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1. 

BYTE ALGNED DATA COMPRESSION 

FIELD OF THE INVENTION 

The present invention relates generally to computer 
systems, and more particularly to compressing data 
stored in a memory of a computer system. 

BACKGROUND OF THE INVENTION 

In computer systems, it is well known that the 
amount of physical space required to store data can be 
reduced by compressing the data to a more compact 
format. Furthermore, as an additional advantage, con 
pressed data can generally be processed in less time than 
uncompressed data. For example, fewer bits are pro 
cessed when compressed data are communicated from 
one computer system to another. Data compression is 
frequently used for large data bases, graphic images, 
and full-text inverted files. 
One type of compression that is sometimes used for 

integer vectors is "bit-map' encoding. With bit-map 
encoding, each integer of the vector is represented in a 
bit-map by a single bit. A logical “1” in a bit position of 
the bit-map signifies the presence of an integer, and a 
logical “0” denotes the absence of an integer. Not only 
is there a substantial reduction in space, but also, time is 
saved during processing, since the representative bits of 
the bit-map can be directly accessed and manipulated. 

Bit-maps are comparatively efficient in space and 
time utilization for compressing dense vectors. Dense 
vectors are vectors which are populated with a rela 
tively large number of integers. However, bit-maps 
suffer space and time losses for sparse vectors, or vec 
tors with skewed densities. In bit-maps representing 
sparse vectors, a large proportion of the bitmap space is 
wasted on bit sequences having nothing but logical 
ZeOes. 

For vectors which lack any type of systemic bit dis 
tribution, "bit-wise' compression is sometimes used. 
Bit-wise compression derives space reduction from the 
fact that the differences between consecutive integers in 
a vector are typically small for very large vectors. 
Thus, the number of significant bits in the differences 
between consecutive integers can be encoded more 
compactly than the integers themselves. Each differ 
ence is encoded as a "prefix' bit string, followed by a 
"suffix' bit string. The prefix bit string encodes the 
number of bits in the suffix, and the suffix bit string 
encodes all significant bits of the difference. Bit-wise 
compression which encodes successive differences is 
sometimes known as Delta-compression. 

Bit-wise compression compresses close to the theo 
retical limit for any kind of distribution of the com 
pressed data. However, data which are compressed 
bit-wise suffer because the compressed representation 
of the data can generally not be manipulated directly by 
logical operators, such as AND, OR, and XOR (exclu 
sive OR), and the like. Therefore, bit-wise compression 
generally requires time consuming encoding and decod 
ing in order to perform logical operations, making bit 
wise compression less suitable for data which are logi 
cally manipulated. 

Furthermore, bit-wise compression utilizes bit strings 
of various sizes not always compatible with logic cir 
cuits and data paths used to manipulate them. For exam 
ple, digital computers are generally designed to operate 
on bits organized in fixed-sized bytes. Thus, bit-wise 
compression must either waste space to keep the prefix 
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2 
and suffix strings aligned along easily manipulated byte 
boundaries, or time is wasted to parse the variable bit 
lengths of the prefix and suffix into manipulatable bytes. 
Taking the foregoing into consideration, it is apparent 

that there is a need for a compression technique which 
compresses data regardless of the data content. Further 
more, it is desirable that logical operations on the com 
pressed data be possible without requiring the data to be 
fully decompressed. 

SUMMARY OF THE INVENTION 

The invention provides for compressing source data 
expressed in arbitrary bit-maps to achieve higher encod 
ing and decoding efficiency with reduced data storage 
requirements and improved processing performance. 
The invention is particularly applicable to computer 
systems processing large databases, and where multiple 
accesses and logical operations on the databases are 
frequent occurrences. 

Broadly, the invention provides data structures 
which take advantage of the hardware characteristics of 
the computer system and spatial relationships which 
exist in the source data. Furthermore, the invention uses 
encoding and decoding techniques which are optimized 
for the computer system characteristics and the source 
data relationships. 

In one aspect of the invention, the quantum for en 
coding, decoding, and manipulating compressed data 
are uniformly sized bytes. That is, the bits of the bit-map 
are organized into byte sized portions aligned at bound 
aries convenient for, and compatible with the hardware 
characteristics of the computer system. For example, 
each byte sized portion of the bit-map includes eight 
bits. 
For the purpose of encoding the source or input bit 

map into an output compressed atomic sequence of 
bytes, the following general principles are observed. 
Each of the organized bytes is classified as a “gap byte” 
(GBYTE) if all of the bits of a byte store the same logi 
cal value, otherwise the byte is classified as a non-gap or 
"map byte' (MBYTE). Gap bytes can further be classi 
fied as either storing all zeros, or all ones. A map byte 
can further be classified as an "off-set' byte if all of the 
bits but one store the same value as a preceding adjacent 
gap byte. That is, an off-set byte has exactly one bit 
different than the bits of the immediately preceding gap 
byte. 

Adjacent classified bytes of the same class are 
grouped and the number of bits in each group are 
counted. Then, in a destination or output atomic se 
quence of bytes, the bytes of the classified and grouped 
input bit-map are encoded as follows. For each group of 
gap bytes, store a first bit sequence representing the 
number of bits in each of the group in the atomic se 
quence. Also store a flag to indicate whether the group 
Stores ZeroS Ori Oes. 

For each of the groups of map bytes, in the output 
atomic sequence, store a second bit sequence represent 
ing the number of bits in the group, and store the group 
of map bytes. If the classified byte is an off-set byte, 
store a third bit sequence in the atomic sequence, the 
third bit sequence indicating the position of the one 
different bit within the off-set byte. 
The first, second, and third bit sequences are orga 

nized into atoms structured as follows. Each atom of 
encoding includes a control byte (CBYTE), possibly 
followed by one or more “GBYTEs”, and possibly one 
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or more “MBYTEs. The control byte includes a 
“TFIELD', a FFIELD', and a “DFIELD'. The first 
bit sequence is stored in the TFIELD of the control 
byte if the number of gap bytes in the group is less than 
a first threshold, for example, four. Otherwise, the first 
bit sequence is stored in the gap bytes. The flag is stored 
in the FFIELD, and the second or third bit sequences 
are stored in the DFIELD depending if the gap bytes 
are immediately followed by map bytes or an off-set 
byte. The length associated with map bytes are stored in 
the DFIELD of the control byte, and the map bytes 
follow the control byte. 

In another aspect of the invention, the bit-map is 
encoded into an atomic structures by scanning the bit 
map, bit by bit and classifies bytes according to the 
general principles outlined above. The control byte, gap 
bytes, and map bytes are generated on the fly, as the bits 
are individually examined. This method guarantees a 
unique sequence of atomic structures for each different 
bit-map to facilitate the determination of bit-map identi 
ties. In addition, this method is guaranteed to generate 
the most compact atomic sequence. 

In yet another aspect of the invention, the atomic 
sequence is decoded to recover the bit-map. The de 
compressing method scans the atomic sequence using 
the control byte to decode the variously encoded bit 
sequences to generate the bit-map. 
And, in yet another aspect of the invention, multiple 

compressed bit-maps are merged by using logical opera 
tors such as AND and OR. The merging method par 
tially decodes the atomic sequence representing the 
bit-maps to be merged, and performs the required logi 
cal operation on decomposed bytes to generate a new 
atomic sequence representing the merged bit-maps. 
This method enables the logical manipulation of com 
pressed bit-maps in less time than is possible with Delta 
compression. The structures and methods of the inven 
tion are particularly suited for bit-maps representing 
images, databases or full text inverted files having arbi 
trary bit distributions. 
BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a block diagram of a computer system 

which can use the invention; 
FIG. 2 is a block diagram of a bit-map which can be 

compressed using the principles of the invention; 
FIG. 3 is a block diagram of a byte aligned con 

pressed atom according to the invention; 
FIG. 4 is a block diagram of another form of a byte 

aligned compressed atom; 
FIG. 5 is a block diagram of a procedure to encode 

the bit-map of FIG. 2 into an atomic sequence of FIGS. 
3 and 4; 
FIG. 6 is a block diagram of a procedure to decode 

the atomic sequence into the bit-map; and 
FIG. 7 is a block diagram of a procedure to logically 

manipulate atomic sequences. 
DETAILED DESCRIPTION OF THE 

PREFERRED EMBODEMENT 

FIG. 1 shows a computer system 1 which can use the 
invention. The computer system 1 can include a central 
processing unit (CPU) 2 and a storage device, for exam 
ple memory 3, communicating with each other via abus 
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4. The CPU 2 is any type of conventional processor of 65 
data, for example, a main frame, work station, micro 
processor, personal computer, or the like. The memory 
3 is any type of memory capable of storing data, for 

4. 
example, semiconductor volatile random access mem 
ory, registers, or permanent disk storage. Space to store 
the data, and time to process the data can both be re 
duced by encoding the data into a more compact format 
as disclosed herein. 
Now with reference to FIG. 2, the compression of 

the present invention will be described using as an ex 
ample a ascending order vector possibly having integers 
in the range 0 to 455. A particular expression of the 
vector includes the integers 8, 11, 19, 174, 181, 189, 191, 
450, 451, 453, and 455. If the eleven numbers of the 
integer vector are stored in the memory 3 in a binary 
format as thirty-two bit integers, the vector would con 
sume 352 (11x32) bits. 

Alternatively, as shown in FIG. 2, the integer vector 
can be stored as a bit-map 20 having a plurality of bits 21 
for representing the individual integers of the vector. A 
logical '0' in a bit position indicates the absence of an 
integer, and a logical “1” indicates the presence of an 
integer. As an advantage, the size of the bit-map 20 does 
not increase as additional integers in the range of 0 to 
455 are added to the vector. It should be apparent that 
the bit-map 20 can represent data sequences other than 
integer vectors, for example, the bit-map 20 can repre 
sent the “on” and “off” states of pixels of an image, or 
indices to a data base. 
The bits 21 of the bit-map 20 are shown from right to 

left. The right most bit represents the integer "O'", the 
next left bit represents the integer “1”, and so forth. The 
left most bit represents the integer “455” The hexadeci 
mal (hex) equivalent of the bit-map 20 can be written as: 

2C-0-A0204-0-80900. 

The notation "-0-' is used to indicate a 'gap' in the 
bit-map 20. A gap is defined as a sequence of bits 21 all 
storing the same logical value, for example, all zeros. 
Alternatively, a gap of all ones could be expressed as 
& 1-. 

What is described herein, is a method and structure 
for compressing a bit-map, as the one shown in FIG. 2, 
into less physical space in the memory 3. Furthermore, 
the reduced size data structure can be logically manipu 
lated by the CPU 2 in less time than would be possible 
for the uncompressed data. 
The invention, gains space and time efficiencies, in 

part, by optimally encoding the bit-map 20, taking into 
consideration the underlying hardware structure of the 
computer system 1, such as, the logic circuits of the 
CPU 2, the storage cells of the memory 3, and the width 
of the data path of the bus 4. Therefore, the quantum for 
encoding, decoding, and manipulating the bit-map 20 
are uniformly sized bytes 22. The bytes 22 are aligned at 
boundaries convenient for, and compatible with the 
hardware characteristics of the computer system 1. For 
example, each byte 22 includes eight bits 21. It should 
be understood that the invention can just as easily be 
adapted to computer systems having other byte sizes. 
The bit-map 20 is compressed by encoding the bits 21 

of the bit-map 20 into a byte aligned atomic sequence 
according to the following general principles. 
Each byte of the bit-map is classified as either a gap 

byte or a non-gap byte. Gap bytes have all the bits the 
same, and non-gap bytes do not have all the bit the 
same. Non-gap bytes are, hereinafter, also referred to as 
"map bytes.” 
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Adjacent bytes of the identical class are grouped and 
the number of bits included in each classified group is 
determined. 

For grouped gap bytes, the sense of the bits, be they 
zeros or ones, is determined. Gap bytes having different 
sensed bits are grouped separately. For grouped map 
bytes, a determination is made whether the first byte of 
the group has only one bit different from the sense of a 
preceding gap. Such a byte is classified as an "off-set 
byte.” 
For groups of gap bytes, the length of the group and 

the sense (zeros or ones) of the group are stored in the 
atomic sequence. For groups of maps, the length of the 
group and the group itself are stored in the atomic se 
quence. Off-set bytes are encoded into the control byte 
encoding the length of the preceding gap bytes. For 
consistency, presume that the bit-map 20 is preceded by, 
for example a zero length, Zero filled gap. 
FIG. 3 shows the general structure of a byte aligned 

atom 30 constructed according to these principles. A 
number of different arrangements of the atom 30 are 
possible. The different arrangements of the atoms 30 are 
optimally engineered to compactly compress an unpre 
dictable variety of distributions of logical zeros and 
ones stored in the bits 21 of the bit map 20. 

Each encoded atom 30 includes at least a control byte 
(CBYTE) 40. As will be described in greater detail 
hereinafter, each control byte 40 may be followed by 
one or more encoded gap bytes (GBYTEs) 50, and/or 
one or more encoded bit-map bytes (MBYTEs) 60. 
The specific type of arrangement of a particular atom 

30 is encoded in the control byte 40. Therefore, each 
control byte 40 includes a type field (TFIELD) 41 and 
a data field (DFIELD) 45. In the exemplary embodi 
ment, the type field 41 includes three bits, and the 
DFIELD 45 includes four bits. It should become appar 
ent that the invention can also be worked if the control 
byte 40 is organized into fields having a different num 
ber of bits. 
The control byte 40 can also include an optional fill 

field (FFIELD) 44 for indicating whether encoded bits 
of the gaps are sensed as either all zeros, or all ones. 
When the FFIELD 44 is a logical "O' the encoded gap 
is bytes are all zeros, and when the FFIELD 44 is a 
logical “1”, the encoded gap bytes are filled with all 
ones. If the invention is used only to encode gaps of one 
kind, either zeros or ones, the FFIELD 44 is not re 
quired, and the DFIELD 45 can be expanded to include 
five bits, for example. 
The type field 41 can have values in the range of 0 to 

7 to indicating the various structures of the atom 30. 
The DFIELD 45 can have values in the range of 0 to 
15. The optional FFIELD 44 can have values of either 
0 or 1. 
The gap bytes 50, when present in the atom 30, are a 

sequence of one to eight bytes used to store the number 
of consecutively encoded gap bytes. The gap bytes, as 
previously defined, being a group of bytes having bits 
all storing the same logical value. The FFIELD 44 of 
the corresponding control byte 40 of the atom 30 is used 
to indicate whether the encoded gap bytes 50 have bits 
which store zeros or ones. 
The number of bytes in the gap byte sequence is 

stored in a GFIELD 51 of the gap bytes 50, for exam 
ple, the low order three bits of the first gap byte 50. The 
rest of the bits of the first GBYTE 50 are extended with 
a binary “0”, and any subsequent gap bytes 50 represent 
the gap size measured in bits, and is always expressed as 
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6 
a multiple of eight. In other words, the gap bytes 50 
encode only byte aligned bit gaps. Only bytes with the 
significant bits of the gap size are represented by the gap 
bytes 50, all zero leading bytes of the gap size are dis 
carded. 
The map bytes 60, when present in the atom 30, are a 

sequence of one to fifteen bytes of the bit-map 20 not 
having all the bits the same. The number of bytes in the 
map byte sequence is stored in the DFIELD 45 of the 
control byte 40. In other words, map bytes are byte 
aligned bits of the bit-map 20. 
The various structures of the atom 30 used to com 

press the bit-map 20 will now be described in greater 
detail. The description of the atoms 30 will be followed 
by the description of the methods used to encode, de 
code, and logically manipulate the structures. In this 
description, the eight bits of the control byte 40 are 
written as, for example, TFIELDIFFIELDD 
FIELD). The vertical bars “” are used as field separa 
tors, slashes "/" indicating or, and dashes "-" indicating 
inclusive ranges. 

Table 1 is a summary of the various forms that the 
atoms 30 can assume. 

TABLE 1. 
General Forms of Atons 

Case TFIELD FFIELD DFIELD GBYTEs MBYEs 
1. 0-3 0 or 1 1-15 No Yes 
2 4. O OR 1 1-15 Yes Yes 
3 5 0-3 0-7 No No 
4 6 0 or 1 0-7 Yes No 
5 7 0-3 0-7 No No 

The first case of the atom 30 has the general form of: 

CBYTE=(0-30/11-15 

When the type field 41 stores a value in the range of 0 
to 3, the type field 41 directly indicates the size of the 
gap encoded. In other words, for atoms 30 having the 
type field 41 in the range of 0 to 3, the control byte 40 
is not followed by any gap bytes 50. Instead, the size of 
the gap is directly encoded in the type field 41 of the 
control byte 40. This case is useful for compactly com 
pressing frequently occurring small sized gaps. 
Whether the gap contains all zeros or ones is indicated 
by the FFIELD 44. The number of bytes of the bit-map 
20 which follow the gap are stored, as explained above, 
in the DFIELD 45. 
The second case of the atom 30 has the general form 

of: 

In this case, the control byte 40 is immediately followed 
by one or more gap bytes 50, with the gap bytes 50 
encoded as described above. The gap bytes 50 are fol 
lowed by a plurality of map bytes 60, the number of map 
bytes 60 indicated in the DFIELD 45 of the control 
byte 40. 
As shown in FIG. 4, for the next three cases, that are 

the cases were the type field 41 falls into the range of 5 
to 7, the control byte 40 is partitioned into a three bit 
type field 41, a two bit FFIELD 44, and a three bit 
DFIELD 45. In these cases, the DFIELD 45 is used to 
encode a byte of the bit-map 20 having all bits but one 
the same. For example, the encoded byte 22 of the bit 
map 20 is either all zeros, with a single one, or the byte 
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22 has a single zero bit with the rest of the bits set to 
OneS. 

The position of the one bit that is different from the 
rest of the bits in the byte 22 is indicated as on off-set in 
the DFIELD 45. The off-set being a number in the 
range of 0 to 7, each number representing one of the 
eight possible position for the different bit in the byte 
22. Hereinafter, this class of bytes will be referred to as 
an “off-set' bytes. 

Off-set bytes are useful for compactly compressing 
frequently observed bit distributions of the type where 
a gap is immediately followed by a byte having only a 
single bit different from the sense of the bits of the gap. 
The third case of the atom 30 has the general form of: 

CBYTE=50-30-7 

In this case, the control byte 40 encodes a gap and a 
following off-set byte. The size of the gap is indicated in 
the FFIELD 44. If the TFIELD has a value of 5, the 
bits of the gap and the off-set byte are all zeros, except 
for the single “1” bit, whose off-set position is indicated 
in the DFIELD 45. 
The fourth case of the atom 30 has the general form 

of: 

CBYTE=60/10-7] 

In this case, the control byte 40 is immediately followed 
by one or more gap bytes 50, with the gap bytes 50 
encoded as described above. In the corresponding bit 
map, the thus encoded gap is immediately followed by 
an off-set byte. If the FFIELD 44 is zero, the gap and 
off-set byte are “0”, except for the off-set bit. Alterna 
tively, if the FFIELD 44 is one, the gap and the off-set 
byte are “1” filled, and the off-set bit is a zero. 
The fifth case of the atom 30 has the general form of: 

CBYTE=70-30-7) 

This case is similar to the third case (TFIELD=5) 
above, except the sense of the bits is reversed. That is, 
the gap and off-set byte, except for the one different bit, 
are all ones. This completes the description of the gen 
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eral forms of the data structures of the various types of 45 
atoms 30 used to compress the bit-map 20. 

In addition to these general forms, some special struc 
tures of the atoms 30 are further defined, as summarized 
in Table 2. 

TABLE 2 

Special Forms of Atoms 
Case TFIELD FFIELD DFIELD GBYTEs MBYTEs 

O O O No Yes 
2 1-3 0 or 1 O No No 
3 4. 0-3 O Yes No 

First, in the special case of the control byte 40 having 
all bits set to logical zeros, the atom is in the form: 

CBYTE=000) 

This atom is used as a terminator of a sequence of atoms 
30 used to compress the bit-map 20. The terminator can 
be used as a signal for the procedures that manipulate 
the compressed atomic sequences. 

Second, in the special case where the type field 41 is 
in the range of 1-3, and the DFIELD=0, e.g. no map 
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bytes 50 are indicated. The general form of this special 
case has the atom as: 

CBYTE=(1-30/10) 

This form of the control byte 40 is used to compress a 
gap which is immediately followed by a byte having all 
bits the same but different in sense from the bits of the 
compressed gap. For example, in hex notation, the bit 
map sequence of “FFFF00” is encoded by the single 
byte atom consisting of the control byte=2|10. The 
TFIELD=2, and the FFIELD = 1 indicate two “1” 
filled bytes, followed by a “0” filled byte. Conversely, 
the bit-map sequence "000000FF' can be encoded as a 
control byte=30|0). 

Third, in the special case where the type field 41 is 4, 
and the DFIELD 45 is zero, the atom has the general 
form: 

CBYTE=(40/10) 

This form of the control byte 40 is similar to the case 
immediately above, except that the size of the com 
pressed gap is encoded by the gap bytes 50. For exam 
ple, in hex notation, the bit-map sequence of 
“FFFFFFFF00” is compressed into the two byte con 
sisting of the control byte=410 followed by a single 
gap byte 50 storing the hex value of "20”. 
Now, applying these compressed structures to the 

original bit-map 20 of FIG. 2, results in the following 
atomic byte sequence: 

aton CBYTE = 1 0 2 (zero filled one byte gap, 
MBYTE is hex 0809 (followed by 2 map bytes 

aton 2 CBYTE = 60 6 (bit 6 off-set byte, and 
GBYTE - hex 90 (90 hex, zero filled bits. 

aton 3 CBYTE = 5 0 || 5 (bit 5 off-set byte-no gap 
atom 4 CBYTE = 0 } 0 1 (gapsize = 0, followed by 

MBYTE = hex AO (one map byte. 
aton 5 CBYTE = 4 0 1 (gap bytes and mbytes 

GBYTE hex 101 
MBYTE = hex AC 

( 100 hex, zero filled bits 
(followed by 1 map byte. 

Thus, by using the structures of the invention, the 
integer vector is compressed to five atoms for a total of 
twelve 8-bit bytes, a fraction of the original size. 

BIT-MAP ENCOONG 

The following serves as an introduction to the de 
tailed description of an exemplary method used to com 
press an input bit-map into an output atomic sequence 
utilizing the structures described above. The input bit 
map is compressed by individually examining the bits in 
sequence from the first bit to the last bit, or with refer 
ence to FIG. 2, from right to left. During this process 
ing, the bits are examined in context of the aligned bytes 
in which the bits reside. 
A current bit of a current byte is the next bit to be 

encoded into a current atom. A previous bit has already 
been encoded into a previous atom having a previous 
control byte. The following general principles are ap 
plied during the encoding process. 

If the gap between the previous and current bit in 
cludes one or more bytes having all the bits the same but 
different in sense from the previous and current bit, then 
all such intervening bytes are encoded as gaps. If the 
gap includes four or more bytes, the gap is encoded as 
gap bytes, otherwise, the gap is encoded in the control 
byte. Note, that since the atomic structures are fully 
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symmetrical, this rule applies equally to both zero and 
one filled gaps. 

If the current bit is a bit of an off-set byte, and if the 
previous bit was encoded as a gap, or as an off-set byte, 
or as the highest possible (fifteenth) map byte, then 
encode the current byte as an off-set byte. Else, add the 
current byte to the previously encoded map bytes se 
quence, and increment the map byte count in the 
DFIELD of the previously encoded control byte. 

If the current bit is neither a bit of a gap byte, nor a 
bit of an off-set byte, then either append the current bit 
to the previously encoded map byte sequence, or, upon 
reaching the map byte limit, which is fifteen in the ex 
emplary embodiment, produce a new atom having a 
map byte sequence. 
These rules guarantee a compressed atomic sequence 

having the least number of bytes. The encoded struc 
tures produced according to these rules can generally 
be described by the following statements. 

All bytes having all bits the same are encoded as gaps, 
and are never part of a map byte sequence. 
Each gap is immediately followed by either an off-set 

byte, or a map byte sequence, or by the opposite sense 
gap byte as in the special case of control byte=- 
1-40/10). 
A full map byte sequence is always followed by either 

a gap, an off-set byte, or another map byte sequence. 
In the detailed description of the method used to 

encode the atomic structure the following variables and 
nomenclature are defined. 
The bits of the input bit-map to be compressed can be 

expressed as: 
b(0), ..., b(I), ..., b(K), ..., b(N) 

where: 
b(0) is the first bit of the bit-map; 
b(I) is the current bit; 
b(K) is initially the first bit of the next byte; and 
b(N) is the last bit of the bit-map. 
The bytes of the output atomic sequence can be ex 

pressed as: 
, B(T) B(0), .. 

where: 
B(0) is the control byte of first atom; 
B(PP) is the control byte of the previous atom; 
B(P) is the control byte of the current atom; and 
BCT) is the atomic sequence terminator. 
Now, with reference to FIG. 5, an exemplary method 

is described for encoding the bit-map according to the 
50 general rules prescribed above. The processing of the 
bit-map involves a first phase to initialize the scan of the 
bit-map, and to encode the first atom as the "previous' 
atom. This first phase is followed by a loop for process 
ing the rest of the bits of the bit-map until all bits have 
been compressed. 

In step 505, initialize the variables I, K, N, PP, and P. 
Then, in step 510, determine if the input bit-map is 
empty. If true, then in step 515, generate the terminator 
atom B(T), for example B(PP)=0. Otherwise, iffalse, in 
step 520, beginning with b(0), locate the first b(I) differ 
ent in sense from the previous bits. 

In step 525, generate B(PP) as an off-set byte. Also, 
encode the size of the first gap, if any, in the control 
byte B(PP) of the first atom, or as gap bytes if the size 
of the gap is greater than twenty-four bits, or three 
bytes. 

In step 530, set b(K) to the first bit of the next aligned 
byte, and set B(P). 

., B(PP), ..., B(P), ... 

10 

5 

25 

30 

35 

45 

50 

55 

65 

10 
Now, continuing with step 535, determine if all bits of 

the bit-map have been examined. If true, continue with 
step 515. Otherwise, if false, in step 540, prepare to 
examine the next bit by incrementing I. 

In step 545, determine if I <K. That is, determine if 
the current bit b(I) is located within the same byte as the 
previously encoded bit. If true, continue with step 550 
to incorporate the current bit in the current atom hav 
ing a control byte B(PP). Otherwise, if false, continue 
with step 570. 

In step 550, determine if the current atom encodes an 
off-set byte. If false, continue with step 560. Otherwise, 
if true, in step 555, convert the current atom to a form 
which encodes bits as map bytes, and continue with step 
560. 

In step 560, add the current bit to the map bytes of the 
current atom and continue with step 535. 
At step 570, it has been determined that the current 

bit b(I) is located in an aligned bit-map byte which has 
not yet been encoded (ID=K). Therefore, a determina 
tion is made if there is a gap (I) = K-8), or if the 
current control byte is an off-set byte, or if the map byte 
count has reached the fifteen byte limit. 

If any of these cases are true, then in step 575, gener 
ate a new atom by encoding the current bit into B(P) as 
an off-set byte. Also, encode the size of the first gap, if 
any, in the control byte B(PP), or as gap bytes if the size 
of the gap is greater than twenty-four bits, or three 
bytes. Continue with step 590. 

Otherwise, in step 580, append an additional map byte 
to the current atom, and insert the current bit therein, 
and continue with step 590. 

In step 590, adjust K to the first bit of the next byte, 
and adjust PP and Pas required, continue with step 535 
until all bits have been examined. The variable K can be 
adjusted to index the first bit of the next byte by clearing 
the low order 3 bits of the variable I, and adding eight. 
Although many other methods for compressing bit 

maps into the structures defined herein are possible, the 
preferred method, processing one bit at the time, deliv 
ers a unique sequence of atomic structures for each 
different bit-map. Therefore, since the atomic sequence 
is unique for a particular expression of a bit-map, entire 
compressed bit-maps can readily be compared to deter 
mine, for example, bit-map identity, by a single byte 
string instruction. 

Furthermore, this exemplary embodiment of the 
method to encode the bit-map into the structure as 
defined by the invention is guaranteed to be the most 
parsimonious in consuming storage space in the mem 
ory 3. 

Also, since bits are encoded one at the time, the pro 
cedure for encoding can be efficiently implemented by, 
for example, a software program generally insensitive 
to the gross distribution of the zero and one values of 
the bits throughout the bit-map, the software program 
requiring only a limited number of time consuming 
decision making steps. 

Alternatively, the procedure can be implemented as 
hardware. For example, a hardware implementation 
would be well suited for converting a serial input bit 
streams to an output compressed byte stream to transmit 
over a communications network. Again, the bit-by-bit 
processing of the preferred method is well suited for 
low-cost hard wired logic circuits, latches, and gates. 
As the bits of the bit-map are processed, the encoding 

method delivers control bytes, gap bytes, map bytes, 
and converts off-set bytes. All of these operations, in 
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cluding off-set byte conversion, are fast and trivial be 
cause of the orthogonal properties of the generated 
code, 

For example, the structure of large gaps is indepen 
dently encoded within the gap bytes, without being 
affected by the rest of the atomic structure. Note partic 
ularly, that the length of the gap byte sequence, in bits, 
is encoded in the same base (eight) as the number of bits 
per byte. Note, the easy differentiation of atoms which 
encode off-set bytes (control byte less than 160), and 
those atoms that do not. Similarly, the dual sense (ones, 
or zeros) of off-set bytes, and gap bytes are totally sym 
metrical, and can therefore be processed by the identi 
cal code, simply by keying off the FFIELD 44, and 
processing the bits of the gaps and the off-set bytes in a 
complementary fashion. The elegance and simplicity of 
the structures summarized in Tables 1 and 2, are partic 
ularly well suited for processing by modern high perfor 
mance processors utilizing, for example, reduced in 
struction set architectures. 
The compression rate according to the present inven 

tion has been compared with that of the previously 
described prior art Delta-compression. The compres 
sion rate was measured as the number of compressed 
bytes divided by the number of bytes used to represent 
the original integer vector with each integer expressed 
as four bytes. The integer vectors had differences be 
tween consecutive integers randomized over variously 
size ranges, for example 1, 2, 3, 11, 21, 51, 201, 10001, 
and 100001. 

Delta-compression was slightly better for sparse vec 
tors, and the compression according to the invention 
was better for dense vectors. For an ascending integer 
vector, having one million randomly generated inte 
gers, the present invention encoded about twice as fast, 
and decoded about four times faster than Delta-com 
pression. 

BIT-MAP DECODING 

An exemplary embodiment of a method to decom 
press an input atomic sequence into an output bit-map 
will be now described. Generally, the method scans the 
atomic sequence from the first atom BO) until the ter 
minator B(T) is encountered. The method disclosed 
herein, will decode atomic sequences produced by 
obeying the encoding rules described above for produc 
ing the shortest possible atomic sequence, as well as any 
other atomic sequence, not necessarily the shortest, in 
conformance with the data structures summarized in 
Tables 1 and 2. 

During decoding, the method examines each atom in 
turn, and parses the control byte 41 to decipher gaps, 
map bytes, and off-set bytes. 
With specific references to FIG. 6, illustrating the 

exemplary embodiment of the method, in step 610, ini 
tialize the variables I, and PP. The variable I indicating 
a current bit generated for the bit-map, and pp indicat 
ing the bytes of the current atom B(PP). 

In step 620, examine the control byte of the current 
atom B(PP), and determine if it is a terminator atom 
B(T), in which case the decoding of the atomic se 
quence has been completed, exit via step 625. 

Otherwise, in step 630, determine whether the cur 
rent atom encodes an off-set-byte. If true, in step 640, 
calculate the size of the preceding gap, if any, from the 
control byte, or from the gap bytes. Generate the neces 
sary bits of the gap according to the indicated sense of 
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12 
the FFIELD 44, and produce the decoded off-set byte. 
Continue with step 660. 

Otherwise if false, the current atom B(PP) encodes 
map bytes, and in step 650, generate the bits of the gap, 
if any, and recover the bits of the map bytes. Continue 
with step 660. 

In step 660, adjust the variable I, PP, and continue 
with step 610 until all atoms have been decode. 

It should be apparent, that the elegance of the byte 
aligned atomic structures makes decoding of the com 
pressed bit-map much faster when compared with, for 
example, Delta-encoded bit-maps. 

BT-MAP MERGING 

In addition, a method for logically merging encoded 
bit-maps is described. Encoded bit-maps are merged by 
applying a logical operator, for example AND, OR, 
NAND, NOR, XOR, etc., on the corresponding en 
coded bytes of the bit-maps to be merged. It should be 
apparent from this description, that these operators can 
provide the logical intersection, union, and difference of 
bit-maps. 
The merging of two atomic sequences, according to 

the exemplary method of the invention, is performed 
according to the following general definitions and rules. 
Although these rules are explained with reference to the 
AND and OR operators and zero filled gaps, amplifying 
the rules and procedures for use with other logical 
operators and "one' filled gaps will become self-evi 
dent, 

Define two input bit-maps to be merged as a left 
bit-map and a right bit-maps having left and right bits, 
respectively. Define the compressed structures encod 
ing the two bit-maps as left and a right atomic sequences 
having left and right atoms, respectively. Define the 
result after merging of the left and right atomic sequen 
ces the output atomic sequence. 

Partially decode atoms from the left and right atomic 
sequences into left and right bytes, respectively. Clas 
sify the left and the right byte as a gap byte or a non-gap 
byte. Determine if a particular pair of bytes are of the 
same class, or of a different class, and apply either Rule 
I, or Rule II to produce an output byte to be incorpo 
rated into the output atomic sequence. 

RULE I 

Bytes are different classes 
If a gap byte of either the left or right bit-map corre 

sponds to a non-gap byte of the other bit-map, then skip 
the non-gap byte, and duplicate the gap byte into the 
output byte for incorporation into the output atomic 
sequence for the AND operator. In case of the OR 
operator, skip the gap byte and duplicate the non-gap 
byte into the output byte. 

Likewise, due to symmetry of the compressed atoms, 
one filled gaps are processed by applying the skipping 
and duplicating step in a complementary manner. That 
is for one filled gaps, duplicate non-gap bytes and skip 
gap bytes in case of the AND operator, and duplicate 
gap bytes and duplicate non-gap bytes in case of the OR 
operator. 

RULE I 

Bytes are same class 
If the left and the right bytes are gap bytes, or both 

bytes are non-gap bytes, then perform the logical opera 
tion, for example AND, to produce the merged output 
byte for incorporation into the output atomic sequence. 
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Now, as shown in FIG. 7, the steps of an exemplary 
method 700 are described. In step 710, the next left byte 
and the corresponding next right byte are extracted 
from the left and right atomic sequences for merging. 
The left and right bytes are produced by partially de 
coding the respective left and right atomic sequences, 
from beginning to end, generally asynchronously. 

It should be apparent that the atoms of the left and 
right sequences do not necessarily encode bit-map bytes 
in parallel, unless the two compressed bit-maps are 
bit-by-bit identical, and furthermore, unless the two 
bit-maps are both encoded by identical methods. Opti 
mizing techniques for synchronized decoding are set 
forth below. 
The step 710, to produce the right and left bytes, can 

be modeled, for example, after the decoding method as 
described above for FIG. 6, maintaining separately a set 
of variables for the left and right atomic sequence to be 
decoded. 

In step 730, determine if either Rule I or Rule II need 
to be applied. Then in steps 740 and 740 apply the ap 
propriate Rule. Continue with step 710 until done. 

If the left and right atomic sequences are non-over 
lapping, the bytes corresponding to the "missing' bytes 
can be skipped, duplicated, and merged as indicated for 
the logical operator. 

In support of Rule I, and Rule II, and as summarized 
in Table 3 below, two skip flags, and three byte masks 
are suggested to improve the speed of merging of bit 
maps. By using flags and masks, the core of Rules I and 
II can be implemented, for example, by a single efficient 
in-line generic instruction sequence, without requiring 
time consuming decision type of instructions. 

In Table 3, the symbols “&, , /, and N' are used to 
indicate the following logical operations on the left (A) 
and right (B) bit maps A. 

&-intersection, i.e., A AND B 
-union, i.e., AOR B 
/-difference, i.e., A AND (NOT B) 
N-difference, i.e., (NOTA) AND B 

TABLE 3 

Skip Flags and Merge Operators 
Operator skip skip2 opl op2 op3 

& 1 OO OO O0 
O O FF FF FF 

A 1 O FF 00 OO 
N O OO FF OO 

The skip flags indicate whether or not the left and 
right bytes are to be skipped or duplicated for a particu 
lar logical operator. The byte masks are used to produce 
the output byte (obyte) from the left byte (byte) and 
right byte (rbyte) for any of the listed logical operators 
by using the following calculation. 

obyte=CObyte XOR op) AND (rbyte XOR op2) 
XOR op3) 

As an advantage, this exemplary embodiment of com 
pressed bit-map merging achieves a high speed because 
bits of the bit-map are processed byte wise. And, in 
addition, for those portions of the bit-map where the left 
and right atoms are identical, large numbers of bits, can 
be processed by directly manipulating the atoms with 
out complete decoding. For example, merging com 
pressed bit-maps as described herein is typically about 
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14 
ten to thirty times faster than merging with traditional 
bit-wise or Delta-compressed data. 
The compressed structures of the invention, and the 

methods used to logically manipulate the atoms are 
particularly useful in conjunction with large data base, 
where an ordered sequence of record identifications or 
indices are stored in a multi-way binary-tree (B*-tree). 
If duplicate records are possible, each record should 
only have one copy of the index, the other duplicate 
indices could be expressed as a list in a bit-map com 
pressed, for example, according to the methods and 
structures disclosed herein. In order to support the use 
of the atoms disclosed herein for B-trees the logical 
operations of single bit insertion and a single bit deletion 
are supported. 
Supposed a bit representing an index is to be inserted 

into a bit-map representing an ordered set of duplicate 
indices. Then, if A represents the compressed atomic 
sequence of the set, and if the single bit is compressed 
into an atomic sequence B, then the operation (AORB) 
will insert the single bit into A. Similarly, the operation 
(A and (not B) would delete the bit from the bit-map. 
The merge method can be optimized for insertion and 
deletion by simply duplicating those portions of the 
atomic sequence representing the bit-map, other than 
the atom or atoms which are altered due to the insertion 
or deletion of a particular bit. 

Also, computerized images, where the individual 
pixels of the images are represented by bit-maps, can be 
enhanced by the methods of the invention. For, exam 
ple, an enhanced image can be produced by subtracting 
one ore more images from another image by using the 
appropriate logical merge operation according to the 
invention. 
While the invention has been described in conjunc 

tion with exemplary embodiments thereof, it is evident 
that there are many other alternatives, modifications, 
and variations. Accordingly, it is intended to cover 
these equivalent arrangements within the spirit and 
scope of the appended claims. 

I claim: 
1. In a computer system, a method for compressing 

data comprising the steps of: 
storing the data into a first set of bytes of a memory of 

the computer system, each byte of said set of bytes 
including an identical number of bits for storing 
logical values; 

classifying a byte of said first set of bytes as a gap byte 
if each bit of said byte stores the identical logical 
value, otherwise, classifying said byte as a map 
byte; 

grouping adjacent identically classified bytes; 
storing, in a second set of ordered bytes of said mem 

ory, for each group of gap bytes, a first bit se 
quence representative of the number of bits in said 
group of gap bytes; 

storing, in said second ordered set of bytes, for each 
group of map bytes, a second bit sequence repre 
sentative of the number of bits in said group of map 
bytes, said second set of bytes having an order 
corresponding to said first set of bytes. 

2. The method as in claim 1 further including the 
steps of 

sensing if said bits of a particular group of gap bytes 
stores all zeros or all ones, 

storing a flag associated with a particular first bit 
sequence corresponding to said particular group of 



5,363,098 
15 

gap bytes, said flag indicative of the sense of said 
bits of said particular group of gap bytes. 

3. The method as in claim 2 further including the 
steps of 

sensing if a first byte of a group of map bytes has 5 
exactly one bit different than an immediately pre 
ceding group of gap bytes, and 

in response to said sensing, storing said first byte as a 
bit off-set in said second set of bytes, said bit off-set 
associated with a corresponding first bit sequence 
representative of said preceding group of gap 
bytes, said bit off-set indicative of the position of 
said one different bit in said first byte. 

4. The method as in claim 3 further including the 
steps of 

organizing said set second set of bytes as a plurality of 
atoms, each of said atoms including a control byte 
for storing said first bit sequence, said second bit 
sequence, and said flag. 

5. The method as in claim 4 further including the step 
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of 
storing said first bit sequence in a byte following said 

control byte if the number of bits in said group of 
gap bytes is larger than a predetermined number. 5 

6. An apparatus for compressing data including: 
a memory having a first set of bytes for storing the 

data, each byte including a plurality of bits for 
storing logical values representative of the data, 
said logical values being either a one or a zero; 

means for classifying a byte of said first set of bytes as 
a gap byte if all of said plurality of bits of said byte 
store the identical logical value, otherwise classify 
ing said byte as a map byte; 

means for counting the number of bits in adjacent 35 
bytes having the identical classification; 

means for storing a first bit sequence representative of 
the counted number of bits in a second set of bytes 
of said memory for each group of adjacent gap 
bytes; 

means for storing a second bit sequence representa 
tive of the counted number of bits in said second set 
of bytes for each group of adjacent map bytes; 

means for storing said group of adjacent map bytes in 
said second set of bytes, the order of said first and 45 
second set of bytes corresponding to each other. 
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7. The apparatus as in claim 6 further including 
means for sensing if a particular group of gap bytes 

stores all Zeros or all ones, and 
means for storing a flag associated with a particular 

first bit sequence, said flag indicative of the sense of 
the bits of said particular group of gap bytes. 

8. The apparatus as in claim 7 further including 
means for sensing if a first byte of a group of map 

bytes has exactly one bit different than an immedi 
ately preceding group of gap bytes, and 

means, response to said sensing means, for storing 
said first byte as a bit off-set in said second set of 
bytes, said bit off-set associated with a correspond 
ing first bit sequence representative of said preced 
ing group of gap bytes, said bit off-set indicative of 
the position of said one different byte in said first 
byte. 

9. A method for compressing data comprising the 
steps of: 

storing the data into a source set of bytes of a storage 
device, each source byte having a plurality of bits, 
each of said bits to store a logical zero or a logical 
one; 

determining if all of said plurality of bits of a particu 
lar byte of said source set of bytes store the identi 
cal logical value; 

in response to a true determination, classifying said 
particular byte as a gap byte, otherwise classifying 
said particular byte as a map byte; 

grouping adjacent identically classified bytes of said 
source set of bytes; 

counting the number of said bits in each group of 
adjacent identically classified bytes; 

storing in a destination set of bytes of said storage 
device, for each group of classified gap bytes, a gap 
bit sequence representative of the number of said 
counted bits of said groups of gap bytes; 

storing in said destination set of bytes of said storage 
device, for each group of classified map bytes, a 
map bit sequence representative of the number of 
said counted bits of said groups of map bytes; stor 
ing in said destination set of bytes of said storage 
device, each group of classified map bytes, the 
order of said source and destination sets of bytes 
corresponding to each other. 
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