaking problem, the
rated maximum data rate is omitted from the graph, and
only the available maximum data rate 922 is shown. The
video stream data rate must not exceed the available
maximum data rate 922.
[0146] To address this, the first thing that the video
compressor 404 does is determine a peak data rate 941,

which is a data rate the channel is able to handle steadily.
This rate can be determined by a number of techniques.
One such technique is by gradually sending an increas-
ingly higher data rate test stream from the hosting service
210 to the client 415 in Figures 4a and 4b, and having
the client provide feedback to the hosting service as to
the level of packet loss and latency. As the packet loss
and/or latency begins to show a sharp increase, that is
an indication that the available maximum data rate 922
is being reached. After that, the hosting service 210 can
gradually reduce the data rate of the test stream until the
client 415 reports that for a reasonable period of time the
test stream has been received with an acceptable level
of packet loss and the latency is near minimal. This es-
tablishes a peak maximum data rate 941, which will then
be used as a peak data rate for streaming video. Over
time, the peak data rate 941 will fluctuate (e.g., if another
user in a household starts to heavily use the Internet con-
nection), and the client 415 will need to constantly monitor
it to see whether packet loss or latency increases, indi-
cating the available max data rate 922 is dropping below
the previously established peak data rate 941, and if so
the peak data rate 941. Similarly, if over time the client
415 finds that the packet loss and latency remain at op-
timal levels, it can request that the video compressor
slowly increases the data rate to see whether the avail-
able maximum data rate has increased (e.g., if another
user in a household has stopped heavy use of the Internet
connection), and again waiting until packet loss and/or
higher latency indicates that the available maximum data
rate 922 has been exceeded, and again a lower level can
be found for the peak data rate 941, but one that is per-
haps higher than the level before testing an increased
data rate. So, by using this technique (and other tech-
niques like it) a peak data rate 941 can be found, and
adjusted periodically as needed. The peak data rate 941
establishes the maximum data rate that can be used by
the video compressor 404 to stream video to the user.
The logic for determining the peak data rate may be im-
plemented at the user premises 211 and/or on the hosting
service 210. At the user premises 211, the client device
415 performs the calculations to determine the peak data
rate and transmits this information back to the hosting
service 210; at the hosting service 210, a server 402 at
the hosting service performs the calculations to deter-
mine the peak data rate based on statistics received from
the client 415 (e.g., packet loss, latency, max data rate,
etc).
[0147] Figure 9a shows an example video stream data
rate 934 that has substantial scene complexity and/or
motion that has been generated using the cyclic I/P tile
compression techniques described previously and illus-
trated in Figures 7a, 7b and 8. The video compressor
404 has been configured to output compressed video at
an average data rate that is below the peak data rate
941, and note that, most of the time, the video stream
data rate remains below the peak data rate 941. A com-
parison of data rate 934 with video stream data rate 634

49 50

EP 2 826 530 A2

28

5

10

15

20

25

30

35

40

45

50

55

shown in Figure 6c created using I/P/B or I/P frames
shows that the cyclic I/P tile compression produces a
much smoother data rate. Still, at frame 2x peak 952
(which approaches 2x the peak data rate 942) and frame
4x peak 954 (which approaches 4x the peak data rate
944), the data rate exceeds the peak data rate 941, which
is unacceptable. In practice, even with high action video
from rapidly changing video games, peaks in excess of
peak data rate 941 occur in less than 2% of frames, peaks
in excess of 2x peak data rate 942 occur rarely, and peaks
in excess of 3x peak data rate 943 occur hardly ever.
But, when they do occur (e.g., during a scene transition),
the data rate required by them is necessary to produce
a good quality video image.
[0148] One way to solve this problem is simply to con-
figure the video compressor 404 such that its maximum
data rate output is the peak data rate 941. Unfortunately,
the resulting video output quality during the peak frames
is poor since the compression algorithm is "starved" for
bits. What results is the appearance of compression ar-
tifacts when there are sudden transitions or fast motion,
and in time, the user comes to realize that the artifacts
always crop up when there is sudden changes or rapid
motion, and they can become quite annoying.
[0149] Although the human visual system is quite sen-
sitive to visual artifacts that appear during sudden chang-
es or rapid motion, it is not very sensitive to detecting a
reduction in frame rate in such situations. In fact, when
such sudden changes occur, it appears that the human
visual system is preoccupied with tracking the changes,
and it doesn’t notice if the frame rate briefly drops from
60fps to 30fps, and then returns immediately to 60fps.
And, in the case of a very dramatic transition, like a sud-
den scene change, the human visual system doesn’t no-
tice if the frame rate drops to 20fps or even 15fps, and
then immediately returns to 60fps. So long as the frame
rate reduction only occurs infrequently, to a human ob-
server, it appears that the video has been continuously
running at 60fps.
[0150] This property of the human visual system is ex-
ploited by the techniques illustrated in Figure 9b. A server
402 (from Figures 4a and 4b) produces an uncom-
pressed video output stream at a steady frame rate (at
60fps in one embodiment). A timeline shows each frame
961-970 output each 1/60th second. Each uncompressed
video frame, starting with frame 961, is output to the low-
latency video compressor 404, which compresses the
frame in less than a frame time, producing for the first
frame compressed frame 1 981. The data produced for
the compressed frame 1 981 may be larger or smaller,
depending upon many factors, as previously described.
If the data is small enough that it can be transmitted to
the client 415 in a frame time (1/60th second) or less at
the peak data rate 941, then it is transmitted during trans-
mit time (xmit time) 991 (the length of the arrow indicates
the duration of the transmit time). In the next frame time,
server 402 produces uncompressed frame 2 962, it is
compressed to compressed frame 2 982, and it is trans-

mitted to client 415 during transmit time 992, which is
less than a frame time at peak data rate 941.
[0151] Then, in the next frame time, server 402 pro-
duces uncompressed frame 3 963. When it is com-
pressed by video compressor 404, the resulting com-
pressed frame 3 983 is more data than can be transmitted
at the peak data rate 941 in one frame time. So, it is
transmitted during transmit time (2x peak) 993, which
takes up all of the frame time and part of the next frame
time. Now, during the next frame time, server 402 pro-
duces another uncompressed frame 4 964 and outputs
it to video compressor 404 but the data is ignored and
illustrated with 974. This is because video compressor
404 is configured to ignore further uncompressed video
frames that arrive while it is still transmitting a prior com-
pressed frame. Of course client 415’s video decompres-
sor will fail to receive frame 4, but it simply continues to
display on display device 422 frame 3 for 2 frame times
(i.e., briefly reduces the frame rate from 60fps to 30fps).
[0152] For the next frame 5, server 402 outputs un-
compressed frame 5 965, is compressed to compressed
frame 5 985 and transmitted within 1 frame during trans-
mit time 995. Client 415’s video decompressor decom-
presses frame 5 and displays it on display device 422.
Next, server 402 outputs uncompressed frame 6 966,
video compressor 404 compresses it to compressed
frame 6 986, but this time the resulting data is very large.
The compressed frame is transmitted during transmit
time (4x peak) 996 at the peak data rate 941, but it takes
almost 4 frame times to transmit the frame. During the
next 3 frame times, video compressor 404 ignores 3
frames from server 402, and client 415’s decompressor
holds frame 6 steadily on the display device 422 for 4
frames times (i.e., briefly reduces the frame rate from
60fps to 15fps). Then finally, server 402 outputs frame
10 970, video compressor 404 compresses it into com-
pressed frame 10 987, and it is transmitted during trans-
mit time 997, and client 415’s decompressor decom-
presses frame 10 and displays it on display device 422
and once again the video resumes at 60fps.
[0153] Note that although video compressor 404 drops
video frames from the video stream generated by server
402, it does not drop audio data, regardless of what form
the audio comes in, and it continues to compress the
audio data when video frames are dropped and transmit
them to client 415, which continues to decompress the
audio data and provide the audio to whatever device is
used by the user to playback the audio. Thus audio con-
tinues unabated during periods when frames are
dropped. Compressed audio consumes a relatively small
percentage of bandwidth, compared to compressed vid-
eo, and as result does not have a major impact on the
overall data rate. Although it is not illustrated in any of
the data rate diagrams, there is always data rate capacity
reserved for the compressed audio stream within the
peak data rate 941.
[0154] The example just described in Figure 9b was
chosen to illustrate how the frame rate drops during data

51 52

EP 2 826 530 A2

29

5

10

15

20

25

30

35

40

45

50

55

rate peaks, but what it does not illustrate is that when the
cyclic I/P tile techniques described previously are used,
such data rate peaks, and the consequential dropped
frames are rare, even during high scene complexity/high
action sequences such as those that occur in video
games, motion pictures and some application software.
Consequently, the reduced frame rates are infrequent
and brief, and the human visual system does not detect
them.
[0155] If the frame rate reduction mechanism just de-
scribed is applied to the video stream data rate illustrated
in Figure 9a, the resulting video stream data rate is illus-
trated in Figure 9c. In this example, 2x peak 952 has
been reduced to flattened 2x peak 953, and 4x peak 955
has been reduced to flattened 4x peak 955, and the entire
video stream data rate 934 remains at or below the peak
data rate 941.
[0156] Thus, using the techniques described above, a
high action video stream can be transmitted with low la-
tency through the general Internet and through a con-
sumer-grade Internet connection. Further, in an office
environment on a LAN (e.g., 100Mbs Ethernet or 802.11
g wireless) or on a private network (e.g., 100Mbps con-
nection between a data center an offices) a high action
video stream can be transmitted without peaks so that
multiple users (e.g., transmitting 1920x1080 at 60fps at
4.5Mbps) can use the LAN or shared private data con-
nection without having overlapping peaks overwhelming
the network or the network switch backplanes.

DATA RATE ADJUSTMENT

[0157] In one embodiment, the hosting service 210 in-
itially assesses the available maximum data rate 622 and
latency of the channel to determine an appropriate data
rate for the video stream and then dynamically adjusts
the data rate in response. To adjust the data rate, the
hosting service 210 may, for example, modify the image
resolution and/or the number of frames/second of the
video stream to be sent to the client 415. Also, the hosting
service can adjust the quality level of the compressed
video. When changing the resolution of the video stream,
e.g., from a 1280 x 720 resolution to a 640 x 360 the
video decompression logic 412 on the client 415 can
scale up the image to maintain the same image size on
the display screen.
[0158] In one embodiment, in a situation where the
channel completely drops out, the hosting service 210
pauses the game. In the case of a multiplayer game, the
hosting service reports to the other users that the user
has dropped out of the game and/or pauses the game
for the other users.

DROPPED OR DELAYED PACKETS

[0159] In one embodiment, if data is lost due to packet
loss between the video compressor 404 and client 415
in Figures 4a or 4b, or due to a packet being received

out of order that arrives too late to decompress and meet
the latency requirements of the decompressed frame,
the video decompression logic 412 is able to mitigate the
visual artifacts. In a streaming I/P frame implementation,
if there is a lost/delayed packet, the entire screen is im-
pacted, potentially causing the screen to completely
freeze for a period of time or show other screen-wide
visual artifacts. For example, if a lost/delayed packet
causes the loss of an I frame, then the decompressor will
lack a reference for all of the P frames that follow until a
new I frame is received. If a P frame is lost, then it will
impact the P frames for the entire screen that follow. De-
pending on how long it will be before an I frame appears,
this will have a longer or shorter visual impact. Using
interleaved I/P tiles as shown in Figures 7a and 7b, a
lost/delayed packet is much less likely to impact the entire
screen since it will only affect the tiles contained in the
affected packet. If each tile’s data is sent within an indi-
vidual packet, then if a packet is lost, it will only affect
one tile. Of course, the duration of the visual artifact will
depend on whether an I tile packet is lost and, if a P tile
is lost, how many frames it will take until an I tile appears.
But, given that different tiles on the screen are being up-
dated with I frames very frequently (potentially every
frame), even if one tile on the screen is affected, other
tiles may not be. Further, if some event cause a loss of
several packets at once (e.g., spike in power next to a
DSL line that briefly disrupts the data flow), then some
of the tiles will be affected more than others, but because
some tiles will quickly be renewed with a new I tile, they
will be only briefly affected. Also, with a streaming I/P
frame implementation, not only are the I frames the most
critical frame, but the I frames are extremely large, so if
there is an event that causes a dropped/delayed packet,
there is a higher probability that an I frame will be affected
(i.e., if any part of an I frame is lost, it is unlikely that the
I frame can be decompressed at all) than a much smaller
I tile. For all of these reasons, using I/P tiles results in far
fewer visual artifacts when packets are dropped/delayed
than with I/P frames.
[0160] One embodiment attempts to reduce the effect
of lost packets by intelligently packaging the compressed
tiles within the TCP (transmission control protocol) pack-
ets or UDP (user datagram protocol) packets. For exam-
ple, in one embodiment, tiles are aligned with packet
boundaries whenever possible. Figure 10a illustrates
how tiles might be packed within a series of packets
1001-1005 without implementing this feature. Specifical-
ly, in Figure 10a, tiles cross packet boundaries and are
packed inefficiently so that the loss of a single packet
results in the loss of multiple frames. For example, if pack-
ets 1003 or 1004 are lost, three tiles are lost, resulting in
visual artifacts.
[0161] By contrast, Figure 10b illustrates tile packing
logic 1010 for intelligently packing tiles within packets to
reduce the effect of packet loss. First, the tile packing
logic 1010 aligns tiles with packet boundaries. Thus, tiles
T1, T3, T4, T7, and T2 are aligned with the boundaries

53 54

EP 2 826 530 A2

30

5

10

15

20

25

30

35

40

45

50

55

of packets 1001-1005, respectively. The tile packing logic
also attempts to fit tiles within packets in the most efficient
manner possible, without crossing packet boundaries.
Based on the size of each of the tiles, tiles T1 and T6 are
combined in one packet 1001; T3 and T5 are combined
in one packet 1002; tiles T4 and T8 are combined in one
packet 1003; tile T8 is added to packet 1004; and tile T2
is added to packet 1005. Thus, under this scheme, a
single packet loss will result in the loss of no more than
2 tiles (rather than 3 tiles as illustrated in Figure 10a).
[0162] One additional benefit to the embodiment
shown in Figure 10b is that the tiles are transmitted in a
different order in which they are displayed within the im-
age. This way, if adjacent packets are lost from the same
event interfering with the transmission it will affect areas
which are not near each other on the screen, creating a
less noticeable artifacting on the display.
[0163] One embodiment employs forward error correc-
tion (FEC) techniques to protect certain portions of the
video stream from channel errors. As is known in the art,
FEC techniques such as Reed-Solomon and Viterbi gen-
erate and append error correction data information to da-
ta transmitted over a communications channel. If an error
occurs in the underlying data (e.g., an I frame), then the
FEC may be used to correct the error.
[0164] FEC codes increase the data rate of the trans-
mission, so ideally, they are only used where they are
most needed. If data is being sent that would not result
in a very noticeable visual artifact, it may be preferable
to not use FEC codes to protect the data. For example,
a P tile that immediately precedes an I tile that is lost will
only create a visual artifact (i.e., on tile on the screen will
not be updated) for 1/60th of second on the screen. Such
a visual artifact is barely detectable by the human eye.
As P tiles are further back from an I tile, losing a P tile
becomes increasingly more noticeable. For example, if
a tile cycle pattern is an I tile followed by 15 P tiles before
an I tile is available again, then if the P tile immediately
following an I tile is lost, it will result in that tile showing
an incorrect image for 15 frame times (at 60 fps, that
would be 250ms). The human eye will readily detect a
disruption in a stream for 250ms. So, the further back a
P tile is from a new I tile (i.e., the closer a P tiles follows
an I tile), the more noticeable the artifact. As previously
discussed, though, in general, the closer a P tile follows
an I tile, the smaller the data for that P tile. Thus, P tiles
following I tiles not only are more critical to protect from
being lost, but they are smaller in size. And, in general,
the smaller the data is that needs to be protected, the
smaller the FEC code needs to be to protect it.
[0165] So, as illustrated in Figure 11a, in one embod-
iment, because of the importance of I tiles in the video
stream, only I tiles are provided with FEC codes. Thus,
FEC 1101 contains error correction code for I tile 1100
and FEC 1104 contains error correction code for I tile
1103. In this embodiment, no FEC is generated for the
P tiles.
[0166] In one embodiment illustrated in Figure 11b

FEC codes are also generated for P tiles which are most
likely to cause visual artifacts if lost. In this embodiment,
FECs 1105 provide error correction codes for the first 3
P tiles, but not for the P tiles that follow. In another em-
bodiment, FEC codes are generated for P tiles which are
smallest in data size (which will tend to self-select P tiles
occurring the soonest after an I tile, which are the most
critical to protect).
[0167] In another embodiment, rather than sending an
FEC code with a tile, the tile is transmitted twice, each
time in a different packet. If one packet is lost/delayed,
the other packet is used.
[0168] In one embodiment, shown in Figure 11c, FEC
codes 1111 and 1113 are generated for audio packets,
1110 and 1112, respectively, transmitted from the host-
ing service concurrently with the video. It is particularly
important to maintain the integrity of the audio in a video
stream because distorted audio (e.g., clicking or hissing)
will result in a particularly undesirable user experience.
The FEC codes help to ensure that the audio content is
rendered at the client computer 415 without distortion.
[0169] In another embodiment, rather than sending an
FEC code with audio data, the audio data is transmitted
twice, each time in a different packet. If one packet is
lost/delayed, the other packet is used.
[0170] In addition, in one embodiment illustrated in Fig-
ure 11d, FEC codes 1121 and 1123 are used for user
input commands 1120 and 1122, respectively (e.g., but-
ton presses) transmitted upstream from the client 415 to
the hosting service 210. This is important because miss-
ing a button press or a mouse movement in a video game
or an application could result in an undesirable user ex-
perience.
[0171] In another embodiment, rather than sending an
FEC code with user input command data, the user input
command data is transmitted twice, each time in a differ-
ent packet. If one packet is lost/delayed, the other packet
is used.
[0172] In one embodiment, the hosting service 210 as-
sesses the quality of the communication channel with the
client 415 to determine whether to use FEC and, if so,
what portions of the video, audio and user commands to
which FEC should be applied. Assessing the "quality" of
the channel may include functions such as evaluating
packet loss, latency, etc, as described above. If the chan-
nel is particularly unreliable, then the hosting service 210
may apply FEC to all of I tiles, P tiles, audio and user
commands. By contrast, if the channel is reliable, then
the hosting service 210 may apply FEC only to audio and
user commands, or may not apply FEC to audio or video,
or may not use FEC at all. Various other permutations of
the application of FEC may be employed while still com-
plying with these underlying principles. In one embodi-
ment, the hosting service 210 continually monitors the
conditions of the channel and changes the FEC policy
accordingly.
[0173] In another embodiment, referring to Figures 4a
and 4b, when a packet is lost/delayed resulting in the

55 56

EP 2 826 530 A2

31

5

10

15

20

25

30

35

40

45

50

55

loss of tile data or if, perhaps because of a particularly
bad packet loss, the FEC is unable to correct lost tile
data, the client 415 assesses how many frames are left
before a new I tile will be received and compares it to the
round-trip latency from the client 415 to hosting service
210. If the round-trip latency is less than the number of
frames before a new I tile is due to arrive, then the client
415 sends a message to the hosting service 210 request-
ing a new I tile. This message is routed to the video com-
pressor 404, and rather than generating a P tile for the
tile whose data had been lost, it generates an I tile. Given
that the system shown in Figs. 4a and 4b is designed to
provide a round-trip latency that is typically less than
80ms, this results in a tile being corrected within 80ms
(at 60fps, frames are 16.67ms of duration, thus in full
frame times, 80ms latency would result in a corrected a
tile within 83.33ms, which is 5 frame times-a noticeable
disruption, but far less noticeable than, for example, a
250ms disruption for 15 frames). When the compressor
404 generates such an I tile out of its usual cyclic order,
if the I tile would cause the bandwidth of that frame to
exceed the available bandwidth, then the compressor
404 will delay the cycles of the other tiles so that the other
tiles receive P tiles during that frame time (even if one
tile would normally be due an I tile during that frame),
and then starting with the next frame the usual cycling
will continue, and the tile that normally would have re-
ceived an I tile in the preceding frame will receive an I
tile. Although this action briefly delays the phase of the
R frame cycling, it normally will not be noticeable visually.

VIDEO AND AUDIO COMPRESSOR/DECOMPRES-
SOR IMPLEMENTATION

[0174] Figure 12 illustrates one particular embodiment
in which a multi-core and/or multi-processor 1200 is used
to compress 8 tiles in parallel. In one embodiment, a dual
processor, quad core Xeon CPU computer system run-
ning at 2.66 GHz or higher is used, with each core im-
plementing the open source x264 H.264 compressor as
an independent process. However, various other hard-
ware/software configurations may be used while still
complying with these underlying principles. For example,
each of the CPU cores can be replaced with an H.264
compressor implemented in an FPGA. In the example
shown in Figure 12, cores 1201-1208 are used to con-
currently process the I tiles and P tiles as eight independ-
ent threads. As is well known in the art, current multi-core
and multi-processor computer systems are inherently ca-
pable of multi-threading when integrated with multi-
threading operating systems such as Microsoft Windows
XP Professional Edition (either 64-bit or the 32-bit edition)
and Linux.
[0175] In the embodiment illustrated in Figure 12, since
each of the 8 cores is responsible for just one tile, it op-
erates largely independently from the other cores, each
running a separate instantiation of x264. A PCI Express
x1-based DVI capture card, such as the Sendero Video

Imaging IP Development Board from Microtronix of Oost-
erhout, The Netherlands is used to capture uncom-
pressed video at 640x480, 800x600, or 1280x720 reso-
lution, and the FPGA on the card uses Direct Memory
Access (DMA) to transfer the captured video through the
DVI bus into system RAM. The tiles are arranged in a
4x2 arrangement 1205 (although they are illustrated as
square tiles, in this embodiment they are of 160x240 res-
olution). Each instantiation of x264’s is configured to
compress one of the 8 160x240 tiles, and they are syn-
chronized such that, after an initial I tile compression,
each core enters into a cycle, each one frame out of
phase with the other, to compress one I tile followed by
seven P tiles, and illustrated in Figure 12.
[0176] Each frame time, the resulting compressed tiles
are combined into a packet stream, using the techniques
previously described, and then the compressed tiles are
transmitted to a destination client 415.
[0177] Although not illustrated in Figure 12, if the data
rate of the combined 8 tiles exceeds a specified peak
data rate 941, then all 8 x264 processes are suspended
for as many frame times as are necessary until the data
for the combined 8 tiles has been transmitted.
[0178] In one embodiment, client 415 is implemented
as software on a PC running 8 instantiations of FFmpeg.
A receiving process receives the 8 tiles, and each tile is
routed to an FFmpeg instantiation, which decompresses
the tile and renders it to an appropriate tile location on
the display device 422.
[0179] The client 415 receives keyboard, mouse, or
game controller input from the PC’s input device drivers
and transmits it to the server 402. The server 402 then
applies the received input device data and applies it to
the game or application running on the server 402, which
is a PC running Windows using an Intel 2.16GHz Core
Duo CPU. The server 402 then produces a new frame
and outputs it through its DVI output, either from a moth-
erboard-based graphics system, or through a NVIDIA
8800GTX PCI Express card’s DVI output.
[0180] Simultaneously, the server 402 outputs the au-
dio produced by game or applications through its digital
audio output (e.g., S/PDIF), which is coupled to the digital
audio input on the dual quad-core Xeon-based PC that
is implementing the video compression. A Vorbis open
source audio compressor is used to compress the audio
simultaneously with the video using whatever core is
available for the process thread. In one embodiment, the
core that completes compressing its tile first executes
the audio compression. The compressed audio is then
transmitted along with the compressed video, and is de-
compressed on the client 415 using a Vorbis audio de-
compressor.

HOSTING SERVICE SERVER CENTER DISTRIBU-
TION

[0181] Light through glass, such as optical fiber, travels
at some fraction of the speed of light in a vacuum, and

57 58

EP 2 826 530 A2

32

5

10

15

20

25

30

35

40

45

50

55

so an exact propagation speed for light in optical fiber
could be determined. But, in practice, allowing time for
routing delays, transmission inefficiencies, and other
overhead, we have observed that optimal latencies on
the Internet reflect transmission speeds closer to 50%
the speed of light. Thus, an optimal 1000 mile round trip
latency is approximately 22ms, and an optimal 3000 mile
round trip latency is about 64ms. Thus, a single server
on one US coast will be too far away to serve clients on
the other coast (which can be as far as 3000 miles away)
with the desired latency. However, as illustrated in Figure
13a, if the hosting service 210 server center 1300 is lo-
cated in the center of the US (e.g., Kansas, Nebraska,
etc.), such that the distance to any point in the continental
US is approximately 1500 miles or less, the round trip
Internet latency could be as low as 32 ms. Referring to
Figure 4b, note that although the worst-case latencies
allowed for the user ISP 453 is 25ms, typically, we have
observed latencies closer to 10-15ms with DSL and cable
modem systems. Also, Figure 4b assumes a maximum
distance from the user premises 211 to the hosting center
210 of 1000 miles. Thus, with a typical user ISP round
trip latency of 15ms used and a maximum Internet dis-
tance of 1500 miles for a round trip latency of 32ms, the
total round trip latency from the point a user actuates
input device 421 and sees a response on display device
422 is 1 +1 +15+32+1 +16+6+8 = 80ms. So, the 80ms
response time can be typically achieved over an Internet
distance of 1500 miles. This would allow any user premis-
es with a short enough user ISP latency 453 in the con-
tinental US to access a single server center that is cen-
trally located.
[0182] In another embodiment, illustrated in Figure
13b, the hosting service 210 server centers, HS1-HS6,
are strategically positioned around the United States (or
other geographical region), with certain larger hosting
service server centers positioned close to high population
centers (e.g., HS2 and HS5). In one embodiment, the
server centers HS1-HS6 exchange information via a net-
work 1301 which may be the Internet or a private network
or a combination of both. With multiple server centers,
services can be provided at lower latency to users that
have high user ISP latency 453.
[0183] Although distance on the Internet is certainly a
factor that contributes to round trip latency through the
Internet, sometimes other factors come into play that are
largely unrelated to latency. Sometimes a packet stream
is routed through the Internet to a far away location and
back again, resulting in latency from the long loop. Some-
times there is routing equipment on the path that is not
operating properly, resulting in a delay of the transmis-
sion. Sometimes there is a traffic overloading a path
which introduces delay. And, sometimes, there is a failure
that prevents the user’s ISP from routing to a given des-
tination at all. Thus, while the general Internet usually
provides connections from one point to another with a
fairly reliable and optimal route and latency that is largely
determined by distance (especially with long distance

connections that result in routing outside of the user’s
local area) such reliability and latency is by no means
guaranteed and often cannot be achieved from a user’s
premises to a given destination on the general Internet.
[0184] In one embodiment, when a user client 415 in-
itially connects to the hosting service 210 to play a video
game or use an application, the client communicates with
each of the hosting service server centers HS1-HS6
available upon startup (e.g., using the techniques de-
scribed above). If the latency is low enough for a partic-
ular connection, then that connection is used. In one em-
bodiment, the client communicates with all, or a subset,
of the hosting service server centers the one with the
lowest latency connection is selected. The client may se-
lect the service center with the lowest latency connection
or the service centers may identify the one with the lowest
latency connection and provide this information (e.g., in
the form of an Internet address) to the client.
[0185] If a particular hosting service server center is
overloaded and/or the user’s game or application can
tolerate the latency to another, less loaded hosting serv-
ice server center, then the client 415 may be redirected
to the other hosting service server center. In such a sit-
uation, the game or application the user is running would
be paused on the server 402 at the user’s overloaded
server center, and the game or application state data
would be transferred to a server 402 at another hosting
service server center. The game or application would
then be resumed. In one embodiment, the hosting service
210 would wait until the game or application has either
reached a natural pausing point (e.g., between levels in
a game, or after the user initiates a "save" operation in
application) to do the transfer. In yet another embodi-
ment, the hosting service 210 would wait until user activity
ceases for a specified period of time (e.g., 1 minute) and
then would initiate the transfer at that time.
[0186] As described above, in one embodiment, the
hosting service 210 subscribes to an Internet bypass
service 440 of Figure 14 to attempt to provide guaranteed
latency to its clients. Internet bypass services, as used
herein, are services that provide private network routes
from one point to another on the Internet with guaranteed
characteristics (e.g., latency, data rate, etc.). For exam-
ple, if the hosting service 210 was receiving large amount
of traffic from users using AT&T’s DSL service offering
in San Francisco, rather than routing to AT&T’s San Fran-
cisco-based central offices, the hosting service 210 could
lease a high-capacity private data connection from a
service provider (perhaps AT&T itself or another provid-
er) between the San Francisco-based central offices and
one or more of the server centers for hosting service 210.
Then, if routes from all hosting service server centers
HS1-HS6 through the general Internet to a user in San
Francisco using AT&T DSL result in too high latency,
then private data connection could be used instead. Al-
though private data connections are generally more ex-
pensive than the routes through the general Internet, so
long as they remain a small percentage of the hosting

59 60

EP 2 826 530 A2

33

5

10

15

20

25

30

35

40

45

50

55

service 210 connections to users, the overall cost impact
will be low, and users will experience a more consistent
service experience.
[0187] Server centers often have two layers of backup
power in the event of power failure. The first layer typically
is backup power from batteries (or from an alternative
immediately available energy source, such a flywheel
that is kept running and is attached to a generator), which
provides power immediately when the power mains fail
and keeps the server center running. If the power failure
is brief, and the power mains return quickly (e.g., within
a minute), then the batteries are all that is needed to keep
the server center running. But if the power failure is for
a longer period of time, then typically generators (e.g.,
diesel-powered) are started up that take over for the bat-
teries and can run for as long as they have fuel. Such
generators are extremely expensive since they must be
capable of producing as much power as the server center
normally gets from the power mains.
[0188] In one embodiment, each of the hosting servic-
es HS1-HS5 share user data with one another so that if
one server center has a power failure, it can pause the
games and applications that are in process, and then
transfer the game or application state data from each
server 402 to servers 402 at other server centers, and
then will notify the client 415 of each user to direct it com-
munications to the new server 402. Given that such sit-
uations occur infrequently, it may be acceptable to trans-
fer a user to a hosting service server center which is not
able to provide optimal latency (i.e., the user will simply
have to tolerate higher latency for the duration of the pow-
er failure), which will allow for a much wider range of
options for transferring users. For example, given the
time zone differences across the US, users on the East
Coast may be going to sleep at 11:30PM while users on
the West Coast at 8:30PM are starting to peak in video
game usage. If there is a power failure in a hosting service
server center on the West Coast at that time, there may
not be enough West Coast servers 402 at other hosting
service server centers to handle all of the users. In such
a situation, some of the users can be transferred to host-
ing service server centers on the East Coast which have
available servers 402, and the only consequence to the
users would be higher latency. Once the users have been
transferred from the server center that has lost power,
the server center can then commence an orderly shut-
down of its servers and equipment, such that all of the
equipment has been shut down before the batteries (or
other immediate power backup) is exhausted. In this way,
the cost of a generator for the server center can be avoid-
ed.
[0189] In one embodiment, during times of heavy load-
ing of the hosting service 210 (either due to peak user
loading, or because one or more server centers have
failed) users are transferred to other server centers on
the basis of the latency requirements of the game or ap-
plication they are using. So, users using games or appli-
cations that require low latency would be given prefer-

ence to available low latency server connections when
there is a limited supply.

HOSTING SERVICE FEATURES

[0190] Figure 15 illustrates an embodiment of compo-
nents of a server center for hosting service 210 utilized
in the following feature descriptions. As with the hosting
service 210 illustrated in Figure 2a, the components of
this server center are controlled and coordinated by a
hosting service 210 control system 401 unless otherwise
qualified.
[0191] Inbound internet traffic 1501 from user clients
415 is directed to inbound routing 1502. Typically, in-
bound internet traffic 1501 will enter the server center via
a high-speed fiber optic connection to the Internet, but
any network connection means of adequate bandwidth,
reliability and low latency will suffice. Inbound routing
1502 is a system of network (the network can be imple-
mented as an Ethernet network, a fiber channel network,
or through any other transport means) switches and rout-
ing servers supporting the switches which takes the ar-
riving packets and routes each packet to the appropriate
application/game ("app/game") server 1521-1525. In one
embodiment, a packet which is delivered to a particular
app/game server represents a subset of the data re-
ceived from the client and/or may be translated/changed
by other components (e.g., networking components such
as gateways and routers) within the data center. In some
cases, packets will be routed to more than one server
1521-1525 at a time, for example, if a game or application
is running on multiple servers at once in parallel. RAID
array 1511-1512 are connected to the inbound routing
network 1502, such that the app/game servers
1521-1525 can read and write to the RAID arrays
1511-1512. Further, a RAID array 1515 (which may be
implemented as multiple RAID arrays) is also connected
to the inbound routing 1502 and data from RAID array
1515 can be read from app/game servers 1521-1525.
The inbound routing 1502 may be implemented in a wide
range of prior art network architectures, including a tree
structure of switches, with the inbound internet traffic
1501 at its root; in a mesh structure interconnecting all
of the various devices; or as an interconnected series of
subnets, with concentrated traffic amongst intercommu-
nicating device segregated from concentrated traffic
amongst other devices. One type of network configura-
tion is a SAN which, although typically used for storage
devices, it can also be used for general high-speed data
transfer among devices. Also, the app/game servers
1521-1525 may each have multiple network connections
to the inbound routing 1502. For example, a server
1521-1525 may have a network connection to a subnet
attached to RAID Arrays 1511-1512 and another network
connection to a subnet attached to other devices.
[0192] The app/game servers 1521-1525 may all be
configured the same, some differently, or all differently,
as previously described in relation to servers 402 in the

61 62

EP 2 826 530 A2

34

5

10

15

20

25

30

35

40

45

50

55

embodiment illustrated in Figure 4a. In one embodiment,
each user, when using the hosting service is typically at
least one app/game server 1521-1525. For the sake of
simplicity of explanation, we shall assume a given user
is using app/game server 1521, but multiple servers
could be used by one user, and multiple users could
share a single app/game server 1521-1525. The user’s
control input, sent from client 415 as previously described
is received as inbound Internet traffic 1501, and is routed
through inbound routing 1502 to app/game server 1521.
App/game server 1521 uses the user’s control input as
control input to the game or application running on the
server, and computes the next frame of video and the
audio associated with it. App/game server 1521 then out-
puts the uncompressed video/audio 1529 to shared video
compression 1530. App/game server may output the un-
compressed video via any means, including one or more
Gigabit Ethernet connections, but in one embodiment the
video is output via a DVI connection and the audio and
other compression and communication channel state in-
formation is output via a Universal Serial Bus (USB) con-
nection.
[0193] The shared video compression 1530 compress-
es the uncompressed video and audio from the
app/game servers 1521-1525. The compression maybe
implemented entirely in hardware, or in hardware running
software. There may a dedicated compressor for each
app/game server 1521-1525, or if the compressors are
fast enough, a given compressor can be used to com-
press the video/audio from more than one app/game
server 1521-1525. For example, at 60fps a video frame
time is 16.67ms. If a compressor is able to compress a
frame in 1 ms, then that compressor could be used to
compress the video/audio from as many as 16 app/game
servers 1521-1525 by taking input from one server after
another, with the compressor saving the state of each
video/audio compression process and switching context
as it cycles amongst the video/audio streams from the
servers. This results in substantial cost savings in com-
pression hardware. Since different servers will be com-
pleting frames at different times, in one embodiment, the
compressor resources are in a shared pool 1530 with
shared storage means (e.g., RAM, Flash) for storing the
state of each compression process, and when a server
1521-1525 frame is complete and ready to be com-
pressed, a control means determines which compression
resource is available at that time, provides the compres-
sion resource with the state of the server’s compression
process and the frame of uncompressed video/audio to
compress.
[0194] Note that part of the state for each server’s com-
pression process includes information about the com-
pression itself, such as the previous frame’s decom-
pressed frame buffer data which may be used as a ref-
erence for P tiles, the resolution of the video output; the
quality of the compression; the tiling structure; the allo-
cation of bits per tiles; the compression quality, the audio
format (e.g., stereo, surround sound, Dolby® AC-3). But

the compression process state also includes communi-
cation channel state information regarding the peak data
rate 941 and whether a previous frame (as illustrated in
Fig 9b) is currently being output (and as result the current
frame should be ignored), and potentially whether there
are channel characteristics which should be considered
in the compression, such as excessive packet loss, which
affect decisions for the compression (e.g., in terms of the
frequency of I tiles, etc). As the peak data rate 941 or
other channel characteristics change over time, as de-
termined by an app/game server 1521-1525 supporting
each user monitoring data sent from the client 415, the
app/game server 1521-1525 sends the relevant informa-
tion to the shared hardware compression 1530.
[0195] The shared hardware compression 1530 also
packetizes the compressed video/audio using means
such as those previously described, and if appropriate,
applying FEC codes, duplicating certain data, or taking
other steps to as to adequately ensure the ability of the
video/audio data stream to be received by the client 415
and decompressed with as high a quality and reliability
as feasible.
[0196] Some applications, such as those described be-
low, require the video/audio output of a given app/game
server 1521-1525 to be available at multiple resolutions
(or in other multiple formats) simultaneously. If the
app/game server 1521-1525 so notifies the shared hard-
ware compression 1530 resource, then the uncom-
pressed video audio 1529 of that app/game server
1521-1525 will be simultaneously compressed in differ-
ent formats, different resolutions, and/or in different pack-
et/error correction structures. In some cases, some com-
pression resources can be shared amongst multiple com-
pression processes compressing the same video/audio
(e.g., in many compression algorithms, there is a step
whereby the image is scaled to multiple sizes before ap-
plying compression. If different size images are required
to be output, then this step can be used to serve several
compression processes at once). In other cases, sepa-
rate compression resources will be required for each for-
mat. In any case, the compressed video/audio 1539 of
all of the various resolutions and formats required for a
given app/game server 1521-1525 (be it one or many)
will be output at once to outbound routing 1540. In one
embodiment the output of the compressed video/audio
1539 is in UDP format, so it is a unidirectional stream of
packets.
[0197] The outbound routing network 1540 comprises
a series of routing servers and switches which direct each
compressed video/audio stream to the intended user(s)
or other destinations through outbound Internet traffic
1599 interface (which typically would connect to a fiber
interface to the Internet) and/or back to the delay buffer
1515, and/or back to the inbound routing 1502, and/or
out through a private network (not shown) for video dis-
tribution. Note that (as described below) the outbound
routing 1540 may output a given video/audio stream to
multiple destinations at once. In one embodiment this is

63 64

EP 2 826 530 A2

35

5

10

15

20

25

30

35

40

45

50

55

implemented using Internet Protocol (IP) multicast in
which a given UDP stream intended to be streamed to
multiple destinations at once is broadcasted, and the
broadcast is repeated by the routing servers and switch-
es in the outbound routing 1540. The multiple destina-
tions of the broadcast may be to multiple users’ clients
415 via the Internet, to multiple app/game servers
1521-1525 through via inbound routing 1502, and/or to
one or more delay buffers 1515. Thus, the output of a
given server 1521-1522 is compressed into one or mul-
tiple formats, and each compressed stream is directed
to one or multiple destinations.
[0198] Further, in another embodiment, if multiple
app/game servers 1521-1525 are used simultaneously
by one user (e.g., in a parallel processing configuration
to create the 3D output of a complex scene) and each
server is producing part of the resulting image, the video
output of multiple servers 1521-1525 can be combined
by the shared hardware compression 1530 into a com-
bined frame, and from that point forward it is handled as
described above as if it came from a single app/game
server 1521-1525.
[0199] Note that in one embodiment, a copy (in at least
the resolution or higher of video viewed by the user) of
all video generated by app/game servers 1521-1525 is
recorded in delay buffer 1515 for at least some number
of minutes (15 minutes in one embodiment). This allows
each user to "rewind" the video from each session in
order to review previous work or exploits (in the case of
a game). Thus, in one embodiment, each compressed
video/audio output 1539 stream being routed to a user
client 415 is also being multicasted to a delay buffer 1515.
When the video/audio is stored on a delay buffer 1515,
a directory on the delay buffer 1515 provides a cross
reference between the network address of the app/game
server 1521-1525 that is the source of the delayed vid-
eo/audio and the location on the delay buffer 1515 where
the delayed video/audio can be found.

LIVE, INSTANTLY-VIEWABLE, INSTANTLY-PLAYA-
BLE GAMES

[0200] App/game servers 1521-1525 may not only be
used for running a given application or video game for a
user, but they may also be used for creating the user
interface applications for the hosting service 210 that
supports navigation through hosting service 210 and oth-
er features. A screen shot of one such user interface
application is shown in Figure 16, a "Game Finder"
screen. This particular user interface screen allows a us-
er to watch 15 games that are being played live (or de-
layed) by other users. Each of the "thumbnail" video win-
dows, such as 1600 is a live video window in motion
showing one the video from one user’s game. The view
shown in the thumbnail may be the same view that the
user is seeing, or it may be a delayed view (e.g., if a user
is playing a combat game, a user may not want other
users to see where she is hiding and she may choose to

delay any view of her gameplay by a period of time, say
10 minutes). The view may also be a camera view of a
game that is different from any user’s view. Through
menu selections (not shown in this illustration), a user
may choose a selection of games to view at once, based
on a variety of criteria. As a small sampling of exemplary
choices, the user may select a random selection of
games (such as those shown in Figure 16), all of one
kind of games (all being played by different players), only
the top-ranked players of a game, players at a given level
in the game, or lower-ranked players (e.g., if the player
is learning the basics), players who are "buddies" (or are
rivals), games that have the most number of viewers, etc.
[0201] Note that generally, each user will decide
whether the video from his or her game or application
can be viewed by others and, if so, which others, and
when it may be viewed by others, whether it is only view-
able with a delay.
[0202] The app/game server 1521-1525 that is gener-
ating the user interface screen shown in Figure 16 ac-
quires the 15 video/audio feeds by sending a message
to the app/game server 1521-1525 for each user whose
game it is requesting from. The message is sent through
the inbound routing 1502 or another network. The mes-
sage will include the size and format of the video/audio
requested, and will identify the user viewing the user in-
terface screen. A given user may choose to select "pri-
vacy" mode and not permit any other users to view vid-
eo/audio of his game (either from his point of view or from
another point of view), or as described in the previous
paragraph, a user may choose to allow viewing of vid-
eo/audio from her game, but delay the video/audio
viewed. A user app/game server 1521-1525 receiving
and accepting a request to allow its video/audio to be
viewed will acknowledge as such to the requesting serv-
er, and it will also notify the shared hardware compres-
sion 1530 of the need to generate an additional com-
pressed video stream in the requested format or screen
size (assuming the format and screen size is different
than one already being generated), and it will also indi-
cate the destination for the compressed video (i.e., the
requesting server). If the requested video/audio is only
delayed, then the requesting app/game server
1521-1525 will be so notified, and it will acquire the de-
layed video/audio from a delay buffer 1515 by looking up
the video/audio’s location in the directory on the delay
buffer 1515 and the network address of the app/game
server 1521-1525 that is the source of the delayed vid-
eo/audio. Once all of these requests have been gener-
ated and handled, up to 15 live thumbnail-sized video
streams will be routed from the outbound routing 1540
to the inbound routing 1502 to the app/game server
1521-1525 generating the user interface screen, and will
be decompressed and displayed by the server. Delayed
video/audio streams may be in too large a screen size,
and if so, the app/game server 1521-1525 will decom-
press the streams and scale down the video streams to
thumbnail size. In one embodiment, requests for au-

65 66

EP 2 826 530 A2

36

5

10

15

20

25

30

35

40

45

50

55

dio/video are sent to (and managed by) a central "man-
agement" service similar to the hosting service control
system of Figure 4a (not shown in Figure 15) which then
redirects the requests to the appropriate app/game serv-
er 1521-1525. Moreover, in one embodiment, no request
may be required because the thumbnails are "pushed"
to the clients of those users that allow it.
[0203] The audio from 15 games all mixed simultane-
ously might create a cacophony of sound. The user may
choose to mix all of the sounds together in this way (per-
haps just to get a sense of the "din" created by all the
action being viewed), or the user may choose to just listen
to the audio from one game at a time. The selection of a
single game is accomplished by moving the yellow se-
lection box 1601 to a given game (the yellow box move-
ment can be accomplished by using arrow keys on a
keyboard, by moving a mouse, by moving a joystick, or
by pushing directional buttons on another device such
as a mobile phone). Once a single game is selected, just
the audio from that game plays. Also, game information
1602 is shown. In the case of this game, for example,
the publisher logo ("EA") and the game logo, "Need for
Speed Carbon" and an orange horizontal bar indicates
in relative terms the number of people playing or viewing
the game at that particular moment (many, in this case,
so the game is "Hot"). Further "Stats" are provided, indi-
cating that there are 145 players actively playing 80 dif-
ferent instantiations of the Need for Speed Game (i.e., it
can be played either by an individual player game or mul-
tiplayer game), and there are 680 viewers (of which this
user is one). Note that these statistics (and other statis-
tics) are collected by hosting service control system 401
and are stored on RAID arrays 1511-1512, for keeping
logs of the hosting service 210 operation and for appro-
priately billing users and paying publishers who provide
content. Some of the statistics are recorded due to ac-
tions by the service control system 401, and some are
reported to the service control system 401 by the individ-
ual app/game server 1521-1525. For example, the
app/game server 1521-1525 running this Game Finder
application sends messages to the hosting service con-
trol system 401 when games are being viewed (and when
they are ceased to be viewed) so that it may update the
statistics of how many games are in view. Some of the
statistics are available for user interface applications
such as this Game Finder application.
[0204] If the user clicks an activation button on their
input device, they will see the thumbnail video in the yel-
low box zoom up while it remains live to full screen size.
This effect is shown in process in Figure 17. Note that
video window 1700 has grown in size. To implement this
effect, the app/game server 1521-1525 requests from
the app/game server 1521-1525 running the game se-
lected to have a copy of the video stream for a full screen
size (at the resolution of the user’s display device 422)
of the game routed to it. The app/game server 1521-1525
running the game notifies the shared hardware compres-
sor 1530 that a thumbnail-sized copy of the game is no

longer needed (unless another app/game server
1521-1525 requires such a thumbnail), and then it directs
it to send a full-screen size copy of the video to the
app/game server 1521-1525 zooming the video. The us-
er playing the game may or may not have a display device
422 that is the same resolution as that of the user zooming
up the game. Further, other viewers of the game may or
may not have display devices 422 that are the same res-
olution as the user zooming up the game (and may have
different audio playback means, e.g., stereo or surround
sound). Thus, the shared hardware compressor 1530 de-
termines whether a suitable compressed video/audio
stream is already being generated that meets the require-
ments of the user requesting the video/audio stream and
if one does exist, it notifies the outbound routing 1540 to
route a copy of the stream to the app/game server
1521-1525 zooming the video, and if not compresses
another copy of the video that is suitable for that user
and instructs the outbound routing to send the stream
back to the inbound routing 1502 and the app/game serv-
er 1521-1525 zooming the video. This server, now re-
ceiving a full screen version of the selected video will
decompress it and gradually scale it up to full size.
[0205] Figure 18 illustrates how the screen looks after
the game has completely zoomed up to full screen and
the game is shown at the full resolution of the user’s dis-
play device 422 as indicated by the image pointed to by
arrow 1800. The app/game server 1521-1525 running
the game finder application sends messages to the other
app/game servers 1521-1525 that had been providing
thumbnails that they are no longer needed and messages
to the hosting service control server 401 that the other
games are no longer being viewed. At this point the only
display it is generating is an overlay 1801 at the top of
the screen which provides information and menu controls
to the user. Note that as this game has progressed, the
audience has grown to 2,503 viewers. With so many
viewers, there are bound to be many viewers with display
devices 422 that have the same or nearly the resolution
(each app/game server 1521-1525 has the ability to scale
the video for adjusting the fitting).
[0206] Because the game shown is a multiplayer
game, the user may decide to join the game at some
point. The hosting service 210 may or may not allow the
user to join the game for a variety of reasons. For exam-
ple, the user may have to pay to play the game and
choose not to, the user may not have sufficient ranking
to join that particular game (e.g., it would not be compet-
itive for the other players), or the user’s Internet connec-
tion may not have low enough latency to allow the user
to play (e.g., there is not a latency constraint for viewing
games, so a game that is being played far away (indeed,
on another continent) can be viewed without latency con-
cerns, but for a game to be played, the latency must be
low enough for the user to (a) enjoy the game, and (b)
be on equal footing with the other players who may have
lower latency connections). If the user is permitted to
play, then app/game server 1521-1525 that had been

67 68

EP 2 826 530 A2

37

5

10

15

20

25

30

35

40

45

50

55

providing the Game Finder user interface for the user will
request that the hosting service control server 401 initiate
(i.e., locate and start up) an app/game server 1521-1525
that is suitably configured for playing the particular game
to load the game from a RAID array 1511-1512, and then
the hosting service control server 401 will instruct the
inbound routing 1502 to transfer the control signals from
the user to the app/game game server now hosting the
game and it will instruct the shared hardware compres-
sion 1530 to switch from compressing the video/audio
from the app/game server that had been hosting the
Game Finder application to compressing the video/audio
from the app/game server now hosting the game. The
vertical sync of the Game Finder app/game service and
the new app/game server hosting the game are not syn-
chronized, and as a result there is likely to be a time
difference between the two syncs. Because the shared
video compression hardware 1530 will begin compress-
ing video upon an app/game server 1521-1525 complet-
ing a video frame, the first frame from the new server
may be completed sooner than a full frame time of the
old server, which may be before the prior compressed
frame completing its transmission (e.g., consider trans-
mit time 992 of Figure 9b: if uncompressed frame 3 963
were completed half a frame time early, it would impinge
upon the transmit time 992). In such a situation the shared
video compression hardware 1530 will ignore the first
frame from the new server (e.g., like Frame 4 964 is ig-
nored 974), and the client 415 will hold the last frame
from the old server an extra frame time, and the shared
video compression hardware 1530 will begin compress-
ing the next frame time video from the new app/game
server hosting the game. Visually, to the user, the tran-
sition from one app/game server to the other will be seam-
less. The hosting service control server 401 will then no-
tify app/game game server 1521-1525 that had been
hosting the Game Finder to switch to an idle state, until
it is needed again.
[0207] The user then is able to play the game. And,
what is exceptional is the game will play perceptually
instantly (since it will have loaded onto the app/game
game server 1521-1525 from a Raid array 1511-1512 at
gigabit/second speed), and the game will be loaded onto
a server exactly suited for the game together with an
operating system exactly configured for the game with
the ideal drivers, registry configuration (in the case of
Windows), and with no other applications running on the
server that might compete with the game’s operation.
[0208] Also, as the user progresses through the game,
each of the segments of the game will load into the server
at gigabit/second speed (i.e., 1 gigabyte loads in 8 sec-
onds) from the RAID array 1511-1512, and because of
the vast storage capacity of the RAID array 1511-1512
(since it is a shared resource among many users, it can
be very large, yet still be cost effective) geometry setup
or other game segment setup can be pre-computed and
stored on the RAID array 1511-1512 and loaded ex-
tremely rapidly. Moreover, because the hardware con-

figuration and computational capabilities of each
app/game server 1521-1525 is known, pixel and vertex
shaders can be pre-computed.
[0209] Thus, the game will start up almost instantly, it
will run in an ideal environment, and subsequent seg-
ments will load almost instantly.
[0210] But, beyond these advantages, the user will be
able to view others playing the game (via the Game Find-
er, previously described and other means) and both de-
cide if the game is interesting, and if so, learn tips from
watching others. And, the user will be able to demo the
game instantly, without having to wait for a large down-
load and/or installation, and the user will be able to play
the game instantly, perhaps on a trial basis for a smaller
fee, or on a longer term basis. And, the user will be able
to play the game on a Windows PC, a Macintosh, on a
television set, at home, when traveling, and even on a
mobile phone, with a low enough latency wireless con-
nection. And, this can all be accomplished without ever
physically owning a copy of the game.
[0211] As mentioned previously, the user can decide
to not allow his gameplay to be viewable by others, to
allow his game to be viewable after a delay, to allow his
game to be viewable by selected users, or to allow his
game to be viewable by all users. Regardless, the vid-
eo/audio will be stored, in one embodiment, for 15 min-
utes in a delay buffer 1515, and the user will be able to
"rewind" and view his prior game play, and pause, play
it back slowly, fast forward, etc., just as he would be able
to do had he been watching TV with a Digital Video Re-
corder (DVR). Although in this example, the user is play-
ing a game, the same "DVR" capability is available if the
user is using an application. This can be helpful in re-
viewing prior work and in other applications as detailed
below. Further, if the game was designed with the capa-
bility of rewinding based on utilizing game state informa-
tion, such that the camera view can be changed, etc.,
then this "3D DVR" capability will also be supported, but
it will require the game to be designed to support it. The
"DVR" capability using a delay buffer 1515 will work with
any game or application, limited of course, to the video
that was generated when the game or application was
used, but in the case of games with 3D DVR capability,
the user can control a "fly through" in 3D of a previously
played segment, and have the delay buffer 1515 record
the resulting video and have the game state of the game
segment record. Thus, a particular "fly-through" will be
recorded as compressed video, but since the game state
will also be recorded, a different fly-through will be pos-
sible at a later date of the same segment of the game.
[0212] As described below, users on the hosting serv-
ice 210 will each have a User Page, where they can post
information about themselves and other data. Among of
the things that users will be able to post are video seg-
ments from game play that they have saved. For exam-
ple, if the user has overcome a particularly difficult chal-
lenge in a game, the user can "rewind" to just before the
spot where they had their great accomplishment in the

69 70

EP 2 826 530 A2

38

5

10

15

20

25

30

35

40

45

50

55

game, and then instruct the hosting service 210 to save
a video segment of some duration (e.g., 30 seconds) on
the user’s User Page for other users to watch. To imple-
ment this, it is simply a matter of the app/game server
1521-1525 that the user is using to playback the video
stored in a delay buffer 1515 to a RAID array 1511-1512
and then index that video segment on the user’s User
Page.
[0213] If the game has the capability of 3D DVR, as
described above, then the game state information re-
quired for the 3D DVR can also be recorded by the user
and made available for the user’s User Page.
[0214] In the event that a game is designed to have
"spectators" (i.e., users that are able to travel through
the 3D world and observe the action without participating
in it) in addition to active players, then the Game Finder
application will enable users to join games as spectators
as well as players. From an implementation point of view,
there is no difference to the hosting system 210 to if a
user is a spectator instead of an active player. The game
will be loaded onto an app/game server 1521-1525 and
the user will be controlling the game (e.g., controlling a
virtual camera that views into the world). The only differ-
ence will be the game experience of the user.

MULTIPLE USER COLLABORATION

[0215] Another feature of the hosting service 210 is the
ability to for multiple users to collaborate while viewing
live video, even if using widely disparate devices for view-
ing. This is useful both when playing games and when
using applications.
[0216] Many PCs and mobile phones are equipped
with video cameras and have the capability to do real-
time video compression, particularly when the image is
small. Also, small cameras are available that can be at-
tached to a television, and it is not difficult to implement
real-time compression either in software or using one of
many hardware compression devices to compress the
video. Also, many PCs and all mobile phones have mi-
crophones, and headsets are available with micro-
phones.
[0217] Such cameras and/or microphones, combined
with local video/audio compression capability (particular-
ly employing the low latency video compression tech-
niques described herein) will enable a user to transmit
video and/or audio from the user premises 211 to the
hosting service 210, together with the input device control
data. When such techniques are employed, then a ca-
pability illustrated in Figure 19 is achievable: a user can
have his video and audio 1900 appear on the screen
within another user’s game or application. This example
is a multiplayer game, where teammates collaborate in
a car race. A user’s video/audio could be selectively view-
able / hearable only by their teammates. And, since there
would be effectively no latency, using the techniques de-
scribed above the players would be able to talk or make
motions to each other in real-time without perceptible de-

lay.
[0218] This video/audio integration is accomplished by
having the compressed video and/or audio from a user’s
camera/microphone arrive as inbound internet traffic
1501. Then the inbound routing 1502 routes the video
and/or audio to the app/game game servers 1521-1525
that are permitted to view/hear the video and/or audio.
Then, the users of the respective app/game game serv-
ers 1521-1525 that choose to use the video and/or audio
decompress it and integrate as desired to appear within
the game or application, such as illustrated by 1900.
[0219] The example of Figure 19 shows how such col-
laboration is used in a game, but such collaboration can
be an immensely powerful tool for applications. Consider
a situation where a large building is being designed for
New York city by architects in Chicago for a real estate
developer based in New York, but the decision involves
a financial investor who is traveling and happens to be
in an airport in Miami, and a decision needs to be made
about certain design elements of the building in terms of
how it fits in with the buildings near it, to satisfy both the
investor and the real estate developer. Assume the ar-
chitectural firm has a high resolution monitor with a cam-
era attached to a PC in Chicago, the real estate developer
has a laptop with a camera in New York, and the investor
has a mobile phone with a camera in Miami. The archi-
tectural firm can use the hosting service 210 to host a
powerful architectural design application that is capable
of highly realistic 3D rendering, and it can make use of
a large database of the buildings in New York City, as
well as a database of the building under design. The ar-
chitectural design application will execute on one, or if it
requires a great deal of computational power on several,
of the app/game servers 1521-1525. Each of the 3 users
at disparate locations will connect to the hosting service
210, and each will have a simultaneous view of the video
output of the architectural design application, but it will
be will appropriately sized by the shared hardware com-
pression 1530 for the given device and network connec-
tion characteristics that each user has (e.g., the archi-
tectural firm may see a 2560x1440 60fps display through
a 20Mbps commercial Internet connection, the real es-
tate developer in New York may see a 1280x720 60fps
image over a 6 Mbps DSL connection on his laptop, and
the investor may see a 320x180 60fps image over a
250Kbps cellular data connection on her mobile phone.
Each party will hear the voice of the other parties (the
conference calling will be handled by any of many widely
available conference calling software package in the
app/game server(s) 1521-1525) and, through actuation
of a button on a user input device, a user will be able to
make video appear of themselves using their local cam-
era. As the meeting proceeds, the architects will be able
to show what the build looks like as they rotate it and fly
by it next to the other building in the area, with extremely
photorealistic 3D rendering, and the same video will be
visible to all parties, at the resolution of each party’s dis-
play device. It won’t matter that none of the local devices

71 72

EP 2 826 530 A2

39

5

10

15

20

25

30

35

40

45

50

55

used by any party is incapable of handling the 3D ani-
mation with such realism, let alone downloading or even
storing the vast database required to render the sur-
rounding buildings in New York City. From the point of
view of each of the users, despite the distance apart, and
despite the disparate local devices they simply will have
a seamless experience with an incredible degree of re-
alism. And, when one party wants their face to be seen
to better convey their emotional state, they can do so.
Further, if either the real estate develop or the investor
want to take control of the architectural program and use
their own input device (be it a keyboard, mouse, keypad
or touch screen), they can, and it will respond with no
perceptual latency (assuming their network connection
does not have unreasonable latency). For example, in
the case of the mobile phone, if the mobile phone is con-
nected to a WiFi network at the airport, it will have very
low latency. But if it is using the cellular data networks
available today in the US, it probably will suffer from a
noticeable lag. Still, for most of the purposes of the meet-
ing, where the investor is watching the architects control
the building fly-by or for talking of video teleconferencing,
even cellular latency should be acceptable.
[0220] Finally, at the end of the collaborative confer-
ence call, the real estate developer and the investor will
have made their comments and signed off from the host-
ing service, the architectural firm will be able to "rewind"
the video of the conference that has been recorded on a
delay buffer 1515 and review the comments, facial ex-
pressions and/or actions applied to the 3D model of the
building made during the meeting. If there are particular
segments they want to save, those segments of video/au-
dio can be moved from delay buffer 1515 to a RAID array
1511-1512 for archival storage and later playback.
[0221] Also, from a cost perspective, if the architects
only need to use the computation power and the large
database of New York City for a 15 minute conference
call, they need only pay for the time that the resources
are used, rather than having to own high powered work-
stations and having to purchase an expensive copy of a
large database.

VIDEO-RICH COMMUNITY SERVICES

[0222] The hosting service 210 enables an unprece-
dented opportunity for establishing video-rich community
services on the Internet.
[0223] Figure 20 shows an exemplary User Page for
a game player on the hosting service 210. As with the
Game Finder application, the User Page is an application
that runs on one of the app/game servers 1521-1525. All
of the thumbnails and video windows on this page show
constantly moving video (if the segments are short, they
loop).
[0224] Using a video camera or by uploading video,
the user (whose username is "KILLHAZARD") is able to
post a video of himself 2000 that other users can view.
The video is stored on a RAID array 1511-1512. Also,

when other users come to KILLHAZARD’s User Page, if
KILLHAZARD is using the hosting service 210 at the time,
live video 2001 of whatever he is doing (assuming he
permits users viewing his User Page to watch him) will
be shown. This will be accomplished by app/game server
1521-1525 hosting the User Page application requesting
from the service control system 401 whether KILLHAZ-
ARD is active and if so, the app/game server 1521-1525
he is using. Then, using the same methods used by the
Game Finder application, a compressed video stream in
a suitable resolution and format will be sent to the
app/game server 1521-1525 running the User Page ap-
plication and it will be displayed. If a user selects the
window with KILLHAZARD’s live gameplay, and then ap-
propriately clicks on their input device, the window will
zoom up (again using the same methods as the Game
Finder applications, and the live video will fill the screen,
at the resolution of the watching user’s display device
422, appropriate for the characteristics of the watching
user’s Internet connection.
[0225] A key advantage of this over prior art approach-
es is the user viewing the User Page is able to see a
game played live that the user does not own, and may
very well not have a local computer or game console
capable of playing the game. It offers a great opportunity
for the user to see the user shown in the User Page "in
action" playing games, and it is an opportunity to learn
about a game that the viewing user might want to try or
get better at.
[0226] Camera-recorded or uploaded video clips from
KILLHAZARD’s buddies 2002 are also shown on the Us-
er Page, and underneath each video clip is text that in-
dicates whether the buddy is online playing a game (e.g.,
six_shot is playing the game "Eragon" and
MrSnuggles99 is Offline, etc.). By clicking on a menu
item (not shown) the buddy video clips switch from show-
ing recorded or uploaded videos to live video of what the
buddies who are currently playing games on the hosting
service 210 are doing at that moment in their games. So,
it becomes a Game Finder grouping for buddies. If a bud-
dy’s game is selected and the user clicks on it, it will zoom
up to full screen, and the user will be able to watch the
game played full screen live.
[0227] Again, the user viewing the buddy’s game does
not own a copy of the came, nor the local comput-
ing/game console resources to play the game. The game
viewing is effectively instantaneous.
[0228] As previously described above, when a user
plays a game on the hosting service 210, the user is able
to "rewind" the game and find a video segment he wants
to save, and then saves the video segment to his User
Page. These are called "Brag Clips". The video segments
2003 are all Brag Clips 2003 saved by KILLHAZARD
from previous games that he has played. Number 2004
shows how many times a Brag Clip has been viewed,
and when the Brag Clip is viewed, users have an oppor-
tunity to rate them, and the number of orange keyhole-
shaped icons 2005 indicate how high the rating is. The

73 74

EP 2 826 530 A2

40

5

10

15

20

25

30

35

40

45

50

55

Brag Clips 2003 loop constantly when a user views the
User Page, along with the rest of the video on the page.
If the user selects and clicks on one of the Brag Clips
2003, it zooms up to present the Brag Clip 2003, along
with DVR controls to allow the clip to be played, paused,
rewound, fast-forwarded, stepped through, etc.
[0229] The Brag Clip 2003 playback is implemented
by the app/game server 1521-1525 loading the com-
pressed video segment stored on a RAID array
1511-1512 when the user recorded the Brag Clip and
decompressing it and playing it back.
[0230] Brag Clips 2003 can also be "3D DVR" video
segments (i.e., a game state sequence from the game
that can be replayed and allows the user to change the
camera viewpoint) from games that support such capa-
bility. In this case the game state information is stored,
in addition to a compressed video recording of the par-
ticular "fly through" the user made when the game seg-
ment was recorded. When the User Page is being
viewed, and all of the thumbnails and video windows are
constantly looping, a 3D DVR Brag Clip 2003 will con-
stantly loop the Brag Clip 2003 that was recorded as com-
pressed video when the user recorded the "fly through"
of the game segment. But, when a user selects a 3D DVR
Brag Clip 2003 and clicks on it, in addition to the DVR
controls to allow the compressed video Brag Clip to be
played, the user will be able to click on a button that gives
them 3D DVR capability for the game segment. They will
be able to control a camera "fly through" during the game
segment on their own, and, if they wish (and the user
who owns the user page so allows it) they will be able to
record an alternative Brag Clip "fly through" in com-
pressed video form will then be available to other viewers
of the user page (either immediately, or after the owner
of the user page has a chance to the review the Brag Clip).
[0231] This 3D DVR Brag Clip 2003 capability is ena-
bled by activating the game that is about to replay the
recorded game state information on another app/game
server 1521-1525. Since the game can be activated al-
most instantaneously (as previously described) it is not
difficult to activate it, with its play limited to the game state
recorded by the Brag Clip segment, and then allow the
user to do a "fly through" with a camera while recording
the compressed video to a delay buffer 1515. Once the
user has completed doing the "fly through" the game is
deactivated.
[0232] From the user’s point of view, activating a "fly
through" with a 3D DVR Brag Clip 2003 is no more effort
than controlling the DVR controls of a linear Brag Clip
2003. They may know nothing about the game or even
how to play the game. They are just a virtual camera
operator peering into a 3D world during a game segment
recorded by another.
[0233] Users will also be able to overdub their own au-
dio onto Brag Clips that is either recorded from micro-
phones or uploaded. In this way, Brag Clips can be used
to create custom animations, using characters and ac-
tions from games. This animation technique is commonly

known as "machinima".
[0234] As users progress through games, they will
achieve differing skill levels. The games played will report
the accomplishments to the service control system 401,
and these skill levels will be shown on User Pages.

INTERACTIVE ANIMATED ADVERTISEMENTS

[0235] Online advertisements have transitioned from
text, to still images, to video, and now to interactive seg-
ments, typically implemented using animation thin clients
like Adobe Flash. The reason animation thin clients are
used is that users typically have little patience to be de-
layed for the privilege of have a product or service pitched
to them. Also, thin clients run on very low-performance
PCs and as such, the advertiser can have a high degree
of confidence that the interactive ad will work properly.
Unfortunately, animation thin clients such as Adobe
Flash are limited in the degree of interactivity and the
duration of the experience (to mitigate download time).
[0236] Figure 21 illustrates an interactive advertise-
ment where the user is to select the exterior and interior
colors of a car while the car rotates around in a showroom,
while real-time ray tracing shows how the car looks. Then
the user chooses an avatar to drive the car, and then the
user can take the car for a drive either on a race track,
or through an exotic locale such as Monaco. The user
can select a larger engine, or better tires, and then can
see how the changed configuration affects the ability of
the car to accelerate or hold the road.
[0237] Of course, the advertisement is effectively a so-
phisticated 3D video game. But for such an advertise-
ment to be playable on a PC or a video game console it
would require perhaps a 100MB download and, in the
case of the PC, it might require the installation of special
drivers, and might not run at all if the PC lacks adequate
CPU or GPU computing capability. Thus, such advertise-
ments are impractical in prior art configurations.
[0238] In the hosting service 210, such advertisements
launch almost instantly, and run perfectly, no matter what
the user’s client 415 capabilities are. So, they launch
more quickly than thin client interactive ads, are vastly
richer in the experience, and are highly reliable.

STREAMING GEOMETRY DURING REAL-TIME ANI-
MATION

[0239] RAID array 1511-1512 and the inbound routing
1502 can provide data rates that are so fast and with
latencies so low that it is possible to design video games
and applications that rely upon the RAID array 1511-1512
and the inbound routing 1502 to reliably deliver geometry
on-the-fly in the midst of game play or in an application
during real-time animation (e.g., a fly-through with a com-
plex database.
[0240] With prior art systems, such as the video game
system shown in Figure 1, the mass storage devices
available, particularly in practical home devices, are far

75 76

EP 2 826 530 A2

41

5

10

15

20

25

30

35

40

45

50

55

too slow to stream geometry in during game play except
in situations where the required geometry was somewhat
predictable. For example, in a driving game where there
is a specified roadway, geometry for buildings that are
coming into view can be reasonable well predicted and
the mass storage devices can seek in advance to the
location where the upcoming geometry is located.
[0241] But in a complex scene with unpredictable
changes (e.g., in a battle scene with complex characters
all around) if RAM on the PC or video game system is
completely filled with geometry for the objects currently
in view, and then the user suddenly turns their character
around to view what is behind their character, if the ge-
ometry has not been pre-loaded into RAM, then there
may be a delay before it can be displayed.
[0242] In the hosting service 210, the RAID arrays
1511-1512 can stream data in excess of Gigabit Ethernet
speed, and with a SAN network, it is possible to achieve
10 gigabit/second speed over 10 Gigabit Ethernet or over
other network technologies. 10 gigabits/second will load
a gigabyte of data in less that a second. In a 60fps frame
time (16.67ms), approximately 170 megabits (21 MB) of
data can be loaded. Rotating media, of course, even in
a RAID configuration will still incur latencies greater than
a frame time, but Flash-based RAID storage will eventu-
ally be as large as rotating media RAID arrays and will
not incur such high latency. In one embodiment, massive
RAM write-through caching is used to provide very low
latency access.
[0243] Thus, with sufficiently high network speed, and
sufficiently low enough latency mass storage, geometry
can be streamed into app/game game servers
1521-1525 as fast as the CPUs and/or GPUs can process
the 3D data. So, in the example given previously, where
a user turns their character around suddenly and looks
behind, the geometry for all of the characters behind can
be loaded before the character completes the rotation,
and thus, to the user, it will seem as if he or she is in a
photorealistic world that is as real as live action.
[0244] As previously discussed, one of the last frontiers
in photorealistic computer animation is the human face,
and because of the sensitivity of the human eye to im-
perfections, the slightest error from a photoreal face can
result in a negative reaction from the viewer. Figure 22
shows how a live performance captured using Contour™
Reality Capture Technology (subject of co-pending ap-
plications: "Apparatus and method for capturing the mo-
tion of a performer," Ser. No. 10/942,609, Filed Septem-
ber 15, 2004; "Apparatus and method for capturing the
expression of a performer," Ser. No. 10/942,413 Filed
September 15, 2004; "Apparatus and method for improv-
ing marker identification within a motion capture system,"
Ser. No. 11/066,954, Filed February 25, 2005; "Appara-
tus and method for performing motion capture using shut-
ter synchronization," Ser. No. 11/077,628, Filed March
10, 2005; "Apparatus and method for performing motion
capture using a random pattern on capture surfaces,"
Ser. No. 11/255,854, Filed October 20, 2005; "System

and method for performing motion capture using phos-
phor application techniques," Ser. No. 11/449,131, Filed
June 7, 2006; "System and method for performing motion
capture by strobing a fluorescent lamp," Ser. No.
11/449,043, Filed June 7, 2006; "System and method for
three dimensional capture of stop-motion animated char-
acters," Ser. No. 11/449,127, Filed June 7, 2006", each
of which is assigned to the assignee of the present CIP
application) results in a very smooth captured surface,
then a high polygon-count tracked surface (i.e., the pol-
ygon motion follows the motion of the face precisely).
Finally, when the video of the live performance is mapped
on the tracked surface to produce a textured surface, a
photoreal result is produced.
[0245] Although current GPU technology is able to
render the number of polygons in the tracked surface and
texture and light the surface in real-time, if the polygons
and textures are changing every frame time (which will
produce the most photoreal results) it will quickly con-
sume all the available RAM of a modern PC or video
game console.
[0246] Using the streaming geometry techniques de-
scribed above, it becomes practical to continuously feed
geometry into the app/game game servers 1521-1525
so that they can animate photoreal faces continuously,
allowing the creation of video games with faces that are
almost indistinguishable from live action faces.

INTEGRATION OF LINEAR CONTENT WITH INTER-
ACTIVE FEATURES

[0247] Motion pictures, television programming and
audio material (collectively, "linear content" is widely
available to home and office users in many forms. Linear
content can be acquired on physical media, like CD, DVD,
HD-DVD and Blu-ray media. It also can be recorded by
DVRs from satellite and cable TV broadcast. And, it is
available as pay-per-view (PPV) content through satellite
and cable TV and as video-on-demand (VOD) on cable
TV.
[0248] Increasingly linear content is available through
the Internet, both as downloaded and as streaming con-
tent. Today, there really is not one place to go to expe-
rience all of the features associated with linear media.
For example, DVDs and other video optical media typi-
cally have interactive features not available elsewhere,
like director’s commentaries, "making of" featurettes, etc.
Online music sites have cover art and song information
generally not available on CDs, but not all CDs are avail-
able online. And Web sites associating with television
programming often have extra features, blogs and some-
times comments from the actors or creative staff.
[0249] Further, with many motion pictures or sports
events, there are often video games that are released (in
the case of motion pictures) often together with the linear
media or (in the case of sports) may be closely tied to
real-world events (e.g., the trading of players).
[0250] Hosting service 210 is well suited for the deliv-

77 78

EP 2 826 530 A2

42

5

10

15

20

25

30

35

40

45

50

55

ery of linear content in linking together the disparate
forms of related content. Certainly, delivering motion pic-
tures is no more challenging that delivering highly inter-
active video games, and the hosting service 210 is able
to deliver linear content to a wide range of devices, in the
home or office, or to mobile devices. Figure 23 shows an
exemplary user interface page for hosting service 210
that shows a selection of linear content.
[0251] But, unlike most linear content delivery system,
hosting service 210 is also able to deliver related inter-
active components (e.g., the menus and features on
DVDs, the interactive overlays on HD-DVDs, and the
Adobe Flash animation (as explained below) on Web
sites. Thus, the client device 415 limitations no longer
introduce limitations as to which features are available.
[0252] Further, the hosting system 210 is able to link
together linear content with video game content dynam-
ically, and in real-time. For example, if a user is watching
a Quidditch match in a Harry Potter movie, and decides
she would like to try playing Quidditch, she can just click
a button and the movie will pause and immediately she
will be transported to the Quidditch segment of a Harry
Potter video game. After playing the Quidditch match,
another click of a button, and the movie will resume in-
stantly.
[0253] With photoreal graphics and production tech-
nology, where the photographically-captured video is in-
distinguishable from the live action characters, when a
user makes a transition from a Quidditch game in a live
action movie to a Quidditch game in a video game on a
hosting service as described herein, the two scenes are
virtually indistinguishable. This provides entirely new cre-
ative options for directors of both linear content and in-
teractive (e.g., video game) content as the lines between
the two worlds become indistinguishable.
[0254] Utilizing the hosting service architecture shown
in Fig. 14 the control of the virtual camera in a 3D movie
can be offered to the viewer. For example, in a scene
that takes place within a train car, it would be possible to
allow the viewer to control the virtual camera and look
around the car while the story progresses. This assumes
that all of the 3D objects ("assets") in the car are available
as well as an adequate a level of computing power ca-
pable of rendering the scenes in real-time as well as the
original movie.
[0255] And even for non-computer generated enter-
tainment, there are very exciting interactive features that
can be offered. For example, the 2005 motion picture
"Pride and Prejudice" had many scenes in ornate old
English mansions. For certain mansion scenes, the user
may pause the video and then control the camera to take
a tour of the mansion, or perhaps the surrounding area.
To implement this, a camera could be carried through
the mansion with a fish-eye lens as it keeps track of its
position, much like prior art Apple, Inc. QuickTime VR is
implemented. The various frames would then be trans-
formed so the images are not distorted, and then stored
on RAID array 1511-1512 along with the movie, and

played back when the user chooses to go on a virtual tour.
[0256] With sports events, a live sports event, such as
a basketball game, may be streamed through the hosting
service 210 for users to watch, as they would for regular
TV. After users watched a particular play, a video game
of the game (eventually with basketball players looking
as photoreal as the real players) could come up with the
players starting in the same position, and the users (per-
haps each taking control of one player) could redo the
play to see if they could do better than the players.
[0257] The hosting service 210 described herein is ex-
tremely well-suited to support this futuristic world be-
cause it is able to bring to bear computing power and
mass storage resources that are impractical to install in
a home or in most office settings, and also it’s computing
resources are always up-to-date, with the latest comput-
ing hardware available, whereas in a home setting, there
will always be homes with older generation PCs and vid-
eo games. And, in the hosting service 210, all of this
computing complexity is hidden from the user, so even
though they may be using very sophisticated systems,
from the user’s point of view, it is a simple as changing
channels on a television. Further, the users would be
able to access all of the computing power and the expe-
riences the computing power would bring from any client
415.

MULTIPLAYER GAMES

[0258] To the extent the game is a multiplayer game,
then it will be able communicate both to app/game game
servers 1521-1525 through the inbound routing 1502 net-
work and, with a network bridge to the Internet (not
shown) with servers or game machines that are not run-
ning in the hosting service 210. When playing multiplayer
games with computers on the general Internet, then the
app/game game servers 1521-1525 will have the benefit
of extremely fast access to the Internet (compared to if
the game was running on a server at home), but they will
be limited by the capabilities of the other computers play-
ing the game on slower connections, and also potentially
limited by the fact that the game servers on the Internet
were designed to accommodate the least common de-
nominator, which would be home computers on relatively
slow consumer Internet connections.
[0259] But when a multiplayer game is played entirely
within a hosting service 210 server center, then a world
of difference is achievable. Each app/game game server
1521-1525 hosting a game for a user will be intercon-
nected with other app/game game servers 1521-1525 as
well as any servers that are hosting the central control
for the multiplayer game with extremely high speed, ex-
tremely low latency connectivity and vast, very fast stor-
age arrays. For example, if Gigabit Ethernet is used for
the inbound routing 1502 network, then the app/game
game servers 1521-1525 will be communicating among
each other and communicating to any servers hosting
the central control for the multiplayer game at gigabit/sec-

79 80

EP 2 826 530 A2

43

5

10

15

20

25

30

35

40

45

50

55

ond speed with potentially only 1 ms of latency or less.
Further, the RAID arrays 1511-1512 will be able to re-
spond very rapidly and then transfer data at gigabit/sec-
ond speeds. As an example, if a user customizes a char-
acter in terms of look and accoutrements such that the
character has a large amount of geometry and behaviors
that are unique to the character, with prior art systems
limited to the game client running in the home on a PC
or game console, if that character were to come into view
of another user, the user would have to wait until a long,
slow download completes so that all of the geometry and
behavior data loads into their computer. Within the host-
ing service 210, that same download could be over Gi-
gabit Ethernet, served from a RAID array 1511-1512 at
gigabit/second speed. Even if the home user had an
8Mbps Internet connection (which is extremely fast by
today’s standards), Gigabit Ethernet is 100 times faster.
So, what would take a minute over a fast Internet con-
nection, would take less than a second over Gigabit Eth-
ernet.

TOP PLAYER GROUPINGS AND TOURNAMENTS

[0260] The Hosting Service 210 is extremely well-suit-
ed for tournaments. Because no game is running in a
local client, there is no opportunity for users to cheat.
Also, because of the ability of the output routing 1540 to
multicast the UDP streams, the Hosting Service is 210
is able to broadcast the major tournaments to thousands
of people in the audience at once.
[0261] In fact, when there are certain video streams
that are so popular that thousands of users are receiving
the same stream (e.g., showing views of a major tourna-
ment), it may be more efficient to send the video stream
to a Content Delivery Network (CDN) such as Akamai or
Limelight for mass distribution to many client devices
415.
[0262] A similar level of efficiency can be gained when
a CDN is used to show Game Finder pages of top player
groupings.
[0263] For major tournaments, a live celebrity an-
nouncer can be used to provide commentary during cer-
tain matches. Although a large number of users will be
watching a major tournament, and relatively small
number will be playing in the tournament. The audio from
the celebrity announcer can be routed to the app/game
game servers 1521-1525 hosting the users playing in the
tournament and hosting any spectator mode copies of
the game in the tournament, and the audio can be over-
dubbed on top of the game audio. Video of a celebrity
announcer can be overlaid on the games, perhaps just
on spectator views, as well.

ACCELERATION OF WEB PAGE LOADING

[0264] The World Wide Web its primary transport pro-
tocol, Hypertext Transfer Protocol (HTTP), were con-
ceived and defined in an era where only businesses had

high speed Internet connections, and the consumers who
were online were using dialup modems or ISDN. At the
time, the "gold standard" for a fast connection was a T1
line which provided 1.5Mbps data rate symmetrically (i.e.,
with equal data rate in both directions).
[0265] Today, the situation is completely different. The
average home connection speed through DSL or cable
modem connections in much of the developed world has
a far higher downstream data rate than a T1 line. In fact,
in some parts of the world, fiber-to-the-curb is bringing
data rates as high as 50 to 100Mbps to the home.
[0266] Unfortunately, HTTP was not architected (nor
has it been implemented) to effectively take advantage
of these dramatic speed improvements. A web site is a
collection of files on a remote server. In very simple terms,
HTTP requests the first file, waits for the file to be down-
loaded, and then requests the second file, waits for the
file to be downloaded, etc. In fact, HTTP allows for more
than one "open connection", i.e., more than one file to
be requested at a time, but because of agreed-upon
standards (and a desire to prevent web servers from be-
ing overloaded) only very few open connections are per-
mitted. Moreover, because of the way Web pages are
constructed, browsers often are not aware of multiple
simultaneous pages that could be available to download
immediately (i.e., only after parsing a page does it be-
come apparent that a new file, like an image, needs to
be downloaded). Thus, files on website are essentially
loaded one-by-one. And, because of the request-and-
response protocol used by HTTP, there is roughly (ac-
cessing typical web servers in the US) a 100ms latency
associated with each file that is loaded.
[0267] With relatively low speed connections, this does
not introduce much of a problem because the download
time for the files themselves dominates the waiting time
for the web pages. But, as connection speeds grow, es-
pecially with complex web pages, problems begin to
arise.
[0268] In the example shown in Figure 24, a typical
commercial website is shown (this particular website was
from a major athletic shoe brand). The website has 54
files on it. The files include HTML, CSS, JPEG, PHP,
JavaScript and Flash files, and include video content. A
total of 1.5MBytes must be loaded before the page is live
(i.e., the user can click on it and begin to use it). There
are a number of reasons for the large number of files.
For one thing, it is a complex and sophisticated webpage,
and for another, it is a webpage that is assembled dy-
namically based on the information about the user ac-
cessing the page (e.g., what country the user is from,
what language, whether the user has made purchases
before, etc.), and depending on all of these factors, dif-
ferent files are downloaded. Still, it is a very typical com-
mercial web page.
[0269] Figure 24 shows the amount of time that elaps-
es before the web page is live as the connection speed
grows. With a 1.5Mbps connection speed 2401, using a
conventional web server with a convention web browser,

81 82

EP 2 826 530 A2

44

5

10

15

20

25

30

35

40

45

50

55

it takes 13.5 seconds until the web page is live. With a
12Mbps connection speed 2402, the load time is reduced
to 6.5 seconds, or about twice as fast. But with a 96Mbps
connection speed 2403, the load time is only reduced to
about 5.5 seconds. The reason why is because at such
a high download speed, the time to download the files
themselves is minimal, but the latency per file, roughly
100ms each, still remains, resulting in 54 files * 100ms
= 5.4 seconds of latency. Thus, no matter how fast the
connection is to the home, this web site will always take
at least 5.4 seconds until it is live. Another factor is the
server-side queuing; every HTTP request is added in the
back of the queue, so on a busy server this will have a
significant impact because for every small item to get
from the web server, the HTTP requests needs to wait
for its turn.
[0270] One way to solve these issues is to discard or
redefine HTTP. Or, perhaps to get the website owner to
better consolidate its files into a single file (e.g., in Adobe
Flash format). But, as a practical matter, this company,
as well as many others has a great deal of investment in
their web site architecture. Further, while some homes
have 12-100Mbps connections, the majority of homes
still have slower speeds, and HTTP does work well at
slow speed.
[0271] One alternative is to host web browsers on
app/game servers 1521-1525, and host the files for the
web servers on the RAID arrays 1511-1512 (or potentially
in RAM or on local storage on the app/game servers
1521-1525 hosting the web browsers. Because of the
very fast interconnect through the inbound routing 1502
(or to local storage), rather than have 100ms of latency
per file using HTTP, there will be de minimis latency per
file using HTTP. Then, instead of having the user in her
home accessing the web page through HTTP, the user
can access the web page through client 415. Then, even
with a 1.5Mbps connection (because this web page does
not require much bandwidth for its video), the webpage
will be live in less than 1 second per line 2400. Essentially,
there will be no latency before the web browser running
on an app/game server 1521-1525 is displaying a live
page, and there will be no detectable latency before the
client 415 displays the video output from the web brows-
er. As the user mouses around and/or types on the web
page, the user’s input information will be sent to the web
browser running on the app/game server 1521-1525, and
the web browser will respond accordingly.
[0272] One disadvantage to this approach is if the com-
pressor is constantly transmitting video data, then band-
width is used, even if the web page becomes static. This
can be remedied by configuring the compressor to only
transmit data when (and if) the web page changes, and
then, only transmit data to the parts of the page that
change. While there are some web pages with flashing
banners, etc. that are constantly changing, such web
pages tend to be annoying, and usually web pages are
static unless there is a reason for something to be moving
(e.g., a video clip). For such web pages, it is likely the

case the less data will be transmitted using the hosting
service 210 than a conventional web server because only
the actual displayed images will be transmitted, no thin
client executable code, and no large objects that may
never be viewed, such as rollover images.
[0273] Thus, using the hosting service 210 to host leg-
acy web pages, web page load times can be reduces to
the point where opening a web page is like changing
channels on a television: the web page is live effectively
instantly.

FACILITATING DEBUGGING OF GAMES AND APPLI-
CATIONS

[0274] As mentioned previously, video games and ap-
plications with real-time graphics are very complex ap-
plications and typically when they are released into the
field they contain bugs. Although software developers
will get feedback from users about bugs, and they may
have some means to pass back machine state after
crashes, it is very difficult to identify exactly what has
caused a game or real-time application to crash or to
perform improperly.
[0275] When a game or application runs in the hosting
service 210, the video/audio output of the game or ap-
plication is constantly recorded on a delay buffer 1515.
Further, a watchdog process runs each app/game server
1521-1525 which reports regularly to the hosting service
control system 401 that the app/game server 1521-1525
is running smoothly. If the watchdog process fails to re-
port in, then the server control system 401 will attempt
to communicate with the app/game server 1521-1525,
and if successful, will collect whatever machine state is
available. Whatever information is available, along with
the video/audio recorded by the delay buffer 1515 will be
sent to the software developer.
[0276] Thus, when the game or application software
developer gets notification of a crash from the hosting
service 210, it gets a frame-by-frame record of what led
up to the crash. This information can be immensely val-
uable in tracking down bugs and fixing them.
[0277] Note also, that when an app/game server
1521-1525 crashes the server is restarted at the most
recent restartable point, and a message is provided to
the user apologizing for the technical difficulty.

RESOURCE SHARING AND COST SAVINGS

[0278] The system shown in Figures 4a and 4b provide
a variety of benefits for both end users and game and
application developers. For example, typically, home and
office client systems (e.g., PCs or game consoles) are
only in use for a small percentage of the hours in a week.
According to an October 5, 2006 press release by the
Nielsen Entertainment "Active Gamer Benchmark Study"
(http://www.prnewswire.com/cgi-bin/stories.pl?AC-
CT=104&STORY=/www/sto-
ry/10-05-2006/0004446115&EDATE=) active gamers

83 84

EP 2 826 530 A2

45

5

10

15

20

25

30

35

40

45

50

55

spend on average 14 hours a week playing on video
game consoles and about 17 hours a week on handhelds.
The report also states that for all game playing activity
(including console, handheld and PC game playing) Ac-
tive Gamers average 13 hours a week. Taking into con-
sideration the higher figure of console video game play-
ing time, there are 24*7=168 hours in a week, that implies
that in an active gamer’s home, a video game console is
in use only 17/168=10% of the hours of a week. Or, 90%
of the time, the video game console is idle. Given the
high cost of video game consoles, and the fact that man-
ufacturers subsidize such devices, this is a very ineffi-
cient use of an expensive resource. PCs within business-
es are also typically used only a fraction of the hours of
the week, especially non-portable desktop PCs often re-
quired for high-end applications such as Autodesk Maya.
Although some businesses operate at all hours and on
holidays, and some PCs (e.g., portables brought home
for doing work in the evening) are used at all hours and
holidays, most business activities tend to center around
9AM to 5PM, in a given business’ time zone, from Monday
to Friday, less holidays and break times (such as lunch),
and since most PC usage occurs while the user is actively
engaged with the PC, it follows that desktop PC utilization
tends to follow these hours of operation. If we were to
assume that PCs are utilized constantly from 9AM to
5PM, 5 days a week, that would imply PCs are utilized
40/168=24% of the hours of the week. High-performance
desktop PCs are very expensive investments for busi-
nesses, and this reflects a very low level of utilization.
Schools that are teaching on desktop computers may
use computers for an even smaller fraction of the week,
and although it varies depending upon the hours of teach-
ing, most teaching occurs during the daytime hours from
Monday through Friday. So, in general, PCs and video
game consoles are utilized only a small fraction of the
hours of the week.
[0279] Notably, because many people are working at
businesses or at school during the daytime hours of Mon-
day through Friday on non-holidays, these people gen-
erally are not playing video games during these hours,
and so when they do play video games it is generally
during other hours, such as evenings, weekends and on
holidays.
[0280] Given the configuration of the hosting service
shown in Figure 4a, the usage patterns described in the
above two paragraphs result in very efficient utilization
of resources. Clearly, there is a limit to the number of
users who can be served by the hosting service 210 at
a given time, particularly if the users are requiring real-
time responsiveness for complex applications like so-
phisticated 3D video games. But, unlike a video game
console in a home or a PC used by a business, which
typically sits idle most of the time, servers 402 can be re-
utilized by different users at different times. For example,
a high-performance server 402 with high performance
dual CPUs and dual GPUs and a large quantity of RAM
can be utilized by a businesses and schools from 9AM

to 5PM on non-holidays, but be utilized by gamers playing
a sophisticated video game in the evenings, weekends
and on holidays. Similarly, low-performance applications
can be utilized by businesses and schools on a low-per-
formance server 402 with a Celeron CPU, no GPU (or a
very low-end GPU) and limited RAM during business
hours and a low-performance game can utilize a low-
performance server 402 during non-business hours.
[0281] Further, with the hosting service arrangement
described herein, resources are shared efficiently among
thousands, if not millions, of users. In general, online
services only have a small percentage of their total user
base using the service at a given time. If we consider the
Nielsen video game usage statistics listed previously, it
is easy to see why. If active gamers play console games
only 17 hours of a week, and if we assume that the peak
usage time for game is during the typical non-work, non-
business hours of evenings (5-12AM, 7*5 days=35
hours/week) and weekend (8AM-12AM, 16*2=32
hours/week), then there are 35+32=65 peak hours a
week for 17 hours of game play. The exact peak user
load on the system is difficult to estimate for many rea-
sons: some users will play during off-peak times, there
may be certain day times when there are clustering peaks
of users, the peak times can be affected by the type of
game played (e.g., children’s games will likely be played
earlier in the evening), etc. But, given that the average
number of hours played by a gamer is far less than the
number of hours of the day when a gamer is likely to play
a game, only a fraction of the number of users of the
hosting service 210 will be using it at a given time. For
the sake of this analysis, we shall assume the peak load
is 12.5%. Thus, only 12.5% of the computing, compres-
sion and bandwidth resources are used at a given time,
resulting in only 12.5% of the hardware cost to support
a given user to play a given level of performance game
due to reuse of resources.
[0282] Moreover, given that some games and applica-
tions require more computing power than others, re-
sources may be allocated dynamically based on the
game being played or the applications executed by users.
So, a user selecting a low-performance game or appli-
cation will be allocated a low-performance (less expen-
sive) server 402, and a user selecting a high-perform-
ance game or applications will be allocated a high-per-
formance (more expensive) server 402. Indeed, a given
game or application may have lower-performance and
higher-performance sections of the game or applications,
and the user can be switched from one server 402 to
another server 402 between sections of the game or ap-
plication to keep the user running on the lowest-cost serv-
er 402 that meets the game or application’s needs. Note
that the RAID arrays 405, which will be far faster than a
single disk, will be available to even low-performance
servers 402, that will have the benefit of the faster disk
transfer rates. So, the average cost per server 402 across
all of the games being played or applications being used
is much less than the cost of the most expensive server

85 86

EP 2 826 530 A2

46

5

10

15

20

25

30

35

40

45

50

55

402 that plays the highest performance game or appli-
cations, yet even the low-performance servers 402, will
derive disk performance benefits from the RAID arrays
405.
[0283] Further, a server 402 in the hosting service 210
may be nothing more than a PC motherboard without a
disk or peripheral interfaces other than a network inter-
face, and in time, may be integrated down to a single
chip with just a fast network interface to the SAN 403.
Also, RAID Arrays 405 likely will be shared amongst far
many more users than there are disks, so the disk cost
per active user will be far less than one disk drive. All of
this equipment will likely reside in a rack in an environ-
mentally-controlled server room environment. If a server
402 fails, it can be readily repaired or replaced at the
hosting service 210. In contrast, a PC or game console
in the home or office must be a sturdy, standalone appli-
ance that has to be able to survive reasonable wear and
tear from being banged or dropped, requires a housing,
has at least one disk drive, has to survive adverse envi-
ronment conditions (e.g., being crammed into an over-
heated AV cabinet with other gear), requires a service
warranty, has to be packaged and shipped, and is sold
by a retailer who will likely collect a retail margin. Further,
a PC or game console must be configured to meet the
peak performance of the most computationally-intensive
anticipated game or application to be used at some point
in the future, even though lower performance games or
application (or sections of games or applications) may
be played most of the time. And, if the PC or console
fails, it is an expensive and time-consuming process (ad-
versely impacting the manufacturer, user and software
developer) to get it repaired.
[0284] Thus, given that the system shown in Figure 4a
provides an experience to the user comparable to that
of a local computing resource, for a user in the home,
office or school to experience a given level of computing
capability, it is much less expensive to provide that com-
puting capability through the architecture shown in Figure
4a.

ELIMINATING THE NEED TO UPGRADE

[0285] Further, users no longer have to worry about
upgrading PCs and/or consoles to play new games or
handle higher performance new applications. Any game
or applications on the hosting service 210, regardless of
what type of server 402 is required for that game or ap-
plications, is available to the user, and all games and
applications run nearly instantly (i.e., loading rapidly from
the RAID Arrays 405 or local storage on a servers 402)
and properly with the latest updates and bug fixes (i.e.,
software developers will be able to choose an ideal server
configuration for the server(s) 402 that run(s) a given
game or application, and then configure the server(s) 402
with optimal drivers, and then over time, the developers
will be able to provide updates, bug fixes, etc. to all copies
of the game or application in the hosting service 210 at

once). Indeed, after the user starts using the hosting serv-
ice 210, the user is likely to find that games and applica-
tions continue to provide a better experience (e.g.,
through updates and/or bug fixes) and it may be the case
that a user discovers a year later that a new game or
application is made available on the service 210 that is
utilizing computing technology (e.g., a higher-perform-
ance GPU) that did not even exist a year before, so it
would have been impossible for the user to buy the tech-
nology a year before that would play the game or run the
applications a year later. Since the computing resource
that is playing the game or running the application is in-
visible to the user (i.e., from the user’s perspective the
user is simply selecting a game or application that begins
running nearly instantly-much as if the user had changed
channels on a television), the user’s hardware will have
been "upgraded" without the user even being aware of
the upgrade.

ELIMINATING THE NEED FOR BACKUPS

[0286] Another major problem for users in businesses,
schools and homes are backups. Information stored in a
local PC or video game console (e.g., in the case of a
console, a user’s game achievements and ranking) can
be lost if a disk fails, or if there is an inadvertent erasure.
There are many applications available that provide man-
ual or automatic backups for PCs, and game console
state can be uploaded to an online server for backup, but
local backups are typically copied to another local disk
(or other non-volatile storage device) which has to be
stored somewhere safe and organized, and backups to
online services are often limited because of the slow up-
stream speed available through typical low-cost Internet
connections. With the hosting service 210 of Figure 4a,
the data that is stored in RAID arrays 405 can be config-
ured using prior art RAID configuration techniques well-
known to those skilled in the art such that if a disk fails,
no data will be lost, and a technician at the server center
housing the failed disk will be notified, and then will re-
place the disk, which then will be automatically updated
so that the RAID array is once again failure tolerant. Fur-
ther, since all of the disk drives are near one another and
with fast local networks between them through the SAN
403 it is not difficult in a server center to arrange for all
of the disk systems to be backed up on a regular basis
to secondary storage, which can be either stored at the
server center or relocated offsite. From the point of view
of the users of hosting service 210, their data is simply
secure all the time, and they never have to think about
backups.

ACCESS TO DEMOS

[0287] Users frequently want to try out games or ap-
plications before buying them. As described previously,
there are prior art means by which to demo (the verb form
of "demo" means to try out a demonstration version,

87 88

EP 2 826 530 A2

47

5

10

15

20

25

30

35

40

45

50

55

which is also called a "demo", but as a noun) games and
applications, but each of them suffers from limitations
and/or inconveniences. Using the hosting service 210, it
is easy and convenient for users to try out demos. Indeed,
all the user does is select the demo through a user inter-
face (such as one described below) and try out the demo.
The demo will load almost instantly onto a server 402
appropriate for the demo, and it will just run like any other
game or application. Whether the demo requires a very
high performance server 402, or a low performance serv-
er 402, and no matter what type of home or office client
415 the user is using, from the point of view of the user,
the demo will just work. The software publisher of either
the game or application demo will be able to control ex-
actly what demo the user is permitted to try out and for
how long, and of course, the demo can include user in-
terface elements that offer the user an opportunity to gain
access to a full version of the game or application dem-
onstrated.
[0288] Since demos are likely to be offered below cost
or free of charge, some users may try to use demos re-
peated (particularly game demos, which may be fun to
play repeatedly). The hosting service 210 can employ
various techniques to limit demo use for a given user.
The most straightforward approach is to establish a user
ID for each user and limit the number of times a given
user ID is allowed to play a demo. A user, however, may
set up multiple user IDs, especially if they are free. One
technique for addressing this problem is to limit the
number of times a given client 415 is allowed to play a
demo. If the client is a standalone device, then the device
will have a serial number, and the hosting service 210
can limit the number of times a demo can be accessed
by a client with that serial number. If the client 415 is
running as software on a PC or other device, then a serial
number can be assigned by the hosting service 210 and
stored on the PC and used to limit demo usage, but given
that PCs can be reprogrammed by users, and the serial
number erased or changed, another option is for the host-
ing service 210 to keep a record of the PC network adapt-
er Media Access Control (MAC) address (and/or other
machine specific identifiers such as hard-drive serial
numbers, etc.) and limit demo usage to it. Given that the
MAC addresses of network adapters can be changed,
however, this is not a foolproof method. Another ap-
proach is to limit the number of times a demo can be
played to a given IP address. Although IP addresses may
be periodically reassigned by cable modem and DSL pro-
viders, it does not happen in practice very frequently, and
if it can be determined (e.g., by contacting the ISP) that
the IP is in a block of IP addresses for residential DSL or
cable modem accesses, then a small number of demo
uses can typically be established for a given home. Also,
there may be multiple devices at a home behind a NAT
router sharing the same IP address, but typically in a
residential setting, there will be a limited number of such
devices. If the IP address is in a block serving businesses,
then a larger number of demos can be established for a

business. But, in the end, a combination of all of the pre-
viously mentioned approaches is the best way to limit the
number of demos on PCs. Although there may be no
foolproof way that a determined and technically adept
user can be limited in the number of demos played re-
peatedly, creating a large number of barriers can create
a sufficient deterrent such that it’s not worth the trouble
most PC users to abuse the demo system, and rather
they use the demos as they were intended to try out new
games and applications.

BENEFITS TO SCHOOLS, BUSINESSES AND OTHER
INSTITUTIONS

[0289] Significant benefits accrue particularly to busi-
nesses, schools and other institutions that utilize the sys-
tem shown in Figure 4a. Businesses and schools have
substantial costs associated with installing, maintaining
and upgrading PCs, particularly when it comes to PCs
for running high-performance applications, such a Maya.
As stated previously, PCs are generally utilized only a
fraction of the hours of the week, and as in the home, the
cost of PC with a given level of performance capability
is far higher in an office or school environment than in a
server center environment.
[0290] In the case of larger businesses or schools (e.g.,
large universities), it may be practical for the IT depart-
ments of such entities to set up server centers and main-
tain computers that are remotely accessed via LAN-
grade connections. A number of solutions exist for re-
mote access of computers over a LAN or through a pri-
vate high bandwidth connection between offices. For ex-
ample, with Microsoft’s Windows Terminal Server, or
through virtual network computing applications like VNC,
from RealVNC, Ltd., or through thin client means from
Sun Microsystems, users can gain remote access to PCs
or servers, with a range of quality in graphics response
time and user experience. Further, such self-managed
server centers are typically dedicated for a single busi-
ness or school and as such, are unable to take advantage
of the overlap of usage that is possible when disparate
applications (e.g., entertainment and business applica-
tions) utilize the same computing resources at different
times of the week. So, many businesses and schools
lack the scale, resources or expertise to set up a server
center on their own that has a LAN-speed network con-
nection to each user. Indeed, a large percentage of
schools and businesses have the same Internet connec-
tions (e.g., DSL, cable modems) as homes.
[0291] Yet such organizations may still have the need
for very high-performance computing, either on a regular
basis or on a periodic basis. For example, a small archi-
tectural firm may have only a small number of architects,
with relatively modest computing needs when doing de-
sign work, but it may require very high-performance 3D
computing periodically (e.g., when creating a 3D fly-
through of a new architectural design for a client). The
system shown in Figure 4a is extremely well suited for

89 90

EP 2 826 530 A2

48

5

10

15

20

25

30

35

40

45

50

55

such organizations. The organizations need nothing
more than the same sort of network connection that are
offered to homes (e.g., DSL, cable modems) and are
typically very inexpensive. They can either utilize inex-
pensive PCs as the client 415 or dispense with PCs al-
together and utilize inexpensive dedicated devices which
simply implement the control signal logic 413 and low-
latency video decompression 412. These features are
particularly attractive for schools that may have problems
with theft of PCs or damage to the delicate components
within PCs.
[0292] Such an arrangement solves a number of prob-
lems for such organizations (and many of these advan-
tages are also shared by home users doing general-pur-
pose computing). For one, the operating cost (which ul-
timately must be passed back in some form to the users
in order to have a viable business) can be much lower
because (a) the computing resources are shared with
other applications that have different peak usage times
during the week, (b) the organizations can gain access
to (and incur the cost of) high performance computing
resources only when needed, (c) the organizations do
not have to provide resources for backing up or otherwise
maintaining the high performance computing resources.

ELIMINATION OF PIRACY

[0293] In addition, games, applications, interactive
movies, etc, can no longer be pirated as they are today.
Because game is executed at the service center, users
are not provided with access to the underlying program
code, so there is nothing to pirate. Even if a user were
to copy the source code, the user would not be able to
execute the code on a standard game console or home
computer. This opens up markets in places of the world
such as China, where standard video gaming is not made
available. The resale of used games is also not possible.
[0294] For game developers, there are fewer market
discontinuities as is the case today. The hosting service
210 can be gradually updated over time as gaming re-
quirements change, in contrast to the current situation
where a completely new generation of technology forces
users and developers to upgrade and the game devel-
oper is dependent on the timely delivery of the hardware
platform.

STREAMING INTERACTIVE VIDEO

[0295] The above descriptions provide a wide range
of applications enabled by the novel underlying concept
of general Internet-based, low-latency streaming inter-
active video (which implicitly includes audio together with
the video as well, as used herein). Prior art systems that
have provided streaming video through the Internet only
have enabled applications which can be implemented
with high latency interactions. For example, basic play-
back controls for linear video (e.g. pause, rewind, fast
forward) work adequately with high latency, and it is pos-

sible to select among linear video feeds. And, as stated
previously, the nature of some video games allow them
to be played with high latency. But the high latency (or
low compression ratio) of prior art approaches for stream-
ing video have severely limited the potential applications
of streaming video or narrowed their deployments to spe-
cialized network environments, and even in such envi-
ronments, prior art techniques introduce substantial bur-
dens on the networks. The technology described herein
opens the door for the wide range of applications possible
with low-latency streaming interactive video through the
Internet, particularly those enabled through consumer-
grade Internet connections.
[0296] Indeed, with client devices as small as client
465 of Figure 4c sufficient to provide an enhanced user
experience with an effectively arbitrary amount of com-
puting power, arbitrary amount of fast storage, and ex-
tremely fast networking amongst powerful servers, it en-
ables a new era of computing. Further, because the band-
width requirements do not grow as the computing power
of the system grows (i.e., because the bandwidth require-
ments are only tied to display resolution, quality and
frame rate), once broadband Internet connectivity is ubiq-
uitous (e.g., through widespread low-latency wireless
coverage), reliable, and of sufficiently high bandwidth to
meet the needs of the display devices 422 of all users,
the question will be whether thick clients(such as PCs or
mobile phones running Windows, Linux, OSX, etc.,) or
even thin clients (such as Adobe Flash or Java) are nec-
essary for typical consumer and business applications.
[0297] The advent of streaming interactive video re-
sults in a rethinking of assumptions about the structure
of computing architectures. An example of this is the host-
ing service 210 server center embodiment shown in Fig-
ure 15. The video path for delay buffer and/or group video
1550 is a feedback loop where the multicasted streaming
interactive video output of the app/game servers
1521-1525 is fed back into the app/game servers
1521-1525 either in real-time via path 1552 or after a
selectable delay via path 1551. This enables a wide range
of practical applications (e.g. such as those illustrated in
Figures 16, 17 and 20) that would be either impossible
or infeasible through prior art server or local computing
architectures. But, as a more general architectural fea-
ture, what feedback loop 1550 provides is recursion at
the streaming interactive video level, since video can be
looped back indefinitely as the application requires it.
This enables a wide range of application possibilities nev-
er available before.
[0298] Another key architectural feature is that the vid-
eo streams are unidirectional UDP streams. This enables
effectively an arbitrary degree of multicasting of stream-
ing interactive video (in contrast, two-way streams, such
as TCP/IP streams, would create increasingly more traf-
fic logjams on the networks from the back-and-forth com-
munications as the number of users increased). Multi-
casting is an important capability within the server center
because it allows the system to be responsive to the

91 92

EP 2 826 530 A2

49

5

10

15

20

25

30

35

40

45

50

55

growing needs of Internet users (and indeed of the
world’s population) to communicate on a one-to-many,
or even a many-to-many basis. Again, the examples dis-
cussed herein, such as Figure 16 which illustrates the
use of both streaming interactive video recursion and
multicasting are just the tip of a very large iceberg of
possibilities.
[0299] In one embodiment, the various functional mod-
ules illustrated herein and the associated steps may be
performed by specific hardware components that contain
hardwired logic for performing the steps, such as an ap-
plication-specific integrated circuit ("ASIC") or by any
combination of programmed computer components and
custom hardware components.
[0300] In one embodiment, the modules may be im-
plemented on a programmable digital signal processor
("DSP") such as a Texas Instruments’ TMS320x archi-
tecture (e.g., a TMS320C6000, TMS320C5000, ... etc).
Various different DSPs may be used while still complying
with these underlying principles.
[0301] Embodiments may include various steps as set
forth above. The steps may be embodied in machine-
executable instructions which cause a general-purpose
or special-purpose processor to perform certain steps.
Various elements which are not relevant to these under-
lying principles such as computer memory, hard drive,
input devices, have been left out of the figures to avoid
obscuring the pertinent aspects.
[0302] Elements of the disclosed subject matter may
also be provided as a machine-readable medium for stor-
ing the machine-executable instructions. The machine-
readable medium may include, but is not limited to, flash
memory, optical disks, CD-ROMs, DVD ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, propa-
gation media or other type of machine-readable media
suitable for storing electronic instructions. For example,
the present invention may be downloaded as a computer
program which may be transferred from a remote com-
puter (e.g., a server) to a requesting computer (e.g., a
client) by way of data signals embodied in a carrier wave
or other propagation medium via a communication link
(e.g., a modem or network connection).
[0303] It should also be understood that elements of
the disclosed subject matter may also be provided as a
computer program product which may include a ma-
chine-readable medium having stored thereon instruc-
tions which may be used to program a computer (e.g., a
processor or other electronic device) to perform a se-
quence of operations. Alternatively, the operations may
be performed by a combination of hardware and soft-
ware. The machine-readable medium may include, but
is not limited to, floppy diskettes, optical disks, CD-
ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, magnet or optical cards, propa-
gation media or other type of media/machine-readable
medium suitable for storing electronic instructions. For
example, elements of the disclosed subject matter may
be downloaded as a computer program product, wherein

the program may be transferred from a remote computer
or electronic device to a requesting process by way of
data signals embodied in a carrier wave or other propa-
gation medium via a communication link (e.g., a modem
or network connection).
[0304] Additionally, although the disclosed subject
matter has been described in conjunction with specific
embodiments, numerous modifications and alterations
are well within the scope of the present disclosure. Ac-
cordingly, the specification and drawings are to be re-
garded in an illustrative rather than a restrictive sense.

Claims

1. A computer-implemented method comprising:

receiving at a server a request for playing a low
latency video game or executing an application
over a network, at least a portion of which in-
cludes public network components;
in response to the request, establishing a video
game or application session;
generating control signals at a client in response
to an input device of the client being actuated
by a user as the user is playing the low latency
video game or using the application;
transmitting the control signals from the client to
the server;
receiving the control signals at the server indi-
cating user input as the user is playing the video
game or using the application and responsively
executing the video game or application on the
server to generate video output comprising se-
quences of video images of the video game or
application;
detecting channel characteristics of a commu-
nication channel between the server and the cli-
ent over the network;
encoding the video output using low latency
compression on the server to generate a low
latency sequence of compressed video images,
the video output encoded at a bitrate or com-
pression ratio based on the detected channel
characteristics, wherein the low latency com-
pression comprises:

subdividing each video image of the plural-
ity into a first set of one or more image por-
tions and a second set of one or more image
portions;
encoding image portions in the first set us-
ing a first type of encoding;
encoding image portions in the second set
using a second type of encoding;
analyzing the sequences of video images
to detect motion and responsively sequenc-
ing certain image portions with the first type

93 94

EP 2 826 530 A2

50

5

10

15

20

25

30

35

40

45

50

55

of encoding more frequently than other im-
age portions based on detected motion
within the image portions;
wherein subdividing each video image into
image portions and encoding the first set of
image portions using the first encoding for-
mat and the second set of image portions
using the second encoding format produces
a more consistent bitrate for the video im-
ages and lower latency for the end user than
if entire video images were compressed us-
ing the first type of encoding and the second
type of encoding;
transmitting the low latency sequence of
compressed video images from the server
to the client over the network, the low laten-
cy sequence of compressed video images
being decoded by a decoder on the client
and rendered on a display of the client;
wherein the operations of generating and
transmitting the control signals, receiving
the control signals, executing the video
game or application, encoding and trans-
mitting the low latency sequence of com-
pressed video images to the client over the
network, and decoding and rendering the
low latency video stream on a display of the
client is performed with a latency such that
the user has the perception that the selected
video game or application is responding in-
stantly to the control signals.

2. The method as in claim 1 wherein each of the image
portions have a defined position within each of the
sequence of images, the defined position remaining
the same between successive images;
wherein the second type of encoding is dependent
on previously-encoded image portions encoded ac-
cording to the first type of encoding and/or the sec-
ond type of encoding.

3. The method as in claim 2 wherein the second type
of encoding comprises inter-coding of the image por-
tions.

4. The method as in claim 1 further comprising:

dynamically adjusting a size of the image por-
tions based on detected characteristics of each
of the video images.

5. The method as in claim 4 wherein relatively smaller
image portions are used to encode areas of the se-
quence of video images with relatively more scene
complexity and/or motion than areas of the sequence
of video images with relatively less scene complexity
and/or motion.

6. The method as in claim 5 further comprising:

dynamically adjusting a size of the image por-
tions based on detected characteristics of each
of the video images.

7. The method as in claim 6 wherein relatively smaller
image portions are used to encode areas of the se-
quence of video images with relatively more scene
complexity and/or motion than areas of the sequence
of video images with relatively less scene complexity
and/or motion.

8. The method as in claim 1 wherein the first type of
encoding comprises intraframe coding and the sec-
ond type of encoding comprises interframe coding.

9. The method as in claim 8 wherein the image portions
coded using intraframe coding in a first image in the
sequence of images are coded using interframe cod-
ing in a second image in the sequence of images
and image portions coded using interframe coding
in a first image in the sequence of images are coded
using intraframe coding in a second image in the
sequence of images.

10. The method as in claim 9 further comprising:

responsively sequencing image portions in cer-
tain locations of the sequence of images with
the first type of encoding more frequently than
image portions in other locations based on de-
tected motion within the image portions.

11. The method as in claim 1 further comprising:

receiving feedback information from the client
over the network, the feedback information us-
able to determine the channel characteristics of
the communication channel between the server
and the client; and
in response to determining the channel charac-
teristics, then adjusting the compression of the
video images while maintaining the latency such
that the user has the perception that the selected
video game or application is responding instant-
ly to the control signals.

12. The method as in claim 11 wherein the feedback
from the client indicates a current latency, wherein:

(1) if the latency is above a specified threshold,
then encoding a new image portion using the
second type of encoding which is dependent on
a previously transmitted image portion; or
(2) if the latency is below the specified threshold,
then encoding a new image portion using the
first type of encoding which is independent from

95 96

EP 2 826 530 A2

51

5

10

15

20

25

30

35

40

45

50

55

previously transmitted image portions.

13. The method as in claim 12 wherein forward error
correction (FEC) encoding is used to protect speci-
fied portions of the compressed video images but
not other portions, an associated audio stream,
and/or user control input received from the client;
wherein the portions of the compressed video imag-
es specified for FEC protection are those portions
most likely to cause visual artifacts if lost.

14. The method as in claim 13 further comprising:

adjusting FEC encoding used to protect the por-
tions of the compressed video stream in re-
sponse to detecting that one or more com-
pressed images or portions thereof have not
been successfully received and/or decoded.

15. The method as in claim 1 wherein the operations of
generating and transmitting the control signals, re-
ceiving the control signals, executing the video game
or application, encoding and transmitting the low la-
tency sequence of compressed video images to the
client over the network, and decoding and rendering
the low latency video stream on a display of the client
are performed with a finite latency of 80ms or less.

97 98

EP 2 826 530 A2

52

EP 2 826 530 A2

53

EP 2 826 530 A2

54

EP 2 826 530 A2

55

EP 2 826 530 A2

56

EP 2 826 530 A2

57

EP 2 826 530 A2

58

EP 2 826 530 A2

59

EP 2 826 530 A2

60

EP 2 826 530 A2

61

EP 2 826 530 A2

62

EP 2 826 530 A2

63

EP 2 826 530 A2

64

EP 2 826 530 A2

65

EP 2 826 530 A2

66

EP 2 826 530 A2

67

EP 2 826 530 A2

68

EP 2 826 530 A2

69

EP 2 826 530 A2

70

EP 2 826 530 A2

71

EP 2 826 530 A2

72

EP 2 826 530 A2

73

EP 2 826 530 A2

74

EP 2 826 530 A2

75

EP 2 826 530 A2

76

EP 2 826 530 A2

77

EP 2 826 530 A2

78

EP 2 826 530 A2

79

EP 2 826 530 A2

80

EP 2 826 530 A2

81

EP 2 826 530 A2

82

EP 2 826 530 A2

83

EP 2 826 530 A2

84

EP 2 826 530 A2

85

EP 2 826 530 A2

86

EP 2 826 530 A2

87

EP 2 826 530 A2

88

EP 2 826 530 A2

89

EP 2 826 530 A2

90

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 10315460 B [0001]
• US 5558339 A [0035]
• US 10942609 B [0244]
• US 10942413 B [0244]
• US 11066954 B [0244]

• US 11077628 B [0244]
• US 11255854 B [0244]
• US 11449131 B [0244]
• US 11449043 B [0244]
• US 11449127 B [0244]

	bibliography
	abstract
	description
	claims
	drawings
	cited references

