
United States Patent

USOO7702719B1

(12) (10) Patent No.: US 7,702.719 B1
Betz et al. (45) Date of Patent: Apr. 20, 2010

(54) METHODS AND APPARATUS FOR 6,356,933 B2 * 3/2002 Mitchell et al. TO9,203
REDUCING THE NUMBER OF SERVER 6,393,569 B1* 5/2002 Orenshteyn TO9,203
INTERACTIONS IN NETWORK-BASED 6,437,803 B1* 8/2002 Panasyuk et al... ... 715,733
APPLICATIONS USINGADUAL-MVC 6,496.202 B1* 12/2002 Prinzing 715,762

6,505,246 B1* 1/2003 Land et al. 709,224
APPROACH 6,950,850 B1* 9/2005 Leffetal. 709,203

6,968,534 B1 * 1 1/2005 Hayase 717/105 (75) Inventors: Katherine Betz, Hopewell Junction, NY ayase
(US); Avraham Leff, New Hempstead, FOREIGN PATENT DOCUMENTS

R Santhomas Rayfield, JP 10-207805 8, 1998
9. s JP 10-303893 11, 1998

(73) Assignee: International Business Machines E. t
Corporation, Armonk, NY (US) JP 11-031145 2, 1999

JP 11-03.1155 2, 1999
(*) Notice: Subject to any disclaimer, the term of this JP 11-338888 12/1999

patent is extended or adjusted under 35
U.S.C. 154(b) by 883 days. OTHER PUBLICATIONS

G.E. Krasner and S.T. Pope, "A Cookbook for Using the Model
(21) Appl. No.: 09/500,208 View-Controller User Interface Paradigm in SmallTalk-80.” Journal
(22) Filed Feb. 8, 2000 of Object-Oriented Programming, 1(3):26-49, Aug. Sep. 1988.

1C
9 * cited by examiner

(51) Int. Cl. Primar y Examiner Ramy Mohamed Osman
G06F 5/16 (2006.01) (74) Attorney, Agent, or Firm Kenneth R. Corsello: Ryan,

(52) U.S. Cl. 709/203; 709/201: 709/205; Mason & Lewis, LLP
709/217; 709/223 s

(58) Field of Classification Search 709/201-203, (57) ABSTRACT
709/205, 217 219, 223, 224; 715/733, 747

See application file for complete search history. In accordance with a dual-MVC (Model-View-Controller)
approach of the invention, the client machine maintains part

(56) References Cited of the Model, eliminating many round-trips to the server. The
U.S. PATENT DOCUMENTS

5,572,643 A * 1 1/1996 Judson TO9.218
5,768,510 A * 6/1998 Gish TO9.218
5,838,906 A * 1 1/1998 Doyle et al. TO9,202
5,926,177 A * 7/1999 Hatanaka et al. 71.5/747
6,003,047 A * 12/1999 Osmond et al. 715,513
6,035,332 A * 3/2000 Ingrassia et al. TO9.218
6,151,621 A * 1 1/2000 Colyer et al. 709/217
6,161,136 A * 12/2000 Hyndman et al. 709,223
6,170,019 B1* 1/2001 Dresel et al. TO9,330
6,272,556 B1 8/2001 Gish 709,315

1000

USER-INTERACTION
1200 WINDOW

CIENSIDE
VIEWGENERATING

1400 LOGIC

CLIENSIDE
MODEL so O O
O O

CLIENSIOE
CONTROLLER

1800 LOGIC

WEssROWSER

invention provides an implementation approach for con
structing the frame(s) contained in the client’s browser soft
ware to allow it to be refreshed locally. The invention
addresses development and maintenance by specifying a
library of functions that a programmer can use to construct the
View and Controller on the client machine. When part of the
Model is maintained on the client, the client has the ability to
respond to user interaction without paying the performance
penalty of continually interacting with the server.

26 Claims, 12 Drawing Sheets

5000

SERVERSE
VIEW-GENERATING

LOGIC 540

SERVER-SIDE
MODEL o

O O 5600
O d

SERVER-SDE
CONTROLLER

LOGIC 580

WEBSERVER

US 7,702.719 B1 Sheet 1 of 12 Apr. 20, 2010 U.S. Patent

0009

000),

['{DISH

US 7,702.719 B1 Sheet 2 of 12 Apr. 20, 2010 U.S. Patent

0089

019)OT >]ETTO?|LNOO EGJIS-À-JEAN-HES OO OOO TEICJOW

0099

XR-JOWA LEIN d. LLH

0079SOISOOT 0009

00:21,

NWOG]NIMA NOLLOW/>HELNI->EST) 000?,

T?V?? z · O?H

US 7,702.719 B1 Sheet 3 of 12 Apr. 20, 2010 U.S. Patent

0089 0099 00$9

O

O
O TEGOW

0009

019)OT ?ETTO, LNO O ECHIS-LNEITO O

O
9 TEGÓW EOIS-LNE|TO 000!,

008, 009),

US 7,702.719 B1 Sheet 4 of 12 Apr. 20, 2010 U.S. Patent

0691-ZZZ (#16)U???uuS U?OT

US 7,702.719 B1 Sheet 5 of 12 Apr. 20, 2010 U.S. Patent

SDN

U.S. Patent Apr. 20, 2010 Sheet 6 of 12 US 7,702.719 B1

FIG. 6 PRIOR ART

WEB BROWSER
REGUESTS INITIAL

PAGE
2000

WEBSERVER
2010 REPLIES WITH

NITIAL PAGE

PAGE DISPLAYED
2020 INUSER-INTERACTION

WINDOW

USER INPUTS DATA
2030 INTO WINDOW

WEB BROWSER SENDS
DATA TOWEB
SERVER

2040

SERVER CONTROLLER
2050 UPDATES SERVER

MODEL

SERVER VIEW LOGIC
GENERATES NEW

PAGE
2060

WEBSERVER SENDS
PAGETO

WEB BROWSER
2070

U.S. Patent Apr. 20, 2010 Sheet 7 of 12 US 7,702.719 B1

FIG. 7

WEB BROWSER
REGUESTS INITIAL WEB BROWSER SENDS

PAGE DATA TO WEB SERVER

6000 608O
WEBSERVER REPLIES SERVER CONTROLLER

WITH INITIAL UPDATES
PAGE SERVER MODEL

6010 6090
PAGE DISPLAYED SERVER VIEW LOGIC

NUSER-INTERACTION GENERATES NEW
WINDOW PAGE

6O20 USER INPUTS DATA
INTO WINDOW

6030 EXECUTE CLIENT-SIDE
CONTROLLERLOGIC

6040

WEBSERVER SENDS 6100
PAGETO

WEB BROWSER

6110

SERVER
INTERACTION
RECURED

6050

CLIENT CONTROLLER CLIENT VIEW LOGIC
UPDATES CLIENT GENERATES NEW

MODEL PAGE

6060 6O70

U.S. Patent Apr. 20, 2010 Sheet 9 of 12 US 7,702.719 B1

FIG. 9A

<SCRIPTLANGUAGE="JavaScript">

// Define the variable (s) holding the Model data
War Counter = 0; // a counter value

// Define the variables holding pointers to the View components
var theFrame; l/ pointer to the LFrame component
war theform; l/ pointer to the LForm component
var the Text; // pointer to the LText component
War thesutton; l/ pointer to the LButton component
var theStaticText; // pointer to the LStatic Text component

function initialize () l/ Create and initialize components

// Create a library LFrame component
theframe = new parent.LIBFrame.LFrame ("Frame1", "A Frame");

// Adjust the base font to be +3 larger
theFrame.adjustBaseFont (+3);

// Create a library LForm component inside the LFrame
theForm = new parent.LIBFrame.LForm ("Form 1", theframe);

// Create a library LText (text entry field) component inside the LForm
the Text = new parent.LIBFrame.LText ("foo", "bar", theform);

// Set up an event handler to handle user changes to the LText
the Text. SetOnChange (T onChange);

l/Create a library LButton component inside the LForm
theButton = new parent.LIBFrame.LButton ("increment button",

"Increment Counter", theForm);

// Set an event handler to handle clicks on the LButton
theButton.setOnClick (B increment);

(CONTINUED INFIG. 9B)

U.S. Patent Apr. 20, 2010 Sheet 10 of 12 US 7,702.719 B1

FIG.9B
(CONTINUED FROM FIG.9A)

ll Create a library LStaticText (label) component in the LForm
theStaticText = new parent. LIBFrame. LStaticText("OST", "piece of text...",

theForm);

// Set the fontsize for the LStatic Text
theStaticText.setFontSize (1);

I/Set the Color for the StaticText
theStaticText.setColor ("red");

// Refresh the Contents of the User Interaction window
theFrame. RefreshWisibleFrame ();

lf Set the browser focus to be on the LText component
the Text.focus ();

// This function is invoked on the LText component when the value is changed
11 by a user interaction
function TonChange ()

lf Change the value to a message
this setValue ("Please do not change the valuel");

// This function is invoked on the LText object when the user clicks on it

(CONTINUED INFIG. 9C)

U.S. Patent Apr. 20, 2010 Sheet 11 of 12 US 7,702.719 B1

FIG.9C
(CONTINUED FROM FIG. 9B)

function T onClick ()
{
this.setValue ("Please do not click on this");

ll. This function is invoked on the LButton object when the user clicks on it
function B increment ()

// increment the counter (Model)
Counter += 1;

// Move the new counter value into the LText field
the Text setValue (counter);

// Increment the fontsize on the LStaticText component
theStaticText.setFontSize (theStaticText getFontSize() + 1);

// Toggle the LStaticText component font between Courier and Impact
if (O = (counter%2))
theStaticText.setFace ("Courier");

else
theStaticText.setFace ("Impact");

}

</SCRIPTZ

U.S. Patent Apr. 20, 2010 Sheet 12 of 12 US 7,702.719 B1

US 7,702,719 B1
1.

METHODS AND APPARATUS FOR
REDUCING THE NUMBER OF SERVER
INTERACTIONS IN NETWORK-BASED
APPLICATIONS USINGADUAL-MVC

APPROACH

FIELD OF THE INVENTION

The present invention is related to network-based client/
server applications and, more particularly, to methods and
apparatus for reducing the number of server interactions in
world wide web-based applications using a dual Model
View-Controller approach.

BACKGROUND OF THE INVENTION

Typical world wide web (e.g., Internet/Intranet) applica
tions allow users to access and update data on remote servers.
The remote server contains the master application data and
the client displays views of this data. Examples of such appli
cations include a help desk, life insurance underwriting,
health insurance pre-certification for medical procedures, and
automated teller machines.

Historically (circa 1970), applications executed on large
mainframe systems (servers), to which clients connected via
“dumb terminals, e.g., Teletypes, DEC VT100, IBM 327x
series terminals, etc. In these architectures, very little pro
cessing was done on the client side. Subsequently (circa
1980), as hardware became cheaper, some of the processing
was moved to the client-side hardware, in so-called "fat
client architectures. A fat client maintains some of the appli
cation State, enabling Some processing to occur locally thus
eliminating round-trips to the server.

Fat-client applications can be described in terms of the
MVC (Model-View-Controller) paradigm. The MVC para
digm is described, for example, in G. E. Krasner and S. T.
Pope, “A Cookbook for Using the Model-View-Controller
User Interface Paradigm in SmallTalk-80.” Journal of Object
Oriented Programming, 1(3):26-49, August/September
1988, the disclosure of which is incorporated herein by ref
erence. In this paradigm, the “Model contains the data, rules,
and algorithms affecting the data. The “View' is a screen or
window representation of a subset of the model that the appli
cation chooses to display. The “Controller' is the logic that
processes user requests, such as pressing a button. The Con
troller causes the Model to be changed and/or the View to be
refreshed.

Fat-client applications may maintain a Model and Control
ler on the server but never maintain a View or View Genera
tion Logic (VGL) on the server. Instead, View and VGL are
maintained solely by the fat client.

While fat-client applications provided improved response
time, the distribution and maintenance of the client software
and databases was problematic. Users tended to customize
their client system, and this made it difficult to develop a
client-side software base that would work properly on all
systems. In addition, when the client software needed to be
updated, a company had to figure out how to update all the
client machines in the field.

Applets (see http://java. Sun.com/applets/index.html) are
one implementation of the fat-client architecture. When the
user starts the application, or while running the application,
the server downloads part of the application to the clients
machine to execute locally. This improves performance
because round-trips to the server are lessened. However,
when the applet is first invoked, it must be downloaded to the
client, which in practice can take a significant length of time.

10

15

25

30

35

40

45

50

55

60

65

2
Also, in practice, web browsers often support different levels
of Java Virtual Machines (JVMs). Because an applet is inter
preted by the JVM, the difference in JVMs causes inconsis
tent operation of applets on different browsers or even differ
ent versions of the same browser.
More recently (circa 1994), the development and popular

ization of the world wide web has led towards a so-called
“thin-client' application architecture. In this architecture,
most of the application logic again executes on the server,
with only the browser display logic, i.e., application-indepen
dent display logic, executing inside the client-side web
browser software. Here the browser is the client, and displays
aView. Each time the user interacts with the View, the remote
server is notified to update the View and/or Model.

Another implementation of client/server interaction over
the web uses Dynamic HyperText Markup Language
(DHTML). DHTML is described, for example, in D. Good
man, “Dynamic HTML, The Definitive Reference.” O’Reilly,
1998, the disclosure of which is incorporated herein by ref
erence. DHTML is a superset of HTML (HyperTextMarkup
Language) which includes JavaScript and Cascading Style
Sheets (CSS). JavaScript can be used to implement much of
the same functionality that applets provide, is in practice
more portable between browsers, and is quicker to download.

Although fat-client architectures provide the most flexibil
ity and performance, their maintenance and distribution prob
lems, together with the popularity of the web, have led many
application developers to adopt thin-client architectures for
new applications. A problem with this architecture is that
network communication delays during server interactions
again lead to reduced performance.

Therefore, a need exists for a new Model-View-Controller
architecture for Internet/Intranet applications which does not
require continual network communication between the client
and server.

SUMMARY OF THE INVENTION

The invention relates to web applications and, more par
ticularly, to an architecture and method of programming
which improves performance and eases the development and
maintenance effort. The invention addresses performance by
employing a dual-MVC approach, in which a subset of the
application’s Model-View-Controller reside on the client,
and the full Model-View-Controller and View-Generating
Logic reside on the server, thereby reducing the number of
required server interactions. In contrast to the fat-clientarchi
tecture, the invention does not require any application instal
lation or persistence on the client.
More specifically, the classic fat-client implementation

requires that the user (or administrator) physically install the
client Software on the client machine, and the application will
require the long-term use of persistent storage (i.e., disk
space) on the client machine. For example, consider the well
known tax preparation assistance Software program known as
“TurboTax” as a fat-client application. A CDROM is required
to run the install process. After installation, the program uses
a sizable amount of disk space, both for its own program/data
files and for the user's tax return. From time to time, e.g.,
during electronic filing of a tax return, “TurboTax interacts
with a remote server as a (fat) client.
The applet approach avoids some of the problems of fat

clients, because the applet is downloaded automatically and
does not make long-term use of disk space. However, the
applet may take a long time to download, and it is difficult in
practice to write an applet which will function correctly on
every client.

US 7,702,719 B1
3

The dual-MVC approach of the invention avoids the instal
lation and disk-space problems because client-side code asso
ciated with the MVC of the application is preferably down
loaded from the server on demand by the user of the client
device, avoiding the install process, and is preferably not
saved permanently to the disk of the client. The dual-MVC
approach also avoids problems associated with applets
because the MVC code downloaded according to the inven
tion is physically smaller than an applet and thus results in a
faster download. Also, the dual-MVC approach of the inven
tion preferably uses HTML and JavaScript constructs which
are, in practice, more portable between browsers than are
applets.

Particularly, in accordance with the unique dual-MVC
approach of the invention, the client machine maintains part
of the Model, eliminating many round-trips to the server. The
invention provides an implementation approach for con
structing the frame(s) contained in the client’s browser soft
ware to allow it to be refreshed locally. The invention
addresses development and maintenance by specifying a
library of functions that a programmer can use to construct the
View and Controller on the client machine. When part of the
Model is maintained on the client, the client has the ability to
respond to user interaction without paying the performance
penalty of continually interacting with the server.

It is to be appreciated that the term “frame' as used herein
has a similar usage as in HTML. Web browsers typically
display one or more windows on the client's screen. Each
window may correspond to one HTML frame, or may instead
correspond to one HTML “frameset.” A frameset comprises
one or more frames, which are like Sub-windows inside a
frameset window.
The invention specifies a way to structure browser-based

clients so that classic MVC interactions are possible. The
client’s browser screen may be divided into multiple frames.
In the case of a web browser running at the client, the web
browser includes an HTML frameset. There may be one or
more visible frames that the user interacts with, and a number
of “invisible' frames where the logic resides. By “invisible'
frame, we mean that the frames height or width has been set
to a very small value, so that they appear not to occupy any
screen area. Visible frames obviously occupy some screen
area. The invisible frames contain the application logic and
the logic to rewrite the visible frames. It is to be appreciated
that an application may create additional windows or
framesets, and/or have additional frames within a window,
where the window corresponds to a frameset. Without this
invention, a client-side application attempting to update its
View will destroy itself by overwriting its own Controller
logic and Model data.

It is to be appreciated that the term “logic” as used herein is
intended to refer to program code, preferably in JavaScript at
the client side, although it may also be in Java, VBScript,
C++, C, or any other programming language which is Sup
ported by the browser.
The invention also specifies a way to program this kind of

web application. Programmers using only the dual-MVC and
multiple frames will need to generate HTML within their
View-generating logic. This requires the programmer to think
in two different domains simultaneously: JavaScript for the
View-generating logic, Model, and Controller, and HTML for
the View itself. This may be a complicated, tedious, and
error-prone task depending on the application being
designed. To Substantially eliminate this situation, the present
invention specifies a library of functions that are capable of
writing the HTML with JavaScript. The programmer can
implement the application using these functions rather than

10

15

25

30

35

40

45

50

55

60

65

4
having to write the complicated HTML/JavaScript. This is
analogous to programmers writing user interfaces using the
Java Swing library.

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an exemplary client/
server system suitable for employing the present invention;

FIG. 2 is a block diagram illustrating a conventional thin
client architecture;

FIG. 3 is a block diagram illustrating a dual-MVC archi
tecture according to an embodiment of the present invention;

FIG. 4 is a diagram illustrating an initial display Screen
associated with an exemplary application;

FIG. 5 is a diagram illustrating a second display Screen
associated with an exemplary application;

FIG. 6 is a flow diagram illustrating application flow for a
conventional thin-client architecture;

FIG. 7 is a flow diagram illustrating application flow for a
dual-MVC architecture according to an embodiment of the
present invention;

FIG. 8 is a block diagram illustrating a client-side frameset
architecture for a dual-MVC approach according to an
embodiment of the present invention;

FIGS. 9A through9C depict code fragments illustrating a
sample application using a library frame according to an
embodiment of the present invention; and

FIG. 10 is a block diagram illustrating a hardware imple
mentation of a client computer system and/or server com
puter system suitable for implementing the dual-MVC meth
odologies of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The following description will illustrate the invention
using an exemplary web-based client/server system. It should
be understood, however, that the invention is not limited to
use with any particular client/server system. The invention is
instead more generally applicable to any network-based cli
ent/server system in which it is desirable to substantially
reduce server interactions on the part of the client when
executing one or more applications associated with the server.

FIG. 1 is a block diagram illustrating an exemplary client/
server system suitable for employing the present invention.
The system comprises a client computer system which is
configured to run web browser software 1000. It is to be
appreciated that any suitable web browser software may be
employed and that the methodologies of the invention are not
limited to any particular web browser software. Further, as
shown in the client/server system of FIG. 1, the web browser
1000 communicates over a network 3000 with a web server
5000. The network 3000 may employ a HyperText Transport
Protocol (HTTP), as is well known in the art and as is imple
mented in accordance with the world wide web, however,
other suitable protocols and networks may be employed. For
example, the client and server may alternatively be connected
via a private network, a local area network, or some other
suitable network.

It is to be appreciated that an example of Such a client/
server system as illustrated in FIG.1 may include an arrange
ment wherein a user at a personal computer or workstation

US 7,702,719 B1
5

(client) accesses a particular application (e.g., help desk, life
insurance underwriting, health insurance pre-certification for
medical procedures, and automated teller machines) associ
ated with a particular server on the HTTP network in accor
dance with web browser software loaded and running on the
client machine.

FIG. 2 illustrates a block diagram of a conventional thin
client architecture as may be implemented in a web browser
1000 and server 5000. In this architecture, the application's
view-generating logic 5400. Model 5600, and Controller
5800 reside entirely on the server 5000. The client’s browser
contains the user-interaction window 1200.

In contrast, referring now to FIG.3, a block diagram illus
trating a dual-MVC architecture according to an embodiment
of the present invention is shown. In this architecture, the web
server 5000 comprises Model-View-Controller components,
including server-side View-generating logic 5400, server
side Model data 5600 and server-side Controller logic 5800.
The web browser (client) 1000 comprises a user-interaction
window 1200, client-sideView-generating logic 1400, client
side Model data 1600 and client-side Controller logic 1800.
These MVC components are preferably downloaded to the
client from the server at the time that the client requests use of
the application at the server. Given the fact that the client and
server both contain MVC components, we term this approach
dual-MVC.

A principal advantage of our invention is a dramatic
improvement in application response time, since many inter
actions with the server are eliminated. To demonstrate the
performance improvement which may be achieved, a help
desk application will be described. In accordance with such a
help desk application, a computer user (i.e., customer) may
have problems with his/her computer and call technical Sup
port. The person providing the help (i.e., consultant) has a
web application to record information about the customerand
his/her problem. In other words, a help desk consultant sits in
front of a web-based user interface and uses the interface to
communicate with the help desk server in order to record and
track a customer's problems which he/she reports during a
call to the consultant. In Such an example, the computer
system with the user interface that the help desk consultant is
using is considered the client. Specifically, the consultant
utilizes a web browser 1000 (FIG. 3) running on the client to
access the help desk server. The help desk server is the server
5000 (FIG. 3). FIG. 4 illustrates an example of the consult
ant's initial screen, corresponding to the user-interaction win
dow 1200 of FIG. 3. Depending on the operating system
selected, a new table is added to the screen to collect operating
specific information about the customer's computer. This
second screen with the new table is shown in FIG. 5.

We first describe the application flow for an implementa
tion using the conventional thin-client architecture as shown
in FIG. 2. FIG. 6 shows a generic application flow for the
conventional thin-client architecture. In step 2000, the web
browser 1000 requests the initial page from the web server
5000, using the network 3000. In step 2010, the web server
replies with the initial page and, in step 2020, the web browser
displays the page in the user-interaction window 1200. The
user interacts with the displayed page, in step 2030, by input
ting data into the window, and the web browser transmits the
data back to the web server in step 2040. The server-side
controller 5800 updates the server-side model 5600 in step
2050, and the server-side view-generating logic 5400 gener
ates the new page in step 2060. The web server then transmits
the new page to the web browser in step 2070, and the flow
repeats from step 2020.

10

15

25

30

35

40

45

50

55

60

65

6
Now, referring back to the help desk example illustrated in

accordance with FIGS. 4 and 5, and using the conventional
thin-client architecture, the following steps would occur:

(1) Consultant asks Customer for identification (ID), and
enters it on the view. Browser sends ID to server.

(2) Server validates ID and sends back HTML to refresh
the screen with the addition of the customer's name and
phone number.

(3) Consultant asks customer for operating system, and
enters it (e.g., NT) on the view. Browser sends screen
information including operating system type to the
Server.

(4) Server sends back HTML to refresh the screen with the
addition of the operating system specific table.

(5) Consultant asks customer for operating system-specific
information, such as hostname and enters it on the view.
Browser sends Screen information including hostname
tO Server.

(6) Server finds and returns the IP address corresponding to
the hostname.

(7) Consultant clicks on Add Another Problem button.
Browser sends Screen information including add prob
lem request to server.

(8) Server sends screen with old problem row and addi
tional empty problem row.

(9) Consultant and customer have similar dialog, entering
a second problem. Consultant presses Save. Browser
sends Screen information including save request to
Sever.

(10) Server saves problem reports.
Thus, entering n problem reports disadvantageously requires
3n+1 round-trip interactions between the web browser and
the web server.
When a subset of the Model is stored on the client, as in

accordance with the dual-MVC approach of the present
invention, a number of interactions with the server can be
eliminated, thus providing better performance. For example,
if the name, ID, phone, operating system, operating system
specific information, and remarks are in the client's model,
i.e., are stored at the client, then: (i) the screen can be
refreshed with the addition of a blank row; and (ii) the screen
can be refreshed by adding the proper operating system table
without going to the server.

FIG. 7 shows a generic application flow for a dual-MVC
architecture according to the embodiment of the present
invention as shown in FIG. 3. In step 6000, the web browser
1000 requests the initial page from the web server 5000, using
the network 3000. The web server replies with the initial page
in step 6010 and, in step 6020, the web browser displays the
page in the user-interaction window 1200. The user interacts
with the displayed page, in step 6030, by inputting data into
the window. In step 6040, the client-side controller logic 1800
is executed and, in step 6050, determines whether server
interaction is required. If server interaction is required, the
web browser transmits the data back to the web server in step
6080. The server-side controller 5800 updates the server-side
model 5600 in step 6090, and the server-side view-generating
logic 5400 generates the new page in step 6100. The web
server then transmits the new page to the web browser in step
6110, and the flow repeats from step 6020.

Alternatively, if the client-side logic decides that no server
interaction is required, then the client-side model 1600 is
updated, in step 6060, to reflect the user's input. Next, the
client-side view-generating logic 1400 is executed and gen
erates the new page in step 6070. Returning to step 6020, the

US 7,702,719 B1
7

page is displayed in the user-interaction window 1200. The
application flow then repeats from step 6020.

Assuming that the name, ID, phone, operating system,
operating system-specific information, and remarks are con
tained in the client-side model, the display of FIG. 5 can
advantageously be generated without an interaction with the
server. Thus, entering n problem reports requires n+2 round
trip interactions between the web browser and the web server
using the dual-MVC approach of the present invention. Alter
natives for improving performance often involve trade-offs.
For example, if performance is critical, and the amount of
space on the client's machine is large enough, more data can
be copied to the client. Also, ifa list of the hostnames and their
corresponding IP addresses is stored on the client, the trip to
the server to obtain the IP address given the hostname could
also be skipped. If this were done, the number of round-trip
interactions would be reduced to two. If a list of customer IDs
and their corresponding names and phone numbers is stored
on the client, this would eliminate the need to invoke the
server to get check the customer ID and return the name and
phone. All processing, except for the final save (one interac
tion), could then be done on the client side.

Referring to FIG. 8, a client-side frameset architecture for
a dual-MVC approach according to an embodiment of the
present invention is shown. Specifically, we specify an illus
trative format for the client’s browser in order to implement
the dual-MVC approach of the invention. The clients
browser screen 1000 is divided into multiple frames. There
may be one or more visible frames comprising the user
interaction window 1200, an invisible library frame 1250, and
an invisible application-specific frame 1300 where the model
and logic to write screens resides. The library frame and the
application specific frame may also be implemented in mul
tiple frames. In any case, the library frame 1250 contains
view-generating logic 1260, client-side model 1270 and con
troller logic 1280, each of which is independent of the appli
cation. The application-specific frame 1300 contains the
view-generating logic 1400, client-side model 1600, and con
troller logic 1800, each of which is specific to the application.

The invention provides a library which is stored in one of
the invisible frames. The library allows the developer to pro
gram the client’s model, view, and controller in a manner
where functions are called which are responsible for writing
the HTML. This is very complicated and tedious. With the
library, the developer's effort is greatly simplified.
The application frame 1300 provides a stable anchor-point

for the client-side logic. Since the invention works by rewrit
ing visible frame(s), the visible frames cannot themselves
contain controller/view logic and model data, because the
logic and data will be destroyed during the rewrite process.
The library frame 1250 provides an application-program

ming-interface (API) and implementation for generating the
view in the visible frame. The API allows the programmer to
specify the layout in terms of visible components, with each
component having controller properties, e.g., text values,
color. The implementation of the components in the library
writes the appropriate information into the visible frame (e.g.,
HTML) to generate the described visual layout. The library
frame also contains an application-independent client-side
model function 1270, e.g., caching and data-movement
operations. Finally, the library frame contains application
independent controller logic 1280, e.g., generic user-inter
face event handling.

In a preferred embodiment, the application programmer
codes the application-specific frame model and controller
logic using JavaScript, and generates the view via calls to the
library API. The properties of the view are set from the model

5

10

15

25

30

35

40

45

50

55

60

65

8
and, when instructed to do so by the controller logic, the view
renders itself into the visible frame.

Referring now to FIGS. 9A through9C, code fragments are
shown in order to illustrate a sample application using com
ponents in a library frame 1250. The application defines a
simple Model (a counter value), and a number of library
frame components: (i) an LFrame, a component representing
a browser window; (ii) an LForm, a component representing
a user-input form in a window; (iii) an LText, a component
representing a text-input field in a form; (iv) an LButton, a
component representing a pushbutton on which the user may
click; and (v) an LStaticText, a component representing a text
label on the screen. Each of these components is implemented
by code in the library frame 1250. The application-specific
frame 1300 makes calls to the library frame 1250 to create
components to make callbacks to the application-specific
frame 1300 when certain user-input events occur, such as
changes to text fields and button presses. During processing
of these events, the event handlers in the application-specific
frame 1300 may make calls to the components implemented
by the library frame 1250 to modify their properties as a result
of the user interaction. Of course, it is to be appreciated that
the code sample shown in FIGS. 9A through9C is illustrative
in nature and, given the inventive teachings herein, one of
ordinary skill in the art will realize various other ways to
implement library frames.

Accordingly, as has been explained, the present invention
provides for a dual-MVC arrangement (a client-side MVC
and a server-side MVC), together with away of implementing
the two MVCs using a standard browser without applets. The
invention makes the client-side MVC possible by separating
the interaction window 1200 into a separate frame from the
application logic (1400, 1800) and model 1600.

Further, the invention provides a client-side application
programming interface (API) for application developers to
use when implementing dual-MVC applications. Using this
API, which may be implemented in JavaScript, makes it
easier to write applications.

Still further, the invention provides for packaging the appli
cation-independent code into a separate frame called the
library frame 1250. In a preferred embodiment, the library
frame contains the application-independent view-generating
logic and application-independent controller logic and may
contain an application-independent model. For example, it
contains the logic to generate a button on the screen, and to
receive events caused by clicking the button with a mouse, but
does not know where to place the button, what label to place
on it, or what application-specific controller action to take
when the button is clicked. This is specified by the applica
tion-specific components in the application-specific frame
1300. The advantage of the library frame is that the library
frame only needs to be downloaded once per browser session,
because it changes only when Software updates take place
(e.g., over weeks or months). The browsers canthus cache the
library frame for extended periods. In contrast, the interaction
window 1200 is discarded/rewritten on virtually every user
interaction, and the application-specific frame 1300 is
reloaded on every server interaction. If the code in the library
frame were moved to application-specific frame 1300, it
would need to be reloaded on every server interaction, which
would waste communication bandwidth and cause additional
response-time delays.

Referring now to FIG. 10, a block diagram is shown illus
trating a hardware implementation of a client computer sys
temand/or server computer system suitable for implementing
the dual-MVC methodologies of the present invention. As
shown, both the client system and server system may be

US 7,702,719 B1
9

implemented in accordance with a processor 9000, a memory
9010 and I/O devices 9020. It is to be appreciated that the term
“processor as used herein is intended to include any process
ing device, such as, for example, one that includes a CPU
(central processing unit) and/or other processing circuitry.
The term “memory” as used herein is intended to include
memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, etc. In addition, the term “input/output devices” or
“I/O devices' as used herein is intended to include, for
example, one or more input devices, e.g., keyboard, for enter
ing data to the processing unit, and/or one or more output
devices, e.g., CRT display and/or printer, for presenting
results associated with the processing unit. It is also to be
understood that the term “processor may refer to more than
one processing device and that various elements associated
with a processing device may be shared by other processing
devices. Accordingly, Software components including
instructions or code for performing the methodologies of the
invention, as described herein, may be stored in one or more
of the associated memory devices (e.g., ROM, fixed or
removable memory) and, when ready to be utilized, loaded in
part or in whole (e.g., into RAM) and executed by a CPU. For
example, the individual Model, View and Controller logic
associated with the client and the server, as shown in FIG. 3,
may be implemented in accordance with a hardware archi
tecture as depicted in FIG. 10.

Although illustrative embodiments of the present invention
have been described herein with reference to the accompany
ing drawings, it is to be understood that the invention is not
limited to those precise embodiments, and that various other
changes and modifications may be affected therein by one
skilled in the art without departing from the scope or spirit of
the invention.

What is claimed is:
1. A method for use in a client/server system of reducing

interactions between a client and server in association with an
application being accessed by the client at the server, the
method comprising the steps of

configuring the server to store a model associated with the
application and to execute view-generating and control
ler logic associated with the application; and

configuring the client to store at least a Subset of the model
associated with the application and to execute at least a
Subset of the view-generating and controller logic asso
ciated with the application;

wherein one or more portions of the application are per
formed at the client without the client having to interact
with the server, and further wherein the client and the
server both locally maintain at least a portion of the
model and execute the view-generating and controller
logic associated therewith.

2. The method of claim 1, wherein the client and server
communicate over a HyperText Transport Protocol network.

3. The method of claim 1, wherein the client performs the
one or more portions of the application in accordance with
browser Software running thereon.

4. The method of claim 3, wherein the configuring step
further comprises the step of partitioning a screen area asso
ciated with the browser software into frames.

5. The method of claim 4, wherein the at least a subset of
the model, the view-generating and the controller logic asso
ciated with the application are associated with at least one
frame and one or more views for display in accordance with
the application are associated with at least another frame.

10

15

25

30

35

40

45

50

55

60

65

10
6. The method of claim 5, wherein the at least one view

frame is a visible frame.
7. The method of claim 5, wherein the at least one frame

associated with the at least a subset of the model, the view
generating logic and the controller logic is not a visible frame.

8. The method of claim 4, wherein the configuring step
further comprises forming at least one frame with which
application-independent view-generating logic and control
ler logic is associated.

9. The method of claim 8, wherein the at least one appli
cation-independent view-generating logic and controller
logic frame further has an application-independent model
associated therewith.

10. The method of claim 8, wherein the at least one appli
cation-independent view-generating logic and controller
logic frame serves as an application programming interface
for developing views to be displayed in accordance with the
application.

11. The method of claim 10, wherein the views are imple
mented in accordance with the HyperTextMarkup Language
and the application programming interface is implemented in
accordance with the JavaScript language.

12. The method of claim 1, wherein the at least a subset of
the model, the view-generating and the controller logic asso
ciated with the application are downloaded from the server to
the client upon demand.

13. A network-based system, comprising:
a server having at least one processor operative to: (i) store

a model associated with an application associated with
the server, and (ii) execute view-generating and control
ler logic associated with the application; and

a client, coupled to the server via a network, having at least
one processor operative to: (i) store at least a Subset of
the model associated with the application; and (ii)
execute at least a Subset of the view-generating and
controller logic associated with the application;

wherein one or more portions of the application are per
formed at the client without the client having to interact
with the server such that interactions between the client
and server are reduced, and further wherein the client
and the server both locally maintain at least a portion of
the model and execute the view-generating and control
ler logic associated therewith.

14. The system of claim 13, wherein the network is a
HyperText Transport Protocol network.

15. The system of claim 13, wherein the client processor
performs the one or more portions of the application in accor
dance with browser Software running thereon.

16. The system of claim 15, wherein the client processor is
further operative to partition a screen area associated with the
browser software into frames.

17. The system of claim 16, wherein the at least a subset of
the model, the view-generating and the controller logic asso
ciated with the application are associated with at least one
frame and one or more views for display in accordance with
the application are associated with at least another frame.

18. The system of claim 17, wherein the at least one view
frame is a visible frame.

19. The system of claim 17, wherein the at least one frame
associated with the at least a subset of the model, the view
generating logic and the controller logic is not a visible frame.

20. The system of claim 16, wherein the client processor is
further operative to format least one frame with which appli
cation-independent view-generating logic and controller
logic is associated.

US 7,702,719 B1
11

21. The system of claim 20, wherein the at least one appli
cation-independent view-generating logic and controller
logic frame further has an application-independent model
associated therewith.

22. The system of claim 20, wherein the at least one appli
cation-independent view-generating logic and controller
logic frame serves as an application programming interface
for developing views to be displayed in accordance with the
application.

23. The system of claim 22, wherein the views are imple
mented in accordance with the HyperTextMarkup Language
and the application programming interface is implemented in
accordance with the JavaScript language.

24. The system of claim 13, wherein the at least a subset of
the model, the view-generating and the controller logic asso
ciated with the application are downloaded from the server to
the client upon demand.

25. An article of manufacture for use in a client/server
system for reducing interactions between a client and server
in association with an application being accessed by the client
at the server, comprising machine readable media containing
one or more programs which when executed implement the
steps of:

configuring the server to store a model associated with the
application and to execute view-generating and control
ler logic associated with the application; and

configuring the client to store at least a Subset of the model
associated with the application and to execute at least a
Subset of the view-generating and controller logic asso
ciated with the application;

wherein one or more portions of the application are per
formed at the client without the client having to interact

5

10

15

25

30

12
with the server, and further wherein the client and the
server both locally maintain at least a portion of the
model and execute the view-generating and controller
logic associated therewith.

26. A method for use in a client/server system of reducing
interactions between a client and server in association with an
application being accessed by the client at the server, the
method comprising the steps of

configuring the server to: (i) store a model associated with
the application; (ii) execute view-generating logic asso
ciated with the application; and (iii) execute controller
logic associated with the application; and

configuring the client to: (i) store at least a Subset of the
model associated with the application; (ii) execute at
least a Subset of the view-generating logic associated
with the application; and (iii) execute at least a Subset of
the controller logic associated with the application;

wherein one or more portions of the application are per
formed at the client without the client having to interact
with the server, and further wherein the client and the
server both locally maintain at least a portion of the
model and execute the view-generating and controller
logic associated therewith:

further wherein, in accordance with such a dual model
view-controller arrangement, a model comprises appli
cation data, rules, and algorithms affecting the data, a
view comprises a screen or window representation of a
subset of the model that the application chooses to dis
play, and a controller comprises the logic that processes
user requests, and causes the model to be changed and
the view to be refreshed.

k k k k k

