United States Patent 119
Welch

Patent Number:
Date of Patent:

[11]
[43]

4,558,302
Dec. 10, 1985

[54] HIGH SPEED DATA COMPRESSION AND
DECOMPRESSION APPARATUS AND
METHOD

[75] Inventor: Terry A. Welch, Concord, Mass.

[73] Assignee: Sperry Corporation, New York, N.Y.

[21] Appl. No.: 505,638

[22] Filed: Jun. 20, 1983

[51] Int. Clé4 et GO6F 5/00

[52] 340/347 DD; 235/310

[58] Field of Search 340/347 DD; 235/310,

235/311; 364/200, 900

[56] References Cited

U.S. PATENT DOCUMENTS
4,464,650 8/1984 Eastman

OTHER PUBLICATIONS

Ziv, “IEEE Transactions on Information Theory”,
IT-24-5, Sep. 1977, pp. 530-537.
Ziv, “IEEE Transactions on Information Theory”,
IT-23-3, May 1977, pp. 337-343.

Primary Examiner—Charles D. Miller
Attorney, Agent, or Firm—Howard P. Terry; Albert B.
Cooper

[57] ABSTRACT

A data compressor compresses an input stream of data
character signals by storing in a string table strings of
data character signals encountered in the input stream.
The compressor searches the input stream to determine

340/347 DD

ZERQ ©

3

ITIALIZATION]|

COUNT C OMMAND
(FROM 13) °

35
INI
COUNTER
.26 [d

the longest match to a stored string. Each stored string
comprises a prefix string and an extension character
where the extension character is the last character in the
string and the prefix string comprises all but the exten-
sion character. Each string has a code signal associated
therewith and a string is stored in the string table by, at
least implicitly, storing the code signal for the string,
the code signal for the string prefix and the extension
character. When the longest match between the input
data character stream and the stored strings is deter-
mined, the code signal for the longest match is transmit-
ted as the compressed code signal for the encountered
string of characters and an extension string is stored in
the string table. The prefix of the extended string is the
longest match and the extension character of the ex-
tended string is the next input data character signal
following the longest maich. Searching through the
string table and entering extended strings therein is
effected by a limited search hashing procedure. Decom-
pression is effected by a decompressor that receives the
compressed code signals and generates a string table
similar to that constructed by the compressor to effect
lookup of received code signals so as to recover the data
character signals comprising a stored string. The
decompressor string table is updated by storing a string
having a prefix in accordance with a prior received
code signal and an extension character in accordance
with the first character of the currently recovered
string.

181 Claims, 9 Drawing Figures

28 STRING TABLE

READ COMMAND
[+-~—0{FROM 13)

fe—o WRITE COMMAND
{FROM 13}

RAM

PREFIX CODE

CONSTANT
VALUE=28

ﬂ COMPARE

29

NEW HASH
COMMAND
(FROM 1) 0 —

NEXT HASH o
COMMAND
(FROM 13}

INPUT
CHARACTERS ™

CHARACTER
STROBE

DATA
AVALLABLE
SIGNAL

l CONTROL

RAM ADDRESS

29
e

T———OCONSTANT VALUE
| 28

OUTPUT
CODE

CODE
STROBE

?0 ALL BLOCKS

COMPRESSOR

4,558,302

Sheet 1 of 9

U.S. Patent Dec. 10, 1985

‘T Old

LINSNVH1L LINSNVY1

!

JHO.LS
aNVv
3A0ON3

A

»~e

34018
ANV
3JOIN3

A

9 s
i
o X XX XoooX eoooevee X ‘XXooo X
kw ;o _

1IASNVYL 3401S
aNV

3A0ON4

? Wl|_

K_Ulllj

XXoeoX e e c0veee X-Xoco xx.ooooooco X .x... x.ooo

4,558,302

Sheet 2 of 9

U.S. Patent Dec. 10, 1985

318VL ONIYLS -

&c

2 9ld
HOSSIVANOD SIS
4 378V IVAY
2 914 40 w - o Viva
SHoNLS SM2079 TV OL 04.LNOD 21 HOMLS
30090 © or Th ﬂ 9 9 o7/ | dILOVHVHD
043z £7 cz
ke A
30092 43LSI93Y |, 2NN 431S193Y o SHILOVHVHO
104100 438WNAN 300D T 7 1 |¥3LovEvHO or) 10dNI
II
er’ | NN/F T 21 h/m.w (€7 WOH4)
i
0g Lo _ » 0
auvemon | || L] NOLLONNA
_ _ | _ « o (£ WOM4)
kN " T _ 3 ONVIINOD
ANTIVA LNVISNOOO© _ | 7 M _ o _ €2 ~ 2 HSVH M3N
s | L i u g2=3NTVA
Ve = | 42 J HVIWOI [«—0 J\v) SNOD
62 z _
z P
3009 X1434d g “ o¢ o7 W)
(£7 WOM4)) o
ANYWINOD FL19M o—» m B - _mwwv_@ﬁ_uw_z_ ONVWWNOD LNNOD
(€7 WOMd)o—» WYY PR LT j S
ANVWINOD av3y _
> J vy

4,558,302

Sheet 3 of 9

U.S. Patent Dec. 10, 1985

¢ Old 90018 Y B oZAW \H m —» 380415 VLVa 1OdNI
40SS3ydwooia 0, . |l&s) | ‘egr——————— — —
380uLS 7 2 e |
ol
11d1N0 < 9 q0MINOD - — — L% IHVIWOD -0 g°
SHILIVHVH) = : - _
1nd1N0 Lrg m,m,\ T < mwl_ (gg |
43LINIOd | 8% 2e L——)/
o¥3Z o—= =710 H I | - 05
98 - 7z 2 _ T _
SSIAAY g 4 _ [o 8¢ e 4315193y 4315193y wmm_m__
NOILYO0T 4300V 19313d | 3009 _ 3009 “
0Y37Z o— $5340QYV |
J 69) _
o6 68 re) oo~ C “ yad | 5|
OY3Zo - 1 Ax/H |
J3IAIT B 4ILIVHVHD NOILONNA JUYANOD |
87 ¥ 7 sVl [Gg HSVH |
i i s
+ 2 .
iy Bl TGN Y ¥ R O 28 ||| 1 G
76” gs° 62— g | HSVH
0M3Z oazol 2 L2024 0 XN
H J g —o(£6 WOYA4)
H Y H %Q\é | GNVWIWOD
: ‘ . HSVH
| 1 o | M3IN
_ | 2 |
| | | = o
13A371 ¥3ILOVNYHD 13000 X143Md = 5 Mce
| _ < 99 |
(£6 WOH4) ONVWINOD 3L1INM o—n _ | m v lcg _L
(€6 WOY4) ONVWWOD QvIdo—= vy Ol -
v _ Emgom%
le—o GNVINW
II8YL ONINLS o’ 29 | saunnoo ONVIAW
NOILYZITVILINI|
<6 le—0 0437

—0 TIYN9IS 3118V 1IVAY Yiva

o —
S ¥ 9ld b 914 40
S HOSSIUANOD S$H0078 TV Ol
N LT
Ve N3
) 3 TYN9IS
<r ' 24 378V 1IVAY
1nd1n0 womian | [7 T T T qouinoo] viva
WIHIS T T 14MS] | . 27 B Nw.v . J9041s
o Iir > y3lL
G B! _ 3 oLl GlIr
S sIr H(v.w\. | 3005 | OsAze™ mwb I ﬂ\mww
2 orr
5 371s indinol ¥31S193Y N 43.1S193Y SHILOVHVHI
o
= 3000 P ¥IBWON 3000 | | || [¥3LOovavHO[* 1naNi
ocr _ _
A
: 1244 ’ | zs1 | g€ * | | 3 m&L .TmNN (£77 NOYH)
(€77 NOY4) i VL ezt _ ONVWNOD
0 ANYAWOD o—» | «—OHSVH 1X3N
x 1INNOD 431NNOD 0837 |, 4 _I | L __| NOILONNS
- B 3009 | | 103130 HVANOOT o HSVH (T7 WOM)
- O——» 657 -«OQ
S / |
— | C ONVYWWOD
= N,NLH g ogr €| 8 ﬁ\wﬂ L 1 oz MoV MAN
A | Y GET
_ gar
t—9¢ | | o _
103130 > |
= | = £l
, _ >
2 zz1” 3009 9NINLS 13009 XI4Fud f+— O ~ 2pl
< S _ (£77)
S _ o £77 WOYS
X (€77 WO¥4) ANVINOD ILNMo—» | m 43INNOD |+ O SNONO9
0! (£77 WONH) AONVWWOD av3a¥o—» AV w NOLLVZIWILINY -
7c7” 378VL ONIMLS oc1’ 161-

4,558,302

Sheet 5 of 9

U.S. Patent Dec. 10, 1985

380418

V1VQ - —
1Nd1N0 oop) ow3z S 914 40 S 914
1+0ay SM007d TV 0L 40sS3¥dIW0O3d
Taan /ﬁ cor
ot v Y 987 i L. 251y _3naviiv
£67 NOYd 43LNNOD “» JOMLNOD -« — — — vivd
d0d® ™ 1 “Sovis - l
/] y | zor 1mi X 1 021
(ST WMD) of siovis o¥iz | | 0¥37 | [ouaz oN3z
A 103130 193130 | | _ 193130 103130
mmm«w_w Ger . er/ * P“.KN [YR
-y -— | 6917
1nd1no : 291 B
2
ISt | 191 1 | 1| w3ssiony N
621 3 — ” | 3009 204
£87 081 a | -
_ - ¥315193Y
| Z | | 3400 [Tyer
| > *Ta;7 | | Loonaz
(£G7 WON4) 4ILOVHVHO |3000 XI43¥d «— 8 LT _ _ SNHOMLIN 1NdNIl
aNY _ 2 [C _) L4IHS VIY3S
NVININOD e /7 861
3119M o—» | @ i L oer
(£67 WOYH)o—» . @ gor | | 957
ANVININDD | = 3uvenod
avay) 379Vl ONINLS cor’ | 897 ¥ 497
(£67 WOM4) ONYWWOD LNNODo————» u3INNOD 37IS
0y37 o——» 3000 ™ 3000
T
| 091 ﬂl\eo 5 m&v
por L~ 53230 |-gor

U.S. Patent Dec. 10,1985 Sheet6of9 4,558,302

l. SUBROUTINE (OMP (IBUFA, NA, lBUFB. MB)
2e ¢
1. C PURPOSE .
4 4 v CONVERT CONSECUTIVE 9 BIT STRINGS TO CONSECUTIVE 12 BIT STRINGS
Se C USAGE .
te o CALL COMP (IBUFA, NA, 1BUFH, NB)
7. 4 INPUT
Ba ¢ IBUFA = INPUT BUFFER CONTAINING CONSECUTIVE 9 BIT STRINGS.
" 9 c NA = NO. OFf CONSECUTIVE 9 BIT STRINGS STARTING AT IBUFA.
10 c) _ OUTPUT .
1. € I1BUFB = OUTPUT BUFFER CONTAINING CONSECUTIVE 12 BIT STRINGS,
12. C NB = NO. OF CONSECUTIVE 12 BIT STRINGS STARTING AT I3UFB,.
13. C ‘
14. " DIMENSION IBUFAC(C1), ITASBLE(4098), IBUFB(1)
15. DATA IFILL /512/
15, NCHA=1 & INPUT CHARACTER COUNT
17. NB=1 @ OUTPUT INDEX
10.. b0 10 1=1, 40%%
19. 10 ITABLEC(I)=1FILL
20. NODENO=IBITSG (IBUFA(1), 9,)
21. 100 NCHA=NCHA+1
22 1f (NCHA .GTe NA) 60 TO 4GO
23. NOWCHR=IBITSG (IBUFA(1), G¢ NCHA)
26 LOC=XORC(ST1-KOWCHR)*%, NODENO)+1
25, N=1
270 IF C(ITASLEC(LOC) .NE. NODENO) 60 TO 130
28 NODENO=LOC~1
2%. 60 TO 100 .
3d. 130 IF CITABLECLOC) .EQ. IFILL) GO TO 200
31. 180 N=N+1
32, IF (N 6T, 7) 60 TO 3CC
23, LOC=MOD (XORC2*NODENO,y 1365)+L0C-1, 40986)+1
34 - 60 TO 120
3s. 200 ITABLE(LOC)=NODENO .
26 200 CALL IBITSP (1BUFB(1), 12, NB, NODENO)
37. NODENO=NOWCHR
23, N3=NB+1
35, 60 TO 1CO
40. 400 CALL IBITSP (IBUFB(1), 12, NBy NODENO}
41. RETURN
4z END

FIG.GC. :

U.S. Patent Dec. 10, 1985 Sheet 7 of 9

21.

26.

31.
32.

34,
5.
5.
37
35.
35.
40.
41.
L2,
43,
bbo
45,
Lb.
L7,
L3.
4G .
50
Sls
52.
53.
54,
55
56
57
SE&.

AOOMAAMN

10

100

120

130
200

210

215
218

220

225

510

SUBROUTINE DECOMP (1BUFB, NB, IBUFA, NA)

4,558,302

CONVERT CONSE(UTIVE 12 BIT STRINGS TO OUTPUT BIT STRINGS

IBUFB = INPUT BUFFER CONTAINING CONSECUTIVE 12 BIT STRINGS.

NB * NOo OF COMSECUTIVE 12 BIT STRINGS STARTING AT I8UFB,

IBUFA = OUTPUY BUFFER CONTAINING CONSECUTIVE N3ITSA BIT
STRINGS .

NA = NOe OF CONSECUTIVE NBITSA BIT STRINGS STARTING AT
IBUFA.

DINENSION IBUFB(1), ITABLEC40963, IBUFA(1)
DATA NSITSA /97

NCHB=1

NA=1-

po 10 1=1, 4096

ITABLE(1)=0D

NOCODE=IBITSG{IBUFB(1)y 124 NCHB)
ICHARSNOCODE

CALL IBITSP (1BUFA, NBITSA, NA, ICHAR)
NODOLD=NOCODE

LEVOLD=1

NCHB=NCHBE+? .

IF (NCH3 «GTe NB) GO TO 510
NODENO=IBITSG(IBUFB(1), 12, NCHB)
NOCODE=NODENO

If (NODENO .6F. 512) 60 70 120

LEVEL=C

GO0 TO 210 :

If CITABLEC(NODENO+1) .NE. G) 60 TO 130
LEVEL=LEVOLD

CALL IBITSP (IBUFA, NEITSA, NA+LEVEL+1, ICHAR)
NODENO=NODOLD

60 T0 200

LEVEL=SITSC(ITABLE(NODENO+1), 13, 12

IF (NODENO +LEe 512) 60 TO 210
INDEX=3ITSCITABLE(NODENO+1), 13, 12)
ICHAR=31TSCITABLE(NODENO+1), 25, NBRITSA)
CALL IBITSP ClBUFA, NBITSA, INDEX+NA+1, ICHAR)
NODENO=6ITSCITABLE(NODENO+T), 1, 12)

60 T0 200 '

ICHAR=NODENO

CALL 1817TsP (IBUFA, NBITSA, NA+1, ICHAR)
N=1

LOC=XOR((511-ICHAR)*B, NODOLD)+1

IF (LOC «LEe 513) 60 TO 218

1F CITABLE(CLOC) .EQ. 0) 60 TO 220

N=N+1

IF (N «6T. 7) 60 TO 225
LOC=MOD (XQR (2«NODOLD, 1385)+L0C-1, 4096} +1
60 T0-215 :
BITSCITABLECLOC), 71, 12)=NODOLD
BITSCITABLE(LOC)y 259 NBITSAI=ICHAR
BITSCITABLE(LOC), 13, 12)=LEVOLD
NODOLD=NOCODE ’
LEVOLD=LEVEL+1

NA=NA+LEVEL+1

60 T0 100

RETURN

END

FI1G. 7.

U.S. Patent Dec. 10, 1985 Sheet8 of9 4,558,302

-5

-
= O N N W PN

U R Yy
(VLR S VY]

OO0 OO0

FUNCTION I2ITSG (IBUF, NPEREY, NTHRY)

PUPPGSE
RETRIEVE A BYTE FROM A SEQUSNCE OF BYTES uf THE SAME LENGTH
USAGE
© I3YTE = I[BITSG (IBUF, NPEPEY, NTHSY)
INPUT
IBUF = BUFFER CONTAINING CONSECUTIVE 2YTES OF NPEREY BITS
EACH.
NPER2Y = NOes OF BITS PER BYTE (1-3&),
NTH3Y = INDEX OF EYTS POSITION WHERE 3YTE IS TO 9& RETRIEVED
FROM. THE FIRST GYTE POSITION IS 1.
OUTPUT ‘
I3YTE = wORD CONTAINING THE 9YTE RETRIZVED IM THE LOW=ORDER
NPEREY BITS..
REMARKS
: USE SUBROUTINE ISBITSP FOR STORAGE.
“ETHOD

-
s

SEE CODE.

DIMENSION IBUF(1)

DATA NPERWD /JI6/

MSITT1=(NTH2Y=1) *NPEREY+1
NWBASE=(NBITTI-1)/5NPERWD
M3TITA=NBITTI-NWEBASE*NPEZRWD
NSITE=NGITA+NPEREY-]

IF (NBIT3 .GT. NPERWD) GO TC 173
ISYTE=BITS(ISUF(NWRASE+1), NFITA, NPERBY)
G0 10 20

NMOVEZ=NEITS~NPERwWD
ISYTE=3ITSC(IRUF{NWSASE+Z), 1, “MOVE2)
NMOVET=NPEREY-NMOVEZ

21TS (IARYTE, NPERIWD+1-NPERBY, NMOVEL) =
* SITS (IBUF(NABASE+1), NBITA, NMCVET)
I3ITSG=IgYTe

RETUPRN

END

FIG.8.

DO NO WV NP -

138

U.S. Patent Dec.10,1985 Sheet9of9 4,558,302

e s R NaNaNesNsEsEaEnNaNa NN NaNe NNl e Nel

SUBROUTINE IBITSP (IBUF, NPERbY, NTHEY, IBYTE)

PURPOSE _
STORE A SYTE IN A SEQUENCE OF BYTES OF THE SAME LENGTH
USAGE
CALL IBITSP (I3UFy NPERR®Y, %THBY, IBYTE)
INPUT
IBUF = BUFFER CONTAIMING CONSECUTIVE BYTES OF NPERBY BITS
EACH. '
NFER3Y = NO. OF BITS PER 2YTE (1-76&).
NTH3Y = INDEX OF SYTE POSITION IN IBUF wHcCRE BYTE IS TO BE
STGRED. THE FIRST SYTE PQSITION IS 1.
IBYTE = WORD CONTAINING THE BRYTE TO BE STORED IN THE LOW=ORDER
NPERSY BITS.
QuTPUT
ISUF = UPDATED BUFFER wITH THE LOW~ORDER NPER3Y BITS OF IBYTE
STOGRED IN THE NTHBY B8YTE POSITION.
REMARKS
USE FUNCTION IBITSG FOR RETRIEVAL.
METHOD

e

SEE (ODE.

DIMENSION IBUFCT)

DATA NPERWD /3&/

NBITT=(NTHEY=1)*NPERRY+1
NWBASET(NBITI=1)/NPERWD
NSITA=N2IT1-NN2ASE*NPEFWD
NBITE=NSITA+NPERBY-1

IF (N3ITE «GTe NPERWD) GO TO 19
EITS{I3UF(NN3ASE+1), NEBITA, HPEREY)=IBYTE
RETURN

NACVEZ=ENELTS~NPEPWD

SITS(I3UF(NNEASE+2), 1, MMOVEZ)}=EITS(IBYTE, NPERWD+T-NWOVE2,
* NMQVEZ)

NMOVEI=NPERBY-NMOVEZ

BITSC(ISUF(NWBASE+1), NBITA, NMOVE1) =

* 3I7TS (lcYTE, MPERWD+1=-NPEPEY, N¥YOVET)
RETURN

END

FIG.S.

4,558,302

1

HIGH SPEED DATA COMPRESSION AND
DECOMPRESSION APPARATUS AND METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the field of data compression
and decompression (recovery) of the compressed data.

2. Description of the Prior Art

Data compression systems are known in the prior art
that encode a stream of digital data signals into com-
pressed digital data signals and decode the compressed
digital data signals back into the original data signals.
Data compression refers to any process that converts
data in a given format into an alternative format having
fewer bits than the original. The objective of data com-
pression systems is to effect a savings in the amount of
storage required to hold or the amount of time required
to transmit a given body of digital information. The
compression ratio is defined as the ratio of the length of
the encoded output data to the length of the original
input data. The smaller the compression ratio, the
greater will be the savings in storage or time. By de-
creasing the required memory for data storage or the
required time for data transmission, compression results
in a monetary savings. If physical devices such as mag-
netic disks or magnetic tape are utilized to store the data
files, then a smaller space is required on the device for
storing the compressed data thereby utilizing fewer
disks or tapes. If telephone lines or satellite links are
utilized for transitting digital information, then lower
costs result when the data is compressed before trans-
mission. Data compression devices are particularly ef-
fective if the original data contains redundancy such as
having symbols or strings of symbols appear with high
frequency. A data compression device transforms an
input block of data into a more concise form and there-
after translates or decompresses the concise form back
into the original data in its original format.

For example, it may be desired to transmit the con-
tents of a daily newspaper via satellite link to a remote
location for printing thereat. Appropriate sensors may
convert the contents of the newspaper into a data
stream of serially occurring characters for transmission
via the communication link. If the millions of symbols
comprising the contents of the newspaper were com-
pressed before transmission and reconstituted at the
receiver, a significant amount of transmission time
would be saved.

As a further example, when an extensive data base
such as an airline reservation data base or a banking
system data base is stored for archival purposes, a signif-
icant amount of storage space would be saved if the
totality of characters comprising the data base were
compressed prior to storage and reexpanded from the
stored compressed files for later use.

To be of practical and general utility, a digital data
compression system should satisfy certain criteria. The
system should provide high performance with respect
to the data rates provided by and accepted by the equip-
ment with which the data compression and decompres-
sion systems are interfacing. The rate at which data can
be compressed is determined by the input data process-
ing rate into the compression system, typically in mil-
lions of bytes per second (megabytes/sec). High perfor-
mance is necessary to maintain the data rates achieved
in present day disk, tape and communication systems
which rates typicaily exceed one megabyte/sec. Thus,

20

25

30

40

45

60

65

2

the data compression and decompression systems must
have data bandwidths matching the bandwidths
achieved in modern devices. The performance of prior
art data compression and decompression systems is
typically limited by the speed of the ranlom access
memories (RAM), and the like, utilized to store statisti-
cal data and guide the compression and decompression
processes. High performance for a compression device
is characterized by the number of ram cycles (read and
write operations) required per input character into the
compressor. The fewer the number of memory cycles,
the higher the performance. A high performance design
can be utilized with economical, slow RAMS for low
speed applications such as telephone communications,
or with very fast RAMS for magnetic disk transfers.

Another important criterion in the design of a data
compression and decompression system is compression
effectiveness. Compression effectiveness is character-
ized by the compression ratio of the system. The com-
pression ratio is the ratio of data storage size in com-
pressed form divided by the size in uncompressed form.
In order for data to be compressible, the data must
contain redundancy. Compression effectiveness is de-
termined by how effectively the compression procedure
matches the forms of redundancy in the input data. In
typical computer stored data, e.g. arrays of integers,
text or programs and the like, redundancy occurs both
in the nonuniform usage of individual symbology, e.g.
digits, bytes, or characters, and in frequent recurrence
of symbol sequences, such as common words, blank
record fields, and the like. An effective data compres-
sion system should respond to both types of redun-
dancy.

A further criterion important in the design of data
compression and decompression systems is that of
adaptability. Many prior art data compression proce-
dures require prior knowledge, or the statistics, of the
data being compressed. Some prior art procedures
adapt to the statistics of the data as it is received. Adapt-
ability in the prior art processes has required an inordi-
nate degree of complexity. An adaptive compression
and decompression system may be utilized over a wide
range of information types, which is typically the re-
quirement in general purpose computer facilities. It is
desirable that the compression system achieves good
compression ratios without prior knowledge of the data
statistics. Data compression and decompression proce-
dures currently available are generally not adaptable
and so cannot be utilized for general purpose usage.

Another important criteria in the design of data com-
pression and decompression systems is that of reversibil-
ity. In order for a data compression system to possess
the property of reversibility, it must be possible to reex-
pand or decompress the compressed data back into its
original form without any alteration or loss of informa-
tion. The decompressed and the original data must be
identical and indistinguishable with respect to each
other.

General purpose data compression procedures are
known in the prior art that either are or may be ren-
dered adaptive, two relevent procedures being the
Huffman method and the Tunstall method. The Huff-
man method is widely known and used, reference
thereto being had in an article by D. A. Huffman enti-
tled “A Method for the Construction of Minimum Re-
dundancy Codes”, Proceedings IRE, 40, 10, pages
1098-1100 (September, 1952). Further reference to the

4,558,302

3

Huffman procedure may be had in an article by R.
Galiagher entitled “Variations on a Theme by Huffman,
IEEE Information Theory Transactions, IT-24, No. 6
(November, 1978). Adaptive Huffman coding maps
fixed length sequences of symbols into variable length
binary words. Adaptive Huffman coding suffers from
the limitation that it is not efficacious when redundancy
exists in input symbol sequences which are longer than
the fixed sequence length the procedure can interpret.
In practical implementations of the Huffman procedure,
the input sequence lengths rarely exceed 12 bits due to
RAM costs and, therefore, the procedure generally
does not achieve good compression ratios. Addition-
ally, the adaptive Huffman procedure is complex and
often requires an inordinately large number of memory
cycles for each input symbol. Thus, the adaptive Huff-
man procedure tends to be undesirably cumbersome,
costly, and slow thereby rendering the process unsuit-
able for most practical present day installations.

Reference to the Tunstall procedure may be had in
the doctoral thesis of B. T. Tunstall, entitled “Synthesis
of Noiseless Compression Codes”, Georgia Institute of
Technology, (September, 1967). The Tunstall proce-
dure maps variable lengih input system sequences into
fixed length binary output words. Although no adaptive
version of the Tunstall procedure is described in the
prior art, an adaptive version could be derived which,
however, would be complex and unsuitable for high
performance implementations. Neither the Huffman nor
the Tunstall procedure has the ability to encode increas-
ingly longer combinations of source symbols.

A further adaptive data compression and decompres-

.sion system that overcomes many of the disadvantages
“of the prior art is that disclosed in co-pending U.S.
patent application Ser. No. 291,870 filed Aug. 10, 1981
now U.S. Pat. No. 4,464,650 entitled “Apparatus and
Method for Compressing Data and Restoring the Com-
pressed Data” by M. Cohen, W. Eastman, A. Lempel
and J. Ziv. The procedure of said Ser. No. 291,870
parses the stream of input data symbols into adaptively
growing sequences of symbols. The procedure of said
Ser. No. 291,870 suffers from the disadvantages of re-
quiring numerous RAM cycles per input character and
utilizing time consuming and complex mathematical
procedures such as multiplication and division to effect
compression and decompression. These disadvantages
tend to render the procedure of said Ser. No. 291,870
unsuitable for numerous economical high performance
implementations.

It is appreciated from the foregoing that neither the
prior art nor the procedure of said Ser. No. 291,870
provides an adaptive, efficient, compression and decom-
pression system suitable for high performance applica-
tions. No known prior design approach is directly suit-
able for such a device.

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages
of the above described systems by providing an eco-
nomical, high performance, adaptable and reversible
data compression and decompression system and
method that achieves good compression ratios. The
present invention compresses a stream of data character
signals into a compressed stream of code signals by
storing strings of data character signals parsed from the
input data stream and searching the stream of data char-
acter signals by comparing the stream to the stored
strings to determine the longest match therewith. The

10

15

20

25

30

35

40

45

50

S5

60

65

4

compression apparatus also stores an extended string
comprising the longest match from the stream of data
character signals extended by the next data character
signal following the longest match. When the longest
match is extended and stored, a code signal correspond-
ing to the stored extended string is assigned thereto.
The compressed stream of code signals is provided from
the code signals corresponding to the stored longest
matches. A stored string of data characters is comprised
of a prefix string and the extension character. A string is
stored in terms of the code signal corresponding to its
prefix string.

The compressed stream of code signals is decom-
pressed by constructing and storing character strings
comprising prefix code signals and extension character
signals. The decompression system stores a string in
accordance with a received code signal and the exten-
sion character which is received as the first character of
the next following string.

The strings of data character signals are entered into
storage by means of a limited search hashing technique
that provides a limited number of hash addresses for
each search iteration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of a parsed por-
tion of a stream of data character signals.

FIG. 2 is a schematic block diagram of a data com-
pressor in accordance with the invention implemented
to provide highest performance.

FIG. 3 is a schematic block diagram of a data decom-
pressor in accordance with the invention implemented
to provide highest performance and adapted to decom-
press the compressed stream of code signals from the
compressor of FIG. 2.

FIG. 4 is a schematic block diagram of a data com-
pressor in accordance with the invention implemented
to provide highest compression.

FIG. § is a schematic block diagram of data decom-
pressor in accordance with the invention implemented
to decompress the compressed stream of code signals
from the compressor of FIG. 4.

FIG. 5 is a listing of a Fortran subroutine for imple-
menting in software a data compressor similar to that of
FIG. 2.

FIG. 7 is a listing of a Fortran subroutine for imple-
menting in software a data decompressor similar to that
of FIG. 3.

FIG. 8 is a listing in Fortran of a subroutine utilized
in the programs of FIGS. 6 and 7.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention comprises a data compressor
for compressing a stream or sequence of digital data
character signals and providing a corresponding stream
of compressed digital code signals. The invention fur-
ther includes a decompressor for receiving the com-
pressed code signals and restoring the original digital
data. The data to be compressed may comprise, for
example, English language textual material, stored com-
puter records and the like. It is appreciated in present
day data processing and communication systems that
the characters of the alphabets over which compression
is to be effected are processed and conveyed as bytes of
binary digits in a convenient code such as the ASCII
format. For example, input characters may be received
in the form of eight-bit bytes over an alphabet of 256

4,558,302

5

characters. The compressed code signals from the com-
pressor may either be stored in electronic storage files
for, for example, archival purposes or may be transmit-
ted to remote locations for decoding thereat. Addition-
ally, an electronic storage file, such as a disk store, may
include a compressor in its input electronics and a
decompressor in its output electronics whereby all data
entering the file is compressed for storage and all data
retrieved from the file is decompressed before transmis-
sion to the utilization equipment. The prior art compres-
sion and decompression systems discussed above do not
provide the performance or adaptability to accommo-
date such usage of compression and decompression.
The high performance adaptive systems implemented in
accordance with the present invention may be so uti-
lized.

A number of design options are usable in embodi-
ments of the present invention in various combinations
in accordance with the data to be compressed and the
desired characteristics of the system. Three embodi-
ments of the invention will be described; one embodi-
ment combining the options to provide the highest per-
formance, the second embodiment combining the op-
tions to provide the highest compression, and the third
embodiment providing a programmed computer ver-
sion of the highest performance embodiment.

The compressor of the present invention parses the
input stream of data characters into strings or segments
and transmits a code signal identifying each string. Ex-
cept for data characters that are encountered for the
first time by the compressor, each parsed string com-
prises the longest match to a previously recognized
string. The compressor transmits the code signal corre-
sponding to the recognized string. When a string of
characters is parsed from the input data stream, the
parsed string is extended by the next occuring character
in the input stream to form an extended string which is
encoded and stored in the compressor to be utilized for
later encodings. Thus the character sequences which
are recognized are constantly growing in average
length as statistical information is gathered in the course
of compressing a block of data. The extension character
is utilized as the first character in the next parsing itera-
tion. The parsing is achieved in a single pass through the
data, starting from the begining character and separat-
ing off one character at a time. Each string therefore,
except for single character strings, is stored as a prefix
string, which matches a previously stored siring and the
extension character. Each such string is conveniently
stored in terms of the code signal representation of the
prefix with an actual or implied representation of the
extension character. Parsing may be conceptualized as
inserting virtual commas between the characters of the
data stream thereby setting off the parsed strings or
segments. Therefore, in the present invention the search
into the unprocessed data stream for a match involves
searching from a comma to one character beyond the
next ensuing comma to find the longest match with a
previously observed string.

Referring to FIG. 1, a schematic representation of a
portion of a stream data characters is illustrated where
the “X’s” represent arbitrary characters of the aiphabet.
Commas are illustrated in the data stream only to depict
the parsing. A string 1 of the data stream is parsed by
virtual commas 2 and 3. The string 1 matches the previ-
ous string 1’ and the string 1’ is the longest extended
string preceeding the comma 2 that matches the input
data stream following the comma 2. The string 1’ had

10

20

25

30

35

40

45

50

55

60

65

6

been previously encoded and the code therefore is
transmitted by the compressor when encountering the
string 1. The compressor then encodes and stores an
extended string 4 comprising the prefix string 1 and an
extension character 5. The extension character is the
next character in the data stream following the prefix 1
irrespective of what character it is. In other words, the
extension character 5 may be a character that has been
seen previously in the data stream or it may be a charac-
ter of the alphabet that is encountered for the first time.

The compressor starts the next parsing iteration at the
virtual comma 3 starting with the extension character 5
until another longest match is achieved. Thus a string 6
is parsed that matches a previously extended string 6'.
Again, as in the previous iteration, the code signal for
the string 6’ is transmitted and the string 6 extended by
the next following character and the extended string
encoded and stored. In a subsequent parsing iteration, a
string 7 is parsed which matches the encoded and stored
string 4. The code signal transmitted in this parsing
iteration is that assigned to the extended string 4.

As discussed above, the code signals provided by the
compressor may be stored or transmitted for subsequent
decompression. The decompressor stores the data in
terms of encoded prefix strings and extension charac-
ters. Thus, the decompressor constructs an entry in its
storage comprising a received code signal and an exten-
sion character. For example, with continued reference
to FIG. 1, when the decompressor receives the code
signal associated with the string 1, the characters com-
prising the string are reconstructed, in a manner to be
described in detail hereinbelow, by reason of the
decompressor having previously constructed and
stored the string 1. In the next following iteration,
when the decompressor receives the code signal associ-
ated with the string 6, the characters comprising the
string are retrieved. At this point, the decompressor has
received the code signal from the string 1 and has re-
trieved the extension character 5 and can thus construct
and store the string 4 in a manner to be described in
detail hereinbelow.

In the present invention, sequences of input bytes are
compressed into code signals which may be of fixed or
variable length depending upon the embodiment. As
discussed above, input byte sequences are assigned code
identifiers and whenever a sequence is reencountered in
the input data stream, the same identifier is again trans-
mitted. One-byte sequences are assigned codes and
whenever a sequence is reencountered, it is extended by
one byte and a new code assigned to the extended se-
quence. Conceptually, the compressor begins each data
block with only the null string in the stored set. The
compressor enters one-character strings in the set each
time a new character is encountered and then utilizes
these stored ome-character strings to build longer
strings. As each string is added to the set, it is assigned
a code signal. Each time a character string from the
input is found in the set, the next input character is
appended to that string and the set searched to deter-
mine if the extended string is in the set. If the extended
string is not already there, it is entered. Optionally, the
string set can be initialized to include all single charac-
ter strings. This may yield a higher performance imple-
mentation, but may lose some compression efficiency.
The output code signals from the compressor may be
considered as citations pointing to the previous occu-
rance of an identical character sequence.

4,558,302

7

In the data compression and decompression system of
said Ser. No. 291,870 an extension character is ap-
pended to each recognized sequence and the extended
sequence encoded. The encoded representation of the
extended sequence was transmitted by the compressor
as its compressed code. The compressor of the present
invention, instead, stores the extended sequence and
transmits the code for the recognized sequence. The
recognized sequence is the prefix of the extended se-
quence. The stored extended sequence is then utilized
for later encoding. This aiteration of the procedure of
said Ser. No. 291,870 effects a substantial simplification
of the data compression and decompression system by
eliminating the time consuming and cumbersome math-
ematical manipulations utilized in said Ser. No. 291,870
and the concomitant hardware such as multiplication
and division devices. The alteration, as well as effecting
a substantial increase in device performance, also effects
an increase in compression efficiency with typically
encountered data. This is because in the system of said
Ser. No. 291,870, the extension character that is trans-
mitted as part of the compressed code signal contains a
number of bits commenserate with all symbols of the
alphabet being equally likely. In the present invention,
the extension character is transmitted as part of the
following compressed string code and, therefore, re-
quires a smaller number of bits in accordance with the
compression effected on the strings of characters.

The present invention utilizes a limited search length,
calculated address hashing system to enter springs into
the string table and to search for strings in the string
table. The hashing function utilizes a hash key com-
prised of a prior code signal and an extension character
to provide a set of N hash table addresses where N is
typically 1 to 4. The N RAM locations are sequentially
searched and if the item is not in the N locations, it is
considered not to be in the table. In compression, if a
new key to be inserted in the table cannot be accepted
in the N assigned locations, it is omitted from the table.
This limited search hashing procedure slightly reduces
compression efficiency but substantially increases im-
. plementation simplicity. Alternative embodiments may
be utilized wherein the N hash addresses are searched in
parallel in replicated RAMS.

The present invention may be implemented utilizing
fixed or variable length compressed code signals. A
fixed length code signal embodiment results in imple-
mentation simplification with a slight loss in compres-
sion efficiency. A fixed length code embodiment tends
to reduce RAM space requirements and the code shift-
ing mechanism complexities necessitated by a variable
code length implementation. The fixed length code
implementation, however, is desirable when effecting a
very high performance implementation.

Generally, the present invention effects compression
by mapping variable strings of input character signals
into output code symbol signals. The compressor stores,
in a string table (RAM) a list of strings it recognizes and
for each string a corresponding output code signal. The
set of strings so stored is constructed so that any se-
quence of input characters can be parsed into a stored
string and hence can be mapped into an output code.
Parsing is achieved at any iteration by consuming all
consecutive input characters which match the longest
string in the string table and transmitting the corre-
sponding output code. The longest match is extended
by the next input character, stored in the string table,
and assigned a corresponding code.

20

25

30

35

40

45

50

55

60

65

8

Thus, the composition of the set of strings in the
string table adapts to and is a statement of the current
data block statistics. Specifically, each string added to
the set is a one-character extension of a string already in
the set. A string is added to the set only after it is actu-
ally observed in the input data. Therefore, a long string
can occur in the set only if it has been often encountered
and thus can be expected to recur frequently. The string
set is stored as a table, preferably, in a random access
memory (RAM). The strings are stored in what might
be considered a linked-tree structure. Each string is
stored, at least impliedly, with its code symbol, the last
character of the string and the code symbol of the string
prefix which contains all the string characters but the
last. The decompressor in decoding a string utilizes
multiple RAM accesses as each character is obtained
individually and each prefix code is accessed in se-
quence.

The data signals are stored in the string table in a
manner to facilitate locating the longest match for an
input character sequence. As each input character is
read, it is appended to a string already recognized (start-
ing with the null string at the beginning of a new se-
quence), and the new string is tested to determine if it is
in the table. If it is located in the table, its code is re-
trieved and the process is repeated with a new character
and the new code. To so access the strings, they are
conveniently identified by the tuple “Prefix code, exten-
sion character”. A limited search hasing system is uti-
lized to effect the search through the string table.

A hashing system usable in implementing the present
invention comprises a function

hash (code, character)—address 1, address 2, . . .

which generates for a code, character combination a
sequence of memory addresses. When inserting a string
in the table, the generated RAM addresses are accessed
in sequence until an empty site is found, and the item is
inserted at that point. When retrieving an item, the same
address sequence is accessed until the item is found or
an empty site is found, in which case, the item is defined
as not existing in the table. At each occupied site, the
identifying code, character tuple for that string may be
compared to determine if the site occupant is the de-
sired item. For reasons to be described, it is actually
only necessary in the present embodiments to compare
the identifying code.

In the hash function employed in the present inven-
tion, the number of addresses derived and utilized is
limited to a small fixed value N, where N is typically
where one to four. If an item cannot be inserted in the
string table in N accesses, the item is not utilized. If an
item to be retrieved from the table is not located in N
accesses, it is defined as not being in the table. This
limited search aspect results in a small loss of compres-
sion efficiency, but a substantial increase in perfor-
mance. The present invention will be described as ef-
fecting compression over an alphabet of B bit bytes.
The hash function utilized in implementing the present
invention is designed so that the set of addresses associ-
ated with any one code, all N addresses for all 28 exten-
sion characters, does not contain any address twice.
Thus, when an address is accessed for a particular code,
character tuple, comparison of the code is sufficient to
establish the identity of the occupant of that location. It
is not necessary to store the character value in the
RAM. RAM space is thus conversed by reason of this

4,558,302

9

aspect of the hash function. Additionally, the hash func-
tion is designed so that abnormally heavy usage of con-
secutive values of codes or characters does not result in
overuse of any particular set of addresses. This is
achieved by assuring, when possible, that any two code,
character tuples having the same first address value will
not have the same second address value. It will be ap-
preciated that the several addresses generated by the
hash function may be provided in parallel so that dupli-
cate copies of the RAM may be searched concurrently
to further enhance performance of the system. Many
hash functions that satisfy the above described criteria
will perform satisfactorily in embodying the present
invention and a particular, suitable hash function will be
described hereinbelow. It is appreciated that other hash
functions satisfying the above criteria may be routinely
derived.

In the embodiments of the invention to be hereinbe-
low described, the output code signal from the com-
pressor will have a nominal word length of C bits where
2C is less than or equal to the size of the string table.
However, when the string table is first being con-
structed, fewer than C bits are required to select each
string from those available during an iteration. Highest
compression is achieved if progressively larger output
codes are transmitted up to the limit of C bits. This
approach utilizes additional output hardware to align
the variable codes into fixed byte orientation. The out-
put word length may also vary in accordance with the
recognition of new input characters. In one of the em-
bodiments described below, whenever an input charac-
ter is first encountered, the nullstring code is provided
followed by the bit pattern of the character itself. These
outputs are therefore somewhat longer than the normal
string code. In a manner to be described, this variation
in output length is avoided by initializing the string
table to contain all single character strings before input
data is processed. This approach simplifies the imple-
mentation complexity in that it eliminates any bit shift-
ing hardware otherwise required but may reduce com-
pression. Reduction in compression occurs because the
codes assigned to unused single characters cannot be
profitably utilized, but expand the number of bits re-
quired to distinguish all assigned codes. This reduction
in compression only occurs during compression of ini-
tial strings utilizing variable length codes.

In the embodiments of the invention to be described
hereinbelow, the decompression process is implemented
with logically the same string table as the compression
process but stored somewhat differently. When each
code signal is received by the decompressor, it is looked
up directly in the string table where it is translated into
a prefix string code and an extension character. The
prefix code is then looked up and translated, and the
process is repeated until the empty string is encoun-
tered. This process, however, produces data characters
in the reverse order from the sequential order with
which that character string was received by the com-
pressor. Two techniques are described hereinbelow for
reversing the intra-string character sequence. A LIFO
stack (last-in-first-out) is utilized to temporarily hold the
characters and as each character is produced by the
decompressor, it is pushed onto the stack. At the end of
the iteration, the characters are read from the stack in
correct order. Alternatively, a string length count is
maintained for each code in the string table so that
when a character is read out, it can be placed directly in

W

0

40

45

55

60

65

10
the appropriate position in a random-access output
buffer.

FIGS. 2 and 3 illustrate a compressor and décompres-
sor, respectively, for implementing a highest perfor-
mance embodiment of the present invention. This em-
bodiment provides an economical and fast compression
process. A character size of B bits and a compressor
code size of C bits is utilized. The string table contains
2Clocations. Typically, B is 8 bits and C is 12 bits with
other character and code sizes being utilizable in prac-
ticing the invention. This embodiment utilizes a fixed
length code symbol signal of C bits which is utilized as
the address of the string entry in the hashed string table.
The first 28 locations are initialized to contain the single
character strings. The compressor utilizes a string table
which contains in each entry only the C-bit prefix string
code. The decompression table contains this same code
and in addition, the B-bit extension character appended
to the prefix string to compose the current string.

The addresses into the string table, which are utilized
as the output code symbol signals from the compressor
are derived utilizing a hash function that will be de-
scribed in detail subsequent to the description of the
embodiments of FIGS. 2 and 3. The hash function gen-
erates N C-bit addresses in sequence. The embodiments
of FIGS. 2 and 3, as well as those of FIGS. 4 and 5
utilize a controller to control the numerous functions
described herein below. For example, the hash function
device notifies the controller upon the occurance of the
NTH address. The hardware embodiments of the inven-
tion are implemented and described as sequential state
machines. The controllers of the compressor and
decompressor receive signals from the various blocks
thereof and provide signals thereto to control the com-
ponents of the compressor and decompressor in accor-
dance with the extant state of the machine. Any stan-
dard control logic system may be utilized to control the
described sequences. For example, one flip-flop per
state may be activated to distinguish the operative con-
nections and functions to be performed during each
state with the flip-flop controlling the state being acti-
vated during that state.

Referring now to FIG. 2, the compressor of the high-
est performance embodiment of the present invention is
illustrated. The compressor receives input character
signals on a bus 10 and provides compressed output
code signals on a bus 11. The input characters are pro-
vided on the bus 10 from external equipment. The exter-
nal equipment also provides a data availale signal on a
line 12 whenever an input character signal is available
from the external equipment and applied on the bus 10.
The data available signal on the line 12 is applied to a
compressor controller 13. The compressor controller 13
provides control signals to all of the blocks of the com-
pressor of FIG. 2 via leads 14. The compressor control-
ler 13 sequences the compressor of FIG. 2 through the
control states in a manner to be described in detail here-
inbelow. The controller 13 also provides a character
strobe signal to the external equipment on a line 15 to
call for additional input characters. When an output
code signal is available on the bus 11, the controller 13
provides a code strobe signal to the external equipment
on a lead 16.

The input characters on the bus 10 are entered into a
B-bit character register 17. In order to create single
character string codes, the B-bit character byte from the
character register 17 is inserted via a bus 18 into the B
least significant bits of a C-bit code number register 19.

4,558,302

11
The high order C-B bits of the code number register 19
may be set to zero by means of a control signal on a lead
20.

The code symbol signal from the register 19 and the
character signal from the register 17 are applied via
busses 21 and 22 respectively to a hash function circuit
23. The hash function circuit 23 combines the C-bit
code signal on the bus 21 with the B-bit character on the
bus 22 to provide N C-bit addresses sequentially on a
bus 24. The hash function circuit 23 signals the control-
ler 13 via a lead 25 if the hash address provided on the
bus 24 is the N7H address in the sequence.

The hash function circuit 23 also receives a New
Hash command and a Next Hash command from the
controller 13. The controller 13 commands the hash
function circuit 23 to provide the first of the N hash
addresses in response to the New Hash command and
the subsequent hash addresses in response to subsequent
occurrances of the Next Hash command. As described,
when the hash function circuit 23 has provided the N7#
hash address, a signal is returned to the controiler 13 via
the lead 25.

The hash addresses on the bus 24 are applied to a
comparator 26 which also receives a constant value
signal equal to 28. The comparator 26 compares the
hash address on the bus 24 with the value 2% and pro-
vides a signal to the controller 13 via a lead 27 indicat-
ing whether the hash address on the bus 24 is greater
than 28 or is less than or equal to 25.

The hash address on the bus 24 is also applied to a
C-bit RAM address register 28. An address loaded into
the RAM address register 28 accesses a RAM 29 uti-
lized to store the compressor string table. The RAM 29
contains 2C C-bit locations. Each string is stored in the
RAM 29 by storing its prefix code at a location ad-
dressed by the code assigned to the string. The code
assigned to the string is derived by hashing the prefix
code with the string extension character in a manner to
be described.

The RAM 29 receives a READ command and a

- WRITE command from the controller 13 to control the

READ and WRITE functions of the RAM 29. The
RAM 29 is controlled by the controller 13 to receive
either a C-bit value equal to 28 or the C-bit code number
signal from the register 19 via a bus 30. In accordance
with the application of the WRITE command to the
RAM 29, either the constant value 28 or the code num-
ber on the bus 30 is written into the location accessed by
the RAM address in the register 28 in accordance with
control signals from the controller 13. The RAM 29
also provides in response to the READ command, the
C-bit contents of the accessed location on a bus 31. The
RAM output on the bus 31 and the output of the code
register 19 are applied as inputs to a comparator 32. The
comparator 32 also receives a constant value signal
equal to 28. The comparator 32 compares the output of
the RAM 29 with the output of the code number regis-
ter 19 and with 258. The results of the comparison are
provided to the controller 13 via a lead 33. The compar-
ison signal on the lead 33 indicates to the contiroller 13
whether the RAM output on the bus 31 is equal to the
code number from the register 19 or to 28 or to neither.
For reasons to be later described, the controller 13
controls the RAM address register 28 to transfer its
contents to the code number register 10 via a bus 34.
The compressor of FIG. 2 also includes an initializa-
tion counter 35 that provides a C-bit signal to the RAM
address register 28 via a bus 36. The counter 35 may be

20

25

30

40

45

50

55

60

65

12

set to zero via a zero valued signal applied thereto. The

controller 13 controls the counter 35 via a count com-

mand to add one to the contents of the counter for each

application of the count command. The counter 35

signals the controller 13 when it has attained the count

2C€ via a carry-out or overflow signal on a lead 37. The
initialization counter 35 is utilized to initialize the RAM

29 to empty by sequentially accessing all of the loca-

tions thereof and writing in the constant value 25 se-

lected to indicate the empty condition.
The basic operation of the compressor of FIG. 2 is
capsulized as follows:

1. Initialize RAM to empty, for each data block

2. On first character of each byte string:
character—code register, as first code number

3. On successive characters:
hash (code, character)—sequence of N RAM ad-

dresses; for each location in sequence

If RAM output=code: RAM address—code regis-
ter; reenter this step with another character.

If RAM location is empty: write code register—
RAM: transmit code value as output; go to step
2

else, after all hash address:transmit code value as
output; go to step 2.

With continued reference to FIG. 2, the following is

a state machine description of the compressor of FIG. 2.

State 0: Wait state, at beginning of each data block
Set initialization counter to zero.

Wait for data available signal: go to State 1

State 1: Initialize RAM
initialization counter—RAM address
28—>RAM data input
write RAM
add +1 to initialization counter
If initialization counter >2C repeat State 1 else go to

State 2.

State 2: Read first character of block for starting code
Input character—code register (low-order B bits)
Zeros—code register (high order C-B bits) go to

State 3.
State 3: Process next character in this string
Read next character
If no new input characters available: transmit code
register—output; go to State 0

hash (code register, next character)—~RAM address

If RAM address =25: go to State 4

Read RAM

If (RAM output)=(code register): RAM address-
—code register; go to State 3

If (RAM location)=25: go to State 5

Else: go to State 4
State 4: Continue Search
next hash (code, character)»RAM address
If RAM address =25: If last hash value: go to State
6
Else: repeat State 4

Read RAM

If (RAM output)=(code register): RAM address-
—code register; go to State 3

If (RAM output)=258: go to State 5

Else: If last hash iteration: go to State 6 else repeat
State 4

State 5: Create new string
Write (code register)»RAM go to State 6

State 6: End of String

Transmit (code register)—output
Character register—code register (low-order B bits}

4,558,302

13
Zeros=code register (high-order C-B bits) go to
State 3

A more detailed description of the operation of the
compressor of FIG. 2 with respect to the state machine
description given above is now provided:

[0]. Wait State. While waiting for a block of input
characters, the compressor of FIG. 2 resides in this
state. During the Wait State, the controller 13 resets the
initialization counter 35 to zero. The data available
signal on the lead 12 from the external source which
supplies the input data is utilized to indicate when input
data is available. When data becomes available, the data
available signal on the lead 12 signals the controller 13
to enter the Initialization State.

[1]. Initialization State. The contents of the Random
Access Memory, RAM, 29, are initialized to be empty.
The empty symbol is arbitrarily chosen as 258 for imple-
mentation convenience. Thus, in the Initialization State,
the value 28is written into each location of the memory
29. The empty symbol should never be assigned to a
string code. The locations zero through 25 are initial-
ized to empty for implementation convenience although
they will never be accessed. Conceptually, the locations
zero through 28—1 are initialized to contain the 28
single character string which are preassigned code val-
ues equal to the characters they represent. Thus, the 28
single character strings are preassigned code values
zero through 28—1. The initialization is achieved in
repeated memory cycles, by gating the value in the C
bit initialization counter 35 via the bus 36 to the RAM
address register 28. The input to the RAM 29 is selected
from the C bit constant input value 28. The RAM 29 has
2€ locations each C bits wide. The RAM 29 is con-
trolled to write the selected input data into the location
designated by the RAM address register 28. The initial-
ization counter 35 is commanded to count up by adding
1 to its present contents. This sequence of events is
repeated 2C times, once for each memory location.
After 2€ such counts, the initialization counter 35 pro-
vides an overflow or carry-out signal to the controller
13 via the lead 37 signalling that the 2€ counts have
occurred. This causes the compression unit of FIG. 2 to
advance to the First Character State.

[2]. First Character State. After the initialization, the
compressor of FIG. 2 reads the first input character
residing on the bus 10 gating the B bits thereof into the
B bit character register 17. A signal is then provided by
the controller 13 on the character strobe line 15 to cause
the next input character signal to be provided on the
input bus 10 by the external equipment. The B character
bits in the character register 17 are then gated via bus 18
into the least significant (right-hand) B bits of the C bit
code number register 19 and the most significant C-B
bits of the register 19 are set to zero. This procedure
converts the first input character into the preassigned
code value for that single character string. In the em-
bodiment of FIG. 2, the 28 preassigned code values are
equal to the characters of the alphabet respectively, that
they represent. Having initiated the first string the Next
Character State is entered which is the main cycle of the
iterations of the compressor of FIG. 2.

[3]. Next Character State. Upon entering this state, a
valid character string has been parsed from the input
and its code value resides in the code number register
19. The next character is now read from the bus 10 into
the character register 17 and the character strobe signal
on the line 15 is returned to the external data source. In
the event that the data gvailable signal on the line 12

15

20

25

40

45

50

55

60

65

14
indicates that no such character was available on the
bus 10, then the compressor has attained the end of the
data block. In that situation, the code value for the last

" data string, residing in the code register 19 is transmit-

ted as output code on bus 11 and the code strobe signal
on the line 16 is sent to the external equipment indicat-
ing that a new compressed code signal is being pro-
vided. The controller 13 then returns the compressor to
the Wait State.

If, however, the end of the data block has not been
attained and a new character was available and entered
into the character register 17, this B bit character via
the bus 22 is combined, in the hash function circuit 23,
with the C bit code number in the register 19 provided
on the bus 21. Under control of the new hash command
from the controller 13, the hash function circuit 23
provides the first RAM address for this code, character
combination. This hash address on the bus 24 is com-
pared to the value 28 by the comparator 26. If the hash
address on the bus 24 is less than or equal to 25, then this
location is inaccessible and the next hash address is
selected by going to the Next Hash State. Address val-
ues less than or equal to 258 are not permitted as new
code values because the values less than 2B are preas-
signed to be the code values for the single character
strings and the value 28 was preassigned to identify an
empty memory location (an unused code value).

If the hash address is greater than 27, the normal case,
then the hash address on the bus 24 is gated into the
RAM address register 28 and the RAM 29 is controlled
to read the contents of that address. The C bit result on
the bus 31 is compared in comparator 32 to both the
code value from the register 19 and to the value 28, If
the output of the RAM 29 on the bus 31 is equal to the
code number from the register 19, then the extended
string has been previously encountered and already
assigned a code value; viz, the RAM address value of
the location just read. The new code number is gated
from the RAM address register 28 via the bus 34 to the
code number register 19 and this Next Character State
is reentered to repeat the procedure on a new character.

Alternatively, if the RAM output on the bus 31 is
equal to 258 then this location is empty, signifying that
the extended string is not in the table and so cannot be
utilized to parse the input data. This terminates the
building of the current string and the New String State
is now entered.

In the event, however, that the RAM output on the
bus 31 equals neither 28 nor the code number from the
register 19 other locations in the RAM 20 must be
searched, which is performed in the Next Hash State.

[4]. Next Hash State. In this state, a further RAM
address is generated by the hash function circuit 23 for
the current code, character combination under control
of the Next Hash command from the controller 13. The
procedures of the previous state are then essentiaily
duplicated. The new address is compared by the com-
parator 26 to 25 and if the address is not greater than 28
it is not utilized. In this event, this Next Hash State is
reentered to obtain another address. If all N hash ad-
dresses have been examined, as indicated by a signal
from the hash function circuit 23 on the lead 25, then
the current string is considered as not existing in the
string table and there is no space to enter it. The String
End State is then entered.

If, however, the hash address is greater than 25, the
address on the bus 24 is gated to the RAM address
register 28 and the RAM 29 is controlled to read the

4,558,302

15

contents at that location. The result provided on the
RAM output bus 31 is compared in the comparator 32
to the code number in the register 19 and to 25. If the
RAM output equals the code number, then the new
code number from the RAM address register 28 is gated
via the bus 34 to the register 19 and the Next Character
State is entered. Alternatively, if the RAM output on
the bus 31 equals the value 25, then the New String
State is entered. If the RAM output on the bus 31 equals
neither 28 nor the code value, then this process is re-
peated up to N times by reentering this Next Hash State
for a new address value. When N locations have been
tried, as indicated by a signal from the hash function
circuit 23 on the lead 25, the string is terminated and the
String End State is entered.

[5]. New String State. The encountering of an empty
location in the string table indicates that the searched
for extended string has not been found in the table and
that it should be entered therein. This is accomplished
by writing the prefix code number of the extended
string into the RAM 29 thus reserving the assigned
address as the code value for the extended string. Ac-
cordingly, the address in the RAM address register 28 is
maintained at its former value and the RAM 29 is con-
trolled to write the contents of the code number register
19 via the bus 30 into the addressed location. The String
End State is then entered.

(6]. String End State. When entering this state, it had
been determined that the extended string was not in the
string table and so the existing string code should be
transmitted as output and a new string begun. Accord-
ingly, the output code signal from the code number
register 19 is transmitted on the output bus 11 and the
Code Strobe Signal is sent via the lead 16 to notify the
external apparatus that a new compressed code signal is
present on the bus 11. The precise form of this interface
will vary according to the specific requirements of the
external apparatus that receives the compressed data
signals. The new string is initiated utilizing the existing
character in the character register 17 which is translated
into its preassigned single character string code by gat-
ing it into the least significant B-bits of the code number
register 19 via the bus 18 and placing zeros in the higher
C-B bit positions of the register 19. The Next Character
State is reentered to construct the new string.

Referring now to FIG. 3, a decompressor for recov-
ering the data character sequences corresponding to the
compressed code signals from the compressor of FIG. 2
is illustrated. The decompressor of FIG. 3 is imple-
mented so that the output thereof may be placed di-
rectly into an external random access buffer, which
arrangement provides rapid reversal of the output char-
acter strings. This decompressor embodiment utilizes
explicit management of output location addresses. Each
entry in the string table contains a “level” value which
indicates the number of characters in the prefix string.
This level value is utilized to achieve proper positioning
of each character in the output buffer. The external
equipment which receives the decompressed character
strings from the decompressor is assumed to utilize a
random access memory to store the data. When utiliz-
ing an external random access buffer, the decompressor
provides an address with each output data character,
which address defines the location of that character in
the output string. The initial location corresponds to an
address of zero. The external equipment may manipu-
late the location addresses to match its particular mem-
ory addres§ing requirements.

15

20

25

30

35

40

45

50

55

60

65

16

The decompressor of FIG. 3 provides output charac-
ters in a different order than they were received by the
compressor of FIG. 2, but by providing a location value
with each character, the final assembled data stream
will be in the correct sequence. If a random access
memory is not utilized in the external equipment, a stack
mechanism approach to string reversal, such as that
described below, with respect to FIG. 5 may be utilized.

The decompressor of FIG. 3 receives compressed
code signals on a bus 50 and provides corresponding
strings of recovered data character signals on a bus 51.
The compressed code signals are provided on the bus 50
from external equipment. The external equipment also
provides a data available signal on a line 52 whenever a
compressed code signal is available from the external
equipment and applied on the bus 50. The data available
signal on the line 52 is applied to a decompressor con-
troller 53. The controller 53 provides control signals to
all of the blocks of the decompressor of FIG. 3 via leads
54. The decompressor controller 53 sequences the
decompressor of FIG. 3 through the control states
thereof in a manner to be described in detail hereinbe-
low. The controller 53 also provides an input data
strobe signal to the external equipment on a line 35 to
call for additional input code signals. When an output
character is available on the bus 51, the controller 53
provides an output data strobe signal to be external
equipment on a lead 56. :

The compressed code signals on the bus 50 are en-
tered into a C-bit code register 57. In order to distin-
guish between codes representative of single character
strings and codes representative of multiple character
strings, the output of the code register 57 is compared to
a constant value signal of 28 in a comparator 58. Ac-
cordingly, the comparator 58 provides a signal to the
controller 53 via a lead 59 indicative of whether the
code signal in the register 57 is greater or less the 25.
When the code value in the register 57 is less than 25,
and therefore representative of a single character string,
the low order B-bits of the register 57 are transferred
via a bus 60 to a B-bit last character register 61. Since as
discussed above, the code value for a single character
string is the same as the character, the single character
string transferred to the last character register 61 via the
bus 60 is output directly on the bus 51.

When the compressed code signal in the register 57 is
greater than 25, as determined by the comparator 58,
the code value in the register 57 is transferred toa RAM
address register 62 via a bus 63. At certain times during
the decompression of compressed code signals, the
compressed code in register 57 is transferred to a C-bit
code register 64 via a bus 65 to save the value for later
processing. Under certain conditions, to be later de-
scribed, the code value in the register 64 may be trans-
ferred to the RAM address register 62 via a bus 66.

In order to provide appropriate addresses for the
storage of character strings in the decompressor, the
character signal stored in the last character register 61
and the code signal stored in the code register 64 are
applied via busses 67 and 68, respectively, to a hash
function circuit 69. The hash function circuit 69 is iden-
tical to the hash function circuit 23 described above
with respect to FIG. 2. The hash function circuit 69
combines the C-bit code signal on the bus 68 with the
B-bit character signal on the bus 67 to provide N C-bit
addresses sequentially to the RAM address register 62
via a bus 70. The hash function circuit 69 signals the

4,558,302

17

controller 53 via a lead 71 if the hash address provided
on the bus 70 is the N7H address in the sequence.

The hash function circuit 69 also receives a New
Hash command and a Next Hash command from the
controller 53. The controller 53 commands the hash
function circuit 69 to provide the first of the N hash
addresses in response to the New Hash command and
the subsequent hash addresses in response to subsequent
occurrences of the Next Hash command. As described
when the hash function circuit 60 has provided the N7H
hash address, a signal is returned to the controller 53 via
the lead 71.

The RAM address from the RAM address register 62
is applied to a comparator 72 and to the last character
register 61 via a bus 73. The comparator 72 also receives
a constant value signal equal to 28. The comparator 72
compares the RAM address on the bus 73 with the
value 28 and provides a signal to the controller 53 via a
lead 74 indicating whether the address on the bus 73 is
greater than or less than 28. When it is less than 25, the
value in the RAM address register 62 is applied to the
last character register 61 to recover the first character
in a character string in a manner to be described.

An address loaded into the RAM address register 62
accesses a RAM 75 utilized to store the decompressor
string table. The RAM 75 contains 2€ locations each
being C+B+L bits wide. Each string is stored in the
RAM by storing its C bit prefix code, its B bit extension
character and an L bit level value. The value in the level
field is equal to the number of bits in the prefix of the
string. Each string is stored in the RAM 75 at a location
addressed by the code assigned to the string. The code
assigned to the string is derived by hashing the prefix
code with the string extension character in 2 manner to
be described. :

The RAM 75 receives a READ command and a
WRITE command from the controller 53 to control the
READ and WRITE functions of the RAM 75. For
initialization purposes in a manner to be explained, the
RAM 75 receives constant value signals 258, zero and
zero for writing into the prefix code, character and level
fields of the RAM location addressed by the RAM
address register 62. These values are applied under
control of the controller 53 and are entered upon appli-
cation of the WRITE command. The RAM 75 is also
controlled by the controller 53 to selectively receive the
code value from the code register 64 via a bus 76, the
character value from the last character register 61 via a
bus 77 and a level value from a level register 78 via a bus
79 for entry into the prefix, character and level fields
respectively of the RAM location addressed by the
RAM address register 62. These values are written into
the respective fields in response to the WRITE com-
mand from the controller 53.

The controller 53 also controls the RAM 75 in re-
sponse to the READ command to provide on a bus 80
the prefix code value stored in the prefix code field of
the RAM location addressed by the RAM address reg-
ister 62. This code value on the bus 80 is applied to the
RAM address register 62 as well as to a detector 81. The
detector 81 determines whether or not the prefix code
on the RAM output 80 is equal to 27 and provides a
signal to the controller 53 via a lead 82 accordingly.

The controller 53 also controls the RAM 75 to selec-
tively provide the character value from the character
field via a bus 83 to the last character register 61. The
character value is provide on the bus 83 fron the charac-
ter field of the RAM location addressed by the RAM

10

20

25

30

35

45

50

55

60

65

18

address register 62 in response to the READ command.
In a similar manner, the controller 53 controls the RAM
75 to provide the level value via a bus 84 either to a
level register 85 or to an address adder 86. The level
value is applied to the bus 84 from the level field of the
RAM location accessed by the RAM address register
62. The selective routing of the level value on the bus 84
to the level register 85 and the address adder 86 is con-
trolled by the controller 53 in accordance with the
extant state of the decompressor.

The decompressor of FIG. 3 includes apparatus for
assigning addresses to the output character signals for
proper alignment in an external random access memory.
Accordingly, the address adder 86 provides such loca-
tion address to the external equipment on a bus 87. The
address adder 86 receives inputs from an outpointer
register 88, the level value from the RAM 75 on the bus
84 and the level value from the level register 78 on a bus
89. The address adder 86 also receives a zero value
signal on a bus 90. The controller 53 controls the ad-
dress adder 86 to add either the level value on the bus
84, the level value on the bus 89, or the level value on
the bus 90 to the value in the outpointer register 88 in
accordance with the extant state of the decompressor
and logical conditions existing during the state in a
manner to be described. The result of the addition pro-
vides the location address on the bus 87.

The output of the address adder 86 is also applied as
an input to the outpointer register 88. The controller 53
controls the outpointer register 88 to replace the extant
outpointer value with the result of an addition in the
adder 86 or merely to provide a base address to the
adder 86 for generating location addresses on the bus
87. The controller 53 also controls the level registers 78
and 85 to transfer the level value from the level register
85 to the level register 78 increasing the value by one
via an adder 91 in the transfer path. Additionally, the
controller 53 controls the level registers 78 and 85 to
transfer the contents of the Ievel register 78 to the level
register 85 via a bus 92. The apparatus also includes
inputs to the level register 85 and the outpointer register
88 to zero these registers under conditions to be de-
scribed.

The decompressor of FIG. 3 also includes an initial-
ization counter 93 that provides a C-bit signal to the
RAM address register 62 via a bus 94. The counter 93
may be set to zero via a zero-valued signal applied
thereto. The controller 53 controls the counter 93 via
Count command to add one to the contents of the
counter for each application of the Count command.
The counter 93 signals the controller 53 when it has
attained the count 2€ via a carry-out or overflow signal
on a lead 95. The initialization counter 93 is utilized to
initialize the RAM 75 to empty by sequentially access-
ing all of the locations thereof and writing in the con-
stant values 28, zero and zero into the prefix code, char-
acter and level fields respectively.

The basic operation of the decompressor of FIG. 3 is
capsulized as follows:

1. Initialize RAM to empty, for each data block

2. For each input code, read code—code register; save
certain data from prior code for string table update.

3. Code register—RAM address Read RAM producing
prefix code, extension character, string length

If prefix codeZ25, characater—output at location

determined by string length; prefix code—code
register; repeat step 3

4,558,302

19
If prefix code < 23; code value—output as character;
go to step 4
4. At end of character string update string table:
Write prior received code and last output character
into first empty location from sequence produced
by hash (prior code, last character); go to step 2.
With continued reference to FIG. 3, the following is
a state machine description of the decompressor of FIG.
3.
State 0: Wait State, at beginning of each data block
initialization counter=zero
outpointer =zero
wait for data available signal; go to State 1
State 1: Initialize RAM
initialization counter—RAM address
2B, zero, zero—~RAM input
write RAM
add +1 to initialization counter
If initialization counter < 2€ repeat State 1; else go to
State 2
State 2. Process initial input code
Input code symbol-»code register 1
Input data strobe
Code value (low order B bits)—last character regis-
ter.
Location Address=outpointer; output data strobe
Level Register 1=zero
go to State 3
State 3: Next input code
Code register 1-»code register 2
(Level reg. 1)-+1—level register 2
(Level reg. 2)-+({outpointer)—outpointer
If no new input available; go to State 0
Read input code value —code reg. 1
Input data strobe
If code reg. 1228
Level Reg. 1=0
code register 1 -RAM address
go to State 4
If code reg. 1<25:
Code value (low order B bits of code reg. 1)—last
character reg.
Location Address=outpointer; output data strobe
go to Staie 5
State 4: First character cycle
Read RAM
If code (RAM=227 [normal case]
level (RAM)—level reg. 1
code (RAM)—RAM address
char (RAM)—last char. reg.
Location address =outpointer -+ level (RAM); output
data strobe
If code (RAM) =28 [an abnormal case}
level reg. 2—level reg. 1
code reg. 2—-RAM address
Location address=outpointer +level reg. 2; output
data strobe
go to State §
State 5: Later character cycles
If RAM address=258: Read RAM
code (RAM)—RAM address
char (RAM)—last char. reg.
Location address=outpointer 4 level (RAM); output
data strobe
go to State 5
If RAM address <28:
RAM address (low B bits)—last char. reg.
Location address =outpointer: output data strobe

5

10

15

20

25

30

35

40

45

50

55

60

65

20

go to State 6
State 6: Update string table

Hash (code register 2, last char. reg.)—»RAM address

Read RAM

If code (RAM) =28 and if RAM address>25:

2o to State 7

Else: Repeat State 6 with new hash value If this was

last hash, go to State 3
State 7: Write Cycle

with RAM address unchanged

code reg. 2—code (RAM)

last char. reg.—char (RAM)

level reg. 2—level (RAM)

Write RAM

go to State 3

A more detailed description of the operation of the
decompressor of FIG. 3 with respect to the state ma-
chine description given above is now provided.

[0.] Wait State. While waiting for a block of com-
pressed input code signals, the decompressor of FIG. 3
resides in this state. During the Wait State, the control-
ler 53 resets the initialization counter 93 to zero. The
controller 53 also resets the outpointer register 88 to
zero so that subsequent transfers of output character
signals to the external output memory begins at the
lowest available address. The data available signal on
the lead 52 from the external source which supplies the
input code, is utilized to indicate when input code is
available. When input code becomes available, the data
available signal on the lead 52 signals the controller 53
to enter the Initialization State.

[1.] Initialization State. The contents of the random
access memory, RAM, 75 are initialized to be empty.
The RAM 75 contains three distinct data fields in each
of its 2€ locations; viz. a prefix code value of C bits, an
extension character of B bits, and a level value of L bits.
Each location corresponds to a string of characters
where the address of the location is the code value of
the string and the contents of the location provide the
composition of the string in terms of its prefix string and
extension character. The level field provides the num-
ber of characters in the prefix string and is utilized in
locating output characters in the appropriate positions
in the output sequence. L bits are provided for the level
value under the assumption that no string length will
exceed 2L characters where L is less than or equal to C.
All of the locations of the RAM 75 are initialized by
entering the empty symbol, 25, into the prefix code
fields thereof. The character value and level value fields
are initialized to zero although these fields do not re-
quire initialization and can be left with extant values if
desired for simplification. The first 28+ 1 locations are
initialized for implementation convenience although
these locations are never otherwise accessed during
operation of the decompressor.

The initialization is achieved in repeated memory
cycles by gating the value in the C-bit initialization
counter 93 via the bus 94 to the RAM address register
62. The RAM inputs are selected to be the constant
values 258, zero and zero. The RAM 75 is controlled to
write the selected input data into the location desig-
nated by the RAM address register 62. The initialization
counter 93 is commanded to count up by adding one to
its present contents. This sequence of events is repeated
2C times, once for each memory location. After 2€such
counts, the initialization counter 93 provides an over-
flow or carry-out signal to the controller 53 via the lead
95 signalling that the 2€ counts have occurred. This

4,558,302

21
causes the decompression unit of FIG. 3 to advance to
the First Code State.

[2.] First Code State. After the initialization, the
decompressor of FIG. 3 reads the first input code signal
residing on the bus 50 taking the C bits thereof into the
C-bit code register §7. A signal is then provided by the
controller 53 on the input data strobe line 55 to cause
the next input code signal to be provided on the input
bus 50 by the external equipment. For the reasons dis-
cussed above with respect to the compressor of FIG. 2,
the initial code signal now residing in the register 57 is
known to be one of the preassigned single character
string codes. Therefore the low order B bits of this code
are known to be the first character of the data message,
and this character is transmitted as the first output from
the decompressor. This is achieved by transferring the
low order B bits of the code register 57 via the bus 60 to
the last character register 61 from which it is directly
provided on the output character bus 51. Since this first
character is to be placed in the first output location of
the external memory, a location address of zero is gen-
erated by passing the value in the outpointer register 88
through the address adder 86 and adding in the constant
zero. The address on the location address bus 87, there-
fore, is zero as required. A signal on the output data
strobe line 56 indicating that the output bus 51 and the
address bus 87 contain valid new information is trans-
mitted to the external equipment.

In preparation for the decompressor cycles to follow,
the level register 85 is set to zero since this is known to
be the length of the prefix string in the received string.
The main processing cycle of the Next Input State is
then entered.

[3.] Next Input State. Each new input code is read in
from the external equipment and processing thereof is
initiated according to the following logic. The present
code value, which is the code just processed, from the
code register 57 is transferred to the code register 64 via
the bus 65 to save it for a later update cycle. Similarly,
the value in the level register 85 is transferred to the
level register 78 with its value increased by one by
means of the adder 91 in the transfer path. This incre-
mentation is effected because the new string to be cre-
ated will have a prefix string one character longer than
the prefix of the string just processed. The outpointer
value in the outpointer register 88 is now updated to
contain the location address where characters from the
new string will be placed in the external memory. This
location address is the length of the string just processed
added to the prior base address. This is achieved by
adding the level value in the level register 78, as just
updated, to the outpointer value in the outpointer regis-
ter 88 by means of the address adder 86 with the result
being placed back in the outpointer register 88.

The new input code signal is then read, if one is avail-
able. If the data available signal on the line 52 indicates
that new input code is unavailable, then the message has
been fully processed and the Wait State is reentered to
await the next message. In the normal situation, a new
input code signal is available and it is gated from the
input bus 50 into the code register 57. The input data
strobe signal on the line 55 is issued to the external
equipment to cause it to provide the next code signal on
the input bus 50.

The new code signal in the register 57 is compared to
the value 28 utilizing the comparator 58. If the new
code value in the code register 57 is greater than 25, this
is a normal code which is translated by string table

20

25

35

40

45

50

55

60

65

22
look-ups in the RAM 75. Thus, this code value in the
register 57 is transferred via the bus 63 to the RAM
address register 62 and the controller 53 controls the
decompressor to enter the First Character State.

Under proper operation of the data compression and
decompression system of FIGS. 2 and 3, the code regis-
ter 57 cannot obtain the value 28 because that code is
not properly provided by the compressor of FIG. 2. If
the code register 57 in fact contains the value 28, any
convenient error procedures may be implemented.

If the value in the code register 57 is less than 25, then
this code value defines a single character string and
accesses to the RAM 75 are not required to process it.
In this situation, the level register 85 is set to zero be-
cause there are no characters in the prefix string of a
single character predefined string. The character value,
being the low-order B bit of code register 57, is trans-
ferred via the bus 60 to the last character register 61 to
be transferred to the external equipment on the output
bus 51. In this situation, the outpointer register 88 con-
tains the proper external address and so zero is added to
the value in the outpointer register 88 as it passes
through the address adder 86 to provide the location
address on the bus 87. The output data strobe signal on
the line 56 is then issued to indicate, to the external
equipment, that valid data is available on the output
character and address lines. After completing process-
ing of the one-character string, the Update State is en-
tered.

[4.] First Character State. In this state, the first char-
acter from a string is extracted and other specialized
functions which occur only at the beginning of a string
are performed. The RAM 75 is controlled to read the
contents of the string location indicated by the code in
the RAM address register 62 as it was loaded in the
previous state. The RAM 75 provides three outputs for
the selected string; viz. the prefix string code on the bus
80, the extension character on the bus 83, and the level
value on the bus 84 which level value is the length of
the prefix string. The prefix string code on the bus 80 is
compared to the value 28 by the comparator 81.

If the prefix code on the bus 80 is not equal to 25,
which is the normal case, then it is a legitimate prefix
string code to be further processed to obtain further
characters. The extension character on the bus 83 is
transferred to the last character register 61. The level
value on the bus 84 indicates the position of this charac-
ter in the string and this position value is added via the
address adder 86 to the value in the outpointer register
88 to provide the output location address for the char-
acter on the bus 87. The output data strobe signal on the
line $6 is then issued to indicate to the external equip-
ment that valid data is available. Additionally, the level
value on the bus 84 is stored in the level register 85 for
use in a later update.

If the prefix string code value on the bus 80 is equal to
28, this indicates that the addressed RAM location is
empty, and the received string code does not corre-
spond to an entry in the string table. This situation can
only occur in the unusual case that the next pending
table update would have created that string entry. That
is, the code just received denotes a string whose prefix
string is the string just processed (code in code register
64 and level value in level register 78). The first de-
coded character of the current string is the extension
character of the prior string; which is the same charac-
ter as the last decoded character to be found in the
current string; which has the same value as the last

4,558,302

23

decoded character of the prior string because they have
the same prefix string; which is the character now resid-
ing in the last character register 61. Thus to implement
this unusual case, the value in the code register 64 is
transferred via the bus 66 to the RAM address register
62 as the prefix string code. The value in the last charac-
ter register 61 is utilized unchanged to drive the output
character bus 51 while the value in the level register 78
is added to the value in the outpointer register 88 via the
address adder 86 to create the proper output location
address on the bus 87. The controller 53 then issues the
output data strobe on the line 56 to indicate valid out-
puts to the external equipment. The value in the level
register 78 is transferred to the level register 85 via the
bus 92 to provide length information for a later update.

Having output one character from this string, the
remaining characters are generated by entering the
Later Character State.

[5.] Later Character State. Each prefix string is sepa-
rated into an extension character and a smaller prefix
string, and this is performed repeatedly until a prede-
fined single character string is attained. The prefix
string code, in the RAM address register 62 from the
previous state, is compared to 28 in the comparator 72.
If this prefix string code is greater than 258, the contents
of the RAM 75 are read out and utilized as follows. The
prefix code is gated via the bus 80 into the RAM address
register 62 for utilization in the next state. The extension
character on the bus 83 is gated into the last character
register 61 for outputting on the output character bus
51. The level value on the bus 84 is added via the ad-
dress adder 86 to the value in the outpointer register 88
to create the appropriate output location address on the
bus 87. The output data strobe signal on the line 56 is
issued and this Later Character State is re-entered to
repeat the process.

If the comparator 72 indicates that the code value in
the RAM address register 62 is less than 25, then the end
of the string has been located. Since this predefined
code value contains the last character, the low-order B
bits of the RAM address register 62 are transferred via
the bus 73 to the last character register 61. Zero is added
to the value in the outpointer register 88 via the address
adder 86 to generate the appropriate output location
address on the bus 87. The output data strobe signal on
the line 56 is then provided. The processing on the
current string having been completed, the Update State
is entered to add an entry to the string table.

[6.] Update State. After a string has been completely
processed, the string table is updated utilizing the last
character of this string with the code and level of the
prior string. To assign the correct new code number to
the new string, the same hashing function circuitry is
utilized as discussed above with respect to the compres-
sor of FIG. 2. The hash function generates a sequence
of N addresses which are sequentially searched until an
empty table location is encountered. Accordingly, the
prior code value stored in the code register 64 is trans-
mitted via the bus 68 to the hash function circuit 69
along with the value from the last character register 61
via the bus 67. The hash value generated by the hash
function circuit 69 is gated via the bus 70 into the RAM
address register 62. If the address in the RAM address
register 62 is greater than 25, as indicated by the com-
parator 72, the RAM 75 is controlled to read the con-
tents of that location. If the comparator 72 indicates that
the address in the RAM address register 62 is not
greater than 25, then that address is not utilized and the

10

15

20

25

30

35

45

50

35

60

65

24

hash function circuit 69 is controlled to generate a new
value. The new value is gated via the bus 70 into the
RAM address register 62 and the test is repeated. When
the hash function circuit, 69 provides a valid address
greater than 25, the RAM 75 is read at that location.
The prefix code on the bus 80 read out of that location
is compared to 28 in the comparator 81. If the read
value is equal to 25, then that location is empty and the
Write State is entered to insert the string. If the Prefix
code on the bus 80 is not equal to 25, then this location
is already occupied and cannot be utilized. This Update
State is then reentered with a new hash value to try
again, unless this was the NTH access in which case the
new string is not added to the string table and the Next
Input State is entered to begin processing the next
string.

[7.] Write State. When an empty RAM location has
been located for the new string, the address for that
location is assigned as the code of the new string and the
string information is inserted. The controller 53 gates
the output of the code register 64 via the bus 76 as the
input into the prefix code field of the RAM 75. The
output of the last character register 61 via the bus 77 is
gated into the character field of the RAM 75 and the
level register 78 value is gated into the level field of the
RAM 75 via the bus 79. With the RAM address register
62 maintained at its previous value, the RAM 75 is
controlled to write this data at the accessed location.
Having thus finished processing this string, the Next
Input State is entered.

The hash function circuit described above may be
implemented as follows. For a B-bit character and a
C-bit code, the N hash values are generated in the fol-
lowing manner:

first hash (code, character)=codedchar’ where

char’ is the input character, bit reversed left to
right, complemented, shifted left C-B bits to the
left-hand positions of the code.

That is, for bit positions numbered from C (on left) to
1 (least significant digit) in the code and B to 1 in the
character, the hash output H is numbered C to 1;

H(C)=code(C)@char(1)@ 1

H(C-1)=code(C-1)@char(2)@ |

H(C-2)=code(C-2)Pchar(3)P1

H(C-B-1)=code (C-Bl)@char (B)&!1
' H(C-B-2)=code (C-B-2)

H(1)=Code (1)

Remaining hashes are created by adding a constant
value to each prior value, ignoring carries above C bits.

Next hash=prior hash+[(2* code+1)@0101 . ..
01003] (modulo2©)

It is appreciated that this hashing function may be
implemented in any system of logic gates and is oniy
one example of a hashing function usable in the present
invention. Other hashing functions satisfying the crite-
ria discussed above may be readily derived by those
skilled in the art.

FIGS. 4 and 5 illustrate a compressor and decompres-
sor, respectively, for implementing a highest compres-
sion embodiment of the present invention. The embodi-

4,558,302

25

ment of FIGS. 4 and § provides a higher average com-
pression effectiveness, but is slightly more expensive
and slightly slower in operation than the high perfor-
mance embodiment of FIGS. 2 and 3. This embodiment
utilizes substantially the same adaptive compression
procedures as the high performance embodiment, but,
unlike the high performance embodiment, the compres-
sor generates variable length compressed output code
signals. In a manner similar to that described above with
respect to the high performance embodiment, the high
compression embodiment of FIGS. 4 and 5 utilizes B-bit
byte input character signals and a sting table of 2€ loca-
tions. The compressed code symbols increase in size as
the string table fills up reaching a maximum length of C
bits. On occasion, the code symbol is extended by B bits
when a new character is encountered.

Each string in the table is assigned a C-bit identifier
and these identifiers are assigned in numerical order
starting with one. Only the low-order D bits of these
codes are transmitted as compressed data signals when
2D or fewer codes have been assigned. Each location in
the string table contains a C-bit prefix string identifier
and the new C-bit code assigned to the string in that
location. Thus each of the 2¢ locations of the string
table are 2 C bits wide. The hash function utilized in the
compressor of this high compression embodiment is
identical to that utilized in the previously described
high performance embodiment. In this high compres-
sion embodiment, however, the hash function circuit is
only utilized in the compressor.

In the decompressor of this high compression em-
bodiment, logically the same string table is stored as in
the compressor, but each location is comprised of the
assigned identifier code for the prefix and the extension
character. Each string is stored at a location addressed
by the compressed code identifier assigned to the string.
In this high compression embodiment, the intra-string
character reversal procedure is effected by a push-
down stack which reverses the order of the characters
in the strings. Thus, the decompressor of the high com-
pression embodiment provides the output characters of
each string in their correct order.

Referring now to FIG. 1, the compressor of the high-
est compression embodiment of the present invention is
illustrated. The compressor receives input character
signals on a bus 110 and provides compressed output
code symbol signals in bit serial format on a line 111.
The input characters are provided on the bus 110 from
external equipment. The external equipment also pro-
vides a data available signal on a line 112 whenever an
input character signal is available from the external
equipment and applied on the bus 110. The data avail-
able signal on the line 112 is applied to a compressor
" controller 113. The compressor controller 113 provides
control signals to all of the blocks of the compressor of
FIG. 4 via leads 114. The compressor controller 113
sequences the compressor of FIG. 4 through the control
states thereof in a manner to be described in detail here-
inbelow. The controller 113 also provides a character
strobe signal to the external equipment on a line 115
request for additional input characters.

The input characters on the bus 110 are entered into
a B-bit character register 116. When a single character
is to be transferred to the output line 111, the character
register 116 is controlled by the controller 113 to gate
the B bits thereof via a bus 117 to a shift network 118.
The shift network 118 provides the bit serial output on
the line 111, and is controlled by the controller 113 to

20

25

30

40

45

55

60

65

26
accept the B bits on the bus 117 and to serially provide
these bits on the line 111.

The compressor of FIG. 4 further includes a C-bit
code number register 119 for holding compressed string
code signals and providing output siring codes to the
shift network 118 via a bus 120. The code number regis-
ter 119 may be initialized to zero by a zero-valued signal
applied thereto.

The compressor of FIG. 4 further includes a C-bit
code counter 121 which assigns string code symbol
signals in ascending numerical order to the parsed
strings of the input data stream applied to the input bus
110. Under control of the controller 113, the code
counter 121 may be reset to zero via a zero-valued
signal applied thereto and may have its extant count
increased by unity via a Count command signal. The
counter 121 provides an output to a detector 122 that
signals the controller 113 via a line 123 when the count
in the code counter 121 has attained the value 2C—1.
This value is attained by the C-bit counter 121 when the
counter achieves the all ones condition. The output of
the code counter 121 is also applied to a code size cir-
cuit 123 which provides a signal to the shift network
118 via a bus 124 to determine the number of bits to be
shifted out by the shift network 118. As discussed
above, D bits are shifted out where D is less than or
equal to C.

The code size circuit 123 may be implemented by a
standard C-bit priority encoder circuit such as an SN
74148 priority network. The code counter 121 is cou-
pled to the priority encoder with the bits of the counter
121 in ascending significance coupled to the priority
inputs of the priority encoder in ascending priority
order respectively. The priority encoder then provides
a binary number signal which is the value for D. The
number D may be utilized in the shift network 118 to
gate a packet of D shift clock pulses so as to cause the
shift network 118 to serially provided D bits, on the line
111, of the output code signal provided on the bus 120.
Numerous alternatives to the use of a priority encoder
for the code size circuit 123 will be readily apparant to
normally skilled logic designers.

The shift network 118 may, for example, be imple-
mented utilizing a shift register for accepting the output
code on the bus 120 and shifting out D bits thereof in
response to the shift clock pulses controlled by the code
size circuit 123. In response to a packet of D clock
pulses, as controlled by the code size circuit 123, the
shift register contained within the shift network 118 will
be clocked D items. Shift register configurations are
well known in the art, the exact details thereof varying
according to the interface of the external apparatus
receiving the data. As discussed above, the shift net-
work 118 also includes conventional clock control cir-
cuitry for controlling the transmission to the B charac-
ter bits from the bus 117 to the line 111 by the shift
network 118.

The code symbol signal from the register 119 and the
character signal from the register 116 are applied via
busses 125 and 126 respectively, to a hash function cir-
cuit 127. The hash function circuit 127 is identical to the
hash function circuits uitilized with respect to the high
performance embodiment of the present invention de-
scribed above. The hash function circuit 127 combines
the C-bit code signal on the bus 125 with the B-bit char-
acter signal on the bus 126 to provide N C-bit addresses
sequentially on a bus 128. The hash function circuit 127
signals the controller 113 via a lead 129 if the hash

4,558,302

27
address provided on the bus 128 is the N7 address in
the sequence.

The hash function circuit 127 also receives a New
Hash command and a Next Hash command from the
controller 113. The controller 113 commands the hash
function circuit 127 to provide the first of the N hash
addresses in response to the New Hash command and
the subsequent hash addresses in response to subsequent
occurrances of the Next Hash command. As described,
when the hash function circuit 127 has provided the
NTH hash address, a signal is returned to the controller
113 via the lead 129.

The hash addresses on the bus 128 are applied to a
C-bit RAM address register 130. An address loaded into
the RAM address register 130 accesses a RAM 131
utilized to store the compressor string table. The RAM
131 is organized into 2€ locations each 2 C bits wide. A
character string is stored at a location by entering the
code number for that string, as assigned by the code
counter 121, and its prefix code; viz, the code number of
the string containing all the characters but the last char-
acter of the string. The RAM 131 is initialized to con-
tain all zeros in the string code fields indicating that all
locations are initially empty. The string with code zero,
being the string with no characters, has no entry in the
RAM 131.

The RAM 131 receives a READ command and a
WRITE command from the controller 113 to control
the READ and WRITE functions of the RAM 131.
When the controller 113 commands the RAM 131 to
perform the WRITE function, the string code field of
the location accessed by the RAM address register 130
receives the C-bit output of the code counter 121 via a
bus 132 and the prefix code field of the accessed loca-
tion receives its input from the code number register
119 via a bus 133. When the coniroller 113 controls the
RAM 131 to read the contents of the location accessed
by the RAM address register 130, the prefix code of the
accessed location is applied to a comparator 134 via a
bus 135 and the string code of the accessed location is
applied to the code number register 119 via a bus 136 as
well as to a zero detector 137. The comparator 134 also
receives a zero-valued signal on a bus 138. Depending
on the extant state of the compressor of FIG. 4, the
controller 113 controls the comparator 134 either to test
the equality or non-equality of the prefix code on the
bus 135 and the code stored in the register 119 or to test
whether the code signal in the register 119 is or is not
equal to zero. The results of these tests are provided to
the controller 113 via a lead 139. In accordance with the
extant state of the compressor of FIG. 4, the controller
113 activates the zero detector 137 to determine if the
string code on the bus 136 is or is not equal to zero. The
result of the determination is provided to the controller
113 via a lead 140.

The compressor of FIG. 4 also includes an initializa-
tion counter 141 that provides a C-bit signal to the
RAM address register 130 via a bus 142. The counter
141 may be set to zero via a zero-valued signal applied
thereto. The controller 113 controls the counter 141 via
a count command to increment the contents of the
counter by unity for each application of the count com-
mand. The counter 141 signals the controller 113 when
it has attained the count 2€ via a carryout or overflow
signal on a lead 143. The initialization counter 141 is
utilized to initialize the RAM 131 to empty by sequen-
tially accessing all of the locations thereof and writing
into the string code fields the value zero obtained from

10

15

20

25

30

35

40

45

50

35

60

65

28

the bus 132. Although it is not necessary, the prefix
code fields may be initialized, for implementation con-
venience, by writing in the value zero obtained from the
bus 133.

Generally, with respect to the compressor of FIG. 4,
each output code signal provided on the line 111 has a
length of D bits determined by the value extant in the
code counter 121. The highest non-zero bit in the code
counter is the D7H bit, so consequentially the size of the
compressor output code is equal to the size of the value
in the code counter. The first code symbol signal to be
transmitted by the compressor is zero bits wide but has
a B-bit character symbol signal appended thereto. The
second code symbol signal is one bit long and the next
two code symbol signals comprise two bits each. The
next four code symbol signals comprise three bits each,
etc. Some of these code symbols also have a B-bit char-
acter value appended thereto. The value D reaches a
maximum at C bits.

The basic operation of the compressor of FIG. 4 is
capsulized as follows:

1. Initialize RAM to empty, for each data block

2. Start code register with zero code Read first input
character

3. hash (code register,character)—sequence of N RAM
addresses

If RAM location empty:

write code register,code counter—RAM
transmit D bits of code register as output;
increment code counter; zero—code register;

If prefix code (RAM)=code register:

new code (RAM)—code register
read new input character
If code value not found:
transmit D bits of code register as output;
increment code counter; zero—code register;

Repeat step 3 until inputs exhausted.

With continued reference to FIG. 4, the following is
a State machine description of the compressor of FIG.
4.

State 0: Wait State, at beginning of each data block

zero—initialization counter

zero—code register

zero—code counter

wait for data avilable signal; go to State 1
State 1: Initialize RAM

initialization counter—RAM address

write zero~RAM

add 41 to initialization counter

If initialization counter < 2€: repeat State 1 else go to

State 2
State 2: Read Input Character
If no data available:
If code register=zero:
transmit D bits of code register as output;
Exit to State O

If data available:

Read next character—character register go to
State 3
State 3: First table search
First hash (code register,character)>RAM address
Read RAM
If string code (RAM)=zero: (empty site)
go to State 5

If prefix code (RAM)=code register (string found)
string code (RAM)—-code register
go to State 2

Else go to State 4

4,558,302

29

State 4: Repeat table search

Next hash(code register,character)~RAM address

Read RAM

If string code (RAM)=zero: go to State 5

If prefix code (RAM)=code register:

string code (RAM)—-code register, go to State 2

If last hash:

go to State 6

Else repeat State 4
State 5: New string entry

Transmit D bits of code register as output

If code counter <2C€—1:

add 41 to code counter]
write {code register,code counter)>RAM

If code register =zero:

transmit B-bit character as output

go to State 2
If code registers4zero:

zero—code register

go to State 3

State 6: End of String :

Transmit D bits of code register as output
If code counter <2C—1:

add +1 to code counter
If code register =zero:

transmit B-bit character as output go to State 2
If code registers~zero:

zero—code register

go to State 3

A more detailed description of the operation of the
compressor of FIG. 4 with respect to the state machine
description given above is now provided.

[0.] Wait State. While waiting for a block of input
characters, the compressor of FIG. 4 resides in this
state. During the Wait State, the controller 113 resets
the initialization counter 141, the code number regiser
119 and the code counter 121 to zero. The data available
signal on the lead 112 from the external source which
supplies the input data is utilized to indicate when input
data is available. When data becomes available, the data
available signal on the lead 112 signals the controller
113 to enter the Initialization State.

[1.] Initialization State. The contents of the random
access memory, RAM, 131 are initialized to be empty.
The empty symbol in this embodiment is selected as
zero. Thus, initialization of the RAM 131 is achieved by
inserting zeros into all locations. It is appreciated that
only the string code entries must be zero but the prefix
code values are set to zero at the same time for imple-
mentation convenience. The initialization is achieved in
repeated memory cycles by gating the value in the C-bit
initialization counter 141 via the bus 142 to the RAM
address register 130. The input to the RAM 131 is pro-
vided from the code number register 119 via the bus 133
and the code counter 121 via the bus 132. Both the
register 119 and the counter 121 contain zeros during
this Initialization State. The RAM 131 is controlled to
write the.zero input data into the location designated by
the RAM address register 130. The initialization
counter 141 is commanded to count up by incrementing
its present contents by unity. This sequence of events is
repeated 2C times, once for each memory location.
After 2C such counts, the initialization counter 141 pro-
vides an overflow or carry-out signal to the controller
113 via the lead 143 signalling that the 2€ counts have
occurred. The controller 113 then advances the com-
pressor of FIG. 4 to the Read Input Character State.

15

20

25

30

35

40

45

50

55

60

65

30

[2.] Read Input Character State. Whenever the com-
pressor of FIG. 4 is ready for a new character, this state
is entered. The value resident in the code number regis-
ter 119 identifies the characters already encountered in
the present string. A value of zero in the register 119
indicates the beginning of a new string. Before a charac-
ter signal is entered from the input character bus 110
into the character register 116, the data available signal
on the lead 112 is examined. If the data available signal
indicates that no data is available, then the end of an
input data block has been attained. In that situation any
non-zero values in the code number register 119 must be
transmitted by the compressor to complete the com-
pressed data block. Accordingly, the contents of the
code number register 119 are compared to zero in the
comparator 134. If the contents of the register 119 are
not zero, the comparator 134 signals the controller 113
via the lead 139 and the controller 113 gates the con-
tents of the code number register 119 to the shift net-
work 118 via the bus 120. The code size circuit 123
determines a value for D from the code counter 121 and
controls the shift network 118 to shift out D bits of the
code value. When this data has been output, the control-
ler 113 controls the compressor of FIG. 4 to return to
the Wait State to await further input data.

If, according to the data available signal on the lead
112, further input data is available, a character is read
from the bus 110 into the character register 116 and a
character strobe signal is provided on the lead 115 to
the external equipment to provide notification of the
receipt of the character. The controller 113 then con-
trols the compressor of FIG. 4 to enter the First Table
Search State.

[3.] First Table Search State. The potential string
comprised of the string identified by the value in the
code number register 119 extended by the character in
the character register 116 is now searched to determine
if it appears in the string table. The code signal from the
register 119 and the character signal from the register
116 are gated via busses 125 and 126 respectively to the
hash function circuit 127 which generates a hash ad-
dress for that combination. The C-bit address is gated
via the bus 128 to the RAM addresss register 130 which
in turn accesses the RAM 131 at the addressed location.
The RAM 131 is controlled to read the contents of the
accessed location yielding a prefix code value on the
bus 135 and a string code value on the bus 136.

If the resulting string code value on the bus 136 is
determined to be zero by the zero detector 137, then
that location is empty, which signifies that the extended
string is not in the string table. In that situation, process-
ing of the current string is terminated and the compres-
sor is controlled to enter the New String Entry State to
update the table and generate an output.

If, however, the string code value on the bus 136 is
not zero, the prefix code value on the bus 135 is com-
pared to the code value in the register 119 by the com-
parator 134. If the values are equal, the extended string
exists in the table and the extended string becomes the
new base string. This is effected by loading the string
code of the current string which appears on bus 136 into
the code number register 119. The next character is then
fetched by entering the Read Input Character State.

If the prefix code on the bus 135 does not match the
value in the code register 119 and the string code value
on the bus 136 is not zero, the table search is continued.
The continued table search is effected by controlling
the compressor to enter the Repeat Table Search State.

4,558,302

31

[4.] Repeat Table Search State. When, in the First
Table Search State, neither the proper occupant nor an
empty location is found at the first hash address pro-
vided by the hash function circuit 127, subsequent hash
addresses are provided to address the RAM 131. Thus
each subsequent string table search is executed by trans-
ferring the next hash value from the hash function cir-
cuit 127 via the bus 128 to the RAM address register 130
to address the RAM 131 at an alternative search site.
The RAM 131 is coatrolled to read the contents at the
addressed site providing the string code and prefix code
stored at the location on the busses 136 and 135 respec-
tively. Essentially, the same tests are performed as in the
First Table Search State to determine if the searched for
string has been found or if an empty location has been
encountered. If the string code on the bus 136 is de-
tected by the detector 137 to be zero, the location is
empty and the New String Entry State is entered. If the
string code on the bus 136 is not zero and the prefix
code on the bus 135 matches the present code value
from the register 119, as determined by the comparator
134, then the string has been found and the new string
code value on the bus 136 is entered into the code num-
ber register 119. The Read Input Character State is then
reentered to continue the parsing iteration into the input
data stream. If neither of the above conditions occur,
then the search for the current string is continued by
reentering this Repeat Table Search State. If however,
all N hash addresses have been utilized, as signified by a
signal from the hash fanction circuit 127 on the lead
129, then the string is defined as not being in the string
table with no space in the table to insert it. When the N
hash addresses have been attempted without success,
the End of String State is entered.

[5.] New String Entry State. Processing of a string is
terminated when an extension to the string is not found
in the string table but an empty location has been en-
countered. When this occurs, the previously recognized
string code signal is transmitted as the compressed code
. output signal and the extended string is entered into the
string table for potential later encodings. Accordingly,
the previously recognized string code signal in the reg-
ister 119 is transferred to the output shift network 118
via the bus 120. The shift network 118 serially provides
D bits of the output code on the output lead 111 where
D is determined by the code size circuit 123 in accor-
dance with the value in the code counter 121.

After the output is dispatched on the lead 111, the
detector 122 tests the code counter 121 for the value
2€—1 which is indicated by the all ones condition of the
counter 121. If the counter 121 does not contain ail
ones, the value in the counter 121 is incremented by
unity under control of the Count command signal from
the controller 113. Additionally, if the detector 122 does
not detect the all ones condition of the code counter
121, a new string is entered in the string table at the
address just determined to be empty in the previous
state. This is accomplished by maintaining the address
in the RAM address register 130 unchanged at its previ-
ous value and controlling the RAM 131 to write the
prefix code on the bus 133 from the code register 119
and the string code on the bus 132 just assigned by the
code counter 121 into the prefix code and string code
fields respectively of the addressed location in the
RAM 131.

Thereafter, the comparator 134 tests the code number
register 119 to determine if the last transmitted code
was zero. If the last transmitted code was zero, then this

10

15

20

25

30

35

45

50

55

60

65

32

designated a one-character string for which the charac-
ter value was not in the string table. Thus the character
value must be transmitted as compressor output. Ac-
cordingly, the B-bit value from the character register
116 is transferred via the bus 117 to the shift network
118 which is now controlled to serially transmit all B
bits as output. The Read Input Character State is then
entered to initiate a new string.

If, however, the code number register 119 contained
a non-zero value, then the present character in the char-
acter register 116 is not transmitted but is utilized as the
first character of the next string. Thus, the code register
119 is cleared to zero to indicate a new string and the
First Table Search State is entered.

[6.] End of String State. This state is identical to the
New String Entry State except that no entry is effected
in the string table because no empty location was en-
countered. All of the previously described actions of
the New String Entry State are, however, performed
except for the WRITE operation into the RAM 131.
When the code counter 121 is incremented, a string
number is assigned to the new extended string although
this string is not entered into the table. The entry does
not occur because space was not found for the string
and therefore the encoded string cannot be utilized for
later encodings. This omission from the table may re-
duce the compression effectiveness of the system but
does not cause incorrect operation.

Referring now to FIG. 5, 2 decompressor for recov-
ering the data character sequences corresponding to the
compressed code signals from the compressor of FIG. 4
is illustrated. In the decompressor of FIG. 5, a stack
mechanism is utilized to reverse the order of the byte
strings recovered by the decompressor. The stack is a
conventional mechanism comprising a set of registers
each B-bits wide. Access to the stack is through the top
register only for which a read and write capability is
provided. The stack has a PUSH capability whereby
each register in the stack is copied into the next register
down. The stack also has a POP capability whereby
each register in the stack is copied into the next register
up. For clarity of explanation, the decompressor em-
bodiment of FIG. 5 is illustrated utilizing a separate
stack counter which records the number of valid entries
in the stack. In standard implementations of a stack, the
stack counter is often integrated into the stack mecha-
nism.

In the decompressor of FIG. 5, the string table con-
tains 2€ locations, each location containing C+ B bits.
The location corresponding to each string code con-
tains the code for the prefix string and the extension
character for that string. The location is addressed by
the string code assigned to that string. The string table
of the decompressor of FIG. 5 is not initialized since no
location thereof is accessed before it is written.

The decompressor of FIG. § receives, on a lead 150,
the bit serial compressed code signals generated by the
compressor of FIG. 4 and provides corresponding
strings of recovered data character signals on a bus 151.
The bit serial compressed code signals are provided on
the lead 150 from external equipment. The external
equipment also provides a data available signal on a lead
152 whenever a compressed code signal is available
from the external equipment for application on the lead
150. The data available signal on the lead 152 is applied
to a decompressor controtler 153. The controller 153
provides control signals to all of the blocks of the
decompressor of FIG. § via Igads 154. The decompres-

4,558,302

33

sor controller 153 sequences the decompressor of FIG.
§ through the control states thereof in a manner to be
described in detail hereinbelow. When an output char-
acter is available on the bus 151, the controller 153
provides an output data strobe signal to the external
equipment on a lead 155.

The decompressor of FIG. § includes a shift network
156 for receiving the bit serial compressed code signals
on the lead 150 and providing these signals to a C-bit
code register 157 via a bus 158. The shift network 156 is
controlled by a code size circuit 159 to provide D-bits
to the register 157 via the bus 158 where D is less than
or equal to C. The size of the code controlled by the
code size circuit 159 is determined by a C-bit code
counter 160. The shift network 156, the code size circuit
159 and the code counter 160 are configured in a similar
manner to the comparable components of the compres-
sor of FIG. 4 to perform similar functions to those de-
scribed above with respect to the compressor of FIG. 4.
The shift network 156 places the D-bit compressed
code signal provided on the lead 150 into the D least
significant bits of the register 157. In accordance with
the extant state and logical conditions existing within
the decompressor of FIG. §, the controller 153 also
controls the shift network 156 to provide B-bits to the
top of a stack 161 via a bus 162 to process single charac-
ters provided by the compressor of FIG. 4. The control
of the shift network 156 for processing single characters
may be effected in a manner similar to that described
above with respect to FIG. 4.

Prior to processing a compressed code signal, the
code counter 160 is set to zero via a zero valued signal
applied thereto. The counter 160 may also be controlled
by a count commmand signal from the controller 153 to
increment the extant count therein by unity. The code
counter 160 also provides an output to a detector 163
that signals the controller 153 via a line 164 when the
count in the code counter 160 has attained the value
2C—1. This value is attained by the C-bit counter 160
when the counter achieves the all-ones condition. The
code counter 160 assigns string code symbol signals in
ascending numerical order in a manner similar to that
described with respect to the code counter 121 of the
compressor of FIG. 4. These string code signals are
applied to a RAM address register 165 via a bus 166.

The code register 157 may be reset to zero under
control of the controller 153 via a zero valued signal
applied thereto in accordance with the extant state of
the decompressor of FIG. 5 and logical conditions exist-
ing therein. The output of the code counter 160 and the
output of the code register 157 are applied as inputs to
a comparator 167. For reasons to be explained, the
comparator 167 signals the controller 153 via a lead 168
when the output of the code counter 160 is less than the
output of the code register 157 and when the code
counter output is greater than or equal to the code
register output. Under conditions to be discussed, the
contents of the code register 157 are tested for zero by
a zero detector 169 which signals the controller 153 via
a lead 170 when the contents of the code register 157 are
zero. Under conditions to be described the code register
157 may be controlled to apply its contents to the RAM
address register 165 via a bus 171 and may also be con-
trolled to transfer its contents to a second code register
172 via a bus 173 for saving code signals for later string
table updates.

The decompressor of FIG. 5 further includes a zero
detector 174 for signaling the controller 153 via a lead

10

15

20

25

30

35

45

50

55

60

65

34

175 when, under conditions to be described, the con-
tents of the code register 172 are zero. The controller
153 also controls the code register 172 to provide its
contents to the RAM address register 165 via a bus 176.

An address loaded into the RAM address register 165
accesses a RAM 177 utilized to store the decompressor
string table. The RAM 177 contains 2€ locations, each
being C+ B bits wide. Each string is stored in the RAM
177 by storing its C-bit prefix code and its B-bit exten-
sion character at a location addressed by the code as-
signed to the string. Code values are assigned to the
strings entered into the decompressor string table in
ascending numerical order by the code counter 160.

The RAM 177 receives a READ command and a
WRITE command from the controller 153 to control
the READ and WRITE functions of the RAM 177. The
RAM 177 is controlled by the controller 153 to receive
the code value from the code register 172 via a bus 178
and the character value from the top of the stack 161 via
a bus 179 for entry into the prefix and character fields
respectively of the RAM location addressed by the
RAM address register 165. These values are written
into the respective fields in response to the WRITE
command from the controller 153.

The controller 153 also controls the RAM 177 to
provide on a bus 180, in response to the READ com-
mand, the prefix code value stored in the prefix code
field of the RAM location addressed by the RAM ad-
dress register 165. This code value on the bus 180 is
applied to the RAM address register 165 as well as to a
zero detector 181. The detector 181 determines whether
or not the prefix code on the RAM output 180 is equal
to zero and provides a signal to the controller 153 via a
lead 182 accordingly.

The controller 153 also controls the RAM 177 to
provide the character value from the character field via
a bus 183 to the top of the stack 161 for entry therein.
The character value is provided on the bus 183 from the
character field of the RAM location addressed by the
RAM address register 165 in response to the READ
command. The vaiues on the RAM outputs 180 and 183
are selectively provided in accordance with the extant
state and logical conditions of the decompressor of
FIG. 5.

The stack 161 may be PUSHed or POPed under
control of PUSH and POP signals from the controller
153. A stack counter 184 is included to maintain a count
of the number of characters stored in the stack 161. The
stack counter 184, under control of the controller 153,
may be set to zero via a zero-valued signal applied
thereto. The extant count in the counter 184 may be
incremented or decremented by unity under control of
the controller 153 by means of an ADD+1 and
ADD -1 signal applied thereto, respectively. A zero
detector 185 receives the output of the stack counter
184 and provides a signal via a lead 186 to the controller
153 when the value in the stack counter 184 attains zero.

The basic operation of the decompressor of FIG. 5 is
capsulized as follows:

1. First symbol: read first B bits of compressed data,
send to output; make initial string entry in location 1
of RAM

2. Read D bits of input—code register
If zero, read B more input bits—output stack;

go to step 4.

Else go to step 3
3. Code register—RAM address; read RAM

character (RAM)—output stack

4,558,302

35
prefix code (RAM)—RAM address
if prefix code not zero, repeat step 3; else go to step 4
4. Code counter—>RAM address;
write previous code, last character—RAM take char-
acters from output stack and put to.output, LIFO:
increment code counter; go to step 2.
With continued reference to FIG. 5, the following is
a state machine description of the decompressor of FIG.
S.
State 0: Wait State
wait for data available signal; go to State 1
State 1: First Code '
code counter=zero
stack counter=zero
code register 1=zero
read B bits from input—stop of stack; output data
strobe
go to State 2
State 2: Zero String Update
code register 2=code register 1 add 41 to code
counter
code counter—RAM address reg.
Write RAM =code register. 2, top of stack
State 3: New Code
code register 1—register 2
If no data available: go to State O
Read D input bits—code register 1 (low order) D bits
If code register 1=zero:
Read B bits from input—top of stack; output data
strobe
If code counter==2€—1: go to State 3
If code counter <2€—1: go to State 7
If code register 1> code: counter [abnormal case]:
add 1 to stack .count; PUSH stack [duplicating char-
acter already there]
code register 2->RAM address
go to State 4
If code register 140 and=code counter [normal
case]:
code register 1-—-RAM address
go to State 4
State 4: Next Character
Read RAM
character (RAM)—output stack; PUSH, increment
stack counter
If prefix code (RAM)=£0: prefix code (RAM)—RAM
address; repeat State 4
If prefix code (RAM)=0: go to State 5
State 5: Update String Table
If code register 2=0: go to State 6
If code counter=2€¢—1: go to State 6
Else: add +1 to code counter
code counter—RAM address
write (code register 2, top of Stack)—>RAM
go to State 6
State 6: Produce Outputs
POP; Output data strobe
subtract 1 from stack counter
If stack counter=£0: repeat State 6
If stack counter=0: go to State 3
State 7: Single Character Update
If code register 2540:
add 1 to code counter
code counter—RAM address
Write (code register 2, top of stack)}—~RAM
If code counter=2€—1 go to State 3
Go to State 2

10

15

20

25

30

35

40

45

50

55

60

65

36

A more detailed description of the operation of the
decompressor of FIG. 5 with respect to the state ma-
chine description given above is now provided.

[0.] Wait State. While waiting for a block of com-
pressed input code signals, the decompressor of FIG. 5
resides in this state. The data available signal on the lead
152 from the external source which supplies the com-
pressed . input code, is utilized to indicate when input
code is available. When input code becomes available,
the data available signal on the lead 152 signals the
controller 153 to enter First Code State.

f1.] First.Code State. Upon entering this state the
decompressor of FIG. 5 reads in the first string code of
the message. This is effected by the shift network 156
reading in bits from the input data line 150 which. for the
first code is zero bits. The code counter 160 is set to zero
causing the code size circuit 159 to establish a code size
D of zero bits. In accordance with the operation of the
compressor of FIG. 4, the first compressed code signal
of a data block is zero and is not transmitted explicitly.
Accordingly, the code register 157 is set to zero reflect-
ing the receipt of the first code.

This first code, as for every zero code, is followed by
a B-bit character signal. Accordingly, the controller 153
controls the shift network 156 to read in the first B bits
which are transmitted via the path 162 for storage at the
top of the stack 161. The character at the: top: of the
stack 161 is available on the output character bus 150.
The controller 153 signals the availability of this output
character by ‘transmitting an output strobe signal on the
line 155. Since this initial character is transmitted, it is
not held in the stack 161 for later transmission. Accord-
ingly, the stack counter 184 is initialized to:contain a
zeéro value. The initial code having been processed, the
controller 153 controls the decompressor of FIG. 5 to
enter ‘the Zero String Update State to enter this first
string into the string table.

[2.] Zero-String Update State. When the string code
of zero is received, an entry for the one-character string
that immediately follows the zero string code is placed
in the string table under the next code number to be
allocated. Accordingly, the code counter 160 is incre-
mented by unity and the resulting value is transmitted to
the RAM address register 165 via the bus 166. The
value in the code register 157, which is always zero in
this sitution, is moved to the code register 172 via the
bus 173. The RAM 177 is then controlled to WRITE
the contents of the code register 172 via the bus 178 as
the prefix code value of the new string. This value is
written into the prefix code field at the address specified
by the RAM address register 165. Additionally, the last
character put out on the output character bus 151,
which is available at the top of the stack 161 via the bus
179 is written into the character field of the addressed
location of the RAM 177 as the extension character of
the string. Thus, in this Zero-String Update State a
prefix code of zero and an extension character of the
last B bits received is written, creating the appropriate
single-character string at the RAM location addressed
by the code for that string. The New Code State is then
entered to process the next input code signal.

[3.] New Code State. At the beginning of the process-
ing to recover a parsed character string, a new com-
pressed code signal of D bits is read in from the line 150.
Initially, however, the prior code in the code register
157 is transferred to the code register 172 via the bus
173 to save it for the next string table update. The data
available signal on the line 152 is tested to determine if

37

a new code signal is available. If data is not available,

then the end of the current data block has been attained

and the decompressor is returned to the Wait State
having completed its present task.

If data is available, the next D bits of input are read in

from the input line 150 into the low-order D bits of code

4,558,302

register 157 via the shift network 156 and the bus 158.

The value of D is determined by the code size circuit
159 in accordance with the present value in the code
counter 160.

The new code value is tested for zero to determine if
it is the null code string with a new character appended.
Accordingly, zero detector 169 signals the controller
153 via the lead 170 if the contents of the code register
157 are zero. If zero is detected, the following actions
are performed. The next B bits of input data are read
from input line 150 by the shift network 156. The B bits
are transmitted to the top of the stack 161 via the bus
162 and the output strobe on the line 155 is activated to
signal to the external equipment that a new valid char-
acter is available. The detector 163 then determines if
the extant count in the code counter 160 is equal to
2C€—_1, which is the all-ones condition of the counter
160. If the code counter 160 contains all ones, the string
table in the RAM 177 is full and no further updates are
added thereto. Processing of the current input code is
then complete and the decompressor is controlled to
reenter this New Code State to process the next com-
pressed code signal. If, however, the code counter 160
contains a value less than 2C— 1, then the character just
received is utilized to update the string table as an exten-
sion of the previously received code signal and also as a
new single character string in its own right. The decom-
pressor of FIG. § effects this update by entering the
Single Character Update State.

If the code register 157 did not contain a zero value,
then its contents are compared via the comparator 167
with the existing count in the code counter 160. If the
code register 157 contains a larger value than the code
counter 160, the comparator 167 signals the controller
153 via the lead 168 that the unusual special case has
occured where the code just received is the extension of
the previous code, which extension is not yet entered
into the string table. In this situation, the final character
of the new code string equals the extension character of
the prior string, which is also the initial character of the
new code string, which is the beginning character of the
prior string, which is the character just decoded and
residing on the top of the stack 161. Accordingly, a
PUSH is executed on the stack 161 to retain this charac-
ter for the new string and the stack counter 184 is incre-
mented by unity. Thereafter, the code signal in the code
register 172, which is the prefix code for the present
string, is transferred to the RAM address register 165
via the bus 176 and the Next Character State is entered
to effect normal processing of the remainder of this
string.

If, however, the value in the code register 157 is
neither zero nor greater than the existing count in the
code counter 160, then the value in the code register 157
is a normal string code. This code is processed by trans-
ferring the code value from the code register 157 via the
bus 171 into the RAM address register 165 and entering
the Next Character State to begin processing the char-
acters of the string.

[4.] Next Character State. Upon entering this state,
the RAM address register 165 contains a string code to
be decompressed into the corresponding string of char-

10

20

25

30

35

40

45

60

65

38

acters. Accordingly, the string table RAM 177 is con-
trolled to read the contents of the location addressed by
the code value in the register 165 producing the prefix
string code and extension character for the string on the
buses 180 and 183 respectively. The extension character
on the bus 183 is applied to the top of the stack 161 and
PUSHed down and the stack counter 184 is incre-
mented by unity.

The prefix code on the bus 180 is tested by the zero
detector 181 to determine if it is zero. If the prefix code
is zero, the addressed location in the string table con-
tains the last byte in the current string and the Update
String Table State is entered to complete processing the
string data which now exists in the stack 161. If the
prefix code is not zero, the prefix string contains one or
more characters which are processed by transferring
the prefix code on the bus 180 into the RAM address
register 165 and reentering this Next Character State.

{5.] Update String Table State. After a string code has
been decompressed into its sequence of characters, the
last character generated is utilized as the extension char-
acter for updating the string table with the prior code
value. This occurs, however, only in the absense of two
conditions. If the zero detector 174 determines that the
prior code value in the code register 172 is equal to
zero, the update of this string has already occured and
the Produce Outputs State is immediately entered. If the
detector 163 determines that the value in the code
counter 160 is equal to 2€— 1, then the string table is full
and no further updates are possible. In this case the
Produce Outputs State is also immediately entered. If
neither of these conditions occur, the update is effected
as follows. The contents of the code counter 160 is
incremented by unity and the incremented value trans-
ferred to the RAM address register 165 via the bus 166.
The RAM 177 is controlled to write into the addressed
location which is the site of the next assigned code
value, the prefix code value from the code register 172
via the bus 178 and the extension character from the top
of the stack 161 via the bus 179. Thereafter, the Produce
Outputs State is entered.

[6.] Produce Outputs State. The characters of the
present string are now resident in the stack 161 and will
be transmitted LIFO on the bus 151 to provide the
proper output character sequence. The stack 161 is
POPed up whereby the next character to be transmitted
is placed on the top of the stack 161 and is consequently
availabie on the output bus 151 to the external equip-
ment. The output strobe signal on the line 155 is issued
by the controller 153 to signal that a valid character is
available. The stack counter 184 is decremented by
unity and the stack count is tested for zero by the zero
detector 185. If the count in the stack counter 184 is not
zero, then more data is in the stack and this Produce
Outputs State is reentered to provide another character.
If, however, the count in the stack counter 184 is zero,
then the transmission of the characters of the current
string is complete and the New Code State is entered to
begin the next string.

[7.] Single Character Value. When a single character
is received as an explicit extension on a code zero string,
this character is utilized as the extension character to
create a new string in the string table based on the prior
code value. This string table update occurs only if the
contents of the code register 172, containing the prior
code value is detected as non-zero by the zero detector
174. If the zero detector 174 determines that the con-
tents of the code register 172 is zero, this string table

4,558,302

39

update is not performed. If the code register 172 con-
tains a non-zero value, the update is effected by incre-
menting the code counter 160 by unity and transmitting
the incremented value to the RAM address register 165
via bus 166. The RAM 177 is controlled to write the
prefix string code from the code register 172 via the bus
178 and the extension character from the top of the
stack 161 via the bus 179 into the prefix code and char-
acter fields respectively of the location addressed by the
new code in the RAM address register 165.

The contents of the code counter 160 is then tested by
the detector 163 to determine if the counter 160 has
attained the value 2€— 1. If this value has been attained,
the string table is full and further updates are not per-
formed. The Next Code State is then entered to begin
processing of the next string. If, however, the contents
of the counter 160 is less than 2C--1, then the Zero
String Update State is entered to update the string table
with the single-character string just received.

The above described embodiments of the present
invention illustrated in FIGS. 2-5 are implemented in
hardware utilizing, for example, discrete digital logic
components. FIGS. 6-9 depict an embodiment of the
invention implemented in software for loading into a
stored program digital computer for performing data
signal compression and decompression in accordance
with the invention. Specifically, the programmed com-
puter embodiment of the invention implements in soft-
ware the highest performance embodiment of the inven-
tion described above with respect to FIGS. 2 and 3. The
programmed computer embodiment of FIGS. 6-9 is
implemented in FORTRAN and thus can run on any
computer equipped with a compatable FORTRAN
compiler. The compressor and decompressor are each
implemented as a subroutine to be called in a main pro-
gram that would manage the input and output data. The
compressor and decompressor subroutines utilize char-
acter manipulation subprograms named IBITSG and
IBITSP for performing get and put operations respec-
tively on an array of arbitrary length, tightly packed
symbols independent of the underlying computer word
size. The IBITSG and IBITSP subprograms get and put
respectively one symbol of a selected bit length in a
specified position of a linear array of equal size symbols.
IBITSG is implemented as a function subprogram for
use in the compressor and decompressor subroutines
and IBITSP is implemented as a subroutine subprogram
to be called in the execution of the compressor and
decompressor subroutines. FIGS. 8 and 9 illustrate
IBITSG and IBITSP, respectively. These subprograms
are provided by way of example, equivalent subpro-
grams being readily created by normally skilled com-
puter programmers.

The compressor and decompressor subroutines illus-
trated respectively in FIGS. 6 and 7 are named COMP
and DECOMP respectively. The COMP subroutine
compresses strings of 9-bit character signals into 12-bit
code symbol signals and DECOMP decompresses 12-
bit code symbol signals into strings of 9-bit character
signals. The subroutines, as illustrated, utilize a com-
puter having a 36-bit word length. The subroutines are
readily converted to operate on 8-bit characters with a
32-bit computer. It is appreciated that although COMP
and DECOMP are constructed as subroutines, they
could equivalently be configured as separate programs
in their own right. Although FORTRAN is utilized to
implement these routines, other equivalent program-
ming languages could be utilized to the same effect.

10

15

20

25

30

35

40

43

50

35

60

65

40

Referring now to FIG. 6, the COMP (IBUFA, NA,
IBUFB, NB) subroutine is illustrated. The COMP sub-
routine performs data compression upon a block of NA
9-bit characters contained in an array IBUFA. COMP
produces compressed code comprised of NB 12-bit
symbols in an array IBUFB.

COMP utilizes internally a 4096-integer array ITA-
BLE for storing the compressor string table. Statement
14, of FIG. 6, accordingly, dimensions the ITABLE
array. Each location in ITABLE corresponds to an
encountered character string whose compressed code
equals the address in the table. In the present implemen-
tation, one is added to the code in creating the address
because FORTRAN does not support zero-based ar-
rays. Each table location storing a string contains the
code of the prefix of the string. The string table is initial-
ized to be empty. The empty condition of ITABLE is
effected by filling the table with null symbols called
IFILL having the value 512, which is an arbitrarily
selected code value which will not be utilized for any
string. Statement 15 of FIG. 6 defines the IFILL quan-
tity. Thus, it is appreciated that IFILL has the value 28
where B in this embodiment is 9. The embodiment of
FIG. 6 utilizes an internal character counter NCHA
established and initialized to contain unity by statement
16. The NCHA counter provides the index of the next
input character to be read. The compressor of FIG. 6
also utilizes an internal output symbol counter NB
which is defined and initialized to unity by FORTRAN
statement 17. The symbol counter NB provides the
index of the next output symbol to be generated. FOR-
TRAN statments 18 and 19 initialize the string table to
contain all null-values by inserting IFILL iin all 4096
locations. Since the first 513 locations of ITABLE are
never accessed, these locations do not require initializa-
tion. Initialization of these locations may be omitted if it
is desired to save the time so to do.

The first character is read in by FORTRAN state-
ment 20 by means of the IBITSG function which re-
trieves from IBUFA nine bits from the first character
position. This input character is, at statement 20, con-
verted into its preassigned single-character string code
value, equal to the character value, by storing the value
in the variable NODENO. The variable NODENO is
utilized to contain the code value for any partial input
string of characters already read. Statements 16-20 of
FIG. 6 complete initialization for processing a block of
data and startup of the process.

Statemnent 21 of FIG. 6 provides the entrance to the
main processing loop where each new input character is
read. The statement 21 is provided with a label 100 to
effect jumps thereto. The character index counter
NCHA is incremented at statement 21. Statement 22
determines if NCHA is greater than the input parameter
NA and if NCHA exceeds NA, then all input characters
have been consumed and a jump is effected to statement
40 for the data block termination processing. Statement
40 is provided with a label 400 to effect the jump.

In the normal situation, when a new character is
available, statement 23 utilizes the IBITSG function
subprogram to read the NCHAth 9-bit character from
the input buffer IBUFA into a variable named
NOWCHR. Statement 24 utilizes the value in
NOWCHR and the value in NODENO, the prior string
code to calculate the hash address LOC of the string
defined by the code in NODENO extended by the char-
acter in NOWCHR. The hash function delineated in
statement 24 is identical to that discussed above with

4,558,302

41

respect to FIGS. 2 and 3 except that the character value
is not bit reversed. It is inconvenient to reverse a char-
acter value bit-wise in software aithough it is conve-
nient so to do in the above described hardware embodi-
ments. Additionally, the hash function of statement 24
differs from the hash function utilized in the hardware
embodiments in that the value of LOC has one added
thereto in creating the address because FORTRAN
does not support zerobased arrays. After this first hash
address is generated, a counter variable N is defined and
initialized to one by statement 25 indicating that the
value in LOC is the first of N possible search sites in the
table. In the present embodiment, N is selected as 7.

The statement 26 of FIG. 6 provides the entrance to
the table search loop which utilizes N as the count
variable: Statement 26 is provided with a label 120 so
that jumps may be effected thereto. Statement 26 deter-
mines if LOC contains a legal value. Accordingly, state-
ment 26 determines if LOC is greater than 513. It is
appreciated that symbol codes zero is 511 are preas-
signed to single character strings and 512 is reserved for
the null symbol and all the codes are increased by one
because of the FORTRAN convention discussed
above. If LOC does not contain a legal new address, a
jump is effected to statement 31 to generate another
attempt. Statement 31 is provided with a label 130 to
effect the jump. Normally, the value in LOC is a legal
address and the contents of the string table at that loca-
tion are checked against the existing character string
code at statement 27. If the contents of the addressed
string location are not equal to the existing string code,
then the sought string has not been previously assigned
this code value and a jump to statement 30 is effected to
continue the search. Statement 30 is provided with a
label 130 to effect the transfer. If, however, the code
values tested at statement 27 are equal, the prior string
extended by the current character is an accepted string
already stored in the string table with code value equal
to LOC—1. Statement 28 transforms this view string
into the prior string by storing the code LOC 1 at the
variable NODENO. Statement 29 then effects a transfer
back to statement 21 to read another input character
and repeat the string extension process.

If, at statement 27, the previous ITABLE access
failed, a jump is effected to statement 30 via the label
130 assigned to statement 30. Statement 30 determines if
the location LOC is empty by testing the equality of the
contents thereof against the initial value IFILL. If the
location is empty, the sought string is defined as not
existing in the table and a jump is effected to statement
35 to update the table and terminate the current string.
The jump to statement 35 is effected by the label 200
assigned to the statement. If, however, the tests per-
formed by statements 27 and 30 both fail, another loca-
tion must be checked unless the last location investi-
gated constitutes the seventh attempt to find a string or
an empty location. Accordingly, statement 31 incre-
ments the search count N by unity and statement 32
tests this next search count to determine if it exceeds
seven. If N now exceeds seven, further searches are not
attempted, the string is defined as not existing in the
table and a transfer is effected to statement 36. The label
300 is assigned to the statement 36 to effect the jump. If
N, however, is not yet equal to seven, then the search
for the sought string is continued at a new hash address.
Statement 33 calculates a new hash address from the
prefix string node number which is added to the just
tested node number. The addition is effected modulo

—

5

20

23

30

45

60

65

42

4096 to maintain the table length. This new node num-
ber is also increased by one to provide a FORTRAN-
legal location LOC. With the new hash address calcu-
lated, statement 34 effects a transfer to statement 26, via
the label 120, to effect the search procedure with re-
spect to the new address.

Statement 35 demarcates the state in the program to
which statement 30 effected a transfer when an empty
location was encountered. The siring table is now up-
dated by entering, at the empty location, the extended
string just observed but not yet in the table. Statement
35 effects the update by writing the prefix node number
stored in NODENO into the empty location which
effects the assignment of that location address as the
compressed code symbol signal of the new string.
Thereafter, end of string processing is effected by state-
ments 36-38. Statement 36 calls IBITSP to put the pres-
ent node number in NODENO into the output buffer
IBUFB as a 12-bit code in the NBth 12-bit location in
that buffer. Statement 37 then transforms the last re-
ceived input character, which was not included in the
string just transmitied, into a code number to provide
the beginning of the next string search. The character
signal becomes the code signal by transferring the value
in NOWCHR into NODENO. Statement 38 then incre-
ments the output symbol count NB by unity to provide
the output position for the string just started and state-
ment 39 transfers back to statement 21 via the label 100
to fetch another input character signal and perform the
main iteration loop.

Statement 40 demarcates the state in the program
where all input characters in the current data block
have been processed. Accordingly, statement 40 calls
IBITSP to put the last 12-bit code value in NODENO,
which reflects the last partial string, in the NBth posi-
tion of the output buffer IBUFB. Statement 41 then
returns control to the main program that called the
subroutine COMP of FIG. 6 to compress the data block
of NA character signals contained in the input buffer
IBUFA.

Referring to FIG. 7, the decompression subroutine
DECOMP (IBUFB, NB, IBUFA, NA) is illustrated
that performs decompression upon a block of NB 12-bit
compressed code symbol signals received in a buffer
IBUFB, and packs the resuiltant recovered 9-bit charac-
ter signals into output buffer IBUFA and returns a
count NA of the number of resulting characters.

The decompressor DECOMP of FIG. 7 stores the
string table thereof in a 4096-word array ITABLE di-
mensioned in statement 10. Statement 11 parameterizes
the number of bits in the output character signals utiliz-
ing the data constant NBITSA set to 9 for the embodi-
ment of FIG. 7. Statement 12 establishes an input com-
pressed symbol count variable NCHB which indicates
the next input symbol signal to be read. Statement 12
also initializes NCHB to one. Statement 13 establishes
an output character count variable NA indicating the
number of characters which have been put in the output
buffer IBUFA. Statement 13 also initializes NA to one
in anticipation of the first output character to be placed
into the output buffer. This occurs at statement 18 in a
manner to be described. Each string table location in
ITABLE is organized with three integer valued fields.
Each string table location stores an encountered string
of characters via the contents of the location, via the
prefixed string code at bits 1-12, the length of the prefix
string at bits 13-24 and the string extension character at
bits 25-36. The address of a location is the code number

4,558,302

43
of the string stored thereat. In the present embodiment
the address is the code signal plus one for the reasons
discussed above with respect to FIG. 6.

Statements 14 and 15 initialize the string table ITA-
BLE to indicate that all locations are empty. All zeros
is arbitrarily selected to indicate the empty condition
for programing convenience. All zeros is an illegal con-
figuration that can never occur in storing a legitimate
string. When a legitimate string has a prefix code of
zero, it has a prefix string length of 1 and therefore the
all zeros configuration can only be established in the
string table during this initialization procedure.

Initial processing is begun at statement 16 by reading
in the first input code symbol and storing this node code
in a variable NOCODE which is utilized to contain the
most recently read in code symbol. Statement 16 effects
the reading in of the first input code symbol by utilizing
the IBITSG function subprogram of FIG. 8 to input the
NCHBth 12-bit item in IBUFB. Statement 17 defines
the variable ICHAR which is utilized to contain the
most recently generated character. Since the value just
placed in NOCODE at statement 16 is known to be a
single character code, it'is immediately utilized to fill
ICHAR at statement 17. Statement 18 places this char-
acter in the output buffer IBUFA at the NAth site of the
NBITSA sized items. Statement 18 effects this charac-
ter outputting operation by calling the IBITSP subrou-
tine of FIG. 9. Thereafter, in preparation for a later
update of the string table with an extension of this
string, statement 19 saves the string code in NOCODE
in a variable NODOLD and statement 20 saves the
length of the string in LEVOLD with a known value of
one for this first string. Having thus initialized the de-
compression process, the main iteration is entered at
statement 21. Statement 21 is provided with a label of
100 to effect later transfer thereto.

At the commencement of the main loop, statement 21
increments the symbol count NCHB by unity and then
statement 22 performs a test to determine if the input
symbol count, NCHB, exceeds the number, NB, of
symbols to be processed. If the extant symbol count
NCHB is greater than the number of available symbols
to be decompressed, the process is complete and DE-
COMP terminates by transferring to the subroutine
return statement 57. Statement 57 is provided with a
label 510 to effect the transfer. When, however, further
input data to be decompressed is available, statement 23
reads in the next available symbol from the NCHBth
12-bit position of IBUFB. Statement 23 utilizes the
IBITSG function subprogram of FIG. 8 to effect this
operation. Statement 23 places the read in code symbol
into NODENO which is a variable utilized to hold the
code of the present partial string being processed. State-
ment 24 also places the input code symbol into
NOCODE utilized to contain the most recent input
code. Statement 25 tests the code value in NODENO to
determine if it exceeds 512 and if so, the program trans-
fers to statement 28 to begin the normal decomposition
process. The value 512 is equal to 22 for reasons dis-
cussed above with respect to FIGS. 2, 3 and 6. State-
ment 28 is assigned the label 120 to effect the transfer
thereto. If, however, the test of statement 25 determines
that the new symbol in NODENO has a value less than
512, the code represents a single character string of
preassigned code value which is interpreted directly.
This single character string has a prefix string length of
zero. Accordingly, statement 26 establishes a working
variable LEVEL to hold the prefix string length of a

20

25

30

40

45

60

65

44

string being processed and in this instance is set to zero.
Thereafter, statement 27 transfers the program to state-
ment 40 whereat processing of all single character
strings is achieved. Statement 40 is provided with a
label 210 to effect the transfer thereto.

When statement 25 effects the transfer to statement
28 via the label 120, a new code value is resident in
NODENO which is known to represent a multi-charac-
ter string. The statement 28 tests for the unusual special
situation where the present string is the extension of the
immediately prior string which is not as yet entered in
the string table. The test is effected by examining the
contents of the string table location of the new code to
determine if this string code value has been previously
defined. Actually, the table is addressed at NODENO
plus one to satisfy the FORTRAN requirements dis-
cussed above. If the table entry is not zero, then the
string has been previously defined and a transfer is ef-
fected to statement 33 to continue normal processing.
The label 130 is assigned to statement 33 to effect the
transfer. If, however, the test of statement 28 deter-
mines that the table entry is empty, then the present
code is known to be the extension of the immediately
prior string. Thus, the prefix string length of the present
string is equal to the prior string length. Accordingly,
statement 29 places the prior string length in LEVOLD
into the prefix string length variable LEVEL. In this
special case, the first character to be provided is known
to be the extension character of the immediately prior
string which is the originating character of this present
string, which character equals the originating character
of the immediately prior string, which is the character
resident in the variable ICHAR. Thus, statement 30
calls the IBITSP subroutine of FIG. 9 to place the
existing value in ICHAR into the output buffer IBUFA
at the location at the end of the new string. This loca-
tion is determined from the NA count of all prior char-
acters that have been provided by the decompressor
plus the length value of the prefix string in LEVEL plus
one. After outputting the first character of the new
string, statement 31 transfers the prior string code in
NODOLD into NODENO as the prefix string to be
decoded and statement 32 effects a transfer to statement
34 to enter the main loop wherein a string is decoded.
The label 200 is assigned to the statement 34 to effect
transferring thereto.

When the test performed by statement 28 indicates
that the current code represents a string already in the
table, then the normal code interpretation path is fol-
lowed to statement 33 via the label 130. Statement 33,
using the FORTRAN BITS function, reads the length
of the prefix of the accessed string from the 12 bits
starting at bit 13 of the location of ITABLE addressed
by the contents of NODENO plus one. This prefix
string length is saved in LEVEL for the later update of
the string table in which the extension of this string is
entered.

Statement 34 is the entrance into the main loop for
decomposing the partial string represented by the code
in NODENO into its prefix string and extension charac-
ter. Statement 34 examines the code of the partial string
for value greater than 512 to determine if the partial
string has a prefix string. If the code of the partial string
is less than 512, it is a single character reserved value
and transfer is effected to statement 49 to process and
terminate this single character string. The label 210
assigned to statement 40 is utilized to effect the transfer.
In the continuing case where NODENO provides a

4,558,302

45

legitimate multi-character code, the contents of the
table location thereof are accessed utilizing the bits
function of FORTRAN. Accordingly, statement 35
saves the 12-bit prefix string length starting at bit 13 in
a temporary variable INDEX. Statement 36 places the
NBITSA bit extension character starting at bit 25 in
ICHAR. Statement 37 then calls the IBITSP subroutine
of FIG. 9 to place this character into the output buffer
IBUFA at its character location at one position beyond
the sum NA of all prior strings plus the length of the
prefix string associated with this character as stored in
INDEX. Statement 38 thereafter utilizes the BITS func-
tion to place the 12-bit prefix string code from the ac-
cessed location in ITABLE starting with bit 1 thereof
and placing this code value into NODENO for further
processing. This string decomposition procedure is then
repeated by transferring, via statement 39, back to state-
ment 34 utilizing the label 200.

Statement 40 demarcates the location in the program
to which processing is transferred when the remaining
partial string code in NODENO denotes a single char-
acter string. Transfer to the statement 40 is effected at
the end of processing for each string. Since the code for
the single character string is the character value, state-
ment 40 transfers the contents of NODENO into
ICHAR. Statement 41 then outputs the character by
calling the subroutine IBITSP of FIG. 9 to place the
character in output buffer IBUFA at the first character
position past the sum NA of the prior strings. Thereaf-
ter, the table update phase of the program is entered at
statement 42 to determine if the immediately prior
string extended by this last character can be entered in
the string table. The table update phase of the program
utilizes the muiti-search hashing procedures discussed
above, with the searched count variable N initially set
to 1 at statement 42. Statement 43 computes the first
hash address at which an update will be attempted from
the extension character value in ICHAR and the prior
string code in NODOLD. The quantity 1 is added to the
hash address to convert it to a FORTRAN legal table
location for the reasons discussed above, and this loca-
tion address is stored in LOC.

Statements 44 and 45 examine the search site to deter-
mine if it is suitable for storing the extended string.
Statement 44 determines if the address of the search site
is for one of the preassigned locations 1 through 513,
corresponding to codes O through 512, which are unus-
able for extended siring storage. If the address in LOC
corresponds to one of the preassigned locations 1
through 513, a transfer is effected to statement 46 to
generate further hash addresses. The transfer is effected
by label 218 assigned to statement 46, If, however, the
address is greater than 513, statement 45 tests the con-
tents of the LOC location to determine if the location is
empty. If the search site is empty, a transfer to statement
50 is effected, via the label 220, to update the string
table. If, however, the search site is not empty, the
program sequences to statement 46 to compute the hash
address for another location. Statement 46 increments
the search count N by 1 and statement 47 tests the incre-
mented search count against the search length limit, set
at 7 for this embodiment, to determine if further search
sites should be attempted. If the search length limit has
been exceeded, then no acceptible space remains in the
table for the extended string and a transfer is effected to
statement 53 to finish the string processing. A label 225
is assigned to the statement 53 to effect the transfer. If,
however, another search is permitted, statement 48

20

25

35

40

45

50

60

65

46
calculates a new hash address value for LOC by a sec-
ond hash function on NODOLD added to the just uti-
lized code value, modulo 4096, plus 1 to satisfy FOR-
TRAN requirements. Statement 49 then effects a reen-
try to statement 44, via the label 215, to renew the
search.

When it had been determined, via the statement 45,
that the search site having a legitimate address was
empty, a transfer was effected to statement 50. The
address of the located site is the same as that developed
by the compression program of FIG. 6 for this extended
string and consequently, this address is utilized as the
code number for the string. This is accomplished by
writing the descriptive data for the string at the ac-
cessed location. Accordingly, statement 50 utilizes the
BITS FORTRAN function to write the prefix string
code from NODOLD in the first 12 bits of the location.
Statement 52, utilizing the BITS FORTRAN function,
writes the prefix string length from LEVOLD into the
next 12 bits of the location and statement 51 writes the
extension character from ICHAR into the remaining
bits of the location. Thereafter, at statements 53-55, end
of string bookkeeping is effected. Statement 53 transfers
the contents of NOCODE into NODOLD thereby
transforming the most recently read code symbol in
NOCODE into the prior code NODOLD. Statement
54 increments the prefix string length in LEVEL of this
prior code by unity to provide the string length of the
prior string when it is entered as a prefix string on the
next table update. This prefix string length quantity is
stored in LEVOLD. Statement 55 increases the count
NA of output characters by the content of LEVEL plus
one which is the length of the last string just processed.
After this end of string bookkeeping is performed, state-
ment 56 effects a reentry to statement 21, via the label
100 to process the next input compressed code symbol
signal.

Statement 57 demarcates the end of data block pro-
cessing. In the program of FIG. 7, cleanup processing is
not require and consequently control is returned to the
main program that called the subroutine DECOMP of
FIG. 7 to decompress the block of compressed code
symbol signals stored in the input buffer IBUFB.

Although the embodiment of the invention described
with respect to FIGS. 6-9 was exemplified as compres-
sion and decompression subroutines provided in the
FORTRAN programing language, the compression
and decompression routines could be formated as main
programs in their own right. The programs may be
utilized as software in, for example, a main-frame com-
puter or microprocessor, or may be configured as firm-
ware in ROM chips for use, for example, in the input
and output electronic circuitry of a magnetic disc or
tape controller. Additionally, programming languages
other than FORTRAN may be employed or other pro-
gram codings in the same or other languages may be
utilized in performing the functions described herein to
practice the data signal compression and decompression
procedures of the present invention.

It is appreciated that a programmed version of a
microprocessor or other type computer provides an
embodiment of the capabilities and techniques de-
scribed herein which is indistinguishable from a digital
logic version as described herein except in choice of
primitive data operations and of state sequencing con-
trol implementation. The economy of producing stan-
dardized data manipulation operations in a general pur-
pose computer together with the readily altered form of

4,558,302

47
control logic, as stored in a rewriteable memory rather
than in wires and logic gates, provides embodiments
which can be economically preduced and quickly al-

tered in minor ways for specific applications, at the.

relative loss of some execution speed.

The hash function described above with respect to
the hardware embodiment of the invention maps code,
character tuples comprising 20-bit items (12 code bits
and 8 character bits) into a 12-bit address space. The
hash function, utilized with respect to the software
embodiment maps 21-bit items (12 code bits and 9 char-
acter bits) into a 12-bit address space. Such a hash func-
tion may be utilized since not all 20-bit values and 21 bit
values occur. The hash function described above has
been designed to satisfy the criteria set forth above.
Additionally, the hash function is designed to minimize
conflicts arising from the assumptions that; firstly, some
individual input characters are more heavily utilized
than others and low numbered characters are more
likely to be heavily used; and secondly, some codes are
more heavily utilized than others and early occuring
codes will be most heavily utilized. An alternative hash
function to that described above may be implemented
by generating the first hash address by rotating the code
left 5 bits and exclusive-oring the character bits into the
high order bits of the rotated code. Three succeeding
addresses are generated by adding, modulo 4096, to the
previous 12-bit hash address, a new 12-bitnumber com-
prising the code number reversed end-to-end and ro-
tated left three bits with the least significant bit of the
resulting number forced to one.

The embodiments of the invention described with
respect to FIGS. 2-5 utilize a variety of optional tech-
niques that may be combined in combinations different
from those disclosed above to provide alternative em-
bodiments of the invention. The compressor-decom-
pressor system of FIGS. 2 and 3 initializes the string
table with all of the single character strings whereas the
compressor-decompressor system of FIGS. 4 and §
initializes the string table only with the null string. With
respect to FIGS. 2 and 3, the single character string
initialization is effected by utilizing the single characters
themselves as the code numbers of these strings and
permitting access to the string table only for addresses
greater than 25. Since all of the characters to be com-
pressed are B-bit bytes, all characters have values less
than 28. Thus, a single character string, having a code
value less than 25, is transmitted by the compressor of
FIG. 2 without string table access and is recognized at
the decompressor of FIG. 3 as a single character string
and may be transmitted thereby directly. The compres-
sor-decompressor system of FIGS. 4 and 5, which ef-
fects table initialization with only the null string, ac-
cesses the string tables thereof with all addresses from
zero to 2€—1. Thus, in the compressor embodiment of
FIG. 4, a single character string is entered into the
string table by hashing the received character with the
code number zero and entering the string prefix code of
zero at the resulting hash address. The decompressor of
FIG. 5 also stores the single character strings by enter-
ing the prefix code zero at the appropriate string table
locations.

As a further option, the compressor-decompressor
system of FIGS. 2 and 3 assigns the hash table address
of a string as the string code symbol signal thereof,
whereas the compressor-decompressor system of FIGS.
4 and 5 sequentially assigns string code symbol signals
to the strings as the new string entries are created.

—

0

25

35

40

45

35

60

65

48

As a still further option, the compressor-decompres-
sor system of FIGS. 2 and 3 assigns fixed length code
values to the sirings, whereas the compressor-decom-
pressor system of FIGS. 4 and 5 assigns varying length
code symbols to the strings. In the embodiment of
FIGS. 2 and 3, the fixed length is the full address length
of C bits whereas in the embodiment of FIGS. 4 and S
the length of the compressed code symbols increases
during the processing of the data block until a length of
C bits is obtained.

As a further option, the decompressor of FIG. 3
utilizes a string length indexing mechanism to effect
decompression string reversal, whereas the decompres-
sor of FIG. 5 utilizes a push-down stack for this pur-
pose.

As discussed above, each of the options is imple-
mented in the embodiments disclosed in FIGS. 2-5.
These options may be recombined by the routineer in
the art to form additional embodiments within the pur-
view of the invention. Since each of the above four
options has two possibilities, sixteen separate embodi-
ments can be constructed. For example, with respect to
the compressor of FIG. 4, the sequentially assigned
string codes may be transmitted as fixed length outputs
of C-bits. In that case, the code size circuit 123 would be
eliminated. In such an embodiment, the decompressor
of FIG. 5 would then also eliminate the code size circuit
159. If in such a compressor-decompressor system the
option of initializing the string tables with the null-
string only is incorporated (as in FIGS. 4 and 5 as de-
scribed) the shift network 118 of the compressor of
FIG. 4 may then be utilized to transmit the fixed length
C-bit compressed code signals as well as the B-bit bytes
following transmission of the all zeros null code. In a
similar manner, the decompressor of FIG. 5 would
utilize the shift network 156 for accepting the fixed
length C-bit code signals as well as for accepting the
B-bit byte signals following receipt of the ail zeros null
code. If, however, the compressor-decompressor sys-
tem of FIGS. 4 and 5 was modified, as described, to
include the fixed length code option and further modi-
fied to utilize string table initialization with all of the
single character strings, the shift network 118 of the
compressor of FIG. 4 would then be eliminated with
the output provided from the code number register 119
on the bus 120. In such an embodiment, the decompres-
sor of FIG. 5 would then eliminate the shift network
156 with the input code being applied directly to the
code register 157 via the bus 158. Futhermore, the code
counter 121 of FIG. 4 would be set to 28 after the string
table initialization is effected and the code counter 160
of FIG. 5 would be initialized to 28 instead of zero.
Additionally, the bus 117 of FIG. 4 from the character
register 116 would be applied to the code number regis-
ter 119 in order to insert a B-bit character in the B least
significant positions of the register 119. The C-B most
significant positions of the register 119 would be set to
zero. The described modifications to the compressor-
decompressor system of FIGS. 4 and § would improve
performance at the expense of compression efficiency.

It is appreciated from the foregoing, that the relation-
ship between the registers 116 and 119 of the altered
FIG. 4 and the operations thereof are identical to the
relationship between and the operations of the registers
17 and 19 of FIG. 2. Additionally, in the altered em-
bodiment utilizing table initialization with all of the
single character strings, the zero valued input to the
comparator 134 of FIG. 4 is not utilized. Single charac-

4,558,302

49

ter strings, including single character strings of charac-
ters encountered for the first time, are transmitted in a
manner identical to that described above with respect to
FIG. 2 rather than transmitting, for newly encountered
characters, the all zeros null code signal followed by the
new character.

Additionally, in the modified compressor-decompres-
sor embodiment of FIGS. 4 and §, utilizing table initial-
ization with all single character strings and fixed length
compressed code signals, the decompressor of FIG. § is
altered by comparing the contents of code register 157
to 25 rather than to zero to determine if a multi-charac-
ter string or a single-character string has been received.
The bus 162 is provided from the code register 157 for
transmitting single character strings directly to the
stack 161. The code on the bus 180 is compared to 28
rather than to zero to determine when the first charac-
ter in a string has been encountered in a backward trace
through the string table of RAM 177. A bus from the
RAM address register 165 to the top of the stack 161 is
provided to transfer the last character of a traced string
to the stack 161 in a manner similar to that described
above with respect to the decompressor of FIG. 3. The
zero detector 174 of FIG. 5 will no longer be required
in this modified embodiment. The zero valued input
into the register 157 will also not be required.

If it is desired to effect a compressor-decompressor
embodiment that initializes the string table with all of
the single character strings, sequentially assigns string
code symbols as new string entries are created and
transmits varying length compressed code signals; the
system of FIGS. 4 and 5 may be accordingly altered.
The compressor of FIG. 4 may be modified by setting
the code counter 121 to 25 after the string table initial-
ization is effected and initializing the counter 160 of
FIG. 5 to 28instead of zero. Additionally, the bus 117 of
FIG. 4 from the character register 116 is applied to the
code number register 119 in the manner described
above. Similarly, the decompressor of FIG. § is altered
by comparing the contents of the code register 157 to
28 rather than to zero to determine if a multi-character
string or a single-character string has been received.
Additionally, the code on the bus 180 is compared to 28
rather than to zero to determine when the first charac-
ter in a string has been encountered in a backward trace
through the string table of RAM 177. In this embodi-
ment, the zero detector 174 of FIG. 5 as well as the zero
valued input into the register 57 will not be required.

If it is desired to modify the compressor-decompres-
sor embodiment of FIGS. 2 and 3 to initialize the string
tables with only the null string, the comparator 26 is
modified to discard hash function addresses equal to the
null code and to the empty code. Additionally, the
comparator 32 is modified to compare the value in the
code number register 19 with zero to determine if the
B-bit character in the character register 17 should be
transmitted after transmission of the null code. The
B-bit character may be transmitted as a zero filled C-bit
character or alternatively a shift network mechanism
may be utilized similar to that described above. In a
similar manner, the decompressor of FIG. 3 may be
modified by utilizing the comparator 58 to detect zero
rather than 28 and to control the code register 57 to
transmit single characters following null codes directly.

It will be appreciated from the foregoing that the
embodiment of FIGS. 2 and 3 provides highest perfor-
mance at the expense of compression efficiency. Fur-
thermore, the embodiment of FIGS. 4 and 5 provides

10

15

20

25

30

35

40

45

50

55

60

65

50

highest compression at the expense of performance. The
above described modification which combines the op-
tions: table initialization with all single character
strings; string code symbols sequentially assigned as
new strings are created; transmitting fixed length code
values; and string reversal utilizing a push-down stack-
—is a compromise between highest performance and
highest compression that may provide a preferred em-
bodiment depending on the application. It is further
appreciated that the stack mechanization of FIG. 5 for
string reversal is readily interchangeable with the string
length indexing mechanism of FIG. 3. When string
length indexing is utilized, the level field is appended to
the RAM locations and the indexing mechanism com-
ponents 61, 78, 85, 86, 88, and 91 of FIG. 3 are utilized.
When the stack mechanism is utilized, the level field of
the RAM is not required and the components 161, 184
and 185 of FIG. § are employed.

As described above, FIGS. 6-9 illustrate a pro-
grammed computer embodiment of the invention utiliz-
ing the options of the highest performance hardware
embodiment of FIGS. 2 and 3. It is appreciated that
various software embodiments of the invention may be
provided utilizing various combinations of the options
described above with program coding therefor rou-
tinely provided by normally skilled computer program-
mers.

In summary, the invention utilizes a string table for
storing strings of characters observed in the input data
except, perhaps, for strings such as single-character
strings with which the table may be initialized at the
beginning of a data block to be compressed. The strings
are entered into the table dynamically as they are ob-
served in the input data character stream so that the
stored set of strings adapts to the statistics of the data
being processed. Each string of X characters comprises
a prefix string of X—1 characters and one extension
character where the prefix string is also a member of the
table. Each string is assigned a code symbol and when a
stored string is encountered in the input data character
stream, the encountered string is expressed in the com-
pressed data by its code symbol. Each string is stored
either explicitly or implicitly in terms of the code sym-
bol of the string, the code symbol of the string prefix
and the string extension character. The stream of data
character signals is processed by parsing the stream into
strings of characters, each string having been located in
the string table. The parsing is achieved in a single pass
into the data character stream starting from a beginning
character and separating off one character at a time.
Each character is utilized to extend the previous string
if the extended string matches one located in the string
table. Otherwise, the character is utilized to start a new
string. Basically, the compression process may be con-
sidered as a recurring step applied to each character in
sequence as it is encountered in.the input data stream as
follows.

A string S, from the input data stream, has been lo-
cated in the string table. For the next following charac-
ter c, in the input data stream, the table is searched to
determine if the extended string Sc exists therein. If the
string Sc exists in the table, the next following character
is examined and the procedure is reapplied. If the ex-
tended string does not exist in the table, the code sym-
bol for the string S is transmitted as the compressed
output and the string Sc is entered in the table. The
character c is then utilized as the first character of the

4,558,302

51

next string and the procedure is reapplied utilizing the
next following input character.

The search for the string Sc is performed by combin-
ing the character ¢ with the code for the string S to
provide a string table address. If the extended string Sc
is already stored at the location, the string Sc exists in
the table. If the location is empty, the string does not
exist in the table. In that instance, the code symbol for
the string S is transmitted and the string Sc is entered at
the empty location. Preferably, the combination of the
character ¢ with the code for the string S is performed
by the limited-search hash procedure discussed above.
During compression, the hash table mechanization is
utilized to store the non-preassigned strings because the
number of possible strings defined at a point in the com-
pression procedure will exceed the actual number of
strings and the size of an economical memory by a
substantial factor. Generally a hash table is one in which
each memory location thereof may contain an assigned
set of possible items allocated by a selected mathemati-
cal function. In the limited search hash table process
described hereinabove, each possible address appears
only in a small group of a limited number of memory
addresses. This criterion limits the amount of searching
required to locate a possible entry or to define that it is
not in the table.

During compression, a string is retrieved utilizing at
least its prefix code to identify it. During decompres-
sion, a string is identified by its code symbol directly.
The string table of the decompressor stores, the string
prefix code and the extension character at each string
location, which string location is addressable by the
code for the string. Thus, an input code symbol is
looked up in the table which provides the prefix string
and the extension character. The prefix string is then
looked up in the table providing a new prefix string and
a new extension character. The process is repeated until
the initial single character string is encountered.

In the above described embodiments of the invention,
hash addresses or numerically increasing values are
utilized as the compressed code symbol signals for the
strings. It is appreciated that consistant modifications or
isomorphisms of these values may also be utilized as the
compressed code symbol signals for the strings.

Several variations of the above described embodi-
ments of the invention may be effected as follows utiliz-
ing readily apparent design modifications.

If the compressor of the present invention is provid-
ing compressed data to a synchronous channel such as a
disc or tape system, it may be desirable to increase or
decrease the speed of the compressor so that its output
rate matches the input rate of the channel so as to mini-
mize buffering. The output rate of the compressor is
governed by the compression ratio achieved, and the
compression ratio varies in accordance with the type of
data encountered. If the compressor encounters poorly
compressible data so that it produces output symbols at
too high a rate, the compressor can be slowed down by
waiting between input characters. If the compressor
encounters very compressible data so that it produces
‘output symbols too slowly, the compressor can be
speeded up by reducing compressor efficiency. This
may be effected by aborting character string extension
whenever an output code symbol is required. Thus,
strings of less than the longest match may be selected
whenever the compressor falls behind the required
output rate. Additionally, since the compression effec-
tiveness tends to be low when processing the early part

20

25

35

40

45

50

33

60

65

52

of the data block and increases as the processing of the
block continues, it may be desirable to begin compres-
sion prior to initiating transfer of the compressed code
stream to compensate for compression rate variations. It
is appreciated that this latency loss occurs only on writ-
ing compressed data into the external equipment from
the compressor. In reading compressed data from the
external equipment, decompression can be initiated as
soon as the compressed data is available from the exter-
nal source.

A further modification may involve utilizing a
counter as part of the compressor to limit parsed string
lengths to be less than a selected value. This feature
would reduce the variation in instantaneous compres-
sion ratios so that the output rate of compressed data
would be more predictable. Additionally, such a
counter would reduce the cost of the equipment in the
decompressor that is sensitive to maximum string
length. Such equipment includes the push-down stack
161 of FIG. 5 as well as the level registers 78 and 85, the
address adder 86, the outpointer register 88 and the
level field of the RAM 75 of FIG. 3.

A further modification of the invention may be to
utilize the same set of hardware apparatus for both
compression and decompression although not concur-
rently. There is sufficient similarity between the com-
pression and decompression requirements, especially
the RAM, that substantial cost savings can be obtained
by this modification when the loss of concurrency is
acceptible. Additionally, a content-addressable or asso-
ciative memory might be utilized instead of the RAM in
the compression implementations. Such a modification
would eliminate the requirement for hashing and reduce
control complexity.

The present invention achieves adaptive reversible
data compression and decompression on a wide variety
of data types without any prior knowledge of the data
statistics or the form of data redundancy. Good com-
pression ratios are achieved with high performance
operation suitable for use with the fastest present day
magnetic tape and magnetic disc data storage systems as
well as with the fastest present day commercial commu-
nication links.

While the invention has been described in its pre-
ferred embodiments, it is to be understood that the
words which have been used are words of description
rather than of limitation and that changes may be made
within the purview of the appended claims without
departing from the true scope and spirit of the invention
in its broader aspects.

I claim:

1. In a data compression and data decompression
system, compression apparatus for compressing a
stream of data character signals into a compressed
stream of code signals, said compression apparatus com-
prising

storage means for storing strings of data character

signals encountered in said stream of data character
signals, said stored strings having code signals asso-
ciated therewith, respectively,
means for searching said stream of data character
signals by comparing said stream to said stored
strings to determine the longest match therewith,

means for inserting into said storage means, for stor-
age therein, an extended string comprising said
longest match with said stream of data character
signals extended by the next data character signal
following said longest match,

4,558,302

53

means for assigning a code signal corresponding to
said stored extended string, and

means for providing the code signal associated with
said longest match so as to provide said com-
pressed stream of code signals.

2. The compression apparatus of claim 1 in which

each said stored string of data character signals com-
prises a prefix string of data character signals and
an extension character signal, wherein said prefix
string corresponds to a string stored in said storage
means, and ‘

said storage means comprises memory means having
a plurality of locations accessable by a plurality of
address signals, respectively,

said stored strings of data character signals being
stored at said locations, respectively,

the address signal for accessing a location providing
the code signal corresponding to the string stored
thereat, the siring being stored at the location by
storing at least the code signal corrésponding to the
prefix string of the stored string.

3. The compression apparatus of claim 2 in which said

10

15

20

means comprising said compression apparatus com-

prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.

4. The compression apparatus of claim 2 in which said
locations of said storage means storing said strings store
only said code signals of said prefixes of said strings
respectively.

5. The compression apparatus of claim 2 in which said
searching means includes hash function generation
means responsive to said string code signals and to said
data character signals for hashing a data character sig-
nal with a code signal to provide a hash signal, said hash
signal providing a potentional address signal for access-
ing said memory means.

6. The compression apparatus of claim 5 in which said
hash function generation means comprises means for
providing a predetermined number of hash signals in
response to a code signal and a character signal, said
predetermined number of hash signals providing poten-
tial address signals for accessing said memory means.

7. The compression apparatus of claim 6 further in-
cluding means for determining if all of said predeter-
mined number of hash signals are unsuitable as address
signals for accessing said memory means.

8. The compression apparatus of claim 6 in which

said hash function generation means comprises means

for providing said predetermined number of hash
signals in response to a code signal and a character
signal so that a code signal hashed with different
character signals provides different hash signals,
respectively.

9. The compression apparatus of claim 6 in which

said hash function generation means comprises means

for providing said predetermined number of hash
signals in response to a code signal and a character
signal so that any two code signal-character signal
tuples providing the same first hash signal will not
provide the same second hash signal.

10. The compression apparatus of claim 5 further
including initializing means for storing in the locations
of said memory means an empty indicia signal repre-
senting that the location storing said empty indicia sig-
nal is empty, said empty indicia signal having a value
not equal to any compressed code signal.

25

30

35

45

50

55

60

65

54

11. The compression apparatus of claim 10 in which
said searching means includes said memory means and
further comprises

character register means for holding a data character

signal,

code register means for holding a compressed code

signal,
said character register means and said code register
means being coupled to said hash function genera-
tion means for providing the data character signal
and the code signal held therein, respectively, to
said hash function generation means for generating
said hash signal in accordance therewith,
address register means for holding an address signal,
said address register means being coupled to receive
said hash signal from said hash function generation
means and further coupled to access said memory
means at the location thereof corresponding to the
address signal held in said address register means,

comparator means coupled tc said memory means
and to said code register means for comparing the
contents of a location of said memory means ad-
dressed by said address register means with the
code signal held in said code register means and
with said empty indicia signal to determine equality
therewith,

means for transferring the address signal held in said

address register means to said code register means,
and
control means coupled to said comparator means for
controlling the transfer of the current address sig-
nal held in said address register means to said code
register means and the transfer of a new data char-
acter signal into said character register means
when the contents of the location of said memory
means accessed by said current address signal
equals the code signal held in said code register
means.
12. The compression apparatus of claim 11 further
including means for transferring a data character signal
from said character register means to said code register
means to transform said data character signal into the
compressed code signal corresponding thereto.
13. The compression apparatus of claim 12 in which
said transfer means comprises
means for transferring said data character signal from
said character register means to the lower signifi-
cant positions of said code register means, and

means for zeroing the remaining high order positions
of said code register means. '

14. The compression apparatus of claim 12 in which
said control means includes means for controlling the
transfer of the data character signal held in said charac-
ter register means to said code register means when said
comparator means determines that the location of said
memory means addressed by the address signal held in
said address register means contains said empty indicia
signal, thereby to provide the first code signal in a
search for a longest match.

15. The compression apparatus of claim 8 in which
said initializing means comprises

means for providing said empty indicia signal to said

memory means for entry therein, and

an initializing counter coupled to said address register

means for providing sequential address signals
thereto so as to enter said empty indicia signal into
sequential locations of said memory means.

16. The compression apparatus of claim 11 in which

4,558,302

55
said inserting means comprises means for transferring
said code signal held in said code register means to
said memory means, and

said control means includes means for controlling the

insertion of said code signal held in said code regis-
ter means into the location of said memory means
addressed by said address signal held in said ad-
dress register means when said comparator means
determines that the location of said memory means
addressed by said address signal held in said ad-
dress register means contains said empty indicia
signal.

17. The compression apparatus of claim 16 in which
said means comprising said compression apparatus com-
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.

18. The compression apparatus of claim 16 in which
said assigning means comprises said address register
means providing said address signal held therein to said
memory means when said comparator means deter-
mines that said location of said memory means ad-
dressed by said address signal contains the empty indi-
cia signal, said address signal held in said address regis-
ter means when said comparing means detects said
empty indicia signal providing the compressed code
signal corresponding to said stored extended string.

19. The compression apparatus of claim 11 in which
said means for providing the code signal associated with
said longest match comprises output means coupled to
said code register means for providing the code signal
held in said code register means when said comparator
means determines that the addressed location in said
memory means contains the empty indicia signal.

20. The compression apparatus of claim 19 in which
said output means comprises an output bus.

21. The compression apparatus of claim 19 in which
said hash function generation means includes means for
providing a further hash signal up to a predetermined
number of hash signals when said comparator means
determines that the location of said memory means
addressed by the address signal in said address register
means contains a value neither equal to the code signal
held in said code register means nor to the empty indicia
signal.

22. The compression apparatus of claim 21 in which
said means comprising said compression apparatus com-
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.]

23. The compression apparatus of claim 21 further
including

further comparator means coupled to receive said

hash signals from said hash function generation
means for comparing said hash signals to said
empty indicia signal and in which said control
means includes means for controlling said hash
function generation means to provide said further
hash signal, up to said predetermined number of
hash signals, when said further comparator means
determines that a provided hash signal is equal to
said empty indicia signal.

24. The compression apparatus of claim 21 in which
said control means including means for controlling the
transmission by said output means, of the code signal
held in said code register means when none of the loca-

20

25

30

35

40

45

55

60

65

56

tions of said memory means addressed by said predeter-
mined number of hash signals contains a code signal
equal to the code signal held in said code register means
or the empty indicia signal.

25. The compression apparatus of claim 24 further
including

means for transferring a data character signal from
said character register means to said code register
means to transform said data character signal into
the compressed code signal corresponding thereto,
and in which

said control means includes means for controlling the
transfer of the data character signal in said charac-
ter register means to said code transfer means after
transmission of said code signal on said output bus
means.

26. The compression apparatus of claim 21 in which
each data character signal comprises a B-bit byte signal
and each compressed code signal comprises a C-bit
signal whereby B is less than C.

27. The compression apparatus of claim 26 in which
said empty indicia signal comprises a signal not greater
than 28 and not equal to any data character signal.

28. The compression apparatus of claim 27 in which
said empty indicia signal comprises a signal equal to 25.

29. The compression apparatus of claim 27 further
including

further comparator means coupled to receive said
hash signals from said hash function generation
means for comparing said hash signals to 25, and in
which

said control means includes means for controlling
said hash function generation means to provide said
further hash signal, up to said predetermined num-
ber of hash signals, when said further comparator
means determines that a provided hash signal is not
greater than 25.

30. The compression apparatus of claim 29 in which

said character register means comprises a B-bit regis-
ter, and

said code register means comprises a C-bit register.

31. The compression apparatus of claim 30 further
included means for transferring a data character signal
from said character register means to said code register
means to transform said data character signal into the
compressed code signal corresponding thereto, said
means for transferring a data character signal held in
said character register means to said code register
means comprising

means for transferring the B-bits held in said charac-
ter register means to the B lower significant posi-
tions of said code register means,

means for zeroing the C-B most significant positions
of said code register means.

32. The compression apparatus of claim 1 in which
each said stored string of data character signals com-
prises,

a prefix string of character signals and an extension
character signal wherein said prefix string corre-
sponds to a string stored in said storage means, and

said storage means comprises memory means having
a plurality of locations accessable by a plurality of
address signals, respectively,

said stored strings of data character signals being
stored at said locations, respectively,

a string being stored at a location by storing thereat
the code signal corresponding to the string stored

4,558,302

57
thereat and the code signal corresponding to the
prefix string of the stored string.

33. The compression apparatus of claim 32 in which
said means comprising said compression apparatus com-
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.

34. The compression apparatus of claim 32 in which
each said location of said memory means comprises

a prefix code field for storing the code signal corre-

sponding to the prefix string of the string stored
thereat, and

a string code field for storing the code signal of the

string stored thereat.

35. The compression apparatus of claim 34 in which
said searching means includes hash function generation
means responsive to said string code signals and to said
data character signals for hashing a data character sig-
nal with a code signal to provide a hash signal, said hash
signal providing a potential address signal for accessing
said memory means.

36. The compression apparatus of claim 35 in which
said hash function generation means comprises

means for providing a predetermined number of hash

signals in response to a code signal and a character
signal, said predetermined number of hash signals
providing potential address signals for accessing
said memory means.

37. The compression apparatus of claim 36 further
including means for determining if all of said predeter-
mined number of hash signals are unsuitable as address
signals for accessing said memory means.

38. The compression of claim 35 further including
initializing means for storing in said string code fields of
said locations of said memory means an empty indicia
signal representing that the location storing said empty
indicia signal is empty, said empty indicia signal having
a value not equal to any compressed code signal.

39. The compression apparatus of claim 38 in which
said searching means includes said memory means and
further comprises

character register means for holding a data character

signal,

code register means for holding a compressed code

signal, -

said character register means and said code register

means being coupled to said hash function genera-
tion means for providing the data character signal
and the code signal held therein, respectively, to
said hash function generation means for generating
said hash signal in accordance therewith,

address register means for holding an address signal,

said address register means being coupled to receive

said hash signal from said hash function generation
means and further coupled to access said memory
means at the location thereof corresponding to the
address signal held in said address register means,
comparator means coupled to said memory means
and to said code register means for comparing the
contents of the prefix code field of a location of
said memory means addressed by said address reg-
ister means with the code signal held in said code
register means to determine equality therewith,
detector means coupled to said memory means for
detecting when the contents of the string code field
of a location of said memory means addressed by

20

25

30

35

40

45

50

55

60

65

58

said address register means is equal to said empty
indicia signal,

means for transferring the contents of the string code

field of a location of said memory means addressed
by said address register means to said code register
means, and

control means coupled to said comparator means for

controlling the transfer of the contents of the string
code field of the location of said memory means
accessed by the current address signal held in said
address register means to said code register means
and the transfer of a new data character signal into
said character register means when the contents of
the prefix code field of the location of said memory
means accessed by said current address signal
equals the code signal held in said code register
means.

40. The compression apparatus of claim 39 in which
said means comprising said compression apparatus com-
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.

41. The compression apparatus of claim 39 further
including means for entering a null string code signal
into said code register means for initiating a search for
a longest match.

42. The compression

apparatus of claim 39 further including means for

transferring a data character signal from said char-
acter register means to said code register means to
transform said data character signal into the com-
pressed code signal corresponding thereto.

43. The apparatus of claim 39 in which said initial-
izing means comprises,
means for providing said empty indicia signal to said

memory means for entry into the string code fields
of the locations of said memory means, and

an initializing counter coupled to said address register

means for providing sequential address signals
thereto so as to enter said empty indicia signal into
the string code fields of sequential locations of said
memory means.

44. The compression apparatus of claim 39 in which
said inserting means comprises
code counter means for generating numerically in-

creasing code signals,

means for transferring a code signal from said code

counter means to said memory means for insertion
into the string code field of an addressed location,
and

means for transferring said code signal held in said

code register means to said memory means for
insertion into the prefix code field of said addressed
location and in which

said control means includes means for controlling the

insertion of said code signal provided by said code
counter means and said code signal held in said
code register means into the string code field and
prefix code field, respectively, of the location of
said memory means addressed by the address signal
held in said address register means when said de-
tector means determines that the location of said
memory means addressed by said address signal
held in said address register means contains said
empty indicia signal.

45. The compression apparatus of claim 44 in which

said means comprising said compression apparatus com-

4,558,302

59
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.

46. The compression apparatus of claim 44 in which

said control means includes means for controlling the

entering of said null string code signal into said
code register means when said detector means
determines that the string code field of the location
of said memory means addressed by the address
signal held in said address register means contains
said empty indicia signal,

thereby initiating said code register means so as to

begin a new search into said stream of data charac-
ter signals with the character signal held in said
character register means.

47. The compression apparatus of claim 42 in which

said control means includes means for controlling the

transfer of the data character signal held in said
character register means to said code register
means when said detector means determines that
the string code field of the location of said memory
means addressed by the address signal held in said
address register means contains said empty indicia
signal, thereby to provide the first code signal in a
search for a longest match.

48. The compression apparatus of claim 44 in which
said assigning means comprises said code counter means
providing the code signal held therein to the string code
field of the location of said memory means addressed by
said address register means when said detector means
determines that said string code field of said addressed
location contains said empty indicia signal.

49. The compression apparatus of claim 39 in which
said means for providing the code signal associated with
said longest match comprises output means coupled to
said code register means for providing the code signal
held in said code register means when said detector
means determines that the string code field of the ad-
dressed location in said memory means contains the
empty indicia signal.

50. The compression apparatus of claim 44 in which
said means for providing the code signal associated with
said longest match comprises output means coupled to
said code register means for providing the code signal
 held in said code register means when said detector
means determines that the siring code field of the ad-
dressed location in said memoy means contains the
empty indicia signal.

51. The compression apparatus of claim 50 in which
said output means comprises shift network means cou-
pled to said code register means for providing the code
signal held in said code register means in bit serial fash-
ion.

52. The compression apparatus of claim 51 in which
said output means further includes a code size circuit
coupled to said code counter means for providing a
code size signal to said shift network means to control
the number of bits provided by said shift network means
in accordance with the code signal provided by said
code counter means.

53. The compression apparatus of claim 51 further
including means for entering a null string code signal
into said code register means for initiating a search for
a longest match.

54. The compression apparatus of claim 53 further
including means for transferring the data character

5

30

35

40

45

50

55

60

65

60

signal held in said character register means to said out-
put means and in which

said comparator means includes means for comparing

the code signal held in said code register means
with said null string code signal to determine equal-
ity therebetween, and

said control means including means for controlling

said output means to provide said data character
signal provided by said character register means
after providing said null string code signal pro-
vided by said code register means when said detec-
tor determines that the string code field of the
location addressed by the address signal held in
said address register means contains said empty
indicia signal.

55. The compression apparatus of claim 49 in which
said hash function generation means includes means for
providing a further hash signal up to a predetermined
number of hash signals when said detector means deter-
mines that the string code field of the location of said
memory means addressed by the address signal in said
address register means does not contain the empty indi-
cia signal and said comparator means determines that
the prefix code field of the location of said memory
means addressed by the address signal in said address
register means contains a value not equal to the code
signal held in said code register means.

56. The compression apparatus of claim 55 in which
said means comprising said compression apparatus com-
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.

57. The compression apparatus of claim 55 in which

said control means includes means for controlling the

transmission, by said output means, of the code
signal held in said code register means when the
prefix code field and the string code field of none of
the locations of said memory means addressed by
said predetermined number of hash signals contain
a code signal equal to the code signal held in said
code register means and the empty indicia signal,
respectively.

58. The compression apparatus of claim 44 in which
said initializing means comprises,

means for providing said empty indicia signal to said

memory means for entry into the string code field
of the location of said memory means addressed by
the address signal held in said address register
means, and

an initializing counter coupled to said address register

means for providing sequential address signals
thereto so as to enter said empty indicia signal into
the string code fields of sequential locations of said
memory means.

59. The compression apparatus of claim 58 in which
said empty indicia signal comprises all zeros and said -
initializing means includes means for zeroing said code
counter means thereby providing all zeros to the string
code fields of the locations of said memory means for
initialization thereof.

60. The compression apparatus of claim 41 in which
said null string code signal comprises all zeros and said
means for entering said null string code signal into said
code register means comprises means for zeroing said
code register means.

61. The compression apparatus of claim 36 in which
said hash function generation means comprises means

4,558,302

61

for providing said predetermined number of hash sig-
nals in response to a code signal and a character signal
so that a code signal hashed with different character
signals provides different hash signals, respectively.

62. The compression apparatus of claim 36 in which
said hash function generation means comprises means
for providing said predetermined number of hash sig-
nals in response to a code signal and a character signal
so that any two code signalcharacter signal tuples pro-
viding the same first hash signal will not provide the
same second hash signal.

63. in the data compression and data decompression
system of claim 1, decompression apparatus for recov-
ering said stream of data character signals from said
compressed stream of code signals.

64. The decompression apparatus of claim 63 in
which said decompression apparatus comprises

means for receiving said stream of code signals,

memory means for storing strings of data character
signals corresponding to said received code signals,
respectively,

said memory means having a plurality of locations
accessable by a plurality of address signals, respec-
tively,

said strings of data character signals being stored at
said locations, respectively,

said received code signals providing address signals
for accessing the locations of said memory means
storing the strings corresponding to said received
code signals, respectively,

each said stored string of data character signals com-
prising a prefix string of data character signals and
an extension character signal wherein said prefix
string corresponds to a string stored in said mem-
ory means,

a string being stored at a location by storing thereat
the code signal corresponding to the prefix string
of the stored string and the extension character of
the stored string,

means for extracting the data character signals from a
string strored at a location of said memory means
addressed by a received code signal,

further inserting means for inserting in said memory
means an extended string comprising the code sig-
nal received prior to the last received code signal
and an extension character signal comprising the
last extracted data character signal in the string of
data character signals extracted in response to said
last received code signal,

further assigning means for assigning a code signal
corresponding to said extended string, said as-
signed code signal providing an address signal for
accessing a location of said memory means at
which to store said extended string, and

means for reversing said extracted string of data char-
acter signals,

thereby providing said recovered stream of data
character signals.

65. The decompression apparatus of claim 64 in
which each said location of said memory means com-
prises

a prefix code field for storing the code signal corre-
sponding to the prefix string of the string stored
thereat, and

a character field for storing the extension character
signal of the string stored thereat.

66. The decompression apparatus of claim 65 in

which said means comprising said decompression appa-

15

20

25

30

35

45

50

55

60

65

62

ratus comprises digital computer means responsive to
said compressed stream of code signals and pro-
grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.
67. The decompression apparatus of claim 65 in
which said receiving means comprises code register
means for holding a received code signal.
68. The decompression apparatus of claim 67 in
which said extracting means includes said memory
means and further comprises
address register means for holding an address signal,
said address register means being coupled to receive
said code signal held in said code register means
and further coupled to access said memory means
at the location thereof corresponding to the ad-
dress signal held in said address register means,

means for transferring the contents of the prefix code
field of a location of said memory means addressed
by said address register means to said address regis-
ter means,
providing means for providing the contents of the
character field of said location of said memory
means addressed by said address register means,

comparator means responsive to said contents of said
prefix code field transferred to said address register
means for determining when said contents of said
prefix code field indicates the initial character of
the string stored at the location addressed by the
received code signal, and
control means coupled to said comparator means for
controlling the transfer, to said address register
means, of the contents of the prefix code field of
the location of said memory means accessed by the
current address signal held in said address register
means and the providing by said providing means
of the contents of the character field of the location
of said memory means accessed by the current
address signal held in said address register means
until the contents of the prefix code field trans-
ferred to said address register means indicates the
initial character of the string stored at the location
of said memory means addressed by said received
code signal.
69. The decompression apparatus of claim 67 in
which said means comprising said decompression appa-
ratus comprises digital computer means responsive to
said compressed stream of code signals and pro-
grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.
70. The decompression apparatus of claim 68 in
which
said comparator means comprises means for deter-
mining when the contents of said prefix code field
transferred to said address register means contains
a single character string code signal, and

said control means comprises means coupled to said
comparator means for controlling said transfer of
said contents of said prefix code field to said ad-
dress register means and said providing of said
contents of said character field by said providing
means until said comparator means determines that
the contents of said prefix code field transferred to
said address register means is said single character
string code signal.

71. The decompression apparatus of claim 70 in
which satd means comprising said decompression appa-
ratus comprises digital computer means responsive to
said compressed stream of code signals and pro-

4,558,302

63

grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.
72. The decompression apparatus of claim 70 in
which
each said data character signal comprises a B-bit byte
signal,
each said single character string code signal is less
than 258, and
said comparator means comprises means for deter-
mining when the contents of said prefix code field
transferred to said address register means is less
than 25.
73. The decompression apparatus of claim 68 in
which
said comparator means comprises means for deter-
mining when the contents of said prefix code field
transferred to said address register means is a null
string code signal, and
said control means comprises means coupled to said

comparator means for controlling said transfer of 20

said contents of said prefix code field to said ad-
dress register means and said providing of said
contents of said character field by said providing
means until said comparator means determines that
the contents of said prefix code field transferred to
said address register means is said null string code
signal.

74. The decompression apparatus of claim 73 in
which said means comprising said decompression appa-
ratus comprises digital computer means respcnsive to
said compressed stream of code signals and pro-
grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.

75. The decompression apparatus of claim 68 in
which said further inserting means comprises

further code register means coupled to said code

register means for holding said prior received code
signal,

means for transferring the code signal held in said

further code register means to said memory means
for insertion into the prefix code field of an ad-
dressed location,

last character holding means for holding said last

extracted character signal,

means for transferring the character signal held in

said last character holding means to said memory
means for insertion into the character field of said
addressed location, and

means for transferring said assigned code signal to

said address register means and in which,

said control means includes means for controlling the

insertion of the code signal held in said further
code register means and the character signal held
in said last character holding means into the prefix
code field and character field, respectively, of the
location of said memory means addressed by said
assigned code signal held in said address register
means.

76. The decompression apparatus of claim 75 in
which said means comprising said decompression appa-
ratus comprises digital computer means responsive to
said compressed stream of code signals and pro-
grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.

77. The decompression apparatus of c¢laim 72 in
which said further inserting means comprises p1 further
code register means coupied to said code register means
for holding said prior received code signal,

25

30

35

45

50

35

60

63

64

means for transferring the code signal held in said
further code register means to said memory means
for insertion into the prefix code field of an ad-
dressed location,

last character holding means coupled to receive the
contents of said prefix code field transferred to said
address register means when said comparator
means determines that said contents of said prefix
code field transferred to said address register
means is less than 25,

means for transferring the character signal held in
said last character holding means to said memory
means for insertion into the character field of said
addressed location, and

means for transferring said assigned code signal to
said address register means and in which

said control means includes means for controlling the
insertion of the code signal held in said further
code register means and the character signal held
in said last character holding means into the prefix
code field and the character field, respectively, of
the location of said memory means addressed by
said assigned code signal.

78. The decompression apparatus of claim 73 in

which said further inserting means comprises

further code register means coupled to said code
register means for holding said prior receive code
signal,

means for transferring the code signal held in said
further code register means to said memory means
for insertion into the prefix code field of an ad-
dressed location,

last character holding means coupled to receive the
character signal provided by said providing means
when said comparator means determines that the
contents of said prefix code field transferred to said
address register means is said nuil string code sig-
nal,

means for transferring the character signal held in
said last character holding means to said memory
means for insertion into the character field of said
addressed location, and

means for transferring said assigned code signal to
said address register means and in which

said control means includes means for controlling the
insertion of the code signal held in said further
code register means and the character signal held
in said last character holding means into the prefix
code field and the character field, respectively, of
the location of said memory means addressed by
said assigned code signal.

79. The decompression apparatus of claim 78 in

which said means comprising said decompression appa-
ratus comprises digital computer means responsive to
said compressed stream of code signals and pro-
grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.

80. The decompression apparatus of claim 75 in

which said further assigning means comprises hash
function generation means responsive to the code signal
held in said further code register means and the charac-
ter signal held in said last character holding means for
hashing said character signal with said code signal to
provide a hash signal,

said hash signal providing a potential address signal
for accessing said memory means,

said assigned code signal being provided by a hash
signal suitable for accessing said memory means.

4,558,302

65

81. The decompression apparatus of claim 80 in
which said hash function generation means comprises
means for providing a predetermined number of hash
signals in response to said code signal held in said fur-
ther code register and said character signal held in said
last character holding means,

said predetermined number of hash signals providing

potential address signals for accessing said memory
means,

said assigned code signal being provided by one of

said predetermined number of hash signals suitable
for accessing said memory means.

82. The decompression apparatus of claim 81 further
including initializing means for storing in the prefix
code fields of said locations of said memory means an
empty indicia signal representing that the location stor-
ing said empty indicia signal is empty, said empty indi-
cia signal having a value not equal to any compressed
code signal.

83. The decompression apparatus of claim 82 in
which said initializing means comprises

means for providing said empty indicia signal to said

memory means for entry into the prefix code fields
of the locations of said memory means, and

an initializing counter coupled to said address register

means for providing sequential address signals
thereto so as to enter said empty indicia signal into
the prefix code fields of sequential locations of said
memory means.

84. The decompression apparatus of claim 83 in
which

each said data character signal comprises a B-bit byte

signal, and

said empty indicia signal comprises a signal not

greater than 28 and not equal to any data character
signal. -

85. The decompression apparatus of claim 84 in
which

said comparator means includes further comparator

means for comparing said hash signals provided to
said address register means to said empty indicia
signal, and

said control means includes means for controlling

said hash function generation means to provide said
further hash signal, up to said predetermined num-
ber of hash signals, when said further comparator
means determines that a provided hash signal is
equal to said empty indicia signal.

86. The decompression apparatus of claim 84 in
which

said comparator means includes further comparator

means for comparing said hash signals provided to
said address register means to 258, and

said control means includes means for controlling

said hash function generation means to provide said
further hash signal, up to said predetermined num-
ber of hash signals, when said further comparator
means determines that a provided hash signal is not
greater than 25.

87. The decompression apparatus of claim 81 in
which said hash function generation means comprises
means for providing said predetermined number of hash
signals in response to a code signal and a character
signal so that a code signal hashed with different char-
acter signals provides different hash signals, respec-
tively.

88. The decompression apparatus of claim 81 in
which said hash function generation means comprises

—

o

—

5

20

25

30

45

50

55

60

65

66

means for providing said predetermined number of hash
signals in response to a code signal and a character
signal so that any two code signal-character signal tu-
ples providing the same first hash signal will not pro-
vide the same second hash signal.

89. The decompression apparatus of claim 82 further
including detector means coupled to said memory
means for detecting when the prefix code field of a
location of said memory means addressed by the ad-
dress signal in said address register means contains the
empty indicia signal.

90. The decompression apparatus of claim 89 in
which said hash function generation means includes
means for providing a further hash signal, up to said
predetermined number of hash signals, when said detec-
tor means determines that the prefix code field of the
location of said memory means addressed by a hash
signal in said address register means does not contain
the empty indicia signal.

91. The decompression apparatus of claim 89 in
which said extracting means further includes abnormal
case extracting means operative in response to said
detector means detecting the empty indicia signal in the
prefix code field of a location of said memory means
addressed by the address signal in said address register
means provided by a received code signal in said code
register means, said abnormal case extracting means
comprising

means for providing the data character signal held in

said last character holding means as the first data
character signal extracted by said extracting means
from the string corresponding to said received
code signal, and

means for applying said prior received code signal

held in said further code register means to said
address register means and in which,
said control means includes means for controlling the
providing of said first data character signal by said
last character holding means and the applying of
said prior received code signal from said further
code register means to said address register means,

said extracting means extracting the data character
signals remaining after said first data character
signal in response to said prior received code sig-
nal.

92. The decompression apparatus of claim 75 in
which said further assigning means comprises code
counter means for generating numerically increasing
code signals,

said assigned code signal being provided by a code

signal from said counter means.

93. The decompression apparatus of claim 92 in
which said extraction means further includes abnormal
case extracting means cOmprising

comparator means coupled to said code counter

means and said code register means for determining
when a received code signal in said code register
means is greater than a code signal provided by
said code counter means,

means for providing the data character signal held in

said last character holding means as the first data
character signal extracted by said extracting means
from the string corresponding to said received
code signal, and

means for applying said prior received code signal

held in said further code register means to said
address register means and in which

4,558,302

67

said control means includes means for controlling the
providing of said first data character signal by said
last character holding means and the applying of
said prior received code signal from said further
code register means to said address register means,

said extracting means extracting the data character
signals remaining after said first data character
signal in response to said prior received code sig-
nal.
94. The decompression apparatus of claim 92 in
which said receiving means comprises shift network
means coupled to receive said code signals in bit serial
fashion and coupled to provide said code signals to said
code register means.
95. The decompression apparatus of claim 94 in
which said receiving means further includes a code size
circuit coupled to said code counter means for provid-
ing a code size signal to said shift network means to
control the number of bits received by said shift net-
work means in accordance with the code signal pro-
vided by said code counter means.
96. The decompression apparatus of claim 77 further
including single character string providing means com-
prising
further comparator means coupled to said code regis-
ter means for determining when a received code
signal in said code register means is not greater
than 25,

means for transferring a received code signal from
said code register means to said last character hold-
ing means and in which

said control means includes means for controlling the

transferring a received code signal from said code
register means to said last character holding means
when said further comparator means determines
that said received code signal in said code register
means is not greater than 25.

97. The decompression apparatus of claim 78 in
which each said data character signal comprises a B-bit
byte signal and in which said decompression apparatus
further includes new character providing means com-
prising

further comparator means coupled to said code regis-

ter means for determining when a received code
signal in said code register means is said null string
code signal, and

means for transferring the B-bit byte signal received

by said receiving means following said received
null string code signal to said last character holding
means and in which

said control means comprises means for controlling

transferring said received B-bit byte signal from
said receiving means to said last character holding
means when said further comparator means deter-
mines that said received code signal in said code
register means is said null string code signal.

98. The decompression apparatus of claim 75 in
which each location of said memory means further
includes a level field for storing a level signal represen-
tative of the number of data character signals compris-
ing the prefix string of the string stored at the location
and in which said reversing means comprises

character register means coupled to receive the data

character signal from the character field of a loca-
tion of said memory means accessed by said ex-
tracting means in response to the current address
signal held in said address register means, and

25

30

35

45

50

55

60

65

68
location address generation means responsive to the
level signal in the level field of said location ac-
cessed by said extracting means for providing a
location address signal associated with said data
character signal provided to said character register
means for positioning said data character signal in
an output buffer so as to arrange said data character
signals provided by said extracting means in an
order reversed from that in which said data charac-
ter signals are extracted from said memory means.

99. The decompression apparatus of claim 98 in
which said means comprising said decompression appa-
ratus comprises digital computer means responsive to
said compressed stream of code signals and pro-
grammed to recover said stream of data character sig-
nals from said compressed stream of code signals.

100. The decompression apparatus of claim 98 in
which said location address generation means com-
prises

pointer register means for holding a base address

signal,

address adder means for adding the level signal from

the level field of the location of said memory means
accessed by the current address signal in said ad-
dress register means to said base address signal in
said pointer register means to provide the location
address signal for the data character signal pro-
vided from the character field of said location,
first level register means for holding the level signal

" from the level field of the currently accessed loca-

tion of said memory means,

second level register means for saving a level signal

for a subsequent insertion of an extended string into
said memory means, and

means for incrementing the level signal in said first

level register by unity and storing the incremented
level signal in said second level register means.

101. The decompression apparatus of claim 100 in
which said location address generation means further
includes means for coupling said second level register
means and said pointer register means to said address
adder means so as to increment said base address signal
in said pointer register means by said level signal in said
second level register means.

102. The decompression apparatus of claim 100 in
which

said further inserting means further includes means

for transferring the level signal in said second level
register means to said memory means, and

said control means further includes means for con-

trolling the insertion of the level signal in said sec-
ond level register means into the level field of the
location of said memory means addressed by said
assigned code signal held in said address register
means.

103. The decompression apparatus of claim 98 in
which said character register means comprises said last
character holding means.

104. The decompression apparatus of claim 75 in
which said reversing means comprises push-down stack
means coupled to receive and hold said data character
signals extracted by said extracting means for providing
said data character signals received from said extracting
means in a reverse order from that in which said data
character signals were received from said extracting
means.

105. The decompression apparatus of claim 104 in
which

4,558,302

69

said push-down stack means comprises a stack of
registers having a top-of-stack register through
which said data character signals enter and leave
said stack, and

said top-of-stack register comprises said last character

holding means.
106. The compression apparatus of claim 11 in which
said means comprising said compression apparatus com-
prises digital computer means responsive to said stream
of data character signals and programmed to compress
said stream of data character signals into said com-
pressed stream of code signals.
107. In a data compression and data decompression
method, a compression method for compressing a
stream of data character signals into a compressed
stream of code signals, said compression method com-
prising the steps of
storing, in the locations of a memory, strings of data
character signals encountered in said stream of data
character signals, respectively, said stored strings
having code signals associated therewith, respec-
tively, said locations of said memory being accessa-
ble by a plurality of address signals, respectively,
each said string of data character signals compris-
ing a prefix string of data character signals and an
extension character signal, said prefix string corre-
sponding to a string stored in said memory,

searching said stream of data character signals by
comparaing said stream to said stored strings to
determine the longest match therewith,

inserting into said memory, for storage therein, an

extended string comprising said longest match with
said stream of data character signals extended by
the next data character signal following said lon-
gest match,

assigning a code signal corresponding to said stored

extended string, and

providing the code signal associated with said longest

match so as to provide said compressed stream of
code signals.

108. The compression method of claim 107 in which
said storing step comprises storing a string at a location
of said memory by storing, at the location, the code
signal corresponding to the prefix string of the stored
string,

the address signal for accessing a location of said

memory providing the code signal corresponding
to the string stored at the location.

109. The compression method of claim 108 in which
said searching step includes the step of hashing a data
character signal with a code signal to provide a hash
signal, said hash signal providing a potential address
signal for accessing said memory.

110. The compression method of claim 109 in which
said hashing step comprises hashing a data character
signal with a code signal to provide a predetermined
number of hash signals, said predetermined number of
hash signals providing potential address signals for ac-
cessing said memory.

111. The compression method of claim 110 further
including the step of determining if all of said predeter-
mined number of hash signals are unsuitable as address
signals for accessing said memory. '

112. The compression method of claim 109 further
including the step of initializing said memory by storing
in the locations thereof an empty indicia signal repre-
senting that the location storing said empty indicia sig-

5

35

40

45

55

60

65

70

nal is empty, said empty indicia signal having a value
not equal to any compressed code signal.

113. The compression method of claim 112 in which
said searching step comprises

holding a data character signal in a character register,

holding a compressed code signal in a code register,

hashing the data character signal held in said charac-
ter register and the code signal held in said code
register to provide a hash signal in accordance
therewith,

holding an address signal in an address register, said

address register being coupled to receive said hash
signal and further coupled to access said memory at
the location thereof corresponding to the address
signal held in said address register,

comparing the contents of a location of said memory

addressed by the address signal held in said address
register with the code signal held in said code reg-
ister and with said empty indicia signal to deter-
mine equality therewith, and

transferring the current address signal held in said

address register to said code register and transfer-
ring a new data character signal into said character
register when the contents of the location of said
memory accessed by said current address signal
equals the code signal held in said code register.

114. The compression method of claim 113 further
including the step of transferring a data character signal
from said character register to said code register to
transform said data character signal into the compressed
code signal corresponding thereto.

115. The compression method of claim 114 in which
said step of transferring said data character signal from
said character register to said code register comprises

transferring said data character signal from said char-

acter register to the lower significant positions of
said code register, and zeroing the remaining high
order positions of said code register.

116. The compression method of claim 113 in which
said initializing step comprises :

providing said empty indicia signal to said memory

for entry therein, and

providing sequential address signals to said address

register so as to enter said empty indicia signal into
sequential locations of said memory.

117. The method of claim 113 in which said inserting
step comprises inserting the code signal held in said
code register into the location of said memory ad-
dressed by the address signal held in said address regis-
ter when said comparing step determines that the loca-
tion of said memory addressed by said address signal
held in said address register contains said empty indicia
signal.

118. The compression method of claim 114 further
including the step of transferring the data character
signal held in said character register to said code regis-
ter when said comparing step determines that the loca-
tion of said memory addressed by the address signal
held in said address register contains the empty indicia
signal, thereby to provide the first code signal for the
execution of the next searching step for a longest match.

119. The compression method of claim 117 in which
said assigning step comprises providing the address
signal held in said address register to said memory when
said comparing step determines that the location of said
memory addressed by said address signal contains the
empty indicia signal, said address signal held in said
address register when said comparing step detects said

4,558,302

71
empty indicia signal providing the compressed code
signal corresponding to said stored extended string.

120. The compression method of claim 113 in which
said step of providing the code signal associated with
said longest match comprises providing the code signal
held in said code register when said comparing step
determines that the addressed location in said memory
contains the empty indicia signal.

121. The compression method of claim 120 in which
said hashing step includes providing a further hash sig-
nal up to a predetermined number of hash signals when
said comparing step determines that the location of said
memory addressed by the address signal in said address
register contains a value neither equal to the code signal
held in said code register nor to the empty indicia sig-
nal.

122. The compression method of claim 121 further
including the step of comparing said hash signals to said
empty indicia signal, and in which said hashing step
includes providing said further hash signal, up to said
predetermined number of hash signals, when said hash
signal comparing step determines that a provided hash
signal is equal to said empty indicia signal.

123. The compression method of claim 121 in which
said step of providing the code signal associated with
said longest match includes providing the code signal
held in said code register when none of the locations of
said memory addressed by said predetermined number
of hash signals contains a code signal equal to the code
signal held in said code register or the empty indicia
signal.

124. The compression method of claim 123 further
including the step of transferring a data character signal
from said character register to said code register, after
execution of said providing step, to transform said data
character signal into the compressed code signal corre-
sponding thereto.

125. The compression method of claim 121 which

each data character signal comprises a B-bit byte

signal,
each compressed code signal comprises a C-bit signal
where B is less than C,

said empty indicia signal comprises a signal not
greater than 28 and not equal to any data character
signal,

said compression method further including

comparing said hash signals to 25, and in which

said hashing step includes providing said further hash
signal, up to said predetermined number of hash
signals, when said hash signal comparing step de-
termines that a provided hash signal is not greater
than 25,

126. The compression method of claim 125 in which
said character register comprises a B-bit register and
said code register comprises a C-bit register, said
method further including

transferring a data character signal from said charac-

ter register to said code register to transform said
data character signal into the compressed code
signal corresponding thereto.

127. The compression method of claim 126 in which
said step of transferring a data character signal from
said character register to said code register comprises

transferring the B-bits held in said character register

to the B-lower significant positions of said code
register, and

zeroing the C-B most significant positions of said

code register.

20

25

30

35

45

50

55

60

65

72

128. The compression method of claim 110 in which
said hashing step includes providing said predetermined
number of hash signals so that a code signal hashed with
different character signals provides different hash sig-
nals, respectively, and, so that any two code signal-
character signal tuples providing the same first hash
signal will not provide the same second hash signal.

129. The compression method of claim 108 in which
each location of said memory comprises a prefix code
field and a string code field, and in which said step of
storing a string of data character signals at a location in
said memory comprises,

storing the code signal corresponding to the prefix

string of the string stored at the location in the
prefix code field of the location, and

storing the code signal of the string stored at the

location in the string code field of the location.

130. The compression method of claim 129 in which
said searching step includes hashing a data character
signal with a code signal to provide a hash signal, said
hash signal providing a potential address signal for ac-
cessing said memory.

131. The compression method of claim 130 in which
said hashing step includes providing a predetermined
number of hash signals in response to a code signal and
a character signal, said predetermined number of hash
signals providing potential address signals for accessing
said memory.

132. The compression method of claim 131 further
including the step of determining if all of said predeter-
mined number of hash signals are unsuitable as address
signals for accessing said memory.

133. The compression method of claim 130 further
including the step of initializing said memory by storing
in the string code fields of the locations of said memory
an empty indicia signal representing that the location
storing said empty indicia signal is empty, said empty
indicia signal having a value not equal to any com-
pressed code signal.

134. The compression method of claim 133 in which
said searching step comprises

holding a data character signal in a character register,

holding a compressed code signal in a code register,

hashing the data character signal held in said charac-
ter register and the compressed code signal held in
said code register to provide a hash signal in accor-
dance therewith,

holding an address signal in an address register, said

address register being coupled to receive said hash
signal and further coupled to access said memory at
the location thereof corresponding to the address
signal held in said address register,

comparing the contents of the prefix code field of a

location of said memory addressed by said address
register with the code signal held in said code reg-
ister to determine equality therewith,

detecting when the contents of the string code field of

a location of said memory addressed by said ad-
dress register is equal to said empty indicia signal,
and

transferring the contents of the string code field of a

location of said memory addressed by the current
address signal held in said address register to said
code register and transferring a new data character
signal into said character register when the con-
tents of the prefix code field of the location of said
memory accessed by said current address signal
equals the code signal held in said code register.

4,558,302

73

135. The compression method of claim 134 further
including entering a null string code signal into said
code register for initiating a search for a longest match.

136. The compression method of claim 134 further
including the step of transferring a data character signal
from said character register to said code register to
transform said data character signal into the compressed
code signal corresponding thereto.

137. The compression method of claim 134 in which
said initializing step comprises

providing said empty indicia signal to said memory

for entry into the string code field of the locations
of said memory, and

providing sequential address signals to said address

register so as to enter said empty indicia signal into
the string code fields of sequential locations of said
memory.

138. The compression method of claim 134 in which
said inserting step comprises

generating numerically increasing code signals,

inserting a code signal from said numerically increas-

ing code signals and the code signal held in said
code register into the string code field and prefix
code field, respectively, of the location of said
memory addressed by the address signal held in
said address register when said detecting step de-
termines, during execution of said searching step,
that the location of said memory addressed by said
address signal held in said address register contains
said empty indicia signal.

139. The compression method of claim 135 further
including the step of entering said null string code signal
into said code register when said detecting step deter-
mines, during said searching step, that the string code
field of the location of said memory addressed by the
address signal held in said address register contains said
empty indicia signal, ’

thereby initiating said code register so as to begin a

new search into said stream of data character sig-
nals with the character signal held in said character
register.

140. The compression method of claim 138 in which
said assigning step comprises said step of generating
numerically increasing code signals for insertion into
the string code field of the location of said memory
addressed by said address register when said detecting
step determines that said string code field of said ad-
dressed location contains said empty indicia signal.

141. The compression method of claim 134 in which
said step of providing the code signal associated with
said longest match comprises providing the code signal
held in said code register when said detecting step de-
termines, during execution of said searching step, that
the string code field of the addressed location in said
memory contains the empty indicia signal.

142. The compression method of claim 138 in which
said step of providing the code signal associated with
said longest match comprises providing the code signal
held in said code register when said detecting step de-
termines, during execution of said searching step, that
the string code field of the addressed location in said
memory contains the empty indicia signal.

143. The compression method of claim 142 in which
said step of providing the code signal held in said code
register comprises providing the code signal in bit serial
fashion.

144. The compression method of claim 143 in which
said step of providing the code signal in bit serial fash-

10

20

25

30

35

40

45

50

55

60

74

ion includes the step of controlling the number of bits
provided in accordance with a code signal from said
numerically increasing code signals.

145. The compression method of claim 143 further
including the step of entering a null string code signal
into said code register for initiating a search for a lon-
gest match.

146. The compression method of claim 145 further
including the step of comparing the code signal held in
said code register with said null string code signal to
determine equality therebetween and in which said step
of providing the code signal associated with said longest
match includes the step of providing the null string
code signal followed by the data character signal in said
character register when said detecting step determines
that the siring code field of the location addressed by
the address register, during execution of said searching
step, contains the empty indicia signal and said step of
comparing the code signal in said code register with the
null string code signal determines equality therebe-
tween.

147. The compression method of claim 141 in which
said hashing step includes providing a further hash sig-
nal up to a predetermined number of hash signals when,
during execution of said searching step, said detecting
step determines that the string code field of the location
of said memory addressed by the address signal in said
address register does not contain the empty indicia
signal and said comparing step determines that the pre-
fix code field of the location of said memory addressed
by the address signal in said address register contains a
value not equal to the code signal held in said code
register. :

148. The compression method of claim 147 in which
said step of providing the code signal held in said code
register includes providing the code signal held in said
code register when the prefix code field and the string
code field of none of the locations of said memory ad-
dressed by said predetermined number of hash signals
contain a code signal equal to the code signal held in
said code register and the empty indicia signal, respec-
tively.

149. The compression method of claim 138 in which
said initializing step comprises

providing said empty indicia signal to said memory

for entry into the string code field of the location of
said memory addressed by the address signal held
in said address register, and

providing sequential address signals to said address

register so as to enter said empty indicia signal into
the string code fields of sequential locations of said
memory.

150. The compression method of claim 149 in which
said empty indicia signal comprises all zeros and said
initializing step includes providing all zeros to the string
code fields of the locations of said memory for initializa-
tion thereof.

151. The compression method of claim 135 in which
said null string code signal comprises all zeros and said
step of entering said null string code signal into said
code register comprises zeroing said code register.

152. The compression method of claim 131 in which

 said hashing step includes providing said predetermined

65

number of hash signals so that a code signal hashed with
different character signals provides different hash sig-
nals, respectively, and, so that any two code signal-
character signal tuples providing the same first hash
signal will not provide the same second hash signal.

4,558,302

75
153. In the data compression and data decompression
method of claim 107, a decompression method for re-
covering said stream of data character signals from said
compressed stream of code signals, said decompression
method comprising the steps of

receiving said stream of code signals

storing, in the locations of a memory strings of data
character signals corresponding to said received
code signals, respectively,

said locations being accessable by a plurality of ad-
dress signals, respectively,

said received code signals providing address signals
for accessing the locations of said memory storing
the strings corresponding to said received code
signals, respectively,

each said stored string of data character signals com-
prising a prefix string of data character signals and
an extension character signal wherein said prefix
string corresponds to a string stored in said mem-
ory,

each said location of said memory comprising a prefix
code field and a character field, :

a string being stored at a location by storing, in the
prefix code field of the location, the code signal
corresponding to the prefix string of the stored
string and by storing, in the character field of the
location, the extension character of the stored
string,

extracting the data character signals from a string
stored at a location of said memory addressed by a
received code signal,

inserting in said memory an extended string compris-
ing the code signal received prior to the last re-
ceived code signal and an extension character sig-
nal comprising the last extracted data character
signal in the string of data character signals ex-
tracted in response to said last received code signal,

assigning a code signal corresponding to said ex-
tended string, said assigned code signal providing
an address signal for accessing a location of said
memory at which to store said extended string, and

20

25

30

35

40

reversing said extracted string of data character sig-

nals,

thereby providing said recovered stream of data

character signals.

154. The decompression method of claim 153 in
which said receiving step includes holding a received
code signal in a code register.

155. The decompression method of claim 154 in
which said extracting step comprises

holding an address signal in an address register, said

address register being coupled to receive the code
signal held in said code register and further cou-
pled to access said memory at the location thereof
corresponding to the address signal held in said
address register,

transferring, to said address register, the contents of

the prefix code field of a location of said memory
addressed by the current address signal held in said
address register,

providing the contents of the character field of said

location of said memory addressed by said current
address signal held in said address register,
comparing the contents of the prefix code field trans-
ferred to said address register to determine when
said contents of said prefix code field indicates the
initial character of the string stored at the location
addressed by the received code signal, and

45

50

55

60

65

76
performing said transferring and providing steps until
the contents of prefix code field transferred to said
address register indicates the initial character of the
string stored at the location of said memory ad-
dressed by said received code signal.
156. The decompression method of claim 155 in

which

said comparing step comprises determining when the
contents of said prefix code field transferred to said
address register contains a single character string
code signal, and

said performing step comprises performing said trans-
ferring and providing steps until said comparing
step determines that the contents of said prefix
code field transferred to said address register is said
single character string code signal.

157. The decompression method of claim 156 in

which each said data character signal comprises a B-bit
byte signal and each said single character string code
signal is less than 28, and in which

said comparing step comprising determining when
the contents of said prefix code field transferred to
said address register is less than 25.

158. The decompression method of claim 155 in

which

said comparing step comprises determining when the
contents of said prefix code field transferred to said
address register is a null string code signal, and

said performing step comprises performing said trans-
ferring and providing steps until said comparing
step determines that the contents of said prefix
code field transferred to said address register is said
null string code signal.

159. The decompression method of claim 155 in

which said inserting step comprises

holding said prior received code signal in a further
code register,

holding said last extracted character signal in a last
character holding means,

transferring said assigned code signal to said address
register, and ‘

inserting the code signal held in said further code
register and the character signal held in said last
character holding means into the prefix code field
and character field, respectively, of the location of
said memory addressed by said assigned code sig-
nal held in said address register.

160. The decompression method of claim 157 in

which said inserting step comprises

holding said prior received code signal in a further
code register,

holding, in a last character holding means, the con-
tents of said prefix code field transferred to said
address register when said comparing step deter-
mines that said contents of said prefix code field
transferred to said address register is less than 25,

transferring said assigned code signal to said address
register, and

inserting the code signal held in said further code
register and the character signal held in said last
character holding means into the prefix code field
and the character field, respectively, of the loca-
tion of said memory addressed by said assigned
code signal.

161. The decompression method of claim 158 in

which said inserting step comprises

holding said prior received code signal in a further
code register,

4,558,302

77

holding in a last character holding means, the charac-
ter signal provided during execution of said ex-
tracting step when said comparing step determines
that the contents of said prefix code field trans-
ferred to said address register is said null string
code signal,

transferring said assigned code signal to said address

register, and

inserting the code signal held in said further code

register and the character signal held in said last
character holding means into the prefix code field
and the character field, respectively, of the loca-
tion of said memory addressed by said assigned
code signal.

162. The decompression method of claim 159 in
which said assigning step comprises hashing the charac-
ter signal held in said last character holding means with
the code signal held in said further code register to
provide a hash signal,

said hash signal providing a potential address signal

for accessing said memory,

said assigned code signal being provided by a hash

signal suitable for accessing said memory.

163. The decompression method of claim 162 in
which said hashing step includes providing a predeter-
mined number of hash signals in response to said code
signal held in said further code register and said charac-
ter signal held in said last character holding means,

* said predetermined number of hash signals providing
potential address signals for accessing said mem-
ory,

said assigned code signal being provided by one of

said predetermined number of hash signals suitable
for accessing said memory.

164. The decompression method of claim 163 further
including the step of initializing said memory by storing
in the prefix code fields of the locations of said memory
an empty indicia signal representing that the location
storing said empty indicia signal is empty, said empty
indicia signal having a value not equal to any com-
-pressed code signal.

165. The decompression method of claim 164 in
which said initializing step comprises

providing said empty indicia signal to said memory

for entry into the prefix code fields of the locations
of said memory, and

providing sequential address signals to said address

register so as to enter said empty indicia signal into
the prefix code fields of sequential locations of said
memory.

166. The method of claim 165 in which

each data character signal comprises a B-bit byte

signal,

said empty indicia signal comprises a signal not

greater than 25 and not equal to any data character
signal,

said decompression method further including com-

paring said hash signals provided to said address
register to 28, and in which

said hashing step includes providing said further hash

signal, up to said predetermined number of hash
signals, when said hash signal comparing step de-
termines that a provided hash signal is not greater
than 258,

167. The decompression method of claim 163 in
which said hashing step includes providing said prede-
termined number of hash signals so that a code signal
hashed with different character signals provides differ-

20

25

30

35

45

30

33

60

65

78

ent hash signals, respectively, and, so that any two code
signal-character signal tuples providing the same first
hash signal will not provide the same second hash sig-
nal.

168. The decompression method of claim 164 further
including the step of detecting when the pefix code field
of a location of said memory addressed by the address
signal in said address register contains the empty indicia
signal.

169. The decompression method of claim 168 in
which said hashing step includes providing a further
hash signal, up to said predetermined number of hash
signals, when said detecting step determines that the
prefix code field of-the location of said memory ad-
dressed by a hash signal in said address register does not
contain an empty indicia signal.

170. The decompression method of claim 168 in
which said extracting step includes an abnormal case
extracting step operative in response to said detecting
step detecting the empty indicia signal in the prefix code
field of a location of said memory addressed by the
address signal in said address register provided by a
received code signal in said code register, said abnormal
case extracting step comprising

providing the data character signal held in said last

character holding means as the first data character
signal extracted from the string corresponding to
said received code signal,
applying said prior received code signal held in said
further code register to said address register, and

extracting the data character signals remaining after
said first data character signal in response to said
prior received code signal.

171. The decompression method of claim 159 in
which said assign step comprises generating numeri-
cally increasing code signals,

said assigned code signal being provided by the cur-

rent code signal from said numerically increasing
code signals.

172. The decompression method of claim 171 in
which said extracting step includes an abnormal case
extracting step comprising

comparing a received code signal in said code regis-

ter with said current code signal from said numeri-
cally increasing code signals to determine when
said received code signal is greater than said cur-
rent code signal,

providing the data character signal held in said last

character holding means as the first data character
signal extracted from the string corresponding to
said received code signal,
applying said prior received code signal held in said
further code register to said address register,

extracting the data character signals remaining after
said first data character signal in response to said
prior received code signal, and

activating said abnormal case extracting step when

said current code signal comparing step determines
that said received code signal in said code register
is greater than said current code signal from said
numerically increasing code signals.

173. The decompression method of claim 171 in
which said receiving step comprises

receiving said code signals in bit serial fashion, and

providing said bit serial received code signals to said

code register.

174. The method of claim 173 which said receiving
step further includes controlling the number of bits

4,558,302

79
provided to said code register in accordance with said
current code signal from said numerically increasing
code signals.
175. The decompression method of claim 160 further
including a single character string providing step com-
prising
comparing a received code signal in said code regis-
ter to 25,

transferring said received code signal from said code
register to said last character holding means when
said received code signal in said code register is not
greater than 25.

176. The decompression method of claim 161 in
which each said data character signal comprises a B-bit
byte signal and in which said decompression method
further includes a new character providing step com-
prising

comparing a received code signal in said code regis-

ter to said null string code signal, and

transferring the B-bit byte signal received during said

receiving step following said received null string
code signal to said last character holding means
when said received code signal in said code register
is said null string code signal.

177. The decompression method of claim 159 in
which each location of said memory further includes a
level field for storing a level signal representative of the
number of data character signals comprising the prefix
string of the string stored at the location and in which
said reversing step comprises

providing, to a character register, the data character

signal from the character field of a location of said
memory accessed during said extracting step in
response to the current address signal held in said
address register, and

generating, in response to the level signal in the level

field of said location accessed by said current ad-
dress signal, a location address signal associated
with said data character signal provided to said
character register for positioning said data charac-
ter signal in an output buffer so as to arrange said

5

20

25

30

35

45

50

55

60

65

80

data character signals provided during said extract-
ing step in an order reversed from that in which
said data character signals are extracted from said
memory.
178. The decompression method of claim 177 in
which said location address generating step comprises
holding a base address signal in a pointer register,
adding the level signal from the level field of the
location of said memory accessed by the current
address signal in said address register to said base
address signal in said pointer register to provide the
location address signal for the data character signal
provided from the character field of said location,

holding the level signal from the level field of the
currently accessed location of said memory in a
first level register,

incrementing the level signal in said first level register

by unity, and

saving the incremented level signal in a second level

register for a subsequent insertion of an extended
string into said memory.

179. The decompression method of ciaim 178 in
which said location address generating step further
includes the step of incrementing said base address sig-
nal in said pointer register by said level signal in said
second level register.

180. The decompression method of claim 178 in
which said inserting step further includes the step of
inserting the level signal in said second level register
into the level field of the location of said memory ad-
dressed by said assigned code signal held in said address
register.

181. The method of claim 159 in which said reversing
step comprises

pushing said data character signals extracted during

said extracting step into a push-down stack, and
popping said data character signals from said stack to

provide said data character signals in a reverse

order from that in which said data character signals

were extracted during said extracting step.
* * * * *

	Bibliography
	Abstract
	Drawings
	Description
	Claims

