
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
3

46
1

05
9

A
1

TEPZZ¥46_Z59A_T
(11) EP 3 461 059 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
27.03.2019 Bulletin 2019/13

(21) Application number: 18178887.8

(22) Date of filing: 20.06.2018

(51) Int Cl.:
H04L 9/12 (2006.01) H04L 9/32 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 22.09.2017 US 201762561726 P
11.04.2018 US 201815950185

(71) Applicant: NEC Laboratories Europe GmbH
69115 Heidelberg (DE)

(72) Inventors:
• Li, Wenting

69115 Heidelberg (DE)
• Karame, Ghassan

69115 Heidelberg (DE)

(74) Representative: Patent- und Rechtsanwälte
Ullrich & Naumann
PartG mbB
Schneidmühlstrasse 21
69115 Heidelberg (DE)

(54) SCALABLE BYZANTINE FAULT-TOLERANT PROTOCOL WITH PARTIAL TEE SUPPORT

(57) A method for establishing consensus between
a plurality of distributed nodes connected via a data com-
munication network includes preparing a set of random
numbers, wherein each of the random numbers is a share
of an initial secret, wherein each share of the initial secret
corresponds to one of a plurality of active nodes; encrypt-
ing, in order to generate encrypted shares of the initial
secret, each respective share of the initial secret with a
shared key corresponding to respective one of the plu-
rality of active nodes to which the respective share cor-
responds; applying a bitwise xor function to the set of
random numbers to provide the initial secret; and binding
the initial secret to a last counter value to provide a com-
mitment and a signature for the last counter. The method
includes generating shares of a second and of a plurality
of subsequent additional secrets by iteratively applying
a hash function.

EP 3 461 059 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD

[0001] The invention relates to Scalable Byzantine
Fault-Tolerant (BFT) algorithms and also to permis-
sioned blockchains.

BACKGROUND

[0002] Byzantine fault-tolerant (BFT) protocols solve
the state machine replication problem of a distributed
system by reaching consensus on the order of operations
requested to the system. In other words, as long as the
operations are deterministic, the system state on the ma-
jority of the honest nodes are consistent as they execute
the series of operations in the same order. Although the
correctness and liveness of the BFT protocols have pre-
viously been proven, such protocols have not yet seen
significant real-world deployment, due to their poor effi-
ciency and scalability. In a system with n servers (nodes),
such protocols need to exchange O(n2) messages to
reach consensus on a single operation. Consequently,
existing commercial systems, such as those used by
Google and Amazon, rely on weaker crash fault-tolerant
variants (e.g., Paxos and Raft).
[0003] Recent interest in blockchain technology has
given fresh impetus for developing and improving BFT
protocols. A blockchain is a key enabler for distributed
consensus, serving as a public ledger for digital curren-
cies (e.g., Bitcoin) and other applications. Bitcoin’s block-
chain relies on the well-known proof-of-work (PoW)
mechanism to ensure probabilistic consistency guaran-
tees on the order and correctness of transactions. It is a
great success to have PoW regulate the transaction order
agreement among thousands of nodes, which cannot be
achieved by conventional BFT protocols due to the lim-
itation of the communication complexity. However, Bit-
coin’s PoW has been severely criticized for its consider-
able waste of energy and meagre transaction throughput
(∼7 transactions per second).
[0004] To remedy these limitations, there are several
proposals to make the traditional BFT protocols, which
are excellent in terms of transaction throughput with doz-
ens of nodes, more scalable to handle consensus for
thousands of participating nodes. MinBFT (described in
G. S. Veronese, M. Correia, A. Neves Bessani, L. C. Lung
and P. Verissimo, "Efficient byzantine fault-tolerance," in
IEEE Transactions on Computers, 2013) and
CheapBFT, (described in R. Kapitza, S. Johannes Behl,
C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W.
Schröder-Preikschat and K. Stengel, "CheapBFT: re-
source-efficient byzantine fault tolerance," in Proceed-
ings of the 7th ACM european conference on Computer
Systems, 2012) first propose to use TEE (Trusted Exe-
cution Environment) to reduce the total number of peers
from 3f+1 to 2f+1, where f is the number of tolerated
nodes. However, the communication complexity still re-

mains to be O(n2), which prevents the network from scal-
ing up to hundreds of nodes. Cosi (described in E. Syta,
I. Tamas, D. Visher, D. Isaac Wolinsky, P. Jovanovic, L.
Gasser, N. Gailly, I. Khoffi and B. Ford, "Keeping author-
ities" honest or bust" with decentralized witness cosign-
ing," in Security and Privacy, 2016) leverages tree struc-
ture and signature aggregation to reduce the communi-
cation complexity to O(n), but using public signature on
each node is expensive and the system still requires 3f+1
nodes. FastBFT (described in J. Liu, W. Li, G. O. Karame
and N. Asokan, Scalable Byzantine Consensus via Hard-
ware-assisted Secret Sharing, arXiv preprint arX-
iv:1612.04997, 2016) combines TEE with an efficient
message aggregation technique based on secret-shar-
ing to achieve a more efficient protocol using only 2f+1
nodes.

SUMMARY

[0005] In an embodiment, the present invention pro-
vides a method for establishing consensus between a
plurality of distributed nodes connected via a data com-
munication network. The plurality of distributed nodes
includes a plurality of active nodes, the plurality of active
nodes includes a primary node, and each of the plurality
of distributed nodes including a processor and computer
readable media. The method includes preparing a set of
random numbers, wherein each of the random numbers
is a share of an initial secret, wherein each share of the
initial secret corresponds to one of the plurality of active
nodes; encrypting, in order to generate encrypted shares
of the initial secret, each respective share of the initial
secret with a shared key corresponding to a respective
one of the plurality of active nodes to which the respective
share corresponds; applying a bitwise xor function to the
set of random numbers to provide the initial secret; bind-
ing the initial secret to a last counter value to provide a
commitment and a signature for the last counter; gener-
ating shares of a second and of a plurality of subsequent
additional secrets by iteratively applying a hash function
to shares of each preceding secret; binding the second
secret to a second-to-last counter and each subsequent
secret to a preceding counter to provide a commitment
and a signature for the second-to-last counter and for
each preceding counter; and transmitting, to each of the
plurality of active nodes, the commitments and signa-
tures for each of the counters along with the encrypted
shares of the initial secret and a set of hash values pro-
duced by applying the hash function to the shares of the
last secret. Each of the plurality of active nodes is con-
figured to decrypt a corresponding encrypted share of
the initial secret and to generate shares of the remaining
secrets by applying the hash function to the decrypted
share of the initial secret.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The present invention will be described in even

1 2

EP 3 461 059 A1

3

5

10

15

20

25

30

35

40

45

50

55

greater detail below based on the exemplary figures. The
invention is not limited to the exemplary embodiments.
All features described and/or illustrated herein can be
used alone or combined in different combinations in em-
bodiments of the invention. The features and advantages
of various embodiments of the present invention will be-
come apparent by reading the following detailed descrip-
tion with reference to the attached drawing which illus-
trates the following:

FIG. 1 depicts a network composed of a number of
nodes according to an embodiment of the invention;

FIG. 2 is a flow diagram illustrating an initialization
procedure according to an embodiment of the
present invention;

FIG. 3 is a flow diagram illustrating a preprocessing
procedure according to an embodiment of the inven-
tion;

FIG. 4 is a block diagram illustrating the preprocess-
ing procedure of FIG. 3; and

FIG. 5 is a flow diagram illustrating a normal-case
operation procedure according to an embodiment of
the invention.

DETAILED DESCRIPTION

[0007] BFT protocols that reduce the total number of
nodes necessary to establish consensus, e.g. MinBFT,
CheapBFT, and FastBFT, require that all such nodes be
equipped with secure hardware. Requiring all participat-
ing nodes to be equipped with secure hardware is espe-
cially challenging for a large network with hundreds of
nodes. Furthermore, such BFT protocols require consid-
erable processing resources of participating nodes, e.g.
processing resources required for performing encryption
and decryption of a large number of messages. For ex-
ample, for a network with n nodes and m committed se-
crets in a batch, the pre-processing phase in FastBFT
involves n*m symmetric encryption operations on secret
shares.
[0008] Embodiments of the present invention provide
scalable BFT protocols that require only a selection of
nodes to have secure hardware. Specifically, scalable
BFT protocols are described herein that require only f+1
nodes to be equipped with secure hardware in order to
establish consensus despite the Byzantine failure of f
nodes. Therefore, use of the scalable BFT protocols de-
scribed herein can broaden the scope of potential net-
works in which BFT protocols can be implemented. Fur-
thermore, by relaxing the requirements for secure hard-
ware relative to prior art BFT protocols, the scalable BFT
protocols described herein can reduce the costs of pro-
viding a network capable of executing BFT protocols or
alternatively, the costs of modifying an existing network

in order to render it capable of executing BFT protocols.
[0009] Embodiments of the invention provide scalable
BFT protocols that improve the computational efficiency
of nodes that participate in carrying out a BFT consensus
protocol and thereby improve the overall computational
efficiency of a distributed system for maintaining consen-
sus. Scalable BFT protocols are described herein in
which the number of encryptions and decryptions per-
formed by various nodes can be significantly reduced
relative to the number required to be performed by prior
art BFT protocols. Specifically, scalable BFT protocols
are described herein that include a novel pre-processing
phase during which a primary node generates n shares
of an initial secret bound to a last of m counters in a batch,
encrypts only the n shares of the initial secret, and then
generates shares of secrets bound to each of the pre-
ceding m - 1 counters by applying a hash function to the
shares of the initial secret. During such pre-processing
phase, only n encryptions are needed (instead m 3 n
encryptions as required by prior art BFT protocols). Fur-
thermore, each of the n nodes that receive a share of the
secret need only perform a single decryption followed by
m - 1 hash computations in order to derive shares used
to vote for m subsequent messages (as compared to
performing m decryptions as required by prior art BFT
protocols). As a result of the improved computational ef-
ficiency, scalable BFT protocols according to embodi-
ments of the invention enable systems for maintaining
consensus to handle greater numbers of transactions in
a given period of time while requiring fewer computational
resources and utilizing less energy. As a result, the scal-
able BFT protocols according to embodiments of the in-
vention improve the performance of systems for main-
taining consensus among a plurality of distributed nodes,
e.g. blockchain systems.
[0010] Embodiments of the present invention provide
BFT protocols in which a hash chain is used to generate
shares of a secret generated according to a secret-shar-
ing, or secret-splitting, scheme. The secret is bound and
committed to a counter value in the trusted execution
environment (TEE) of a primary node during the preproc-
essing phase. The shares of the secret are then distrib-
uted to the active nodes that participate in carrying out
the BFT consensus protocol to improve the efficiency for
a batch of committed counter values. Embodiments of
the invention also leverage collective remote attestation
on a trusted execution environments (TEE) for primary
election to avoid using a faulty primary and therefore
avoid unnecessary view changes to faulty nodes.
[0011] Embodiments of the present invention provide
systems, methods, and non-transitory computer reada-
ble media for BFT replication of data at a plurality of
nodes, e.g. servers. Assuming f nodes are byzantine
faulty, BFT protocols according to embodiments of the
present invention require at least n = 3f + 1 nodes in the
network, wherein 2f + 1 of the nodes are active and f of
the nodes are passive. The active nodes are connected
in a tree structure or a star structure (a tree structure with

3 4

EP 3 461 059 A1

4

5

10

15

20

25

30

35

40

45

50

55

height=1 is a star structure). The active nodes respond
to messages and update the state, while passive nodes
only listen to messages and update a local state. The
node at the root position of the tree (or star) is referred
to as the primary node and serves as an entry point for
client requests. BFT protocols according to embodiments
of the present invention require f + 1 nodes in the network
be equipped with secure hardware and that the endorse-
ment key of the secure hardware of each such node can
be verified by all of the other f + 1 nodes. In this manner,
if the primary node is faulty, e.g. due to a crash, and a
view change is required, there are f remaining nodes hav-
ing secure hardware such that at least one correct node
can replace the faulty primary and the system can tolerate
f nodes that are byzantine faulty.
[0012] Embodiments of the present invention provide
BFT protocols that include both offline operations and
online operations. The offline operations are performed
in an initialization stage and a preprocessing stage. The
online operations are performed in the phases of normal-
case and view-change. The online operations are trig-
gered by requests from the clients who will then wait for
the completion of the phases to obtain the response,
while the offline operations are performed in the back-
ground when they are required.
[0013] According to an embodiment, the present in-
vention provides a method for establishing consensus
between a plurality of distributed nodes connected via a
data communication network, the plurality of distributed
nodes including a primary node and a plurality of active
nodes, each of the plurality of distributed nodes including
a processor and computer readable media. The method
includes preparing a set of random numbers, wherein
each of the random numbers is a share of an initial secret,
wherein each share of the initial secret corresponds to
one of the plurality of nodes; encrypting each respective
share of the initial secret with a shared key corresponding
to respective one of the plurality of nodes to which the
respective share corresponds to generate encrypted
shares of the initial secret; applying a bitwise xor function
to the set of random numbers to provide the initial secret;
and binding the initial secret to a last counter value to
provide a commitment and a signature for the last coun-
ter. The method further includes generating shares of a
second and of a plurality of subsequent additional secrets
by iteratively applying a hash function to shares of each
preceding secret; binding the second secret to a second-
to-last counter and each subsequent secret to a preced-
ing counter to provide a commitment and a signature for
the second-to-last counter and for each preceding coun-
ter; and broadcasting, to each of the plurality of active
nodes, the commitments and signatures for each of the
counters along with the encrypted shares of the initial
secret and a set of hash values produced by applying
the hash function to the shares of the last secret. Each
of the plurality of active nodes is configured to decrypt a
corresponding encrypted share of the initial secret and
to generate shares of the remaining secrets by applying

the hash function to the decrypted share of the initial se-
cret.
[0014] According to an embodiment, the present in-
vention provides a computer readable medium having
stored thereon instructions for carrying out such a meth-
od for establishing consensus between a plurality of dis-
tributed nodes connected via a data communication net-
work. Furthermore, according to an embodiment, the
present invention provides a system including a plurality
of distributed nodes connected via a data communication
network and configured to establish a consensus.
[0015] According to embodiments of the invention, the
primary node can organize the plurality of active nodes
into a tree structure. The tree structure can be a star
structure.
[0016] According to embodiments of the invention, the
primary node can receive, from a plurality of active nodes,
an attestation request including a challenge. The primary
node can compute a signature over the challenge in the
attestation request and a hash of an application loaded
in a trusted execution environment (TEE) of the primary
node as a remote attestation proof of integrity of the TEE
application.
[0017] According to embodiments of the invention, the
primary node can receive, from the plurality of active
nodes, a plurality of shares of the last secret and recon-
struct the last secret based on the plurality of received
shares of the last secret.
[0018] According to embodiments of the invention, pre-
paring a set of random numbers, wherein each of the
random numbers is a share of an initial secret, wherein
each share of the initial secret corresponds to one of the
plurality of nodes can include preparing n random num-
bers r1, ..., rn for each active node Pi, where the ith share

of the initial secret Encrypting each respective
share of the initial secret with a shared key corresponding
to a respective one of the plurality of nodes to which the
respective share corresponds to generate encrypted
shares of the initial secret can include encrypting, using
a shared key ki corresponding to each active node Pi,

the random numbers r1, ..., rn to provide the encrypted

shares of the initial secret Ci = Enc(ki, ri). Applying a bit-

wise xor function to the set of random numbers to provide
the initial secret can include applying a bit-wise xor to all

 to provide the initial secret

 Binding the initial secret to
a last counter value to provide a commitment and a sig-
nature for the last counter can include binding the initial
secret s0 with the last counter cm to provide the commit-
ment cmtm = H(s0, cm) and the signature Sm = Sign(cmtm,
cm) for the last counter, wherein H() is a cryptographic
hash function. Generating shares of a second and of a
plurality of subsequent additional secrets by iteratively
applying a hash function to shares of each preceding

5 6

EP 3 461 059 A1

5

5

10

15

20

25

30

35

40

45

50

55

secret can include generating shares and the plurality of

subsequent secrets for j = 1, ..., m -
1. Binding the second secret to a second-to-last counter
and each subsequent secret to a preceding counter to
provide a commitment and a signature for the second-
to-last counter and for each preceding counter can in-
clude binding the secrets sj with the counters cm-j to pro-
vide the commitments cmtm-j = H(sj, cm-j) and the signa-
tures Sm-j = Sign(cmtm-j, cm-j) for j = m - 1.
[0019] According to embodiments of the invention, the
primary node can receive a request from a client and
transmit a reply to the client including the reconstructed
last secret. The primary node can further broadcasting
the reply to a plurality of passive nodes.
[0020] FIG. 1 depicts a network including of a number
of nodes in which a subset thereof are active. Specifically,
in Figure 1, 2f + 1 nodes are active and f nodes are pas-
sive. In the figure, solid circles represent nodes equipped
with secure hardware. Each node can be, e.g., a server.
The primary node/server, or entry point, is secure hard-
ware supported. In FIG. 1, each node, or server, is a
physical machine including compute resources, storage
resources, and network resources. The compute re-
sources at each node can include one or more proces-
sors each having one or more processor cores. The stor-
age resources at each node can include computer read-
able memory, e.g., random-access-memory (RAM)
and/or cache memory. The network resources include a
physical network interface controller (NIC). Each node
additionally includes a bus that couples various system
components, e.g. the processors and the computer read-
able memory, together. The network interface controller
of each node enables it to interface with other nodes.
The secure hardware can be, e.g., a system on a chip
(SoC) including secure compute resources and protect-
ed memory resources. The secure compute resources
can include one or more processors each having one or
more processor cores, e.g. a secure cryptoprocessor.
Access to the protected memory resources of the secure
hardware is controllable only by the secure hardware.
The secure hardware is tamper-resistant. In this manner,
security-critical logic can be isolated and protected from
all other hardware and software running on an entity or
server.
[0021] FIG. 2 is a flow diagram illustrating an initializa-
tion procedure of a process for establishing consensus
between a plurality of distributed nodes according to an
embodiment of the present invention. The initialization
procedure includes organizing the nodes into a tree struc-
ture (which, in the case where the tree structure has
height=1, is a star structure). The initialization procedure
also includes proving the integrity of a trusted execution
environment (TEE) of the primary node at the root of the
tree structure.
[0022] At 200, the nodes connect with each other ac-
cording to a tree structure. Various algorithms can be

utilized for organizing the nodes into the tree structure.
For example, a randomization function can be utilized
that takes in all the node ids and their current indexes
and outputs their new indexes in the tree. The only re-
quirement of the tree-structure is that the root of the tree,
i.e. the primary node, must have TEE support.
[0023] At 210, the primary node receives a plurality of
attestation requests including a challenge from the other
active nodes. At 220, the primary node computes a sig-
nature over the challenge in the attestation request and
a hash of a consensus-establishing application loaded
in the TEE and then broadcasts the signature over the
challenge and the hash as a remote attestation proof of
the integrity of its TEE application. Thereafter, at 230, all
nodes verify the proof with the endorsement public key
of the primary’s secure hardware and reset the local copy
of a counter of the primary node. The challenge used to
compute the remote attestation proof should be a random
number that is unpredictable and verifiable by all nodes.
It can be third-party random source that is trusted by all
nodes such as the current block hash of Bitcoin. Alter-
natively, the random number can be generated collec-
tively by all nodes, e.g., through a secret-shared random
number, a Bloom filter, or an accumulator that has inte-
grated all random inputs from the nodes to the challenge.
[0024] FIG. 3 is a flow diagram illustrating a preproc-
essing procedure of a process for establishing consen-
sus between a plurality of distributed nodes according to
an embodiment of the invention. During the preprocess-
ing procedure, the TEE application of the primary node
performs a computation to bind and commit m secrets to
m counter values, wherein the m counter values will sub-
sequently be assigned to m incoming request messages
in the normal-case phase of the online operations. During
the normal-case phase, the primary node receives the
incoming request messages from one or more clients
and assigns the counter values to the incoming messag-
es in order to indicate the order that all nodes should
agree on while handling the messages. Therefore, by
securely generating a secret for each counter value, bind-
ing and committing each secret to a corresponding coun-
ter value, and distributing shares of each secret during
the preprocessing stage, each node can reveal, during
the normal-case phase, the share of a secret (which is
bound and committed to a counter value) as a vote for
the order in which the requests are to be processed. In
that manner, the revelation of secret shares by each of
the active nodes enables the nodes to reach consensus
efficiently, as the reconstruction of the secret from shares
only involves polynomial computation or light-weight
cryptography. The preprocessing procedure of FIG. 3
can be invoked periodically or at irregular intervals or can
be triggered by the occurrence of certain conditions. At
each invocation of the preprocessing procedure, the pri-
mary node commits m secrets to m counter values that
can be assigned to incoming request messages in the
future.
[0025] At 310, the TEE application of the primary node

7 8

EP 3 461 059 A1

6

5

10

15

20

25

30

35

40

45

50

55

randomly generates n = 2f + 1 random numbers r1, r2, ...,

rn that serve as n initial shares for

n active nodes P1, ..., Pn, one of which is the primary

node. Note that there are N = 3f + 1 total nodes in the
system. At 320, the TEE application of the primary node

encrypts each of the initial shares (i = 1, ..., n) with
a corresponding key ki shared with a corresponding ac-

tive node Pi to provide for i = 1, ...,

n. At 330, the TEE application of the primary node applies

bit-wise xor to all shares to provide initial secret

 As a result, only when all

active nodes reveal their shares can they recon-
struct the secret s0. At 340, the TEE application of the
primary node binds secret s0 with counter value c + m,
where c is the offset of the counter value, and m is the
batch size for the preprocessing operation. The binding
is achieved by generating the commitment cmtm over the
secret s0 and the counter value c + m along with a digital
signature Sm. A possible commitment scheme utilizes a
cryptographic hash function: cmtm = H(s0, c + m) and
signature is computed as Sm = Sign(sk1, cmtm, c + m),

where sk1 is the private key of the primary node P1 se-

cured by its TEE application. The signed commitment
〈cmtm, Sm〉 allows all nodes to verify the revealed secret
s0, and be able to conclude whether enough votes have
been cast to reach consensus on the message which is
assigned with counter value c + m.
[0026] At 345, an index j is initialized as j = 1. At 350,
the TEE application of the primary node generates the

shares for the next counter value c +
m - j. The shares for counter c + m - j are computed as

the hash value of the previous shares:
for i = 1, ..., n. At 360, the TEE application of the primary

node applies bit-wise xor to all shares to provide

secret At 370, the TEE ap-
plication of the primary node binds secret sj with counter
value c + m - j. The binding is achieved by generating
the commitment cmtm-j over the secret sj and the counter
value c + m - j along with a digital signature Sm-j. If the
commitment scheme utilizes the cryptographic hash
function described above, cmtm-j = H(sj, c + m - j) and
signature is computed as Sm-j = Sign(sk1, cmtm-j, c + m

- j), where sk1 is the private key of the primary node P1

secured by its TEE application. The signed commitment
〈cmtm-j, Sm-j〉 allows all nodes to verify the revealed secret

sj, and be able to conclude whether enough votes have
been casted to reach consensus on the message which
is assigned with counter value c + m - j. At 370, the index
j is incremented, and at 380, the process compares j with
the value m. If j < m, the process returns to 350. If j ≥ m,
the process proceeds to 390.
[0027] At 390, the TEE application of the primary node

generates the shares and then re-

veals the preprocess result 〈Ci,

{〈cmt1,S1〉, ..., 〈(cmtm,S1)〉}〉 to the primary node, which
then broadcasts it to each active node Pi. Upon receipt

of the preprocess result, each active node Pi can first

decrypt Ci using the corresponding key ki shared with the

primary node to obtain the initial share Each active
node Pi can then derive the remaining shares

 by iteratively applying the cryptograph-
ic hash function H. Meanwhile, the committed counter
values cmtj are accepted once signature Sj is verified.
[0028] In the normal-case operations, after node Pi

successfully verifies a PREPARE message which as-
signs (by the primary node) counter value c + 1 to a re-
quest message M, Pi acknowledges the assigned order

of the request by revealing his corresponding share

 his parent node Pk in the tree structure verifies

the integrity with and aggregates the votes by com-

puting When all nodes reveal their
shares, secret sm-1 is reconstructed on the primary node
(the root of the tree) with all the aggregated shares

 The primary node
then reveals the reconstructed secret sm-1 to all the other
nodes. Each active node can then check whether the
revealed secret sm-1 is indeed reconstructed correctly by
verifying if cmt1 = H(sm-1, c + 1)

[0029] Note that is broadcast to all ac-
tive nodes, therefore any node is able to verify (through
one or more hash functions) the integrity of a revealed

share If the integrity check of a share revealed
by a child node fails, the parent node can broadcast his
suspicion with the corresponding evidence and thus the
network can replace a misbehaving child node with a
passive node in the pool of passive nodes. If multiple
nodes are corrupted and the reconstructed secret is
wrong, the primary can ask the active nodes to resend

9 10

^

^

^

^

EP 3 461 059 A1

7

5

10

15

20

25

30

35

40

45

50

55

the shares directly to him without aggregation, thus en-
abling the primary to identify and replace the misbehav-
ing nodes. If the secret is constructed wrongly or is not
revealed after certain timeout (i.e., the network fails to
reach consensus) and the primary takes no further ac-
tions, then the active nodes suspect the primary is mali-
cious and thus trigger a view-change process to replace
the primary.
[0030] The protocol loosens the requirement of the
TEE support by requiring more nodes (2f + 1 instead of
f + 1) to be actively involved in the consensus process.
But the protocol does not require the secondary nodes
to perform any computation in the TEE application thus
only the minimum number of nodes are required to have
TEE support.
[0031] During the preprocessing procedure of FIG. 3,
the shares for a batch of counter values are derived
through a hash chain based on the initial shares. As a
result, no matter how big the batch is (i.e., m), instead of
encrypting all n 3 m shares, the TEE application of the
primary node only needs to encrypt n initial shares before
sending it to the nodes. Similarly, each node Pi does not

need to decrypt the shares for each of the m counter

values. Instead, Pi only decrypts his initial share

and the rest of the shares can be computed from the
initial share through a light-weight hash function. Note
that for counter value c + j for j = 1, ..., m, the correspond-

ing shares are ..., The generating of
the shares and secrets and the binding of the secrets to
the m counter values of the preprocessing procedure is
illustrated by FIG. 4, which is a block diagram illustrating
the preprocessing procedure of FIG. 3.
[0032] Following the preprocessing procedure illus-
trated in FIGS. 3 and 4, a normal-case phase of a process
for establishing consensus between a plurality of distrib-
uted nodes can take place. FIG. 5 is a flow diagram il-
lustrating a process for establishing consensus between
a plurality of nodes according to an embodiment of the
present invention. At 500, a request phase is performed
in which a client transmits a request message M to the
primary node. The request message is signed with the
client’s private key.
[0033] At 510, a prepare phase is performed. In the
prepare phase, the primary node verifies the signature
of the request message and multicasts a PREPARE mes-
sage 〈PREPARE, M, v, 〈H(M), c + j〉σp〉 to its children

nodes, and the children nodes forward the prepare mes-
sage along the tree. Note that H(M) is the message digest
of the request message M, v is the view number that
increases whenever a view-change happens (after a
view-change, the primary node is replaced and the view
number increases by 1), and σp is the signature of the

PREPARE message by the TEE application of the pri-
mary node of the current view. The primary node obtains
〈H(M), c + j〉 by submitting the hash of the request H(M)

to its TEE application. c + j is the current counter value
returned by the advanced monotonic counter inside the
primary’s TEE application. The result is also signed by
the primary’s TEE as signature σp. Each peer node Pi

verifies the signature σp of the PREPARE message and

compares the received counter value c + j with the last
recorded primary counter value cp if c + j = cp + 1. If the

received counter is too advanced as it leaves ’holes’ in
counter sequence, the PREPARE message will be pen-
ded until those with succeeding counters are processed.
This is to guarantee that the messages M can be exe-
cuted as soon as they are accepted, for the same reason
as in work MinBFT. Once the PREPARE message is val-
idated, the leaf nodes reveal their shares to the parent

nodes with reveal responses 〈REVEAL, c + j,
φ〉, while non-leaf nodes await responses from their chil-
dren and then verify their children’s responses with the

last recorded hash hk if for child

node Pk. Then the shares are aggregated on Pi as

 before sending the re-

sponse 〈REVEAL, c + j, 〉 to its parent.
If the check on the revealed share of a child node fails,
a node can broadcast a faulty suspicion on his child node,
which can trigger further process to replace the faulty
node with a passive node.
[0034] At 520 a commit phase is performed. During the
commit phase, after receiving the aggregated shares,
the primary node reconstructs the secret sm-k and verifies
with the commitment cmtj generated by the primary’s
TEE during the preprocessing stage. If valid, the primary
node executes the request and multicasts a COMMIT
message with the execution result res: 〈COMMIT, sm-j,
res, 〈H(res), c + j + 1)σp). Each peer node verifies the
revealed secret sm-j with the commitment received during
the preprocessing phase 〈cmtj, Sj〉. If valid, the peers ex-
ecute the request M and compare the result res. Then
they reveal the shares for counter c + j + 1 similarly to
the Prepare phase.
[0035] At 530, a reply phase is performed. During the
reply phase (and similar to the Commit phase), the pri-
mary node reconstructs the secret for counter c + j + land
multicasts a reply message to the other nodes, e.g. the
passive nodes: 〈REPLY, c + j + 1, sm-j-1〉. Additional de-
tails of the normal-case operation of the process for es-
tablishing consensus between a plurality of distributed
nodes can be found in PCT/EP 2016/078883, which is
incorporated by reference herein.
[0036] According to embodiments of the invention, a
view-change procedure similar to the protocol MinBFT
can be performed under certain circumstances. For ex-
ample, when peers receive a request but no REPLY mes-

11 12

EP 3 461 059 A1

8

5

10

15

20

25

30

35

40

45

50

55

sage after a certain timeout, they request a view-change
to replace the primary node along with a fresh challenge
for the TEE remote attestation of the primary candidate,
which is known by all nodes through a pre-defined algo-
rithm.
[0037] All nodes send REQ-VIEW-CHANGE requests
providing the current counter and the last opened secret
along with a history of executed operations in the last
view to the next primary candidate. The primary candi-
date determines the latest counter and the history
through the latest opened secret. A NEW-VIEW along
with the history of the last view is then broadcast by the
primary candidate to all nodes to execute the missing
operations and switch to the new view. Meanwhile, the
new view also includes the remote attestation proof of
the new primary node, as well as the structure of the new
tree. Once each node verifies the NEW-VIEW request,
they broadcasts VIEW-CHANGE message to acknowl-
edge changing to this new view. Once a node receives
at least f consistent VIEW-CHANGE message from other
nodes, they migrate to the new view by executing the
missing operations and reconstructing the new tree.
Then the new primary proceeds with the pre-process
stage to generate committed counters for the new view
used for online operations to handle incoming requests.
[0038] While the invention has been illustrated and de-
scribed in detail in the drawings and foregoing descrip-
tion, such illustration and description are to be considered
illustrative or exemplary and not restrictive. It will be un-
derstood that changes and modifications may be made
by those of ordinary skill within the scope of the following
claims. In particular, the present invention covers further
embodiments with any combination of features from dif-
ferent embodiments described above and below.
[0039] The terms used in the claims should be con-
strued to have the broadest reasonable interpretation
consistent with the foregoing description. For example,
the use of the article "a" or "the" in introducing an element
should not be interpreted as being exclusive of a plurality
of elements. Likewise, the recitation of "or" should be
interpreted as being inclusive, such that the recitation of
"A or B" is not exclusive of "A and B," unless it is clear
from the context or the foregoing description that only
one of A and B is intended. Further, the recitation of "at
least one of A, B and C" should be interpreted as one or
more of a group of elements consisting of A, B and C,
and should not be interpreted as requiring at least one
of each of the listed elements A, B and C, regardless of
whether A, B and C are related as categories or other-
wise. Moreover, the recitation of "A, B and/or C" or "at
least one of A, B or C" should be interpreted as including
any singular entity from the listed elements, e.g., A, any
subset from the listed elements, e.g., A and B, or the
entire list of elements A, B and C.

Claims

1. A method for establishing consensus between a plu-
rality of distributed nodes connected via a data com-
munication network, the plurality of distributed nodes
including a plurality of active nodes, the plurality of
active nodes including a primary node, each of the
plurality of distributed nodes including a processor
and computer readable media, the method compris-
ing:

preparing a set of random numbers, wherein
each of the random numbers is a share of an
initial secret, wherein each share of the initial
secret corresponds to one of the plurality of ac-
tive nodes;
encrypting, in order to generate encrypted
shares of the initial secret, each respective
share of the initial secret with a shared key cor-
responding to a respective one of the plurality
of active nodes to which the respective share
corresponds;
applying a bitwise xor function to the set of ran-
dom numbers to provide the initial secret;
binding the initial secret to a last counter value
to provide a commitment and a signature for the
last counter;
generating shares of a second and of a plurality
of subsequent additional secrets by iteratively
applying a hash function to shares of each pre-
ceding secret;
binding the second secret to a second-to-last
counter and each subsequent secret to a pre-
ceding counter to provide a commitment and a
signature for the second-to-last counter and for
each preceding counter; and
transmitting, to each of the plurality of active
nodes, the commitments and signatures for
each of the counters along with the encrypted
shares of the initial secret and a set of hash val-
ues produced by applying the hash function to
the shares of the last secret,
wherein each of the plurality of active nodes is
configured to decrypt a corresponding encrypt-
ed share of the initial secret and to generate
shares of the remaining secrets by applying the
hash function to the decrypted share of the initial
secret.

2. The method according to claim 1, further comprising
organizing, by the primary nodes, the plurality of ac-
tive nodes into a tree structure.

3. The method according to claim 2, wherein the tree
structure is a star structure.

4. The method according to any of claims 1 to 3, further
comprising receiving, by the primary node from the

13 14

EP 3 461 059 A1

9

5

10

15

20

25

30

35

40

45

50

55

plurality of active nodes, an attestation request in-
cluding a challenge.

5. The method according to claim 4, further comprising
computing, by the primary node, a signature over
the challenge in the attestation request and a hash
of an application loaded in a trusted execution envi-
ronment, TEE, of the primary node as a remote at-
testation proof of integrity of the TEE application.

6. The method according to any of claims 1 to 5, further
comprising receiving, by the primary node from oth-
ers of the plurality of active nodes, a plurality of
shares of the last secret; and
reconstructing, by the primary node, the last secret
based on the plurality of received shares of the last
secret.

7. The method according to any of claims 1 to 6, where-
in preparing a set of random numbers, wherein each
of the random numbers is a share of an initial secret,
wherein each share of the initial secret corresponds
to one of the plurality of active nodes comprising pre-
paring n random numbers r1, ..., rn for each active

node Pi, where the ith share of the initial secret

8. The method according to claim 7, wherein encrypting
each respective share of the initial secret with a
shared key corresponding to a respective one of the
plurality of active nodes to which the respective
share corresponds to generate encrypted shares of
the initial secret comprises encrypting, using a
shared key ki corresponding to each active node Pi,
the random numbers r1, ..., rn to provide the encrypt-
ed shares of the initial secret Ci = Enc(ki, ri).

9. The method according to claim 7 or 8, wherein ap-
plying a bitwise xor function to the set of random
numbers to provide the initial secret comprises ap-

plying a bit-wise xor to all to provide the initial

secret

10. The method according to claim 9, wherein binding
the initial secret to a last counter value to provide a
commitment and a signature for the last counter
comprises binding the initial secret s0 with the last
counter cm to provide the commitment cmtm = H(s0,
cm) and the signature Sm = Sign(cmtm, cm) for the
last counter, wherein H() is a cryptographic hash
function.

11. The method according to claim 10, wherein gener-
ating shares of a second and of a plurality of subse-

quent additional secrets by iteratively applying a
hash function to shares of each preceding secret
comprises generating shares and the plurality of sub-

sequent secrets for j = 1, ...,
m-1.

12. The method according to claim 11, wherein binding
the second secret to a second-to-last counter and
each subsequent secret to a preceding counter to
provide a commitment and a signature for the sec-
ond-to-last counter and for each preceding counter
comprises binding the secrets sj with the counters
cm-j to provide the commitments cmtm-j = H(sj, cm-j)
and the signatures Sm-j = Sign(cmtm-j, cm-j) for j = m
- 1.

13. The method according to any of claims 1 to 6, further
comprising receiving, by the primary node, a request
from a client and transmitting, by the primary node
to the client, a reply including the reconstructed last
secret.

14. The method according to claim 13, further compris-
ing broadcasting the reply to a plurality of passive
nodes.

15. A computer readable medium comprising instruc-
tions for carrying out a method for establishing con-
sensus between a plurality of distributed nodes con-
nected via a data communication network, the plu-
rality of distributed nodes including a plurality of ac-
tive nodes, the plurality of active nodes including a
primary node, each of the plurality of distributed
nodes including a processor and computer readable
media, the method comprising:

preparing a set of random numbers, wherein
each of the random numbers is a share of an
initial secret, wherein each share of the initial
secret corresponds to one of the plurality of ac-
tive nodes;
encrypting, in order to generate encrypted
shares of the initial secret, each respective
share of the initial secret with a shared key cor-
responding to respective one of the plurality of
active nodes to which the respective share cor-
responds;
applying a bitwise xor function to the set of ran-
dom numbers to provide the initial secret;
binding the initial secret to a last counter value
to provide a commitment and a signature for the
last counter;
generating shares of a second and of a plurality
of subsequent additional secrets by iteratively
applying a hash function to shares of each pre-
ceding secret;

15 16

EP 3 461 059 A1

10

5

10

15

20

25

30

35

40

45

50

55

binding the second secret to a second-to-last
counter and each subsequent secret to a pre-
ceding counter to provide a commitment and a
signature for the second-to-last counter and for
each preceding counter; and
transmitting, to each of the plurality of active
nodes, the commitments and signatures for
each of the counters along with the encrypted
shares of the initial secret and a set of hash val-
ues produced by applying the hash function to
the shares of the last secret,
wherein each of the plurality of active nodes is
configured to decrypt a corresponding encrypt-
ed share of the initial secret and to generate
shares of the remaining secrets by applying the
hash function to the decrypted share of the initial
secret.

17 18

EP 3 461 059 A1

11

EP 3 461 059 A1

12

EP 3 461 059 A1

13

EP 3 461 059 A1

14

EP 3 461 059 A1

15

EP 3 461 059 A1

16

5

10

15

20

25

30

35

40

45

50

55

EP 3 461 059 A1

17

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 2016078883 W [0035]

Non-patent literature cited in the description

• G. S. VERONESE ; M. CORREIA ; A. NEVES
BESSANI ; L. C. LUNG ; P. VERISSIMO. Efficient
byzantine fault-tolerance. IEEE Transactions on
Computers, 2013 [0004]

• R. KAPITZA ; S. JOHANNES BEHL ; C. CACHIN ;
T. DISTLER ; S. KUHNLE ; S. V. MOHAMMADI ; W.
SCHRÖDER-PREIKSCHAT ; K. STENGEL.
CheapBFT: resource-efficient byzantine fault toler-
ance. Proceedings of the 7th ACM european confer-
ence on Computer Systems, 2012 [0004]

• E. SYTA ; I. TAMAS ; D. VISHER ; D. ISAAC
WOLINSKY ; P. JOVANOVIC ; L. GASSER ; N.
GAILLY ; I. KHOFFI ; B. FORD. Keeping authorities’’
honest or bust’’ with decentralized witness cosigning.
Security and Privacy, 2016 [0004]

• J. LIU ; W. LI ; G. O. KARAME ; N. ASOKAN. Scal-
able Byzantine Consensus via Hardware-assisted
Secret Sharing, 2016 [0004]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

