wo 20237169293 A 1[I 000 A0 O A O R A 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property 3
Organization

International Bureau —/

(43) International Publication Date —”/

14 September 2023 (14.09.2023)

(10) International Publication Number

WO 2023/169293 Al

WIPO I PCT

(25) Filing Language:
(26) Publication Language:

(7)

(71)

(72)

(51) International Patent Classification:

GOGF 11/10 (2006.01)

(21) International Application Number:

PCT/CN2023/079250

(22) International Filing Date:

02 March 2023 (02.03.2023)
English
English

(30) Priority Data:

17/653.,825 07 March 2022 (07.03.2022) Us

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION [US/US]; New Orchard
Road, Armonk, New York 10504 (US).

Applicant (for MG only): IBM (CHINA) CO., LIMIT-
ED [CN/CN]; 7F, Bldg 10, Zhangjiang Innovation Park,
399 Keyuan Road, Zhangjiang High-Tech Campus, Pudong
New Area, Shanghai 201203 (CN).

Inventors: ABALI, Bulent; PO Box 218, 1101 Kitchawan
Rd., Yorktown Ileights, NY 10598 (US). BUYUK-
TOSUNOGLU, Alper, PO Box 218, 1101 Kitchawan
Rd., Yorktown Heights, NY 10398 (US). PRASKY, Brian
Robert; 2455 South Rd., Poughkeepsie, NY 12601-5400

74

G2y

34

(US). BERGER, Deanna Pgstles Dunn; 2455 South Rd.,
Poughkeepsie, NY 12601-5400 (US).

Agent: ZHONGZI LAW OFFICE; 7F, New Era Building,
26 Pinganli Xidajie, Xicheng District, Beijing 100034 (CN),

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP, KE,
KG, KH, KN, KP, KR, KW, KZ LA,LC, LK, LR, LS, LU,
LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
CIL GM.KE, LR, LS. MW, MZ, NA, RW, SC, 8D, SL, ST,
SZ, TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE. DK, EE, ES, FL, FR, GB, GR, IIR, IIU, [E, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,

(54) Title: COMPUTATION AND PLACEMENT OF ERROR CORRECTING CODES (ECC) IN COMPUTING SYSTEM DATA

CACHE

700

\

RECEIVE, AT A FIRST TIME BY A CACHE DATA ARRAY COMPRISED OF
FIXED-LENGTH CACHE LINES AND EACH CACHE LINE CONSISTING
OF FIXED-LENGTH DATA ELEM=NTS, A FIRST SET OF COMPRESSED

DATA BLOCKS IN A CACHE LINE OF THE FIXED-LENGTH CACFE LINES

'

COMPUTE A FIRST ECC FOR THE FIRST SET OF COMPRESSED
DATA BLOCKS AT THE FIRST TIME

'

STORE THE FIRST ECC FOR THE FIRST SET OF COMPRESSED DATA
BLOCKS IN AN ECC FIELD WITHIN THE CACHE DATA ARRAY

'

RECEIVE, BY THE CACHE DATA ARRAY, A SECOND SET OF COMPRESSED
DATA BLOCKS AT A SECOND TIME AFTER THE FIRST TIME

'

COMPUTE A SECOND ECC FOR ONLY TH= SECOND SET OF
COMPRESSED DATA BLOCKS AT THE SECOND TIME

!

STORE THE SECOND ECC IN AT LEAST ONE ADDITIONAL ECC
FIELD IN THE CACHE DATA ARRAY

+

END

~i04

706

~708

=712

714

-~ 716

FIG. 7

(57) Abstract: Computation, placement, and accessing of error cortecting
codes (ECC) in a compuler system data cache enabling partial reads and
writes to each line of data in the cache. For storing multiple comptessed
blocks, received at differing time periods, in a single cache line, the ECC
[or the [irst compressed block is stored in the ECC field of the cache and
the ECC for the second and subsequently received compressed blocks is
appended to the compressed data. Additionally, an auxiliary ECC cache
may be construcied for temporarily holding a partial ECC [or a partial
read/write, and a new ECC for the partial read/write is computed using the
partial ECC.

[Continued on next page]

WO 2023/169293 A I 000 R0 00 O

ST, SK, SM. TR), OAPI (BF, BJ, CF, CG, CT, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2023/169293 PCT/CN2023/079250

COMPUTATION AND PLACEMENT OF ERROR CORRECTING CODES (ECC) IN
COMPUTING SYSTEM DATA CACHE

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates in general to computing systems, and more
particularly, to various embodiments for the computation and placement of error correcting

codes (ECC) in a computing system data cache.

Description of the Related Art

[0002] A cache is a memory component of a computer system that transparently retains
data elements (or simply data) so that future requests for any retained data can be served faster.
To ensure the validity of data in the cache, the data can be checked for errors. ECC bits are
often kept with data in caches to protect against memory failures. ECC encodes data by
generating ECC data (e.g., redundancy bits or parity bits) that are stored along with the data in
a memory device. For example, 8 parity bits can be generated for 32 bits of data or 64 bits of
data. An ECC that generates 8 bits of parity for 32 bits of data can usually detect two-bit errors
and correct one bit error in the 32 bits of data. Similarly, an ECC that generates & parity bits
for 64 bits of data can usually detect (wo-bit errors and correct one bit error in the 64 bits of
data. Many other error correction methods exist, for example such as storing exclusive-OR
(XOR) sum of original data bits in the redundancy bits and recovering an erroneous bit via

performing some algebraic operations as a function of the redundancy bits and the correct bits.

WO 2023/169293 PCT/CN2023/079250

SUMMARY OF TIIE INVENTION

[0003] Various computer-implemented embodiments for providing multiple ECC for
multiple data blocks in a cache line are provided. One embodiment includes receiving, at a first
time by a cache data array comprised of fixed-length cache lines and each cache line consisting
of fixed-Iength data clements, a first sct of compressced data blocks in a cache line of the fixed-
length cache lines. A first ECC is computed for the first set of compressed data blocks at the
first time and stored in an ECC field within the cache data array. At a second time after the
first time, a second set of compressed data blocks is received by the cache data array. A second
ECC is computed for only the second set of compressed data blocks at the second time, and the

second ECC is stored in at least one additional ECC field in the cache data array.

[0004] In other cmbodiments, a computer-implemented mcthod for computing and storing
error correcting codes (ECC) of partial reads and writes to a cache line is provided. Another
embodiment includes providing, in addition to an ECC field in a cache data array, an auxiliary
ECC cache. A read request to partially read data from the cache line in the cache data array is
received, where an ECC of the cache line is stored in the ECC field. A partial ECC (PECC)
incorporating the partially-read data from the cache line is computed, and the PECC is stored in
the auxiliary ECC cache. A wrile request to partially write modified data (o the cache line in
the cache data array is received, and a new ECC for the cache line is computed using the

PECC. The new ECC is then stored in the ECC field.

WO 2023/169293 PCT/CN2023/079250

[0005] In addition to the foregoing exemplary embodiments, various other system and
computer program product embodiments are provided and supply related advantages. The
foregoing Summary has been provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to be
used as an aid in determining the scope of the claimed subject matter, The claimed subject
matter is not limited to implementations that solve any or all disadvantages noted in the

background.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] In order that the advantages of the invention will be readily understood, a more
particular description of the invention briefly described above will be rendered by reference to
specific cmbodiments that arc illustrated in the appended drawings. Undcerstanding that thesce
drawings depict only typical embodiments of the invention and are not therefore to be
considered to be limiting of its scope, the invention will be described and explained with

additional specificity and detail through the use of the accompanying drawings, in which:

[0007] Fig. 1 is a block diagram depicting an exemplary computing node, according to an

embodiment of the present invention;

WO 2023/169293 PCT/CN2023/079250

10008] Fig. 2 is a block diagram depicting an exemplary cloud computing environment,

according to an embodiment of the present invention;

[0009] Fig. 3 is a block diagram depicting abstraction model layers, according to an

embodiment of the present invention;

[0010] Figs. 4A and 4B are block diagrams depicting a cache line, with a respective ECC,
having two compresscd itcms in 4B storcd therein at differing times, according to an

embodiment of the present invention;

[0011] Fig. 5 is a block diagram depicting a cache data array having two compressed items
stored in a respective cache line at differing times, where a respective ECC is computed for

each compressed item, according to an embodiment of the present invention;

[0012] Figs. 6A-6B are block diagrams depicting a data cache read and auxiliary ECC
cache write, and a data cache write and auxiliary ECC cache read, respectively, according to an

embodiment of the present invention;

[0013] Fig. 7 is a flowchart diagram of an exemplary computer-implemented method for
providing ECC for multiple data blocks in a cache line, according to an embodiment of the

present invention; and

WO 2023/169293 PCT/CN2023/079250

[0014] Fig. 8 is a flowchart diagram of an exemplary computer-implemented method for
computing and storing ECC of partial reads and writes to a cache line, according to an

embodiment of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

[0015] Asdiscussed above, a cache is a memory component of a computer system that
transparcntly rctains data clements (or simply data) so that futurc requests for any rctaincd data
can be served faster. A data element that is stored within a cache corresponds to a pre-defined
storage location within a computer memory system. Such data element might have a value that
has recently been computed or be a duplicate copy of a data value that is stored in the pre-
defined storage location. If requested data is contained in the cache, this is referred to as a
cache hit and the request can be served by simply reading the cache. If the requested data is not
contained in the cache, this s referred (o as a cache miss and the data must be lelched [rom
system memory (or other storage medium) which is not neeessarily closc to the requester, and
thus is comparatively slower when compared to accessing data in a cache. In general, the
greater the number of requests that can be served trom the cache, the faster the overall system
performance becomes. Generally, the cache comprises a set of fixed-length cache lines (e.g.,

2356-bytes), where each cache line consists of fixed-length data elements, or more simply data.

[0016] To ensure the validity of data in the cache, the data can be checked [or errors, ECC
bits are often kept with data in caches to protect against both soft and hard failures. ECC

encodes data by generating ECC data (e.g., redundancy bits or parity bits) that are stored along

WO 2023/169293 PCT/CN2023/079250

with the data in a memory device (i.¢., for each cache line). With respect to the present
invention, the ECC data is, in one embodiment, a 16-byte codeword (i.c., an ECC word)
computed by the exclusive-OR (XOR) function of the sixteen 16-byte quadwords constituting
the 256-byte cache line, therefore maintaining each cache line at 272-bytes. In other
embodiments, ECC functions other than XOR and ECC word sizes other than [6-byte may

additionally be used with respect to the mechanisms of the disclosure without limitation.

[0017] Although ECC of cache lines protects the dala therein, there are inherent limitations
to the computation, accessing, and storage of the ECC. For example, when two or more
compressed lines are written to a single 272-byte cache line at different points in time, an ECC
must be independently computed for each of the two or more compressed lines. However, in
traditional caches known today, only a single ECC field is provided in the 272-byte cache line.
Thus, as performed currently, a single ECC protecting a plurality of compressed lines may be
generated, however this method requires reading the existing-stored lines first, recalculating the
ECC for the entirety of the cache line (i.e., the two or more compressed data lines), and writing
back the single ECC that protects the entire cache line to the single ECC field of the cache line.
This read-modify-write operation is undesirable because this uses an excessive number of

read/write operations and consumes excess bandwidth.

[0018] In another example, in some operational scenarios, a data line in the computer
system data may be partially written to the cache. For example, instead of a full 256-byte write
to a cache line, a 64-byte line may be written to the cache, therefore only partially updating the

256-byte cache line. One of the inherent issues with performing such a partial write is that the

WO 2023/169293 PCT/CN2023/079250

ECC is an XOR sum of all the constituents of the full 256-byte cache line. As such, a partial
write will render the data line’s ECC invalid since it is not known the remaining 192-byte’s
values at the time of the 64-byte partial write. The obvious solution to such a case is to first
read the entire 256-byte line, update the 64-byte portion, calculate a new ECC for the entire
256-byte line, and finally write the full 256-byte line into the cache. However, this prior-art
solution suffers from the same read-modify-write issues as discussed above. Namely, requiring
data of the entire cache line to be read, computing a new ECC for the line, and writing the
cntire line back into the cachc requires cxccssive bandwidth because the partial write (c.g., 64-
byte write) effectively turns into a full 256-byte write when only a portion of the data was

needed/requested by the requestor.

[0019] Accordingly, the mechanisms of the present invention provide novel and innovative
processes to reduce the aforementioned drawbacks associated with ECC functionality of the
read-modify-write operations currently required both to store multiple compressed lines,
written at differing times, to the cache and perform partial rcads/writes to the cache. Onc
embodiment includes receiving, at a first time by a cache data array comprised of fixed-length
cache lines and each cache line consisting of fixed-length data elements, a first set of
compressed data blocks in a cache line of the fixed-length cache lines. A first ECC is
computed for the first set of compressed data blocks at the first time and stored in an ECC field
within the cache data array. At a second time after the first time, a second set of compressed
data blocks is received by the cache data array. A second ECC is computed for only the
second set of compressed data blocks at the second time, and the second ECC is stored in at

least one additional ECC field in the cache data array.

WO 2023/169293 PCT/CN2023/079250

[0020] Another embodiment includes providing, in addition to an ECC field in a cache data
array, an auxiliary ECC cache. A read request to partially read data from the cache line in the
cache data array is received, where an ECC of the cache ling is stored in the ECC field. A
partial ECC (PECC) incorporating the partially read data from the cache line is computed, and
the PECC is stored in the auxiliary ECC cache. A write request to partially write modified data
to the cache line in the cache data array is received, and a new ECC for the cache line is

computed using the PECC. The ncw ECC is then stored in the ECC ficld.

[0021] It should be noted that the following definitions and abbreviations are to be used for
the interpretation of the claims and the specification. As used herein, the terms “comprises,”

RN T

“comprising,” “includes,” “including,” “has,” “having,

REANTY

contains” or “containing,” or any
other variation thereof, are intended to cover a non-exclusive inclusion. For example, a
composition, a mixture, process, method, article, or apparatus that comprises a list of elements
1s not necessarily limited to only thosc clements but can include other clements not cxpressly

listed or inherent to such composition, mixture, process, method, article, or apparatus.

[0022] Additionally, the term “exemplary” is used herein to mean “serving as an example,
instance or illustration.” Any embodiment or design described herein as “exemplary” is not
necessarily to be construed as preferred or advantageous over other embodiments or designs.
The terms “al least one” and “one or more” may be understood to include any integer number
greater than or equal to one, i.e. one, two, three, four, etc. The terms “a plurality” may be

understood to include any integer number greater than or equal to two (i.¢., two, three, four,

WO 2023/169293 PCT/CN2023/079250

five, etc.). The term “connection” may include both an indirect “connection” and a direct

“connection.”

[0023] For the sake of brevity, conventional techniques related to making and using aspects
of the invention may or may not be described in detail herein. In particular, various aspects of
computer systems and specific computer programs to implement the various technical features
described herein are well known. Accordingly, in the interest of brevity, many conventional
implementation details arc only mentioned brictly herein or arc omitted centircly without

providing the well-known system and/or process details.

[0024] It should further be noted that data is increasingly processed through a variety of
geographically disbursed computing components, where, for example, a local node may contain
a set of data processing components yet remain in remote communication with other portions of
the distributed data processing system. Within the context of the present disclosure, a
distributed cache, [or example, may include data which 1s not stored on a local host computer,
but is instead hosted and/or processed (¢.g., via distributed compilation) by one or more
distributed storage components that are in remote communication with the local computer.

This type of data storage may, in some cases, be referred to as “cloud,” or “cloud-based”

storage.

[0025] Accordingly, it is understood in advance that although this disclosure includes a
detailed description on cloud computing, implementation of the teachings recited herein are not

limited to a cloud computing environment. Rather, embodiments of the present invention are

WO 2023/169293 PCT/CN2023/079250

capable of being implemented in conjunction with any other type of computing environment,

such as local computing environments and cellular networks, now known or later developed.

[0026] Cloud computing is a model of service delivery for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g. networks, network
bandwidth, servers, processing, memory, storage, applications, virtual machines, and services)
that can be rapidly provisioned and released with minimal management effort or interaction
with a provider of the scrvice. This cloud model may include at Icast five characteristics, at

least three service models, and at least four deployment models.

[0027] Characteristics are as follows:

[0028] On-demand self-service: a cloud consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically without requiring

human interaction with the scrvice’s provider.

[0029] Broad network access: capabilities are available over a network and accessed
through standard mechanisms that promote use by heterogeneous thin or thick client platforms

(e.g., mobile phones, laptops, and PDAs).

[0030] Resource pooling: the provider’s computing resources are pooled (o serve multiple

consumers using a multi-tenant model, with different physical and virtual resources

dynamically assigned and reassigned according to demand. There is a sense of location

10

WO 2023/169293 PCT/CN2023/079250

independence in that the consumer generally has no control or knowledge over the exact
location of the provided resources but may be able to specify location at a higher level of
abstraction (e.g., country, state, or datacenter).

[0031] Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some
cases automatically, to quickly scale out and rapidly released to quickly scale in. To the
consumer, the capabilities available for provisioning often appear to be unlimited and can be

purchased in any quantity at any time.

[0032] Measured service: cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be
monitored, controlled, and reported providing transparency for both the provider and consumer

of the utilized service.

[0033] Scrvice Models arc as follows:

[0034] Software as a Service (SaaS): the capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a web browser (e.g., web-based e-
mail). The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operaling systems, storage, or even individual application capabilities, with

the possible exception of limited user-specific application configuration settings.

11

WO 2023/169293 PCT/CN2023/079250

[0035] Platform as a Service (PaaS): the capability provided to the consumer 1s to deploy
onto the cloud infrastructure consumer-created or acquired applications created using
programming languages and tools supported by the provider. The consumer does not manage
or control the underlying cloud infrastructure including networks, servers, operating systems, or
storage, but has control over the deployed applications and possibly application hosting

environment configurations.

[0036] Infrastructurc as a Scrvice (laaS): the capability provided to the consumer is to

provision processing, storage, networks, and other fundamental computing resources where the
consumer 1s able to deploy and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud infrastructure but
has control over operating systems, storage, deployed applications, and possibly limited control

of select networking components (e.g., host firewalls).

[0037] Dcployment Modcls arc as follows:

[0038] Private cloud: the cloud infrastructure is operated solely for an organization. It may

be managed by the organization or a third party and may exist on-premises or off-premises.

[0039] Community cloud: the cloud infrastructure is shared by several organizations and
supports a specilic community that has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed by the organizations or a third

party and may exist on-premises or off-premises.

12

WO 2023/169293 PCT/CN2023/079250

[0040] Public cloud: the cloud infrastructure is made available to the general public or a

large industry group and is owned by an organization selling cloud services.

[0041] Hybrd cloud: the cloud infrastructure is a composition of two or more clouds
(private, community, or public) that remain unique entities but are bound together by
standardized or proprietary technology that enables data and application portability (e.g., cloud

bursting for load-balancing between clouds).

[0042] A cloud computing environment is service oriented with a focus on statelessness,
low coupling, modularity, and semantic interoperability. At the heart of cloud computing is an

infrastructure comprising a network of interconnected nodes.

[0043] Referring now to Fig. 1, a schematic of an example of a cloud computing node is
shown. Cloud computing node 10 is only onc cxamplc of a suitable cloud computing nodc and
is not intended to suggest any limitation as to the scope of use or functionality of embodiments
of the invention described herein. Regardless, cloud computing node 10 (and/or one or more
processors described herein) is capable of being implemented and/or performing (or causing or

enabling) any of the functionality set forth hereinabove.

[0044] In cloud computing node 10 there is a compuler system/server 12, which is

operational with numerous other general purpose or special purpose computing system

environments or configurations. Examples of well-known computing systems, environments,

13

WO 2023/169293 PCT/CN2023/079250

and/or configurations that may be suitable for use with computer system/server 12 include, but
are not limited to, personal computer systems, server computer systems, thin clients, thick
clients, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud computing environments that include any

of the above systems or devices, and the like.

[0045] Computer systcm/scrver 12 may be described in the gencral context of computer
system-executable instructions, such as program modules, being executed by a computer
system. Generally, program modules may include routines, programs, objects, components,
logic, data structures, and so on that perform particular tasks or implement particular abstract
data types. Computer system/server 12 may be practiced in distributed cloud computing
environments where tasks are performed by remote processing devices that are linked through a
communications network. In a distributed cloud computing environment, program modules
may be located in both local and remote computer system storage media including memory

storage devices.

[0046] As shown in Fig. 1, computer system/server 12 in cloud computing node 10 is
shown in the form of a general-purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or more processors or processing
units 16, a system memory 28, and a bus 18§ that couples various system components including

system memory 28 to processor 16.

14

WO 2023/169293 PCT/CN2023/079250

10047| Bus 18 represents one or more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accelerated graphics port, and a

processor or local bus using any of a variety of bus architectures. By way of example, and not
limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association

(VESA) local bus, and Peripheral Component Interconnects (PCI) bus.

[0048] Computer systcm/scrver 12 typically includes a varicty of computer system rcadable
media. Such media may be any available media that is accessible by computer system/server

12, and it includes both volatile and non-volatile media, removable and non-removable media.

[0049] System memory 28 can include computer system readable media in the form of
volatile memory, such as random access memory (RAM) 30 and/or cache memory 32
(“cache”). Computer system/server 12 may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way of example only, storage system
34 can be provided for reading from and writing to a non-removable, non-volatile magnetic
media (not shown and typically called a "hard drive"). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-volatile magnetic disk (e.g., a "floppy
disk"), and an optical disk drive for reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media can be provided. In such
instances, each can be connected (o bus 18 by one or more data media interfaces. As will be

further depicted and described below, system memory 28 may include at least one program

15

WO 2023/169293 PCT/CN2023/079250

product having a set (e.2., at least one) of program modules that are configured to carry out the

functions of embodiments of the invention.

[0050] Program/utility 40, having a set (at least one) of program modules 42, may be stored
in system memory 28 by way of example, and not limitation, as well as an operating system,
one or more application programs, other program modules, and program data. Each of the
operating system, one or more application programs, other program modules, and program data
or somc combination thercof, may include an implementation of a nctworking cnvironment.
Program modules 42 generally catry out the functions and/or methodologies of embodiments of

the invention as described herein.,

[0051] Computer system/server 12 may also communicate with one or more external
devices 14 such as a keyboard, a pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12; and/or any devices (¢.g., network
card, modem, ctc.) that cnable computer system/scrver 12 to communicate with one or morc
other computing devices. Such communication can occur via Input/Output (I/O) interfaces 22.
Still yet, computer system/server 12 can communicate with one or more networks such as a
local area network (LAN), a general wide area network (WAN), and/or a public network (e.g.,
the Internet) via network adapter 20. As depicted, network adapter 20 communicates with the
other components of computer system/server 12 via bus 18. It should be understood that
although not shown, other hardware and/or soltware components could be used in conjunclion

with computer system/server 12. Examples include, but are not limited to: microcode, device

16

WO 2023/169293 PCT/CN2023/079250

drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and

data archival storage systems, etc.

[0052] Referring now to Fig. 2, illustrative cloud computing environment 50 is depicted.

As shown, cloud computing environment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consumers, such as, for example, cellular
(or mobile) telephone or PDA 54A, desktop computer 54B, laptop computer 54C, and vehicular
computing system (c.g., intcgratcd within automobilcs, aircraft, watcrcraft, ctc.) 54N may

communicate.

[0053] Still referring to Fig. 2, nodes 10 may communicate with one another. They may be
grouped (not shown) physically or virtually, in one or more networks, such as Private,
Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastructure, platforms and/or software as
services for which a cloud consumer docs not need to maintain resources on a local computing
device. Itis understood that the types of computing devices 54A-N shown in Fig. 2 are
intended to be illustrative only and that computing nodes 10 and cloud computing environment
50 can communicate with any type of computerized device over any type of network and/or

network addressable connection (e.g., using a web browser).

[0054] Referring now to Fig. 3, a set o[functional abstraction layers provided by cloud

computing environment 50 (Fig. 2) is shown. It should be understood in advance that the

components, layers, and functions shown in Fig. 3 are intended to be illustrative only and

17

WO 2023/169293 PCT/CN2023/079250

embodiments of the invention are not limited thereto. As depicted, the following layers and

corresponding functions are provided:

[0055] Device layer 55 includes physical and/or virtual devices, embedded with and/or
standalone electronics, sensors, actuators, and other objects to perform various tasks in a cloud
computing environment 50. Each of the devices in the device layer 55 incorporates networking
capability to other functional abstraction layers such that information obtained from the devices
may be provided thereto, and/or information from the other abstraction laycrs may be provided
to the devices. In one embodiment, the various devices inclusive of the device layer 55 may
incorporate a network of entities collectively known as the “internet of things” (IoT). Such a
network of entities allows for intercommunication, collection, and dissemination of data to

accomplish a great variety of purposes, as one of ordinary skill in the art will appreciate.

[0056] Device layer 55 as shown includes sensor 52, actuator 53, “learning” thermostat 56
with intcgrated processing, sensor, and nctworking clectronics, camera 57, controllable
household outlet/receptacle 58, and controllable electrical switch 59 as shown. Other possible
devices may include, but are not limited to, various additional sensor devices, networking
devices, electronics devices (such as a remote control device), additional actuator devices, so
called “smart” appliances such as a refrigerator, washer/dryer, or air conditioning unit, and a

wide variety of other possible interconnected devices/objects.

[0057] Hardware and software layer 60 includes hardware and software components.

Examples of hardware components include: mainframes 61; RISC (Reduced Instruction Set

18

WO 2023/169293 PCT/CN2023/079250

Computer) architecture based servers 62; servers 63; blade servers 64; storage devices 65; and
networks and networking components 66. In some embodiments, software components include

network application server software 67 and database software 68.

[0058] Virtualization layer 70 provides an abstraction layer from which the following
examples of virtual entities may be provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual applications and operating systems 74;

and virtual clicnts 75.

[0059] In one example, management layer 80 may provide the functions described below.
Resource provisioning 81 provides dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud computing environment. Metering
and Pricing 82 provides cost tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of these resources. In one example,
these resources may comprise application software licenses. Sccurity provides identity
verification for cloud consumers and tasks, as well as protection for data and other resources.
User portal 83 provides access to the cloud computing environment for consumers and system
administrators. Service level management 84 provides cloud computing resource allocation
and management such that required service levels are met. Service Level Agreement (SLA)
planning and fulfillment 85 provides pre-arrangement for, and procurement of, cloud

computing resources [or which a [uture requirement is anticipated in accordance with an SLA.

19

WO 2023/169293 PCT/CN2023/079250

[0060] Workloads layer 90 provides examples of functionality for which the cloud
computing environment may be utilized. Examples of workloads and functions which may be
provided from this layer include: mapping and navigation 91; software development and
lifecycle management 92; virtual classroom education delivery 93; data analytics processing
94; transaction processing 95; and, within the context of the illustrated embodiments of the
present invention, various workloads and functions 96 for performing compilation and
optimization of computer programs, gs described herein. One of ordinary skill in the art will
apprcciate that the workloads and functions 96 may also work in conjunction with other
portions of the various abstractions layers, such as those in hardware and software 60,
virtualization 70, management 80, and other workloads 90 (such as data analytics processing
94, for example) to accomplish the various purposes of the illustrated embodiments of the

present invention.

ECC STORAGE FOR MULIPLE COMPRESSED LINES STORED
IN A CACHE LINE AT DIFFERING TIMES

[0061] With reference now to Fig. 4A, diagram 400 depicts a cache line 402 (e.g., a 256-
byte cache line) having cached data 406 stored therein, and an ECC 404 (i.c., a single ECC
word) for the cached data 406 stored in an ECC field of the cache line 402. As aforementioned,
and as depicted in diagram 400, the ECC 404 1s an XOR sum of all the constituents of the full
cache line 402. This ECC, as known in the art, allows for construction via mathematical
formulac of; in this instance, the cached data 406 when the data has become corrupt (e.g., a

memory module holding the data fails). By way of background, diagram 400 illustrates that the

20

WO 2023/169293 PCT/CN2023/079250

XOR of an identity (e.g., “X”) with zero yields back an output of X, the XOR of an identity
(e.g., “Y™) with itself yields back an output of zero, and the XOR of (X®@Y) @ Y yields back an

output of X.

[0062] Referring now to Fig. 4B, diagram 450 depicts the cache line 402 having stored
therein a first set of compressed data blocks (compressed data 452) stored into the cache line
402 at a first time, and a second set of compressed data blocks (compressed data 454) stored
into the cache line 402 at a second time subsequent the first time. In other words, compressed
data 452 was first stored in the cache line 402, and when stored the compressed data 452 did
not fill the entire length of the cache line 402. An ECC 404 for the compressed data 452 is
stored in the ECC field of the cache line 402 upon receipt of the compressed data 452.
Compressed data 454 was then received into the cache line 402 at a time after the compressed
data 452 was stored. As previously discussed, the complication with receiving compressed
data 454 into the cache line 402 at the time after the compressed data 454 was received, is that
to compute the ECC 404 for the cache line 402 having stored therein both compressed data 452
and compresscd data 454, the entirc cache line 402 must be read, a new ECC 404 must be
computed that incorporates both compressed data 452 and compressed data 454, and all data
must then be written back to the cache line 402 and the new ECC 404 be stored in the ECC
field of the cache line 402. This read-modify-write operation is inefficient and consumes
excessive bandwidth and input/output (I/O) resources, as simply storing the compressed data
454 into the cache line in a single operation has effectively become three operations to provide

ECC protection to the line.

21

WO 2023/169293 PCT/CN2023/079250

[0063] To process such an operation more efficiently, the present invention, in one
embodiment, provides novel methods to allow the storage of multiple ECC words in the cache
line 402. In this way, an ECC may be computed, for example, for only compressed data 452
when this data is received into the cache line 402 at the first time, and another ECC may be
computed for only compressed data 454 when this data is received into the cache line 402 at the
second, subsequent time. In one embodiment, the ECC for only the compressed data 452 is
stored in the designated ECC field of the cache line 402 once the ECC is computed for the
compressed data 452 as it 1s received. Then, when subscquent compressed data, such as
compressed data 454, is received into the cache line 402, an additional ECC is computed for
only the compressed data 454, and this ECC data 1s appended to the compressed data 454 itself.
In other words, the additional ECC, computed only for the compressed data 454, is appended to
the next-empty space (or any other empty space) within the cache line 402 available due to the

compression of the stored data.

[0064] Turning now to Fig. 5, diagram 500 illustrates the alorementioned process in
operation as performed, for example, by the computer system/server 12 described in Fig. 1.
Diagram 500 depicts a first compressed line of data 502 and a second compressed line of data
504 in the cache 32. It should be noted that the cache 32 is depicted with eight data columns
and one ECC column for each cache line consisting of the eight data columns, however this
illustration is merely for brevity. As discussed prior, the cache line may consist of sixteen
blocks (e.g., consisting of 16-bytes each) along with its respective ECC (e.g., consisting of 16-

bytes), or any other configuration thereof,

22

WO 2023/169293 PCT/CN2023/079250

|0065] In operation, when receiving the first compressed line 502 into the cache 32, the
first compressed line 502 is written to the first empty space in a cache line, as in block 506.
The first compressed line 502 is then padded with zero bits to an ECC-size boundary, as in
block 508. In other words, because the first compressed line 502 (and all other compressed
lines) are of variable length, once the compressed data of the first compressed line 502 is
written to the first available space in the cache line, the first compressed line 502 is padded
with zero bits until a 16-byte boundary remains in the line (i.e., the ECC-size boundary). The
ECC of only the first compressed line 502, as modificd with the padding, is then computed by
XORing the ECC-size items of the (modified) first compressed line 502. This ECC of the
(modified) first compressed line 502 is written to the ECC array in the cache 32, as in block
512. That is, the first compressed line 502, after having been modified with the padding of zero
bits until the 16-byte ECC-size boundary, is stored in the first available cache line and the ECC
for this modified first compressed line 502 is written in the traditional ECC field of the cache

32.

[0066] Next, at a subsequent point in time when the second compressed ling 504 is received
into the cache 32, the second compressed line 504 is written to the next empty space in the
cache line (1.e., appended after the modified first compressed line 502 or any other empty space
available), as in block 510. The second compressed line 504, similar to the first compressed
line 502, is padded with zero bits to the 16-byte ECC-size boundary, as in block 512. Without
reading the first compressed line 502, the ECC for only the (modified) second compressed line

504 is then computed by XORing the ECC-size items of the second compressed line 504, and

23

WO 2023/169293 PCT/CN2023/079250

this ECC for the (modified) second compressed line 504 is appended to the second compressed

line 504 almost as if the ECC were part of the line’s data, as in block 514.

[0067] Put simply, the ECC of (any) first compressed line received by the cache 32 1s
computed and stored in the traditional ECC field of the array. In some embodiments, a
computed ECC for an uncompressed data line may additionally or alternatively be stored
within the traditional ECC field of the array. With respect to (any) second (or subsequent)
compressed line(s) received by the cache 32, the ECC-size boundary created by the padding of
zero bits up to the boundary line enables the ECC of the any second or subsequent compressed
line(s) to be appended therein obviating the need to perform a read-modify-write operation to
compute a new ECC for the entire cache line (a first existing compressed line and a second
compressed line received at some point after the first) and store the new ECC in the traditional

ECC field in the array.

[0068] Insome embodiments, a cyclic redundancy checksum (CRC) of (any) compressed
line(s) received into the cache line of the cache 32 may be written in the padded space to
increase the error detection capability of the line (or extra parity). Further, it should be noted
that, as alluded to above, the performance of the steps associated with blocks 506-512 are
equally applicable to a scenario where more than two compressed lines have been received by
the cache 32 (at differing times). Following the same procedure, the ECC for any compressed
line received into the cache 32 will be computed and written to the traditional ECC field of the
array, and the ECC for any compressed line(s) received subsequent to the compressed line

received first will be computed and appended to the compressed line itself. Further, in some

24

WO 2023/169293 PCT/CN2023/079250

embodiments, it should be noted that the ECC appended to the compressed line(s) received by
the cache 32 may not necessarily need be appended to the compressed line for which the ECC
was computed. A compressed line length means, for example, may be provided outside the
cache 32 such that each ECC position for a respective compressed line is known, when it

becomes necessary to correct errors.

ECC COMPUTATION AND STORAGE FOR
PARTIAL READS AND WRITES

[0069] In some embodiments, to mitigate the penalties associated with partial reads and
wriles to the cache 32 as discussed previously, methods ol computation and placement of ECC
in the cache 32 are disclosed which enable partial reads and writes to each line of data in the
cache, inclusive of enabling access to a plurality of sectors in a single line. This may be
facilitated by constructing an auxiliary ECC cache alongside the cache 32, where the auxiliary
ECC cache may be constructed in a processor(s) (e.g., processors 16}, I/O devices, and/or
accelerators. The auxiliary ECC cache 1s, in principle, expected to be substantially smaller than
the cache 32 at a size that enables the auxiliary ECC cache to only temporarily store partially
computed ECC. By only partially computing ECC and temporarily storing such in the
auxiliary ECC cache, this advantageously reduces the number of read/write operations

otherwise required to be performed when ECC are present for cached data.

25

WO 2023/169293 PCT/CN2023/079250

[0070] Explained as a logical operation, consider a cache line of a cache 32 consisting of
data A, B, C, D, ... and a respective ECC computed for the cache line. The ECC is therefore

computed as: ECC == A®@B@C®D

[0071] Suppose that an application requests only data D, modifies this data, and requests to
perform a partial write to the cache line, for example to replace data D with modified data X.
Of course, a partial write of data X could be performed to replace data D, however this would
render the ECC for the cache line invalid because X was not a constituent when XORing data
A, B, C, and D together as illustrated above. As described earlier, the prior art solution to
computing a new ECC for X is to first read data A, B, and C, XOR this data with X, and write
the new ECC into the ECC field of the cache line. This incurs the aforementioned read-
modify-write penalty, however, because resources are utilized to read and write data A, B, and
C from and to the cache 32, when this data was not requested by the application but rather only

used to compute the ECC for the partially modified data X,

[0072] In somc cmbodiments, thercfore, when a data line is only partially read from the
cache 32 (i.e., an application requests only data associated with a 64-byte sector), an ECC for
only this sector is computed in real-time. This sector-ECC (SECC) is then XORed with the
entire cache line ECC, resulting in a partial-ECC (PECC) for the cache line (PECC = ECC @
SECC). The PECC along with an address tag of the sector are then stored in the auxiliary ECC

cache.

26

WO 2023/169293 PCT/CN2023/079250

10073] At a subsequent time, when the processor (and/or 1/0 device and/or accelerator)
modifies this read sector which needs to be written to the cache 32, a new sector ECC (e.g.,
SECC’) may be formed. The sector’s address, via its address tag, is searched in the auxiliary
ECC cache where the tag was stored previously. If an address match is found in the auxiliary
ECC cache, the updated cache line’s ECC (e.g., ECC’) is XORed as; ECC’ ;= PECC & SECC’,
The updated sector data and the updated ECC (ECC’) are then written to the cache 32, which
eliminates the need to perform a full read-modify-write of the entire cache line to determine the
updated ECC based on the modified sector data. It should be noted that is no match is found in
the auxiliary ECC cache for the address information, the previous (existing) entire cache line
must be first read from the cache 32, the previous sector data must be overwritten with the
modified sector data, the new ECC must be computed for the cache ling, and the new cache line

and new ECC must then be written to the cache 32, therefore incurring a read-modify-write

penalty.

[0074] Turning to Figs. 6A and 6B, diagram 600 of a data cache read and auxiliary ECC
cache write, and diagram 650 ol a data cache write and auxiliary ECC cache read are depicted
to illustrate the aforementioned process. Referring now to diagram 600 of Fig. 6A, a cache 602
(e.g., cache memory 32) having a fixed-length cache line (e.g., an abbreviated 256-byte cache
line as depicted) with fixed-size sectors (e.g., 64-byte sectors) is illustrated. In the abbreviated
depiction, the cache line includes sectors S0, S1, S2, and S3, address tag information, and an
ECC for the cache line. Diagram 600 additionally depicts a processar, I/O device, and/or
accelerator (as illustrated in Fig. | and referred to as resource 604 in Figs. 6A and 6B) holding

an auxiliary ECC cache 606.

27

WO 2023/169293 PCT/CN2023/079250

[0075] In operation to perform a partial read from the cache 602, assume that a program
requests partial data from the cache line, namely data held in sector S2. Upon reading sector
S2 as in 608, the resource 604 additionally reads the cache address tag information, as in block
616. An SECC is computed on the fly (i.c., in real-time) for sector S2, as in block 610. The
existing ECC for the entire cache line is then read, as in block 612, and the existing ECC for
the cache line is XORed with the SECC to compute the PECC (PECC = ECC ® SECC) as in
614. The PECC is then stored in the auxiliary ECC cache 606, along with the address tag

information of sector S2, as in block 616.

[0076] Referring now to diagram 650 of Fig. 6B, in operation to perform a partial write to
the cache 602, subsequent to the application moditying the data associated with sector S2, the
updated data as modified becomes sector S2° as in 656. Prior to writing sector S2” to the cache,
the resource 604 searches the auxiliary ECC cache 606 to locate the PECC using the address
tag information. A new sector S2° ECC is then computed as SECC’, as in block 652. In block
654, anew ECC [or the cache line (having incorporated the modified sector S2’) is computed
by XORing the SECC’ with the PECC. Data associated with sector S2° is then written to the
cache line, as in block 656, and the new ECC” for the cache line is written to the ECC field of

the cache line, as in block 658.

[0077] Again, it should be noted that if no match is found in the auxiliary ECC cache for

the address information for S2 via the address tag, the previous (existing) entire cache line (of

sectors SO, S1, S2, 83, etc.) must be first read from the cache 32, the previous sector data (S2)

28

WO 2023/169293 PCT/CN2023/079250

must be overwritten with the modified sector data (S2°), the new ECC (ECC’) must be
computed for the cache line, and the new cache line and new ECC’ must then be written to the

cache 602, therefore incurring a read-modify-write penalty.

[0078] Turning to Fig. 7, a flowchart diagram of an exemplary method 700 for providing
multiple error correcting codes (ECC) for compressed data in a cache line is provided. The
method 700 may be performed by, for example, the computer system/server 12 described in
Fig. 1. The method 700 begins (step 702) by reeciving, at a first time by a cache data array
comprised of fixed-length cache lines and each cache line consisting of fixed-length data
elements, a first set of compressed data blocks in a cache line of the fixed-length cache lines
(step 704). A first ECC is computed for the first set of compressed data blocks at the first time
(step 706), and stored in an ECC field within the cache data array (step 708). At a second time
subsequent to the first time, a second set of compressed data blocks is received by the cache
data array (step 710). A second ECC is computed for only the second set of compressed data
blocks at the second time (step 712), and the sccond ECC is stored 1n at Icast onc additional

ECC field in the cache data array (step 714). The method 700 ends (step 716).

[0079] Turning to Fig. 8, a flowchart diagram of an exemplary method 800 for computing
and storing error correcting codes (ECC) of partial reads and writes to a cache line is provided.
The method 800 may be performed by, for example, the computer system/server 12 described
in Fig. 1. The method 800 begins (step 802) by providing, in addition to an ECC field in a
cache data array, an auxiliary ECC cache (step 804). A read request to partially read data from

the cache line in the cache data array is received, where an ECC of the cache line is stored in

29

WO 2023/169293 PCT/CN2023/079250

the ECC field (step 806). A partial ECC (PECC) incorporating the partially-read data from the
cache line is computed, and the PECC is stored in the auxiliary ECC cache (step 808). A write
request to partially write modified data to the cache line in the cache data array 1s received (step
810), and a new ECC for the cache ling is computed using the PECC. The new ECC is then

stored in the ECC field (step 812). The method 800 ends (step 814).

[0080] In conjunction with the methods 700 and 800, storing the second ECC in the at least
one additional ECC field may comprise appending the second ECC (o the second set of

compressed data blocks in the cache line.

[0081] In conjunction with the methods 700 and 800, the computation of at least one of the

first ECC and the second ECC may be performed using an exclusive-OR (XOR) function.

[0082] In conjunction with the methods 700 and 800, an area of the first set of compressed
data blocks and the second set of compressed data blocks may be padded with zero bits to an
ECC-size boundary to uniformly position the first ECC and the second ECC within the first and

second set of compressed data blocks.

[0083] In conjunction with the methods 700 and 800, a cyclic redundancy checksum

(CRC) may be written in the padded area of the first set of compressed data blocks and the

second set of compressed data blocks.

30

WO 2023/169293 PCT/CN2023/079250

[0084] In conjunction with the methods 700 and 800, an address tag may be stored with the

PECC in the auxiliary ECC cache.

[0085] In conjunction with the methods 700 and 800, computing the PECC may include
computing a sector ECC (SECC) of the partially-read data; performing an exclusive-OR (XOR)
function on the SECC and the ECC of the cache line, wherein an output of the XOR function

comprises the PECC; and storing the address tag with the PECC in the auxiliary ECC cache.

[0086] In conjunction with the methods 700 and 8§00, computing the new ECC may include
searching the auxiliary ECC cache to locate the PECC using the address tag; recalculating a
new SECC for the partially-written modified data; and computing the new ECC for the cache
line by performing the XOR function on the new SECC and the PECC, wherein the new ECC

is stored in the ECC field of the cache data array.

[0087] The present invention may be a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium (or
media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[0088] The computer readable storage medium can be a tangible device that can retain and
store instructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic

storage device, an optical storage device, an electromagnetic storage device, a semiconductor

31

WO 2023/169293 PCT/CN2023/079250

storage device, or any suitable combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium includes the following: a portable
computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM),
an erasable programmable read-only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as
punch-cards or raised structures in a groove having instructions recorded thereon, and any
suitablc combination of the forcgoing. A computer rcadablc storage medium, as uscd herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves propagating through a waveguide
or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical

signals transmitted through a wire.

[0089] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program
instructions [rom the network and [orwards the compuler readable program instructions [or
storage in a computer readable storage medium within the respective computing/processing

device.

32

WO 2023/169293 PCT/CN2023/079250

[0090] Computer readable program instructions for carrying out operations of the present
invention may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions, state-
setting data, or either source code or object code written i any combination of one or more
programming languages, including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural programming languages, such as the
"C" programming languagc or similar programming languages. Thc computcr rcadable
program instructions may execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the Internet using an Internet Service
Provider). In somc embodiments, clectronic circuitry including, for example, programmablc
logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by utilizing state information of the

computer readable program instructions to personalize the electronic circuitry, in order to

perform aspects of the present invention.

[0091] Aspects of the present invention are described herein with reference to flowchart

illustrations and/or block diagrams of methods, apparatus (systems), and computer program

products according to embodiments of the invention. It will be understood that each block of

33

WO 2023/169293 PCT/CN2023/079250

the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer readable program

instructions.

[0092] These computer readable program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the processor of
thc computcr or other programmable data processing apparatus, crcatc means for implementing
the functions/acts specified in the flowcharts and/or block diagram block or blocks. These
computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other
devices to function in a particular manner, such that the computer readable storage medium
having instructions stored therein comprises an article of manufacture including instructions
which implement aspects of the function/act specified in the flowcharts and/or block diagram

block or blocks.

[0093] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other device to
produce a computer implemented process, such that the instructions which execute on the
computer, other programmable apparatus, or other device implement the [unctions/acts

specified in the flowcharts and/or block diagram block or blocks.

34

WO 2023/169293 PCT/CN2023/079250

[0094] The flowcharts and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowcharts or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown in
succession may, in fact, be exceuted substantially concurrently, or the blocks may sometimes
be executed in the reverse order, depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart illustrations, and combinations of
blocks in the block diagrams and/or flowchart illustrations, can be implemented by special
purpose hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.

35

WO 2023/169293 PCT/CN2023/079250

CLAIMS

1. A computer-implemented method for providing multiple error correcting codes (ECC)
for compressed data in a cache line, the computer-implemented method, comprising:

receiving, at a first time by a cache data array comprised of fixed-length cache lines
and each cache line consisting of fixed-length data elements, a first set of compressed data
blocks in 4 cache line of the fixed-length cache lines;

computing a first ECC for the first sct of compresscd data blocks at the first timc;

storing the first ECC for the first set of compressed data blocks in an ECC field within
the cache data array;

receiving, by the cache data array, a second set of compressed data blocks at a second
time subsequent to the first time;

computing a second ECC for only the second set of compressed data blocks at the
second time; and

storing the sccond ECC in at Icast onc additional ECC ficld i the cache data array.

2. The computer-implemented method of claim 1, wherein storing the second ECC in the
at least one additional ECC field comprises appending the second ECC to the second set of

compressed data blocks in the cache line.

3. The computer-implemented method of claim 1, [urther comprising performing the

computation of at least one of the first ECC and the second ECC using an exclusive-OR (XOR)

function.

36

WO 2023/169293 PCT/CN2023/079250

4, The computer-implemented method of claim 1, further comprising padding an area of
the first set of compressed data blocks and the second set of compressed data blocks with zeros
to an ECC-size boundary to uniformly position the first ECC and the second ECC within the

first and second set of compressed data blocks.

5. The computer-implemented method of claim 4, further comprising writing a cyclic
redundancy checksum (CRC) in the padded area of the first set of compressed data blocks and

the sccond sct of compresscd data blocks.

6. A system for providing multiple error correcting codes (ECC) for compressed data in a
cache line, the system comprising:
a hardware memory; and
a hardware processor executing instructions stored in the hardware memory; wherein,
when executed, the instructions cause the hardware processor to:
reccive, at a first time by a cache data array comprisced of fixed-length cache
lines and each cache line consisting of fixed-length data elements, a first set of compressed data
blocks in a cache line of the fixed-length cache lines;
compute a first ECC for the first set of compressed data blocks at the first time;
store the first ECC for the first set of compressed data blocks in an ECC field
within the cache data array;
receive, by the cache data array, a second set ol compressed data blocks at a

second time subsequent to the first time;

37

WO 2023/169293 PCT/CN2023/079250

compute a second ECC for only the second set of compressed data blocks at the
second time; and
store the second ECC 1n at least one additional ECC field in the cache data

array.

7. The system of claim 6, wherein storing the second ECC in the at [east one additional
ECC field comprises appending the second ECC to the second set of compressed data blocks in

the cache line.

g. The system of claim 6, wherein, when executed, the instructions further cause the
hardware processor to perform the computation of at least one of the first ECC and the second

ECC using an exclusive-OR (XOR) function.

9. The system of claim 6, wherein, when executed, the instructions further cause the
hardwarc proccssor to pad an arca of the first sct of compressed data blocks and the sccond sct
of compressed data blocks with zeros to an ECC-size boundary to uniformly position the first

ECC and the second ECC within the tirst and second set of compressed data blocks.

10. The system of claim 9, wherein, when executed, the instructions further cause the

hardware processor to write a cyclic redundancy checksum (CRC) in the padded area of the

first sel of compressed data blocks and the second set of compressed data blocks.

38

WO 2023/169293 PCT/CN2023/079250

11. A computer program product for providing multiple error correcting codes (ECC) for
compressed data in a cache line, the computer program product comprising a non-transitory
computer-readable storage medium having program instructions embodied thereon, the
program instructions executable by a processor to cause the processor to:

receive, at a first time by a cache data array comprised of fixed-length cache lines and
each cache line consisting of fixed-length data elements, a first set of compressed data blocks in
a cache line of the fixed-length cache lines;

computc a first ECC for the first sct of compresscd data blocks at the first time;

store the first ECC for the first set of compressed data blocks in an ECC field within the
cache data array,

receive, by the cache data array, a second set of compressed data blocks at a second
time subsequent to the first time;

compute a second ECC for only the second set of compressed data blocks at the second
time; and

store the second ECC in at Icast onc additional ECC ficld in the cache data array.

12. The computer program product of claim 11, wherein storing the second ECC in the at
least one additional ECC field comprises appending the second ECC to the second set of

compressed data blocks in the cache line.

13. The computer program product of claim 11, wherein the program instructions

executable by the processor further cause the processor to perform the computation of at least

one of the first ECC and the second ECC using an exclusive-OR (XOR) function.

39

WO 2023/169293 PCT/CN2023/079250

14. The computer program product of claim 11, wherein the program instructions
executable by the processor further cause the processor to pad an area of the first set of
compressed data blocks and the second set of compressed data blocks with zero bits to an ECC-
size boundary to uniformly position the first ECC and the second ECC within the first and

second set of compressed data blocks.

15. The computer program product of ¢laim 11, wherein the program instructions
cxecutable by the processor further causc the processor to write a cyclic redundancy checksum
(CRC) in the padded area of the first set of compressed data blocks and the second set of

compressed data blocks.

16. A system for computing and storing error correcting codes (ECC) of partial reads and
writes to a cache line in a computing environment, comprising:
one or more computers with executable instructions that when executed cause the

system to:

provide, in addition to an ECC field in a cache data array, an auxiliary ECC
cache;

receive a read request to partially read data from the cache line in the cache data
array, wherein an ECC of the cache line is stored in the ECC field;

determine a partial ECC (PECC) incorporating the partially-read data from the
cache line, and storing the PECC in the auxiliary ECC cache;

receive a write request to partially write modified data to the cache line in the

cache data array; and

40

WO 2023/169293 PCT/CN2023/079250

determine a new ECC for the cache line using the PECC and storing the new

ECC in the ECC field.

17. The system of claim 16, wherein an address tag is stored with the PECC in the auxiliary
ECC cache, and wherein determining the PECC includes:

computing a sector ECC (SECC) of the partially-read data; and

performing an exclusive-OR (XOR) function on the SECC and the ECC of the cache

line, wherein an output of the XOR function compriscs the PECC.

18. The system of claim 17, wherein determining the PECC further includes storing the

address tag with the PECC in the auxiliary ECC cache.

19. The system of claim 16, wherein determining the new ECC includes:
searching the auxiliary ECC cache to locate the PECC using the address tag; and

recalculating a new SECC for the partially-written modificd data.

20. The system of claim 19, wherein determining the new ECC further includes computing

the new ECC for the cache line by performing the XOR function on the new SECC and the

PECC, wherein the new ECC is stored in the ECC field of the cache data array.

41

PCT/CN2023/079250

WO 2023/169293

T "Old

(s)3aoinaa

h

TVYNY3LX3 N_pT

y

¥314vav YYOMLIN vx/
oc (S)3DV4YILNI|
< AV1dsia
a o/l
Y \ x
—
__ ~—Ct ./mﬁ
ot -
1INN
> \uzu<u ONISSID0Hd
r4s (
INILSAS 9t
I19VYHOIS VY
o€
] HYIAHIS INILSAS HILNANOD | 27T
A 8¢

ol

1/10

PCT/CN2023/079250

WO 2023/169293

¢ 'Old

IS

==
= | —gps vva

[H:

ot

[IRY

1
v
]
. _ '
\ 7 / \
0s N !)»
P ' \,,
' 1 \ , N \
1 LY LN
i N (s z _L
! z_~
- _ // z_
i
[

z

2/10

s |

PCT/CN2023/079250

WO 2023/169293

6S 86 5SS
\ \ ¢
K \ e ¥3AVT 3DIA3
Bl | @ s
o 5]
cS
09
x

IYVYMLH0S ANV FUVMAYVYH

9 19

b & @ =2 @ = (I [l
(074
/

NOILVZITVNLHIN

YA 174 rda | 74
_ N ¢ €L £
(I | @ o 0 /.
x
ININWIDVNVIA
%] 8 £8 8 is
06
/
SAvONDIHOM
96 S6 6 €6 6 16

3/10

PCT/CN2023/079250

WO 2023/169293

V¥ "Old

AB(0BX) =X
ADA=0
0bX =X
3013 jo uonippe uondesigns ajdwis Joj padesans| ase sannuapl duimoljo4
sannuenb 21Ag-9T Y3 JO HO 9AISN|IX |LIIS0| 3SIMIQ SI |OqQWAS]
GT 03 0=0U 40} ‘Ydes 21Aq-9T ale ug

STAG PId L eldP cId D TTIA P 01dP 6dE8AD LA P O9A D SAD AP €A D ¢ 0d =- 203

ST1d

1d

€1d

<1d

11d

01a

6d

8d

Ld

9d

ad

7d

€d

¢d

Td

0a

203

7

J

[4¢1%

S31Ad 9S¢Z ANIT IHOVD

_\
£10)7

4
1294

N

oov

4/10

PCT/CN2023/079250

WO 2023/169293

| e e e B e B l-
_ :
" STA | FTA | €ETA|CTA|(TTA | O0TA| 64 wﬁ_" /d sa qd d €a ca Td 0da 2013
1 1
IIIIIIIIIIIIIIIIIIIIIIIIIIII [}

2 7 e
Sy Sy

SINILL LN3YH34414 1V INIT 3HOVYI JHL NI d3H01S SING1l OML

ost

5110

WO 2023/169293 PCT/CN2023/079250
500
COMPRESSED LINE 1
502 El
AA 7y
COMPRESS=D DATA ENDSHERE -==-----4 ! ;
PAD TO 16-3YTE BOUNDARY (PADDING MAY CONTAIN. ..
A CRC FOR ENHANCED CHECKING DR EXTRA PARITY)
2CC, 16-BYTE QW (SAME AS ZAj- === - < mmm e
COMPRESSED LINE 2
504 A
ECC COLUMN 8 X DATA COLUMNS
El 1 11
i =506
517 + T L | L] L
El E —= e]
L) | L || C=t-508
U N 10T =11 4s510
L 1||L| | 2XSRAM
— —1lr—1| [8-BYTE EACH
E AIE
L)] | L L |
512 ||514

FIG. 5

6/10

PCT/CN2023/079250

WO 2023/169293

V9 "Old

94282 I3 3Y1 Ul DDIJ PUe D] S340IS G
D23 @ DD3S = D23d D7 |ended syl seIndwo)

D03 3Ul| 9Y2e2 9y Speay '¢

D235 Se D3 40128 8yl saie|nojed ‘g
OVvL mwp ssaJdppe ®r_umu Spe=d pue ¢S 1010:sS spead NdD 'T

SHO1D3S 31A9-79 HLIM
INIT V1va 31Ad-96¢

+ ; |
919 23 |ove| €s | ¢s | ts | os
203d | ovi
~l |
4 7
oo | OV 203 ZER R 19
vi9 — 2935 [«
\
P 019
IHOYD VIVA FHL INOYH ONIAV3IY /
209 JHOVD VIva
YOLVY3I13IOV/IDIA3A OI/NdD
Z 401D3S 11A9-+9 ¥ ONIAVIY
’ ’
09 209

009

7/10

PCT/CN2023/079250

WO 2023/169293

99 'Old

BUI| 3Y2eD BY1 JO Play DDI 8yl Ul DD3S MU Y1 SSIUM 9
aul| @yded 3yl 01Ul 7S 40109S ayl SO1UM 'S
203d@,003S =i .03 58 DD3 MBU dU3 $31B|ND[EIY i
,0D3S se O3 J10193s ,7S 9yl s218|nN2|eday ‘¢
Se| ssaippe 2yi 8uisn D34 $21BJ0| pUEB 3Y2ed D] 2yl S3Y24eas 7
.S 8ujwodag ‘¢S 401235 @Y1 so1epdn a31A8p 4O NdD T
SHOL1D3S I1AG-¥9 HLIM
ANIT VLva 31A8-95C
|
D23 |ovL| €5 | ¢S | TS | 0S
203d | Svl £59
y A
_ A >
s09—] 3IHOWD 203 @ 7
7 23S > folale)
759
JHDVD OL ONILINM om\m .ZS THAYS VIV
HO1vd3I13DDV/3IDIAIA OI/NdD
HOLD3S 31AG-9 MIN V ONILIYA
/ /
709 709

8/10

WO 2023/169293 PCT/CN2023/079250

700

702

RECEIVE, AT A FIRST TIME BY A CACHE DATA ARRAY COMPRISED OF
FIXED-LENGTH CACHE LINES AND EACH CACHE LINE CONSISTING

OF FIXED-LENGTH DATA ELEMENTS, A FIRST SET OF COMPRESSED 704

DATA BLOCKS IN A CACHE LINE OF THE FIXED-LENGTH CACHE LINES

COMPUTE A FIRST ECC FOR THE FIRST SET OF COMPRESSED
DATA BLOCKS AT THE FIRST TIME 706

STORE THE FIRST ECC FOR THE FIRST SET OF COMPRESSED DATA
BLOCKS IN AN ECC FIELD WITHIN THE CACHE DATA ARRAY

708

RECEIVE, BY THE CACHE DATA ARRAY, A SECOND SET OF COMPRESSED

DATA BLOCKS AT A SECOND TIME AFTER THE FIRST TIME 710

COMPUTE A SECOND ECC FOR ONLY THE SECOND SET OF

COMPRESSED DATA BLOCKS AT THE SECOND TIME 712

STORE THE SECOND ECC IN AT LEAST ONE ADDITIONAL ECC
FIELD IN THE CACHE DATA ARRAY

714

9/10

WO 2023/169293 PCT/CN2023/079250

800

802

PROVIDE, IN ADDITION TO AN ECC FIELD IN A CACHE DATA

ARRAY, AN AUXILIARY ECC CACHE 804

RECEIVE A READ REQUEST TO PARTIALLY READ DATA FROM THE
CACHE LINE IN THE CACHE DATA ARRAY, WHEREIN AN ECC OF

THE CACHE LINE IS STORED IN THE ECC FIELD 806

COMPUTE A PARTIAL ECC (PECC) INCORPORATING THE
PARTIALLY-READ DATA FROM THE CACHE LINE, AND STORE

THE PECC IN THE AUXILIARY ECC CACHE 808
RECEIVE A WRITE REQUEST TO PARTIALLY WRITE MODIFIED
DATA TO THE CACHE LINE IN THE CACHE DATA ARRAY 810
COMPUTE A NEW ECC FOR THE CACHE LINE USING THE PECC
AND STORE THE NEW ECC IN THE ECC FIELD 812

10/10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2023/079250

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 11/10(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC: GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNTXT, ENTXT, DWPL, IEEE, USTXT, WOTXT: ECC, error, code, correct+, compress+, data, cache, second, additional,
time, append+, line, array, subsequent, first, Xor, exclusive 1w or, field, block, efficient+, stor+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

description, paragraphs [0012]-[0069]

A US 2021191812 A1 (MICRON TECHNOLOGY, INC.) 24 June 2021 (2021-06-24) 1-20

the whole document

A US 2014143635 Al (NVIDIA CORPORATION) 22 May 2014 (2014-05-22) 1-20

the whole document

A US 2022012126 Al (INTEL CORPORATION) 13 January 2022 (2022-01-13) 1-20

(2021-10-12)
the whole document

A CN 113495862 A (SHANDONG HUAXIN SEMICONDUCTOR CO., LTD.) 12 October 2021 1-20

DFurther documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
«A” document defining the general state of the art which is not considered
to be of particular relevance
“p” document cited by the applicant in the international application

“E» earlier application or patent but published on or after the international
filing date

“,” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

«p document published prior to the international filing date but later than
the priority date claimed

i

ey

» document of particular relevance; the claimed invention cannot be

*document member of the same patent family

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; (he claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

Date of the actual completion of the international search

Date of mailing of the international search report

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

16 May 2023 23 May 2023
Name and mailing address of the [SA/CN Authorized officer
CHINA NATIONAL INTELLECTUAL PROPERTY
ADMINISTRATION TIAN,Jing

Telephone No. (+86) 010-53961334

Form PCT/ISA/210 (second sheet) (July 2022)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/CN2023/079250
' Pat:cnt document Publication date Patent family member(s) Publicatiou date
cited in search report (day/month/year) (day/month/year)
Us 2021191812 Al 24 Tune 2021 WO 2020185448 Al 17 September 2020
US 10956262 B2 23 March 2021
us 2020293396 Al 17 September 2020
DE 112020001219 TS 23 December 2021
CN 113574508 A 29 October 2021
Us 2014143635 Al 22 May 2014 US 8984372 B2 17 March 2015
Us 2022012126 Al 13 January 2022 None
CN 113495862 A 12 October 2021 None

Form PCT/ISA/210 (patent family annex) (July 2022)

	Bibliography
	Abstract
	Bibliography
	Abstract
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Description
	Claims
	Claims
	Claims
	Claims
	Claims
	Claims
	Drawings
	Drawings
	Drawings
	Drawings
	Drawings
	Drawings
	Drawings
	Drawings
	Drawings
	Drawings
	Search report
	Search report

