
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number
(43) International Publication Date n _

12 January 2012 (12.01.2012) 2 12/ 61 6 A2

(51) International Patent Classification: (74) Agents: VINCENT, Lester J. et al; Blakely Sokoloff
G06F 12/00 (2006.01) G06F 11/10 (2006.01) Taylor & Zafman, 1279 Oakmead Parkway, Sunnyvale,

California 94085 (US).
(21) International Application Number:

PCT/US20 11/042222 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
28 June 201 1 (28.06.201 1) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

12/825,858 29 June 2010 (29.06.2010) US NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(71) Applicant (for all designated States except US): INTEL TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
CORPORATION [US/US]; 2200 Mission College
Boulevard, Santa Clara, California 95052 (US). (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(72) Inventor; and GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(75) Inventor/Applicant (for US only): KHAN, Jawad B. ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[PK/US]; 826 N. 26th Avenue, Cornelius, Oregon 971 13 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ , LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: METHOD AND SYSTEM TO IMPROVE THE PERFORMANCE AND/OR RELIABILITY OF A SOLID-STATE
DRIVE

(57) Abstract: A method and system to improve the perfor
mance and/or reliability of a solid-state drive (SSD). In one
embodiment of the invention, the SSD has logic compress a
block of data to be stored in the SSD. If it is not possible to
compress the block of data below the threshold, the SSD
stores the block of data without any compression. If it is pos
sible to compress the block of data below the threshold, the
SSD compresses the block of data and stores the compressed
data in the SSD. In one embodiment of the invention, the
SSD has logic to dynamically adjust or select the strength of
the error correcting code of the data that is stored in the SSD.
In another embodiment of the invention, the SSD has logic to
provide intra-page XOR protection of the data in the page.

<
©

o©

o

o



w o 2012/006106 A : llll I I I I 11 III I I I II II II 1 1 II II III I I I II

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published
GW, ML, MR, NE, SN, TD, TG). without international search report and to be republished

upon receipt of that report (Rule 48.2(g))



METHOD AND SYSTEM TO IMPROVE THE PERFORMANCE AND/OR

RELIABILITY OF A SOLID-STATE DRIVE

FIELD OF THE INVENTION

This invention relates to a solid-state drive, and more specifically but not

exclusively, to a method and system to improve the performance and/or reliability

of the solid-state drive.

BACKGROUND DESCRIPTION

Error protection mechanisms are often used to ensure the integrity of the

data stored in a solid-state drive. Figure 1A illustrates a block diagram 100 of data

stored in a prior art NAND flash memory page 110. The prior art NAND flash

memory page 110 has sector 0 112, sector 1 114, sector 2 116, and sector 3 118

that are protected by the Error Correcting Code 0 (ECC 0) check bytes 120.

Similarly, the ECC 1 check bytes 130 protects the sector 4 122, sector 5 124,

sector 6 126, and sector 7 128 of the prior art NAND flash memory page 110.

Depending on the severity of the errors in each sector, the ECC 0 check

bytes 120 and ECC 1 check bytes 130 can facilitate the detection of errors in the

sectors and allow data recovery of the error(s) in the sectors. Figure 1B illustrates

a block diagram 150 of the data stored in a prior art NAND flash memory page

160. The prior art NAND flash memory page 160 has the sector 0 162, sector 1

164, sector 2 166, and sector 3 168 that are protected by the ECC check bytes

170. Figure 1C illustrates a block diagram 180 of the code words stored in a prior

art NAND flash memory page 190. The prior art NAND flash memory page 190

has four code words (CW) 1-4 192, 194, 196, and 198 that are protected by the

ECC 0-3 check bytes 193, 195, 197, and 199 respectively.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of embodiments of the invention will become

apparent from the following detailed description of the subject matter in which:

Figure 1A illustrates a block diagram of data stored in a prior art NAND

flash memory page;

Figure 1B illustrates a block diagram of data stored in a prior art NAND

flash memory page;

Figure 1C illustrates a block diagram of code words stored in a prior art

NAND flash memory page;



Figure 2 illustrates a block diagram of a solid-state drive in accordance

with one embodiment of the invention;

Figure 3A illustrates a block diagram of a controller in accordance with

one embodiment of the invention;

Figure 3B illustrates a block diagram of a controller in accordance with

one embodiment of the invention;

Figure 4 illustrates a block diagram of compressed data stored in a NAND

flash memory in accordance with one embodiment of the invention;

Figure 5 illustrates a block diagram of compressed data stored in a NAND

flash memory in accordance with one embodiment of the invention;

Figure 6 illustrates a block diagram of a compressed sector and a known

data pad in accordance with one embodiment of the invention;

Figure 7 illustrates a block diagram of two NAND flash memory pages in

accordance with one embodiment of the invention;

Figure 8 illustrates a block diagram of a NAND flash memory page in

accordance with one embodiment of the invention;

Figure 9 illustrates a block diagram of a NAND flash memory page in

accordance with one embodiment of the invention; and

Figure 10 illustrates a system to implement the methods disclosed herein in

accordance with one embodiment of the invention.

DETAILED DESCRIPTION

Embodiments of the invention described herein are illustrated by way of

example and not by way of limitation in the accompanying figures. For simplicity

and clarity of illustration, elements illustrated in the figures are not necessarily

drawn to scale. For example, the dimensions of some elements may be

exaggerated relative to other elements for clarity. Further, where considered

appropriate, reference numerals have been repeated among the figures to

indicate corresponding or analogous elements. Reference in the specification to

"one embodiment" or "an embodiment" of the invention means that a particular

feature, structure, or characteristic described in connection with the embodiment

is included in at least one embodiment of the invention. Thus, the appearances of

the phrase "in one embodiment" in various places throughout the specification are

not necessarily all referring to the same embodiment.



An Error Correcting or Correction code (ECC) allows data that is being read

or transmitted to be checked for errors and corrected when needed. The ECC

check bytes are a sequence of bits that are calculated based on an ECC algorithm

that allows the detection and correction of the data. A code word refers to a

combination of payload data and ECC check bytes in one embodiment of the

invention. A data chunk of data is a block or partition of data that is read or written

for each operation.

Embodiments of the invention provide a method and system to improve the

performance and/or reliability of a solid-state drive (SSD). In one embodiment of

the invention, the SSD has logic to compress a block of data that is to be stored in

the SSD and determine whether the block of data to be stored in the SSD is

compressed below a threshold. If it is not possible to compress the block of data

below the threshold, the SSD stores the block of data without any compression. If

it is possible to compress the block of data below the threshold, the SSD stores

the compressed data in the SSD.

The performance of the SSD is linked to the amount of excess memory that

is reserved for managing the SSD and the extra space gained by compressing the

block of data is used to improve the performance of the SSD in one embodiment

of the invention. In one embodiment of the invention, the amount of excess

memory and/or the extra space gained by compressing the block of data is not

reported and is not available to a user of the SSD. In one embodiment of the

invention, the SSD uses, but is not limited to, NAND flash memory modules and

any other form of memory storage medium. In one embodiment of the invention,

the SSD is compliant at least in part with an Open NAND Flash Interface (ONFI)

protocol.

In one embodiment of the invention, the SSD has logic to dynamically

adjust or select the strength of the error correcting code (ECC) of the data that is

stored in the SSD. The SSD dynamically adjusts the strength of the ECC of the

data by compressing the data and appending or adding a known data pad in one

embodiment of the invention. The ECC of the compressed data and the known

data pad is determined or calculated and the ECC check bytes are stored in

addition to the compressed data and the known data pad. The known data pad



has a sequence of data or information that is pre-set or pre-determined to facilitate

the recovery of the errors in the compressed data.

In another embodiment of the invention, the data is partitioned or divided

into a number of code words or data chunks. In one embodiment of the invention,

the SSD selects one of the code words and performs an exclusive OR (XOR)

operation on all the code words except the selected code word to obtain a XOR

code word. The SSD replaces the selected code word with the XOR code word. In

one embodiment of the invention, the SSD stores the XOR code word and the

other code words in a single memory page. This allows an intra-page recovery to

be performed if there is an error in any one of the code words in the single

memory page.

Figure 2 illustrates a block diagram 200 of a SSD 202 in accordance

with one embodiment of the invention. The SSD 102 has a controller 230 that

is coupled with a host interface module 210, a buffer 220, memory module 0

240, memory module 1 242, memory module 2 244, and memory module 3

246.

In one embodiment of the invention, the host interface module 210 provides

an interface to connect with a host device or system. The host interface module

210 operates in accordance with a communication protocol, including but not

limited to, Serial Advanced Technology Attachment (SATA) Revision 1.x, SATA

Revision 2.x, SATA Revision 3.x, and any other type of communication protocol.

The buffer 220 provides temporary storage to the SSD 202 in one

embodiment of the invention. The buffer 220 includes, but is not limited to,

Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random

Access Memory (DRAM), RAMBUS Dynamic Random Access Memory (RDRAM),

Static RAM (SRAM), and/or any other type of random access memory device. In

one embodiment of the invention, the buffer 220 is integrated within the controller

230.

The controller 230 has logic to dynamically adjust or select the strength of

the error correcting code (ECC) of the data that is stored in the memory modules

0-3 240, 242, 244, and 246 in one embodiment of the invention. The controller

230 also has logic to compress a block of data to be stored in the memory

modules 0-3 240, 242, 244, and 246 and determine whether the block of data to



be stored in the memory modules 0-3 240, 242, 244, and 246 is compressed

below a threshold in one embodiment of the invention.

In one embodiment of the invention, the memory modules 0-3 240, 242,

244, and 246 include, but are not limited to, NAND flash memories and the like.

The number of memory modules shown in figure 2 is not meant to be limiting and

in other embodiments of the invention, there can be more or less than four

memory modules. In one embodiment of the invention, the controller 230, the host

interface module 210 and the buffer 220 are integrated into a single integrated

circuit (ASIC).

Figure 3A illustrates a block diagram 300 of a controller 230 in

accordance with one embodiment of the invention. For clarity of illustration,

figure 3A is discussed with reference to figure 2 . In one embodiment of the

invention, the controller 230 has a multixpler 320 that has an input from the

raw data 305 and an input from the compression engine 310. The data

selector 325 provides the selection signal between the raw data 305 and the

compression engine 310 to the multiplexer 320. The output of the multiplexer

320 is coupled with an encryption / scrambling module 330 and the output of

the encryption / scrambling module 330 is coupled with a memory controller

340. The memory controller is coupled with the memory modules 0-3 240,

242, 244, and 246 in one embodiment of the invention.

In one embodiment of the invention, the compression engine 310 is

capable of compressing the raw data 305 that comes from the host interface

module 210 and/or the buffer 220. As the raw data 305 arrives, the compression

engine 310 compresses each block of raw data 305. When a block of raw data

305 is determined to be compressible below a particular threshold, the

compression engine 310 informs the data selector 325 to send a signal to the

multiplexer 320 to select the input from the compression engine 310 to receive the

compressed block of raw data 305 that is determined to be compressible below

the particular threshold.

When a block of raw data 305 is determined not to be compressible below

the particular threshold, the compression engine 310 informs the data selector

325 to send a signal to the multiplexer 320 to select the input from the raw data

305. The controller 230 allows the raw data 305 to be stored in compressed form



or format only when the amount of achievable compression exceeds the threshold

in one embodiment of the invention.

The size of the block of raw data 305 is set at, but is not limited to, 5 12

bytes, 1 kilobytes, and any other appropriate size suitable for compression. The

threshold is set at, but is not limited to, a size of the compressed block of data, a

compression ratio of a size of the block of data to a size of the compressed block

of data, and any other suitable indicator of the compression. In one embodiment

of the invention, the data selector 325 and the compression engine 310 are

combined together into a single module. The compression engine 310 is a

hardware based compression engine that uses a lossless data compression

algorithm in one embodiment of the invention. This allows the original data from

the raw data 305 to be reconstructed from the compressed data during the

decompression phase. The lossless data compression algorithm includes, but is

not limited to, the Lempel-Ziv (LZ) class of lossless data compression algorithms

including but not limited to LZ77, LZ78, LZSS, LZW and their variants, and any

other suitable universal lossless data compression algorithms now known or

discovered in future.

The encryption / scrambling module 330 encrypts and/or scrambles the

output from the multiplexer 320 and sends the encrypted and/or scrambled output

to the memory controller 340. In one embodiment of the invention, the memory

controller 340 writes the encrypted and/or scrambled output to the memory

modules 0-3 240, 242, 244, and 246. In another embodiment of the invention, the

memory controller 340 can optionally group the compressed blocks of raw data

and write to the memory modules 0-3 240, 242, 244, and 246 as a contiguous

memory page. The size of the memory page is set at, but is not limited to, 4

kilobytes or any other suitable size. In another embodiment of the invention, the

memory controller 340 writes the compressed blocks of raw data back to the

buffer 220 and then issues a write command or operation to write the compressed

blocks of raw data from the buffer 220 to the memory modules 0-3 240, 242, 244,

and 246 directly.

In one embodiment of the invention, the memory controller 340 keeps track

of the compression status of each block of data written to the memory modules 0-

3 240, 242, 244, and 246. The memory controller 340 keeps track of the



compression status of a particular block of data by setting a token associated with

that particular block of data to indicate whether that particular block of data has

been compressed. The token includes but is not limited to one or more bits. In one

embodiment of the invention, the token has 32 bits that are used to determine

whether a particular block of data is compressed or not.

For example, in one embodiment of the invention, the memory controller

340 writes a bit in a token for each block of data written to the memory modules

0-3 240, 242, 244, and 246. The bit in the token associated with any block of data

is set to logic one if the block of data has been compressed and is set to logic

zero if the block of data has not been compressed. One of ordinary skill in the

relevant will readily appreciate that other methods of tracking the compression

status of the blocks of data can be used without affecting the workings of the

invention.

Figure 3B illustrates a block diagram 360 of a controller 230 in

accordance with one embodiment of the invention. For clarity of illustration,

figure 3B is discussed with reference to figures 2 and 3A. In one embodiment

of the invention, the controller 230 has a memory controller 340 that receives

data from the memory modules 0-3 240, 242, 244, and 246. The memory

controller 340 sends the received data to a decryption / descrambling module

370.

The decryption / descrambling module 370 decrypts and/or descrambles

the received data from the memory controller 340 and sends the decrypted and/or

descrambled data to the decompression engine 380 and the multiplexer 390. The

decompression engine 380 uses the same lossless data decompression algorithm

as the compression engine 310 in one embodiment of the invention.

The data selector 385 reads the token 384 associated with the received

data to determine whether the received data has been compressed. If the token

associated with the received data indicates that the received data has been

compressed, the data selector 385 sends a signal to the decompression engine

380 to decompress the received data and sends a signal to multiplexer 390 to

select the output from the decompression engine 380 as the data to be sent to the

host interface module 210 and/or buffer 220.



If the token 384 associated with the received data indicates that the

received data has not been compressed, the data selector 385 does not send a

signal to the decompression engine 380 to decompress the received data and

sends a signal to multiplexer 390 to select the output from the decryption /

descrambling module 370 as the data to be sent to the host interface module

210 and/or buffer 220. In one embodiment of the invention, the data selector 385

and the multiplexer 390 are integrated within the decompression engine 380. The

configuration of the controller 230 illustrated in figures 3A and 3B is not meant to

be limiting and other variation of the configuration of the controller 230 can be

done without affecting the workings of the invention .

Figure 4 illustrates a block diagram 400 of compressed data stored in a

NAND flash memory in accordance with one embodiment of the invention. For

clarity of illustration, figure 4 is discussed with reference to figures 1A and 3A. In

one embodiment of the invention, the controller 230 receives the sectors 0-7 112,

114, 116, 118, 122, 124, 126, and 128 as the raw data 305 from a host that are to

be stored in the memory modules 0-3 240, 242, 244, and 246. In one embodiment

of the invention, the compression engine 310 reads four data sectors as a single

block of data, i.e., the sectors 0-3 112, 114, 116, and 118 are read as a single

block of data and the sectors 4-7 122, 124, 126, and 128 are read as another

single block of data.

The compression engine 310 compresses the block of data made up of the

sectors 0-3 112, 114, 116, and 118 and determines whether the block of data is

compressed below a threshold. Assuming that the block of data made up of the

sectors 0-3 112, 114, 116, and 118 is compressed below the threshold, the data

selector 325 sends a signal to the multiplexer 320 to select the compressed

sectors 0-3 112, 114, 116, and 118 as the input to the multiplexer 320.

The compressed sectors 0-3 112, 114, 116, and 118 are encrypted and/or

scrambled by the encryption / scrambling module 330 if needed and the memory

controller 340 writes the compressed sectors 0-3 112, 114, 116, and 118 to a

NAND flash memory as the compressed sectors 0-3 412 in one embodiment of

the invention. The memory controller 340 uses an ECC algorithm to calculate the

ECC check bytes of the compressed sectors 0-3 412 and writes the calculated

ECC check bytes as the ECC 0 check bytes 420 in the NAND flash memory. The



ECC algorithm includes, but is not limited to, a Hamming algorithm, a Reed-

Solomon algorithm, a Bose-Chaudhuri-Hocquenghem (BCH) algorithm, Low

density parity check (LDPC) codes and the like.

The compressed sectors 4-7 422 and the ECC 1 check bytes 430 are

generated in a similar manner as the compressed sectors 0-3 412 and the ECC 0

check bytes 420 and shall not be described herein. One of ordinary skill in the

relevant art will readily appreciate how the compressed sectors 4-7 422 and the

ECC 1 check bytes 430 are generated.

By compressing the sectors 0-3 112, 114, 116, and 118 and the sectors 4-7

122, 124, 126, and 128, less memory space is required and the extra spare area

432 illustrates the memory area that is saved in the NAND flash memory. In one

embodiment of the invention, the extra spare area 432 can be used to increase

the performance of the SSD 202. The performance of the SSD 202 is increased

as it requires less power to write the compressed sectors 0-3 412 and sectors 4-7

422 and the memory bandwidth of the SSD 202 is increased in one embodiment

of the invention. In addition, the performance of the SSD 202 is increased as the

write amplification of the SSD 202, i.e., the extra write operations to write a block

of data, is reduced as lesser memory area is required to store the compressed

sectors 0-3 412 and sectors 4-7 422. In addition, the performance of the SSD 202

is also increased because a larger shuffle area becomes available and the SSD

202 does not have to move data around to create shuffle area in order to be able

to continue writing to the memory modules 0-3 240, 242, 244, and 246.

Figure 5 illustrates a block diagram 500 of compressed data stored in a

NAND flash memory in accordance with one embodiment of the invention. In one

embodiment of the invention, the memory controller 340 uses an ECC algorithm to

calculate the ECC check bytes of both compressed sectors 0-3 512 and sectors 4-

7 522 and writes the calculated ECC check bytes as the ECC check bytes 530 in

the NAND flash memory. The extra spare area 540 illustrates the memory area

that is saved in the NAND flash memory. In one embodiment of the invention, the

memory controller 340 writes other compressed or uncompressed sectors in the

extra spare area 540.

Figure 6 illustrates a block diagram 600 of the compressed sectors 0-3 612

and a known data pad 622 in accordance with one embodiment of the invention.



For clarity of illustration, figure 6 is discussed with reference to figures 1B and 3A.

The sectors 0-3 162, 164, 166, and 168 of the prior art NAND flash memory page

160 are compressed and stored as the compressed sectors 0-3 612 in one

embodiment of the invention. The size of the uncompressed sectors 0-3 610

illustrates the size required to store the sectors 0-3 162, 164, 166, and 168 of the

prior art NAND flash memory page 160.

When the sectors 0-3 162, 164, 166, and 168 of the prior art NAND flash

memory page 160 are compressed, it creates an extra spare area 620. In one

embodiment of the invention, the extra space area 620 is filled with a known data

pad 622. For example, in one embodiment of the invention, the known data pad

622 has a repeating sequence or pattern of information and/or data. In one

embodiment of the invention, the known data pad 622 is a repeating sequence of

10 11b. One of ordinary skill in the relevant art will readily appreciate that other

sequences of data can be used as the known data pad without affecting the

workings of the invention.

The memory controller 340 calculates the ECC of the compressed sectors

0-3 612 and the known data pad 622 and adds the calculated ECC check bytes as

the ECC check bytes 630. By appending or adding the known data pad 622 to the

compressed sectors 0-3 612, the strength of the ECC check bytes 630 is more

than the strength of the ECC 0 check bytes 170 of the prior art NAND flash

memory page 160 in one embodiment of the invention. This is because the ECC

check bytes 630 are effectively protecting a smaller payload size of the

compressed sectors 0-3 612 and the known data pad 622 allows errors to be fixed

by inspection and therefore, the ECC check bytes 630 are strengthened.

In one embodiment of the invention, the SSD 202 dynamically adjusts or

selects the strength of the error correcting code (ECC) of the data that is stored in

the memory modules 0-3 240, 242, 244, and 246 by adjusting the size of the

known data pad 622. The size of the known data pad 622 is variable and depends

on the compression ratio of the sectors 0-3 162, 164, 166, and 168 achieved. In

one embodiment of the invention, the SSD 202 dynamically adjusts the strength of

the ECC of the block of data based on the bit error rate (BER) associated with a

location in a memory module that is to store the block of data. The location in the



memory module includes, but is not limited to, word lines in the memory module

and any other form of memory allocation or distribution in the memory module.

For example, in one embodiment of the invention, the BER associated with

the word line may be increasing with the order of the word line of the memory

module, i.e, a higher order word line may have a worst BER than a lower order

word line. In one embodiment of the invention, the SSD 202 actively matches the

ECC strength of any data or code word based on the BER characteristics of any

memory location where the data or code word is to be stored. In one embodiment

of the invention, the SSD 202 uses a stronger ECC for data that is stored in the

higher order word lines and a weaker ECC for data that is stored in the lower

order word lines. In this way, the SSD 202 does not need to use a common

strength of ECC that is suited for the worst scenario of BER and can use a flexible

ECC selection scheme to increase the reliability of the SSD 202 in one

embodiment of the invention.

In another embodiment of the invention, the number of erase operations

performed on any physical band or region of the memory modules 0-3 240, 242,

244 and 266 is tracked by the SSD 202. In one embodiment of the invention, the

SSD 202 actively matches the ECC strength of any data or code word based on

the erase count of the particular memory location where the data or code word is

to be stored. For example, in one embodiment of the invention, the SSD 202 uses

a stronger ECC strength for data that is to be stored in a memory location that has

a higher erase count and uses a weaker ECC strength for data that is to be stored

in a memory location that has a lower erase count. One of ordinary skill in the

relevant art will readily appreciate that other factors can be used to determine the

required strength of the ECC of the data and these other factors can be used

without affecting the workings of the invention.

Figure 7 illustrates a block diagram 700 of two NAND flash memory pages

710 and 760 in accordance with one embodiment of the invention. For clarity of

illustration, figure 7 is discussed with reference to figure 1B. The NAND flash

memory pages 710 and 760 illustrate two different embodiments of the

compressed data sectors 0-3 formed by compressing the sectors 0-3 112, 114,

116, and 118 of the prior art NAND flash memory page 160. The NAND flash

memory page 710 illustrates that the compressed data sectors 0-3 are partitioned



into two code words, i.e., the compressed sectors 0-3 (code word 1) 712 and the

compressed sectors 0-3 (code word 2) 722.

The code word 1 712 and code word 2 722 have an ECC 0 check bytes

720 and ECC 1 check bytes 730 respectively in one embodiment of the invention.

Compared to the prior art NAND flash memory page 160, the NAND flash memory

page 710 has a stronger ECC strength in one embodiment of the invention. This is

because the ECC check bytes 170 of the prior art NAND flash memory page 160

is protecting the uncompressed sectors 0 to 3, 162, 164, 166, and 170 that have a

larger number of bits. Each of the ECC 0 check bytes 720 and the ECC 1 check

bytes 730 of the NAND flash memory page 710 are protecting a code word of the

compressed data sectors 0-3 that have a smaller number of bits.

The NAND flash memory page 760 illustrates that the compressed data

sectors 0-3 are partitioned into four code words, i.e., the compressed sectors 0-3

(code word 1) 772, the compressed sectors 0-3 (code word 2) 774, the

compressed sectors 0-3 (code word 3) 776 and the compressed sectors 0-3

(code word 4) 778. The code words 1-4 772, 774, 776 and 778 have an ECC 0-3

check bytes 780, 782, 784, and 786 respectively in one embodiment of the

invention. Compared to the prior art NAND flash memory page 160, the NAND

flash memory page 760 has a stronger ECC strength in one embodiment of the

invention as each of the ECC 0-3 check bytes 780, 782, 784, and 786 are

protecting a smaller data chunk.

The NAND flash memory pages 710 and 760 illustrate how the SSD 202

dynamically adjusts or selects the strength of the error correcting code (ECC) of

the data that is stored in the memory modules 0-3 240, 242, 244, and 246 by

adjusting the number of partitions or divisions of the compressed data, i.e.,

adjusting the number of code words in one embodiment of the invention. For

example, in one embodiment of the invention, if a stronger ECC strength is

desired, a compression algorithm that can achieve a higher compression ratio can

be selected to increase the extra spare area arising from the compression. The

extra spare area accommodates a higher number of code words and ECC check

bytes which increases the effective ECC strength of the compressed data.

Figure 8 illustrates a block diagram 800 of a NAND flash memory page 810

in accordance with one embodiment of the invention. For clarity of illustration,



figure 8 is discussed with reference to figure 1B. In one embodiment of the

invention, the uncompressed sectors 0 to 3, 162, 164, 166, and 170 of the prior art

NAND flash memory page 160 are compressed and partitioned into two code

words, i.e., the compressed sectors 0-3 (code word 1) 812 and the compressed

sectors 0-3 (code word 2) 822.

In one embodiment of the invention, each of the code words 812 and 822 is

appended with the known data pads 814 and 824 respectively. In one

embodiment of the invention, the known data pads 814 and 824 have the same

known or pre-set data. In other embodiments of the invention, the known data

pads 814 and 824 have different known or pre-set data. The ECC of the code

words 812 and the known data pad 814 is calculated and the calculated ECC is

added as the ECC 0 check bytes 820. Similarly, the ECC of the code words 822

and the known data pad 824 is calculated and the calculated ECC is added as the

ECC 1 check bytes 830.

The NAND flash memory page 810 illustrates how the SSD 202

dynamically adjusts or selects the strength of the error correcting code (ECC) of

the data that is stored in the memory modules 0-3 240, 242, 244, and 246 by

adjusting the number of partitions of the compressed data. The number of sectors

and the number of known data pads illustrate in figure 8 is not meant to be limiting

and other configuration of the number of sectors and known data pads can be

used without affecting the workings of the invention.

Figure 9 illustrates a block diagram 910 of a NAND flash memory page 910

in accordance with one embodiment of the invention. For clarity of illustration,

figure 9 is discussed with reference to figure 1C. In one embodiment of the

invention, an exclusive OR (XOR) operation is performed on the code word 1 192,

the code word 2 194, and the code word 3 196 to obtain a XOR code word 920.

The XOR code word is stored in place of the code word 4 198 in the NAND flash

memory page 910. The ECC of the XOR code word 920 is calculated and the

calculated ECC is added as the ECC 3 check bytes 926.

In one embodiment of the invention, the NAND flash memory page 910

with the XOR protection allows a single read operation of the NAND flash memory

page 910 to recover from an uncorrectable ECC error. When the SSD 202

experiences a fatal or unrecoverable error in one of the code words 1-3 192, 194



and 196, the SSD 202 can use the XOR code word 920 to regenerate the code

word with the fatal error in one embodiment of the invention. The SSD 202 can

recover from the fatal error in the code word by reading the single NAND flash

memory page 910, i.e., intra-page XOR protection, in one embodiment of the

invention.

The selection of the last code word 4 198 to be replaced by the XOR code

word 920 is not meant to be limiting. In other embodiments of the invention, a

different code word is selected to be replaced by an XOR code word. For

example, in one embodiment of the invention, the code word 2 194 is selected to

be replaced by a XOR code word that is obtained from an XOR operation of the

code word 1 192, the code word 3 196 and the code word 4 198. In one

embodiment of the invention, the XOR protection in the NAND page 910 is

performed when the compression of the uncompressed sectors 0 to 3, 162, 164,

166, and 170 of the prior art NAND flash memory page 160 gains an extra spare

area that can accommodate the size of one or more code words.

The techniques described herein allow the SSD 202 to increase its

performance and the extra spare area obtained through the compression does not

incur any associated cost of NAND area. In one embodiment of the invention, the

threshold based compression technique simplifies the book keeping functions of

the SSD 202 by reducing the granularity needed for tracking the state of any given

block.

Figure 10 illustrates a system 1000 to implement the methods disclosed

herein in accordance with one embodiment of the invention. The system 1000

includes, but is not limited to, a desktop computer, a laptop computer, a netbook,

a notebook computer, a personal digital assistant (PDA), a server, a workstation,

a cellular telephone, a mobile computing device, an Internet appliance or any

other type of computing device. In another embodiment, the system 1000 used to

implement the methods disclosed herein may be a system on a chip (SOC)

system.

The processor 1010 has a processing core 1012 to execute instructions of

the system 1000. The processing core 1012 includes, but is not limited to, pre

fetch logic to fetch instructions, decode logic to decode the instructions, execution

logic to execute instructions and the like. The processor 1010 has a cache



memory 1016 to cache instructions and/or data of the system 1000. In another

embodiment of the invention, the cache memory 1016 includes, but is not limited

to, level one, level two and level three, cache memory or any other configuration

of the cache memory within the processor 1010.

The memory control hub (MCH) 1014 performs functions that enable the

processor 1010 to access and communicate with a memory 1030 that includes a

volatile memory 1032 and/or a non-volatile memory 1034. The volatile memory

1032 includes, but is not limited to, Synchronous Dynamic Random Access

Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS

Dynamic Random Access Memory (RDRAM), and/or any other type of random

access memory device. The non-volatile memory 1034 includes, but is not limited

to, NAND flash memory, phase change memory (PCM), read only memory

(ROM), electrically erasable programmable read only memory (EEPROM), or any

other type of non-volatile memory device.

The memory 1030 stores information and instructions to be executed by

the processor 1010. The memory 1030 may also stores temporary variables or

other intermediate information while the processor 1010 is executing instructions.

The chipset 1020 connects with the processor 1010 via Point-to-Point (PtP)

interfaces 1017 and 1022. The chipset 1020 enables the processor 1010 to

connect to other modules in the system 1000. In one embodiment of the invention,

the interfaces 1017 and 1022 operate in accordance with a PtP communication

protocol such as the Intel® QuickPath Interconnect (QPI) or the like. The chipset

1020 connects to a display device 1040 that includes, but is not limited to, liquid

crystal display (LCD), cathode ray tube (CRT) display, or any other form of visual

display device.

In addition, the chipset 1020 connects to one or more buses 1050 and

1055 that interconnect the various modules 1074, 1060, 1062, 1064, and 1066.

Buses 1050 and 1055 may be interconnected together via a bus bridge 1072 if

there is a mismatch in bus speed or communication protocol. The chipset 1020

couples with, but is not limited to, a non-volatile memory 1060, the SSD 202, a

keyboard/mouse 1064 and a network interface 1066. The chipset may also

include a mass storage device that includes, but is not limited to, a hard disk drive,



an universal serial bus flash memory drive, or any other form of computer data

storage medium.

The network interface 1066 is implemented using any type of well known

network interface standard including, but not limited to, an Ethernet interface, a

universal serial bus (USB) interface, a Peripheral Component Interconnect (PCI)

Express interface, a wireless interface and/or any other suitable type of interface.

The wireless interface operates in accordance with, but is not limited to, the IEEE

802.1 1 standard and its related family, Home Plug AV (HPAV), Ultra Wide Band

(UWB), Bluetooth, WiMax, or any form of wireless communication protocol.

While the modules shown in Figure 10 are depicted as separate blocks

within the system 1000, the functions performed by some of these blocks may be

integrated within a single semiconductor circuit or may be implemented using two

or more separate integrated circuits. For example, although the cache memory

1016 is depicted as a separate block within the processor 1010, the cache

memory 1016 can be incorporated into the processor core 1012 respectively. The

system 1000 may include more than one processor / processing core in another

embodiment of the invention.

The methods disclosed herein can be implemented in hardware, software,

firmware, or any other combination thereof. Although examples of the

embodiments of the disclosed subject matter are described, one of ordinary skill in

the relevant art will readily appreciate that many other methods of implementing

the disclosed subject matter may alternatively be used. In the preceding

description, various aspects of the disclosed subject matter have been described.

For purposes of explanation, specific numbers, systems and configurations were

set forth in order to provide a thorough understanding of the subject matter.

However, it is apparent to one skilled in the relevant art having the benefit of this

disclosure that the subject matter may be practiced without the specific details. In

other instances, well-known features, components, or modules were omitted,

simplified, combined, or split in order not to obscure the disclosed subject matter.

The term "is operable" used herein means that the device, system, protocol

etc, is able to operate or is adapted to operate for its desired functionality when

the device or system is in off-powered state. Various embodiments of the

disclosed subject matter may be implemented in hardware, firmware, software, or



combination thereof, and may be described by reference to or in conjunction with

program code, such as instructions, functions, procedures, data structures, logic,

application programs, design representations or formats for simulation, emulation,

and fabrication of a design, which when accessed by a machine results in the

machine performing tasks, defining abstract data types or low-level hardware

contexts, or producing a result.

The techniques shown in the figures can be implemented using code and

data stored and executed on one or more computing devices such as general

purpose computers or computing devices. Such computing devices store and

communicate (internally and with other computing devices over a network) code

and data using machine-readable media, such as machine readable storage

media (e.g., magnetic disks; optical disks; random access memory; read only

memory; flash memory devices; phase-change memory) and machine readable

communication media (e.g., electrical, optical, acoustical or other form of

propagated signals - such as carrier waves, infrared signals, digital signals, etc.).

While the disclosed subject matter has been described with reference to

illustrative embodiments, this description is not intended to be construed in a

limiting sense. Various modifications of the illustrative embodiments, as well as

other embodiments of the subject matter, which are apparent to persons skilled in

the art to which the disclosed subject matter pertains are deemed to lie within the

scope of the disclosed subject matter.



CLAIMS

What is claimed is:

1. An apparatus comprising:

logic to:

compress a block of data;

determine whether the block of data is compressed below a

threshold; and

write the compressed block of data into one or more memory

modules in response to a determination that the block of data is compressed

below the threshold.

2 . The apparatus of claim 1, wherein the logic is further to write the block of

data into one or more memory modules without compression in response to a

determination that the block of data is not compressed below the threshold.

3 . The apparatus of claim 1, wherein the threshold is based on at least one of

a size of the compressed block of data, and a ratio of a size of the block of data to

a size of the compressed block of data.

4 . The apparatus of claim 1, wherein the logic is further to dynamically adjust

a strength of an Error Correcting Code (ECC) of the block of data.

5 . The apparatus of claim 4, wherein the logic to dynamically adjust the

strength of the ECC of the block of data is to dynamically adjust the strength of the

ECC of the block of data based on at least one of a Bit Error rate (BER)

associated with a location in the one or more memory modules that is to store the

block of data and an erase count of a physical region that is to store the block of

data.

6 . The apparatus of claim 4, wherein the logic to dynamically adjust the

strength of the ECC of the block of data is to:

append a known data pad to the compressed block of data, wherein a

combined size of the known data pad and the compressed block of data is to

match a size of the block of data;

determine ECC check bytes of the compressed block of data and the

known data pad; and

append the determined ECC check bytes to the compressed block of data

and the known data pad.



7 . The apparatus of claim 4, wherein the compressed block of data comprises

a plurality of code words and wherein the logic to dynamically adjust the strength

of the ECC of the block of data is to:

determine a respective one of a plurality of ECC check bytes for each of

the plurality of code words; and

append the determined respective one ECC check bytes to each of the

plurality of code words.

8 . The apparatus of claim 4, wherein the compressed block of data comprises

a plurality of code words and wherein the logic to dynamically adjust the strength

of the ECC of the block of data is to:

append a respective one of a plurality of known data pads to each of the

plurality of code words;

determine a respective one of a plurality of ECC check bytes for each of

the plurality of code words and each respective one of the plurality of known data

pads; and

append the determined respective one ECC check bytes to each code

word and each respective one known data pad.

9 . The apparatus of claim 4, wherein the compressed block of data comprises

a plurality of code words and wherein the logic to dynamically adjust the strength

of the ECC of the block of data is to:

select one of the plurality of code words;

perform an exclusive OR (XOR) operation on all the code words except the

selected code word to obtain a XOR code word; and

replace the selected code word with the XOR code word.

10 . The apparatus of claim 1, wherein the apparatus is a NAND flash memory

solid-state drive (SSD) controller.

11. The apparatus of claim 1, where the apparatus is compliant at least in part

with an Open NAND Flash Interface (ONFI) protocol.

12 . An apparatus comprising:

one or more memory modules; and

a controller coupled to the one or more memory modules to dynamically

adjust a strength of an Error Correcting Code (ECC) of data to be stored in the

one or memory modules.



13 . The apparatus of claim 12, wherein the controller to dynamically adjust the

strength of the ECC of the data to be stored in the one or more memory modules

is to dynamically adjust the strength of the ECC of the data to be stored in the one

or memory modules based on at least one of a Bit Error Rate (BER) associated

with a location in the one or more memory modules that is to store the data and

an erase count of a physical band of the one or more memory modules that is to

store the data.

14. The apparatus of claim 12, wherein the data is to be partitioned into one or

more data chunks to be stored in a memory page of the one or more memory

modules, and wherein the controller to dynamically adjust the strength of the ECC

of the data to be stored in the one or memory modules is to:

select one of the one or more data chunks;

perform an exclusive OR (XOR) operation on all data chunks except the

selected data chunks to obtain a XOR data chunk; and

replace the selected data chunk with the XOR data chunk to be stored in

the memory page of the one or more memory modules.

15 . The apparatus of claim 14, wherein each data chunk comprises lossless

compressed data.

16 . The apparatus of claim 12, wherein the controller is further to:

compress the data;

determine whether the data is compressed below a threshold; and

write the compressed block of data into the one or more memory modules

in response to a determination that the block of data is compressed below the

threshold, wherein the threshold is based on at least one of a size of the

compressed data, and a compression ratio of a size of the data to a size of the

compressed data.

17 . The apparatus of claim 16, wherein the controller to dynamically adjust the

strength of the ECC of the data to be stored in the one or memory modules is to:

add a known data pad to the compressed data;

determine ECC check bytes of the compressed data and the known data

pad; and

add the determined ECC check bytes to the compressed data and the

known data pad.



18 . The apparatus of claim 16, wherein the compressed data is to be

partitioned into one or more data chunks and wherein the controller to dynamically

adjust the strength of the ECC of the data to be stored in the one or memory

modules is to:

determine a respective one of one or more ECC check bytes for each of

the one or more data chunks; and

add the determined respective one ECC check bytes to each of the one or

more data chunks.

19 . The apparatus of claim 16, wherein the compressed data is to be

partitioned into one or more data chunks and wherein the controller to dynamically

adjust the strength of the ECC of the data to be stored in the one or memory

modules is to:

add a respective one of one or more known data pads to each of the one or

more data chunks;

determine a respective one of one or more ECC check bytes of each of the

one or more data chunks and each respective one of the one or more known data

pads; and

add the determined respective one ECC check bytes to each data chunk

and the respective one known data pad.

20. The apparatus of claim 12, wherein the apparatus is a NAND flash memory

solid-state drive (SSD).

2 1 . A method comprising:

selecting one of a plurality of code words to be stored in a memory page of

a memory module;

executing an exclusive OR (XOR) operation on all the code words except

the selected code word to obtain a XOR code word; and

replacing the selected code word with the XOR code word to be stored in

the memory page of the memory module.

22. The method of claim 2 1 , wherein the selected code word is a last code

word to be stored in the memory page of the memory module.

23. The method of claim 2 1 , further comprising:

dynamically adjusting a strength of an Error Correcting Code (ECC) of the

plurality of code words to be stored in the memory module based on at least one



of a Bit Error Rate (BER) associated with a location in the memory module that is

to store the data and an erase count of a physical band of the memory module

that is to store the data.

24. The method of claim 2 1 , wherein dynamically adjusting the strength of the

ECC of the plurality of code words to be stored in the memory module comprises:

compressing each code word; and

determining whether each code word is compressed below a threshold,

wherein the threshold is based on at least one of a size of the compressed code

word, and a ratio of a size of each code word to a size of each compressed code

word.

25. The method of claim 24, wherein dynamically adjusting the strength of the

ECC of the plurality of code words to be stored in the memory module comprises:

determining a respective ECC check bytes of each of compressed code

word; and

adding the determined respective ECC check bytes to each compressed

code word.

26. The method of claim 24, wherein dynamically adjusting the strength of the

ECC of the plurality of code words to be stored in the memory module comprises:

adding a respective one of a plurality of known data pads to each

compressed code word;

determining a respective one of a plurality of ECC check bytes for each

compressed code word and the respective one known data pad; and

add the determined respective one ECC check bytes to each compressed

code word and each respective one known data pad.

27. The method of claim 26, wherein a combined size of each known data pad

and each compressed codeword is to match a size of each codeword.














	abstract
	description
	claims
	drawings

