
USOO5363098A

United States Patent (19) 11 Patent Number: 5,363,098
Antoshenkov 45 Date of Patent: Nov. 8, 1994

54 BYTE ALIGNED DATA COMPRESSION E. A. Jeppsson et al. 341/55
4,841,299 6/1989 Weaver 341/63 X

75 Inventor: Gennady Antoshenkov, Amherst, 4,868,570 9/1989 gover ... 341/106
N.H. 4,988,998 1/1991 O’Brien 341/55

w & s 5,006,849 4/1991 Baarman et al. 34.1/95
73 Assignee: patient Corporation, 5,049,881 9/1991 Gibson et al. 341/95

s Primary Examiner-Sharon D. Logan
21 Appl. No.: 142,640 Attorney, Agent, or Firm-Albert P. Cefalo; Dirk
(22 Filed: Oct. 25, 1993 Brinkman
51 Int. Cl......................... H03M 7/00; H03M 7/46 57 ABSTRACT
52 U.S. C. 341/.95; C; Af system A. "E. top logi

cally manipulating arbitrary bit-maps, the bit-map is
58) Field of Search 341/63, 2. aligned along byte boundaries. Each aligned byte is

classified as a gap byte if all of the bits of the byte store
56) References Cited the same logical value, otherwise the byte is classified as

U.S. PATENT DOCUMENTS a non-gap byte. Adjacent bytes of the same class are
grouped. Groups of gap bytes are encoded into an

e atomic sequence of bytes as a count of the number of
4,495,639 1/1985 Mosier et al. 341/63 bits included in the grouped gap bytes. Map bytes are
4,606,002 8/1986 Waisman et al. 364/200 re a
4,610,027 9/1986 Anderson et al. 7 duplicated in the atomic sequence and also associated
4,626,829 12/1986 Hauck gives with a count thereof.
4,630,030 12/1986 Roy 340/347
4,684,923 8/1987 Koga..................................... 341/63 9 Claims, 6 Drawing Sheets

3,656,178 4/1972 De Maine et al...............

NAZE
Is O, K = 8, N = LENGTH, PP = O, P =

B (PP) = B(t) EO-55

505

SOO
are- GENERATE B(PP) E OFFSET

GENERAE GAP

CONVERT
(PP) = OFFSET OFFSE

> TO MBYTES
MBYTE AND
INSERB. B(P) a OFFSET

ADUSK
ADJUSPP
ADUSP

U.S. Patent Nov. 8, 1994 Sheet 1 of 6 5,363,098

MEMORY

F.G.

U.S. Patent Nov. 8, 1994 Sheet 3 of 6 5,363,098

TFIELD 4 FFIELD 44 DFELD 45

5

GBYTE 5O

- 3o

MBYTE | 6O

FIG 3

TFIELD 4 FFIELD 44 DFIELD 45

FG. 4.

U.S. Patent Nov. 8, 1994 Sheet 4 of 6 5,363,098

NTAZE
Is O, K = 8, N = LENGTH, PP = O, P =

<3> B (PP) = B(T) =O -55

-- LOCATE B(I)
5O

GENERATE B(PP) = OFFSET
GENERATE GAP

CONVERT
OFFSET

TO MBYTES
B(PP) = OFFSET

58O
GENERATE APPEND
NEW ATOM 575 MBYTE AND

B(P) s OFFSET NSERT B(I)

ADJUSTK
ADJUST PP 5
ADJUSTP 9 O

F.G. 5

U.S. Patent Nov. 8, 1994 Sheet 5 of 6 5,363,098

GENERATE GAPBTS GENERATEGAPBITS sso
GENERATE OFFSET RECOVER MBYTES

ADJUSTI, PP

FG, 6

U.S. Patent Nov. 8, 1994 Sheet 6 of 6 5,363,098

EXTRACT
LEFT8. RIGHT

BYTES

7OO

75O
SKIP
AND

DUPLICATE

FG. 7

5,363,098
1.

BYTE ALGNED DATA COMPRESSION

FIELD OF THE INVENTION

The present invention relates generally to computer
systems, and more particularly to compressing data
stored in a memory of a computer system.

BACKGROUND OF THE INVENTION

In computer systems, it is well known that the
amount of physical space required to store data can be
reduced by compressing the data to a more compact
format. Furthermore, as an additional advantage, con
pressed data can generally be processed in less time than
uncompressed data. For example, fewer bits are pro
cessed when compressed data are communicated from
one computer system to another. Data compression is
frequently used for large data bases, graphic images,
and full-text inverted files.
One type of compression that is sometimes used for

integer vectors is "bit-map' encoding. With bit-map
encoding, each integer of the vector is represented in a
bit-map by a single bit. A logical “1” in a bit position of
the bit-map signifies the presence of an integer, and a
logical “0” denotes the absence of an integer. Not only
is there a substantial reduction in space, but also, time is
saved during processing, since the representative bits of
the bit-map can be directly accessed and manipulated.

Bit-maps are comparatively efficient in space and
time utilization for compressing dense vectors. Dense
vectors are vectors which are populated with a rela
tively large number of integers. However, bit-maps
suffer space and time losses for sparse vectors, or vec
tors with skewed densities. In bit-maps representing
sparse vectors, a large proportion of the bitmap space is
wasted on bit sequences having nothing but logical
ZeOes.

For vectors which lack any type of systemic bit dis
tribution, "bit-wise' compression is sometimes used.
Bit-wise compression derives space reduction from the
fact that the differences between consecutive integers in
a vector are typically small for very large vectors.
Thus, the number of significant bits in the differences
between consecutive integers can be encoded more
compactly than the integers themselves. Each differ
ence is encoded as a "prefix' bit string, followed by a
"suffix' bit string. The prefix bit string encodes the
number of bits in the suffix, and the suffix bit string
encodes all significant bits of the difference. Bit-wise
compression which encodes successive differences is
sometimes known as Delta-compression.

Bit-wise compression compresses close to the theo
retical limit for any kind of distribution of the com
pressed data. However, data which are compressed
bit-wise suffer because the compressed representation
of the data can generally not be manipulated directly by
logical operators, such as AND, OR, and XOR (exclu
sive OR), and the like. Therefore, bit-wise compression
generally requires time consuming encoding and decod
ing in order to perform logical operations, making bit
wise compression less suitable for data which are logi
cally manipulated.

Furthermore, bit-wise compression utilizes bit strings
of various sizes not always compatible with logic cir
cuits and data paths used to manipulate them. For exam
ple, digital computers are generally designed to operate
on bits organized in fixed-sized bytes. Thus, bit-wise
compression must either waste space to keep the prefix

10

15

25

30

35

45

SO

55

65

2
and suffix strings aligned along easily manipulated byte
boundaries, or time is wasted to parse the variable bit
lengths of the prefix and suffix into manipulatable bytes.
Taking the foregoing into consideration, it is apparent

that there is a need for a compression technique which
compresses data regardless of the data content. Further
more, it is desirable that logical operations on the com
pressed data be possible without requiring the data to be
fully decompressed.

SUMMARY OF THE INVENTION

The invention provides for compressing source data
expressed in arbitrary bit-maps to achieve higher encod
ing and decoding efficiency with reduced data storage
requirements and improved processing performance.
The invention is particularly applicable to computer
systems processing large databases, and where multiple
accesses and logical operations on the databases are
frequent occurrences.

Broadly, the invention provides data structures
which take advantage of the hardware characteristics of
the computer system and spatial relationships which
exist in the source data. Furthermore, the invention uses
encoding and decoding techniques which are optimized
for the computer system characteristics and the source
data relationships.

In one aspect of the invention, the quantum for en
coding, decoding, and manipulating compressed data
are uniformly sized bytes. That is, the bits of the bit-map
are organized into byte sized portions aligned at bound
aries convenient for, and compatible with the hardware
characteristics of the computer system. For example,
each byte sized portion of the bit-map includes eight
bits.
For the purpose of encoding the source or input bit

map into an output compressed atomic sequence of
bytes, the following general principles are observed.
Each of the organized bytes is classified as a “gap byte”
(GBYTE) if all of the bits of a byte store the same logi
cal value, otherwise the byte is classified as a non-gap or
"map byte' (MBYTE). Gap bytes can further be classi
fied as either storing all zeros, or all ones. A map byte
can further be classified as an "off-set' byte if all of the
bits but one store the same value as a preceding adjacent
gap byte. That is, an off-set byte has exactly one bit
different than the bits of the immediately preceding gap
byte.

Adjacent classified bytes of the same class are
grouped and the number of bits in each group are
counted. Then, in a destination or output atomic se
quence of bytes, the bytes of the classified and grouped
input bit-map are encoded as follows. For each group of
gap bytes, store a first bit sequence representing the
number of bits in each of the group in the atomic se
quence. Also store a flag to indicate whether the group
Stores ZeroS Ori Oes.

For each of the groups of map bytes, in the output
atomic sequence, store a second bit sequence represent
ing the number of bits in the group, and store the group
of map bytes. If the classified byte is an off-set byte,
store a third bit sequence in the atomic sequence, the
third bit sequence indicating the position of the one
different bit within the off-set byte.
The first, second, and third bit sequences are orga

nized into atoms structured as follows. Each atom of
encoding includes a control byte (CBYTE), possibly
followed by one or more “GBYTEs”, and possibly one

5,363,098
3

or more “MBYTEs. The control byte includes a
“TFIELD', a FFIELD', and a “DFIELD'. The first
bit sequence is stored in the TFIELD of the control
byte if the number of gap bytes in the group is less than
a first threshold, for example, four. Otherwise, the first
bit sequence is stored in the gap bytes. The flag is stored
in the FFIELD, and the second or third bit sequences
are stored in the DFIELD depending if the gap bytes
are immediately followed by map bytes or an off-set
byte. The length associated with map bytes are stored in
the DFIELD of the control byte, and the map bytes
follow the control byte.

In another aspect of the invention, the bit-map is
encoded into an atomic structures by scanning the bit
map, bit by bit and classifies bytes according to the
general principles outlined above. The control byte, gap
bytes, and map bytes are generated on the fly, as the bits
are individually examined. This method guarantees a
unique sequence of atomic structures for each different
bit-map to facilitate the determination of bit-map identi
ties. In addition, this method is guaranteed to generate
the most compact atomic sequence.

In yet another aspect of the invention, the atomic
sequence is decoded to recover the bit-map. The de
compressing method scans the atomic sequence using
the control byte to decode the variously encoded bit
sequences to generate the bit-map.
And, in yet another aspect of the invention, multiple

compressed bit-maps are merged by using logical opera
tors such as AND and OR. The merging method par
tially decodes the atomic sequence representing the
bit-maps to be merged, and performs the required logi
cal operation on decomposed bytes to generate a new
atomic sequence representing the merged bit-maps.
This method enables the logical manipulation of com
pressed bit-maps in less time than is possible with Delta
compression. The structures and methods of the inven
tion are particularly suited for bit-maps representing
images, databases or full text inverted files having arbi
trary bit distributions.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of a computer system

which can use the invention;
FIG. 2 is a block diagram of a bit-map which can be

compressed using the principles of the invention;
FIG. 3 is a block diagram of a byte aligned con

pressed atom according to the invention;
FIG. 4 is a block diagram of another form of a byte

aligned compressed atom;
FIG. 5 is a block diagram of a procedure to encode

the bit-map of FIG. 2 into an atomic sequence of FIGS.
3 and 4;
FIG. 6 is a block diagram of a procedure to decode

the atomic sequence into the bit-map; and
FIG. 7 is a block diagram of a procedure to logically

manipulate atomic sequences.
DETAILED DESCRIPTION OF THE

PREFERRED EMBODEMENT

FIG. 1 shows a computer system 1 which can use the
invention. The computer system 1 can include a central
processing unit (CPU) 2 and a storage device, for exam
ple memory 3, communicating with each other via abus

10

5

20

25

30

35

45

50

55

4. The CPU 2 is any type of conventional processor of 65
data, for example, a main frame, work station, micro
processor, personal computer, or the like. The memory
3 is any type of memory capable of storing data, for

4.
example, semiconductor volatile random access mem
ory, registers, or permanent disk storage. Space to store
the data, and time to process the data can both be re
duced by encoding the data into a more compact format
as disclosed herein.
Now with reference to FIG. 2, the compression of

the present invention will be described using as an ex
ample a ascending order vector possibly having integers
in the range 0 to 455. A particular expression of the
vector includes the integers 8, 11, 19, 174, 181, 189, 191,
450, 451, 453, and 455. If the eleven numbers of the
integer vector are stored in the memory 3 in a binary
format as thirty-two bit integers, the vector would con
sume 352 (11x32) bits.

Alternatively, as shown in FIG. 2, the integer vector
can be stored as a bit-map 20 having a plurality of bits 21
for representing the individual integers of the vector. A
logical '0' in a bit position indicates the absence of an
integer, and a logical “1” indicates the presence of an
integer. As an advantage, the size of the bit-map 20 does
not increase as additional integers in the range of 0 to
455 are added to the vector. It should be apparent that
the bit-map 20 can represent data sequences other than
integer vectors, for example, the bit-map 20 can repre
sent the “on” and “off” states of pixels of an image, or
indices to a data base.
The bits 21 of the bit-map 20 are shown from right to

left. The right most bit represents the integer "O'", the
next left bit represents the integer “1”, and so forth. The
left most bit represents the integer “455” The hexadeci
mal (hex) equivalent of the bit-map 20 can be written as:

2C-0-A0204-0-80900.

The notation "-0-' is used to indicate a 'gap' in the
bit-map 20. A gap is defined as a sequence of bits 21 all
storing the same logical value, for example, all zeros.
Alternatively, a gap of all ones could be expressed as
& 1-.

What is described herein, is a method and structure
for compressing a bit-map, as the one shown in FIG. 2,
into less physical space in the memory 3. Furthermore,
the reduced size data structure can be logically manipu
lated by the CPU 2 in less time than would be possible
for the uncompressed data.
The invention, gains space and time efficiencies, in

part, by optimally encoding the bit-map 20, taking into
consideration the underlying hardware structure of the
computer system 1, such as, the logic circuits of the
CPU 2, the storage cells of the memory 3, and the width
of the data path of the bus 4. Therefore, the quantum for
encoding, decoding, and manipulating the bit-map 20
are uniformly sized bytes 22. The bytes 22 are aligned at
boundaries convenient for, and compatible with the
hardware characteristics of the computer system 1. For
example, each byte 22 includes eight bits 21. It should
be understood that the invention can just as easily be
adapted to computer systems having other byte sizes.
The bit-map 20 is compressed by encoding the bits 21

of the bit-map 20 into a byte aligned atomic sequence
according to the following general principles.
Each byte of the bit-map is classified as either a gap

byte or a non-gap byte. Gap bytes have all the bits the
same, and non-gap bytes do not have all the bit the
same. Non-gap bytes are, hereinafter, also referred to as
"map bytes.”

5,363,098
5

Adjacent bytes of the identical class are grouped and
the number of bits included in each classified group is
determined.

For grouped gap bytes, the sense of the bits, be they
zeros or ones, is determined. Gap bytes having different
sensed bits are grouped separately. For grouped map
bytes, a determination is made whether the first byte of
the group has only one bit different from the sense of a
preceding gap. Such a byte is classified as an "off-set
byte.”
For groups of gap bytes, the length of the group and

the sense (zeros or ones) of the group are stored in the
atomic sequence. For groups of maps, the length of the
group and the group itself are stored in the atomic se
quence. Off-set bytes are encoded into the control byte
encoding the length of the preceding gap bytes. For
consistency, presume that the bit-map 20 is preceded by,
for example a zero length, Zero filled gap.
FIG. 3 shows the general structure of a byte aligned

atom 30 constructed according to these principles. A
number of different arrangements of the atom 30 are
possible. The different arrangements of the atoms 30 are
optimally engineered to compactly compress an unpre
dictable variety of distributions of logical zeros and
ones stored in the bits 21 of the bit map 20.

Each encoded atom 30 includes at least a control byte
(CBYTE) 40. As will be described in greater detail
hereinafter, each control byte 40 may be followed by
one or more encoded gap bytes (GBYTEs) 50, and/or
one or more encoded bit-map bytes (MBYTEs) 60.
The specific type of arrangement of a particular atom

30 is encoded in the control byte 40. Therefore, each
control byte 40 includes a type field (TFIELD) 41 and
a data field (DFIELD) 45. In the exemplary embodi
ment, the type field 41 includes three bits, and the
DFIELD 45 includes four bits. It should become appar
ent that the invention can also be worked if the control
byte 40 is organized into fields having a different num
ber of bits.
The control byte 40 can also include an optional fill

field (FFIELD) 44 for indicating whether encoded bits
of the gaps are sensed as either all zeros, or all ones.
When the FFIELD 44 is a logical "O' the encoded gap
is bytes are all zeros, and when the FFIELD 44 is a
logical “1”, the encoded gap bytes are filled with all
ones. If the invention is used only to encode gaps of one
kind, either zeros or ones, the FFIELD 44 is not re
quired, and the DFIELD 45 can be expanded to include
five bits, for example.
The type field 41 can have values in the range of 0 to

7 to indicating the various structures of the atom 30.
The DFIELD 45 can have values in the range of 0 to
15. The optional FFIELD 44 can have values of either
0 or 1.
The gap bytes 50, when present in the atom 30, are a

sequence of one to eight bytes used to store the number
of consecutively encoded gap bytes. The gap bytes, as
previously defined, being a group of bytes having bits
all storing the same logical value. The FFIELD 44 of
the corresponding control byte 40 of the atom 30 is used
to indicate whether the encoded gap bytes 50 have bits
which store zeros or ones.
The number of bytes in the gap byte sequence is

stored in a GFIELD 51 of the gap bytes 50, for exam
ple, the low order three bits of the first gap byte 50. The
rest of the bits of the first GBYTE 50 are extended with
a binary “0”, and any subsequent gap bytes 50 represent
the gap size measured in bits, and is always expressed as

10

15

20

25

30

35

45

50

55

60

65

6
a multiple of eight. In other words, the gap bytes 50
encode only byte aligned bit gaps. Only bytes with the
significant bits of the gap size are represented by the gap
bytes 50, all zero leading bytes of the gap size are dis
carded.
The map bytes 60, when present in the atom 30, are a

sequence of one to fifteen bytes of the bit-map 20 not
having all the bits the same. The number of bytes in the
map byte sequence is stored in the DFIELD 45 of the
control byte 40. In other words, map bytes are byte
aligned bits of the bit-map 20.
The various structures of the atom 30 used to com

press the bit-map 20 will now be described in greater
detail. The description of the atoms 30 will be followed
by the description of the methods used to encode, de
code, and logically manipulate the structures. In this
description, the eight bits of the control byte 40 are
written as, for example, TFIELDIFFIELDD
FIELD). The vertical bars “” are used as field separa
tors, slashes "/" indicating or, and dashes "-" indicating
inclusive ranges.

Table 1 is a summary of the various forms that the
atoms 30 can assume.

TABLE 1.
General Forms of Atons

Case TFIELD FFIELD DFIELD GBYTEs MBYEs
1. 0-3 0 or 1 1-15 No Yes
2 4. O OR 1 1-15 Yes Yes
3 5 0-3 0-7 No No
4 6 0 or 1 0-7 Yes No
5 7 0-3 0-7 No No

The first case of the atom 30 has the general form of:

CBYTE=(0-30/11-15

When the type field 41 stores a value in the range of 0
to 3, the type field 41 directly indicates the size of the
gap encoded. In other words, for atoms 30 having the
type field 41 in the range of 0 to 3, the control byte 40
is not followed by any gap bytes 50. Instead, the size of
the gap is directly encoded in the type field 41 of the
control byte 40. This case is useful for compactly com
pressing frequently occurring small sized gaps.
Whether the gap contains all zeros or ones is indicated
by the FFIELD 44. The number of bytes of the bit-map
20 which follow the gap are stored, as explained above,
in the DFIELD 45.
The second case of the atom 30 has the general form

of:

In this case, the control byte 40 is immediately followed
by one or more gap bytes 50, with the gap bytes 50
encoded as described above. The gap bytes 50 are fol
lowed by a plurality of map bytes 60, the number of map
bytes 60 indicated in the DFIELD 45 of the control
byte 40.
As shown in FIG. 4, for the next three cases, that are

the cases were the type field 41 falls into the range of 5
to 7, the control byte 40 is partitioned into a three bit
type field 41, a two bit FFIELD 44, and a three bit
DFIELD 45. In these cases, the DFIELD 45 is used to
encode a byte of the bit-map 20 having all bits but one
the same. For example, the encoded byte 22 of the bit
map 20 is either all zeros, with a single one, or the byte

5,363,098
7

22 has a single zero bit with the rest of the bits set to
OneS.

The position of the one bit that is different from the
rest of the bits in the byte 22 is indicated as on off-set in
the DFIELD 45. The off-set being a number in the
range of 0 to 7, each number representing one of the
eight possible position for the different bit in the byte
22. Hereinafter, this class of bytes will be referred to as
an “off-set' bytes.

Off-set bytes are useful for compactly compressing
frequently observed bit distributions of the type where
a gap is immediately followed by a byte having only a
single bit different from the sense of the bits of the gap.
The third case of the atom 30 has the general form of:

CBYTE=50-30-7

In this case, the control byte 40 encodes a gap and a
following off-set byte. The size of the gap is indicated in
the FFIELD 44. If the TFIELD has a value of 5, the
bits of the gap and the off-set byte are all zeros, except
for the single “1” bit, whose off-set position is indicated
in the DFIELD 45.
The fourth case of the atom 30 has the general form

of:

CBYTE=60/10-7]

In this case, the control byte 40 is immediately followed
by one or more gap bytes 50, with the gap bytes 50
encoded as described above. In the corresponding bit
map, the thus encoded gap is immediately followed by
an off-set byte. If the FFIELD 44 is zero, the gap and
off-set byte are “0”, except for the off-set bit. Alterna
tively, if the FFIELD 44 is one, the gap and the off-set
byte are “1” filled, and the off-set bit is a zero.
The fifth case of the atom 30 has the general form of:

CBYTE=70-30-7)

This case is similar to the third case (TFIELD=5)
above, except the sense of the bits is reversed. That is,
the gap and off-set byte, except for the one different bit,
are all ones. This completes the description of the gen

10

15

20

25

30

35

40

eral forms of the data structures of the various types of 45
atoms 30 used to compress the bit-map 20.

In addition to these general forms, some special struc
tures of the atoms 30 are further defined, as summarized
in Table 2.

TABLE 2

Special Forms of Atoms
Case TFIELD FFIELD DFIELD GBYTEs MBYTEs

O O O No Yes
2 1-3 0 or 1 O No No
3 4. 0-3 O Yes No

First, in the special case of the control byte 40 having
all bits set to logical zeros, the atom is in the form:

CBYTE=000)

This atom is used as a terminator of a sequence of atoms
30 used to compress the bit-map 20. The terminator can
be used as a signal for the procedures that manipulate
the compressed atomic sequences.

Second, in the special case where the type field 41 is
in the range of 1-3, and the DFIELD=0, e.g. no map

50

55

60

65

8
bytes 50 are indicated. The general form of this special
case has the atom as:

CBYTE=(1-30/10)

This form of the control byte 40 is used to compress a
gap which is immediately followed by a byte having all
bits the same but different in sense from the bits of the
compressed gap. For example, in hex notation, the bit
map sequence of “FFFF00” is encoded by the single
byte atom consisting of the control byte=2|10. The
TFIELD=2, and the FFIELD = 1 indicate two “1”
filled bytes, followed by a “0” filled byte. Conversely,
the bit-map sequence "000000FF' can be encoded as a
control byte=30|0).

Third, in the special case where the type field 41 is 4,
and the DFIELD 45 is zero, the atom has the general
form:

CBYTE=(40/10)

This form of the control byte 40 is similar to the case
immediately above, except that the size of the com
pressed gap is encoded by the gap bytes 50. For exam
ple, in hex notation, the bit-map sequence of
“FFFFFFFF00” is compressed into the two byte con
sisting of the control byte=410 followed by a single
gap byte 50 storing the hex value of "20”.
Now, applying these compressed structures to the

original bit-map 20 of FIG. 2, results in the following
atomic byte sequence:

aton CBYTE = 1 0 2 (zero filled one byte gap,
MBYTE is hex 0809 (followed by 2 map bytes

aton 2 CBYTE = 60 6 (bit 6 off-set byte, and
GBYTE - hex 90 (90 hex, zero filled bits.

aton 3 CBYTE = 5 0 || 5 (bit 5 off-set byte-no gap
atom 4 CBYTE = 0 } 0 1 (gapsize = 0, followed by

MBYTE = hex AO (one map byte.
aton 5 CBYTE = 4 0 1 (gap bytes and mbytes

GBYTE hex 101
MBYTE = hex AC

(100 hex, zero filled bits
(followed by 1 map byte.

Thus, by using the structures of the invention, the
integer vector is compressed to five atoms for a total of
twelve 8-bit bytes, a fraction of the original size.

BIT-MAP ENCOONG

The following serves as an introduction to the de
tailed description of an exemplary method used to com
press an input bit-map into an output atomic sequence
utilizing the structures described above. The input bit
map is compressed by individually examining the bits in
sequence from the first bit to the last bit, or with refer
ence to FIG. 2, from right to left. During this process
ing, the bits are examined in context of the aligned bytes
in which the bits reside.
A current bit of a current byte is the next bit to be

encoded into a current atom. A previous bit has already
been encoded into a previous atom having a previous
control byte. The following general principles are ap
plied during the encoding process.

If the gap between the previous and current bit in
cludes one or more bytes having all the bits the same but
different in sense from the previous and current bit, then
all such intervening bytes are encoded as gaps. If the
gap includes four or more bytes, the gap is encoded as
gap bytes, otherwise, the gap is encoded in the control
byte. Note, that since the atomic structures are fully

5,363,098
9

symmetrical, this rule applies equally to both zero and
one filled gaps.

If the current bit is a bit of an off-set byte, and if the
previous bit was encoded as a gap, or as an off-set byte,
or as the highest possible (fifteenth) map byte, then
encode the current byte as an off-set byte. Else, add the
current byte to the previously encoded map bytes se
quence, and increment the map byte count in the
DFIELD of the previously encoded control byte.

If the current bit is neither a bit of a gap byte, nor a
bit of an off-set byte, then either append the current bit
to the previously encoded map byte sequence, or, upon
reaching the map byte limit, which is fifteen in the ex
emplary embodiment, produce a new atom having a
map byte sequence.
These rules guarantee a compressed atomic sequence

having the least number of bytes. The encoded struc
tures produced according to these rules can generally
be described by the following statements.

All bytes having all bits the same are encoded as gaps,
and are never part of a map byte sequence.
Each gap is immediately followed by either an off-set

byte, or a map byte sequence, or by the opposite sense
gap byte as in the special case of control byte=-
1-40/10).
A full map byte sequence is always followed by either

a gap, an off-set byte, or another map byte sequence.
In the detailed description of the method used to

encode the atomic structure the following variables and
nomenclature are defined.
The bits of the input bit-map to be compressed can be

expressed as:
b(0), ..., b(I), ..., b(K), ..., b(N)

where:
b(0) is the first bit of the bit-map;
b(I) is the current bit;
b(K) is initially the first bit of the next byte; and
b(N) is the last bit of the bit-map.
The bytes of the output atomic sequence can be ex

pressed as:
, B(T) B(0), ..

where:
B(0) is the control byte of first atom;
B(PP) is the control byte of the previous atom;
B(P) is the control byte of the current atom; and
BCT) is the atomic sequence terminator.
Now, with reference to FIG. 5, an exemplary method

is described for encoding the bit-map according to the
50 general rules prescribed above. The processing of the
bit-map involves a first phase to initialize the scan of the
bit-map, and to encode the first atom as the "previous'
atom. This first phase is followed by a loop for process
ing the rest of the bits of the bit-map until all bits have
been compressed.

In step 505, initialize the variables I, K, N, PP, and P.
Then, in step 510, determine if the input bit-map is
empty. If true, then in step 515, generate the terminator
atom B(T), for example B(PP)=0. Otherwise, iffalse, in
step 520, beginning with b(0), locate the first b(I) differ
ent in sense from the previous bits.

In step 525, generate B(PP) as an off-set byte. Also,
encode the size of the first gap, if any, in the control
byte B(PP) of the first atom, or as gap bytes if the size
of the gap is greater than twenty-four bits, or three
bytes.

In step 530, set b(K) to the first bit of the next aligned
byte, and set B(P).

., B(PP), ..., B(P), ...

10

5

25

30

35

45

50

55

65

10
Now, continuing with step 535, determine if all bits of

the bit-map have been examined. If true, continue with
step 515. Otherwise, if false, in step 540, prepare to
examine the next bit by incrementing I.

In step 545, determine if I <K. That is, determine if
the current bit b(I) is located within the same byte as the
previously encoded bit. If true, continue with step 550
to incorporate the current bit in the current atom hav
ing a control byte B(PP). Otherwise, if false, continue
with step 570.

In step 550, determine if the current atom encodes an
off-set byte. If false, continue with step 560. Otherwise,
if true, in step 555, convert the current atom to a form
which encodes bits as map bytes, and continue with step
560.

In step 560, add the current bit to the map bytes of the
current atom and continue with step 535.
At step 570, it has been determined that the current

bit b(I) is located in an aligned bit-map byte which has
not yet been encoded (ID=K). Therefore, a determina
tion is made if there is a gap (I) = K-8), or if the
current control byte is an off-set byte, or if the map byte
count has reached the fifteen byte limit.

If any of these cases are true, then in step 575, gener
ate a new atom by encoding the current bit into B(P) as
an off-set byte. Also, encode the size of the first gap, if
any, in the control byte B(PP), or as gap bytes if the size
of the gap is greater than twenty-four bits, or three
bytes. Continue with step 590.

Otherwise, in step 580, append an additional map byte
to the current atom, and insert the current bit therein,
and continue with step 590.

In step 590, adjust K to the first bit of the next byte,
and adjust PP and Pas required, continue with step 535
until all bits have been examined. The variable K can be
adjusted to index the first bit of the next byte by clearing
the low order 3 bits of the variable I, and adding eight.
Although many other methods for compressing bit

maps into the structures defined herein are possible, the
preferred method, processing one bit at the time, deliv
ers a unique sequence of atomic structures for each
different bit-map. Therefore, since the atomic sequence
is unique for a particular expression of a bit-map, entire
compressed bit-maps can readily be compared to deter
mine, for example, bit-map identity, by a single byte
string instruction.

Furthermore, this exemplary embodiment of the
method to encode the bit-map into the structure as
defined by the invention is guaranteed to be the most
parsimonious in consuming storage space in the mem
ory 3.

Also, since bits are encoded one at the time, the pro
cedure for encoding can be efficiently implemented by,
for example, a software program generally insensitive
to the gross distribution of the zero and one values of
the bits throughout the bit-map, the software program
requiring only a limited number of time consuming
decision making steps.

Alternatively, the procedure can be implemented as
hardware. For example, a hardware implementation
would be well suited for converting a serial input bit
streams to an output compressed byte stream to transmit
over a communications network. Again, the bit-by-bit
processing of the preferred method is well suited for
low-cost hard wired logic circuits, latches, and gates.
As the bits of the bit-map are processed, the encoding

method delivers control bytes, gap bytes, map bytes,
and converts off-set bytes. All of these operations, in

5,363,098
11

cluding off-set byte conversion, are fast and trivial be
cause of the orthogonal properties of the generated
code,

For example, the structure of large gaps is indepen
dently encoded within the gap bytes, without being
affected by the rest of the atomic structure. Note partic
ularly, that the length of the gap byte sequence, in bits,
is encoded in the same base (eight) as the number of bits
per byte. Note, the easy differentiation of atoms which
encode off-set bytes (control byte less than 160), and
those atoms that do not. Similarly, the dual sense (ones,
or zeros) of off-set bytes, and gap bytes are totally sym
metrical, and can therefore be processed by the identi
cal code, simply by keying off the FFIELD 44, and
processing the bits of the gaps and the off-set bytes in a
complementary fashion. The elegance and simplicity of
the structures summarized in Tables 1 and 2, are partic
ularly well suited for processing by modern high perfor
mance processors utilizing, for example, reduced in
struction set architectures.
The compression rate according to the present inven

tion has been compared with that of the previously
described prior art Delta-compression. The compres
sion rate was measured as the number of compressed
bytes divided by the number of bytes used to represent
the original integer vector with each integer expressed
as four bytes. The integer vectors had differences be
tween consecutive integers randomized over variously
size ranges, for example 1, 2, 3, 11, 21, 51, 201, 10001,
and 100001.

Delta-compression was slightly better for sparse vec
tors, and the compression according to the invention
was better for dense vectors. For an ascending integer
vector, having one million randomly generated inte
gers, the present invention encoded about twice as fast,
and decoded about four times faster than Delta-com
pression.

BIT-MAP DECODING

An exemplary embodiment of a method to decom
press an input atomic sequence into an output bit-map
will be now described. Generally, the method scans the
atomic sequence from the first atom BO) until the ter
minator B(T) is encountered. The method disclosed
herein, will decode atomic sequences produced by
obeying the encoding rules described above for produc
ing the shortest possible atomic sequence, as well as any
other atomic sequence, not necessarily the shortest, in
conformance with the data structures summarized in
Tables 1 and 2.

During decoding, the method examines each atom in
turn, and parses the control byte 41 to decipher gaps,
map bytes, and off-set bytes.
With specific references to FIG. 6, illustrating the

exemplary embodiment of the method, in step 610, ini
tialize the variables I, and PP. The variable I indicating
a current bit generated for the bit-map, and pp indicat
ing the bytes of the current atom B(PP).

In step 620, examine the control byte of the current
atom B(PP), and determine if it is a terminator atom
B(T), in which case the decoding of the atomic se
quence has been completed, exit via step 625.

Otherwise, in step 630, determine whether the cur
rent atom encodes an off-set-byte. If true, in step 640,
calculate the size of the preceding gap, if any, from the
control byte, or from the gap bytes. Generate the neces
sary bits of the gap according to the indicated sense of

O

15

20

25

30

35

45

50

55

65

12
the FFIELD 44, and produce the decoded off-set byte.
Continue with step 660.

Otherwise if false, the current atom B(PP) encodes
map bytes, and in step 650, generate the bits of the gap,
if any, and recover the bits of the map bytes. Continue
with step 660.

In step 660, adjust the variable I, PP, and continue
with step 610 until all atoms have been decode.

It should be apparent, that the elegance of the byte
aligned atomic structures makes decoding of the com
pressed bit-map much faster when compared with, for
example, Delta-encoded bit-maps.

BT-MAP MERGING

In addition, a method for logically merging encoded
bit-maps is described. Encoded bit-maps are merged by
applying a logical operator, for example AND, OR,
NAND, NOR, XOR, etc., on the corresponding en
coded bytes of the bit-maps to be merged. It should be
apparent from this description, that these operators can
provide the logical intersection, union, and difference of
bit-maps.
The merging of two atomic sequences, according to

the exemplary method of the invention, is performed
according to the following general definitions and rules.
Although these rules are explained with reference to the
AND and OR operators and zero filled gaps, amplifying
the rules and procedures for use with other logical
operators and "one' filled gaps will become self-evi
dent,

Define two input bit-maps to be merged as a left
bit-map and a right bit-maps having left and right bits,
respectively. Define the compressed structures encod
ing the two bit-maps as left and a right atomic sequences
having left and right atoms, respectively. Define the
result after merging of the left and right atomic sequen
ces the output atomic sequence.

Partially decode atoms from the left and right atomic
sequences into left and right bytes, respectively. Clas
sify the left and the right byte as a gap byte or a non-gap
byte. Determine if a particular pair of bytes are of the
same class, or of a different class, and apply either Rule
I, or Rule II to produce an output byte to be incorpo
rated into the output atomic sequence.

RULE I

Bytes are different classes
If a gap byte of either the left or right bit-map corre

sponds to a non-gap byte of the other bit-map, then skip
the non-gap byte, and duplicate the gap byte into the
output byte for incorporation into the output atomic
sequence for the AND operator. In case of the OR
operator, skip the gap byte and duplicate the non-gap
byte into the output byte.

Likewise, due to symmetry of the compressed atoms,
one filled gaps are processed by applying the skipping
and duplicating step in a complementary manner. That
is for one filled gaps, duplicate non-gap bytes and skip
gap bytes in case of the AND operator, and duplicate
gap bytes and duplicate non-gap bytes in case of the OR
operator.

RULE I

Bytes are same class
If the left and the right bytes are gap bytes, or both

bytes are non-gap bytes, then perform the logical opera
tion, for example AND, to produce the merged output
byte for incorporation into the output atomic sequence.

5,363,098
13

Now, as shown in FIG. 7, the steps of an exemplary
method 700 are described. In step 710, the next left byte
and the corresponding next right byte are extracted
from the left and right atomic sequences for merging.
The left and right bytes are produced by partially de
coding the respective left and right atomic sequences,
from beginning to end, generally asynchronously.

It should be apparent that the atoms of the left and
right sequences do not necessarily encode bit-map bytes
in parallel, unless the two compressed bit-maps are
bit-by-bit identical, and furthermore, unless the two
bit-maps are both encoded by identical methods. Opti
mizing techniques for synchronized decoding are set
forth below.
The step 710, to produce the right and left bytes, can

be modeled, for example, after the decoding method as
described above for FIG. 6, maintaining separately a set
of variables for the left and right atomic sequence to be
decoded.

In step 730, determine if either Rule I or Rule II need
to be applied. Then in steps 740 and 740 apply the ap
propriate Rule. Continue with step 710 until done.

If the left and right atomic sequences are non-over
lapping, the bytes corresponding to the "missing' bytes
can be skipped, duplicated, and merged as indicated for
the logical operator.

In support of Rule I, and Rule II, and as summarized
in Table 3 below, two skip flags, and three byte masks
are suggested to improve the speed of merging of bit
maps. By using flags and masks, the core of Rules I and
II can be implemented, for example, by a single efficient
in-line generic instruction sequence, without requiring
time consuming decision type of instructions.

In Table 3, the symbols “&, , /, and N' are used to
indicate the following logical operations on the left (A)
and right (B) bit maps A.

&-intersection, i.e., A AND B
-union, i.e., AOR B
/-difference, i.e., A AND (NOT B)
N-difference, i.e., (NOTA) AND B

TABLE 3

Skip Flags and Merge Operators
Operator skip skip2 opl op2 op3

& 1 OO OO O0
O O FF FF FF

A 1 O FF 00 OO
N O OO FF OO

The skip flags indicate whether or not the left and
right bytes are to be skipped or duplicated for a particu
lar logical operator. The byte masks are used to produce
the output byte (obyte) from the left byte (byte) and
right byte (rbyte) for any of the listed logical operators
by using the following calculation.

obyte=CObyte XOR op) AND (rbyte XOR op2)
XOR op3)

As an advantage, this exemplary embodiment of com
pressed bit-map merging achieves a high speed because
bits of the bit-map are processed byte wise. And, in
addition, for those portions of the bit-map where the left
and right atoms are identical, large numbers of bits, can
be processed by directly manipulating the atoms with
out complete decoding. For example, merging com
pressed bit-maps as described herein is typically about

O

15

25

30

35

45

50

55

60

65

14
ten to thirty times faster than merging with traditional
bit-wise or Delta-compressed data.
The compressed structures of the invention, and the

methods used to logically manipulate the atoms are
particularly useful in conjunction with large data base,
where an ordered sequence of record identifications or
indices are stored in a multi-way binary-tree (B*-tree).
If duplicate records are possible, each record should
only have one copy of the index, the other duplicate
indices could be expressed as a list in a bit-map com
pressed, for example, according to the methods and
structures disclosed herein. In order to support the use
of the atoms disclosed herein for B-trees the logical
operations of single bit insertion and a single bit deletion
are supported.
Supposed a bit representing an index is to be inserted

into a bit-map representing an ordered set of duplicate
indices. Then, if A represents the compressed atomic
sequence of the set, and if the single bit is compressed
into an atomic sequence B, then the operation (AORB)
will insert the single bit into A. Similarly, the operation
(A and (not B) would delete the bit from the bit-map.
The merge method can be optimized for insertion and
deletion by simply duplicating those portions of the
atomic sequence representing the bit-map, other than
the atom or atoms which are altered due to the insertion
or deletion of a particular bit.

Also, computerized images, where the individual
pixels of the images are represented by bit-maps, can be
enhanced by the methods of the invention. For, exam
ple, an enhanced image can be produced by subtracting
one ore more images from another image by using the
appropriate logical merge operation according to the
invention.
While the invention has been described in conjunc

tion with exemplary embodiments thereof, it is evident
that there are many other alternatives, modifications,
and variations. Accordingly, it is intended to cover
these equivalent arrangements within the spirit and
scope of the appended claims.

I claim:
1. In a computer system, a method for compressing

data comprising the steps of:
storing the data into a first set of bytes of a memory of

the computer system, each byte of said set of bytes
including an identical number of bits for storing
logical values;

classifying a byte of said first set of bytes as a gap byte
if each bit of said byte stores the identical logical
value, otherwise, classifying said byte as a map
byte;

grouping adjacent identically classified bytes;
storing, in a second set of ordered bytes of said mem

ory, for each group of gap bytes, a first bit se
quence representative of the number of bits in said
group of gap bytes;

storing, in said second ordered set of bytes, for each
group of map bytes, a second bit sequence repre
sentative of the number of bits in said group of map
bytes, said second set of bytes having an order
corresponding to said first set of bytes.

2. The method as in claim 1 further including the
steps of

sensing if said bits of a particular group of gap bytes
stores all zeros or all ones,

storing a flag associated with a particular first bit
sequence corresponding to said particular group of

5,363,098
15

gap bytes, said flag indicative of the sense of said
bits of said particular group of gap bytes.

3. The method as in claim 2 further including the
steps of

sensing if a first byte of a group of map bytes has 5
exactly one bit different than an immediately pre
ceding group of gap bytes, and

in response to said sensing, storing said first byte as a
bit off-set in said second set of bytes, said bit off-set
associated with a corresponding first bit sequence
representative of said preceding group of gap
bytes, said bit off-set indicative of the position of
said one different bit in said first byte.

4. The method as in claim 3 further including the
steps of

organizing said set second set of bytes as a plurality of
atoms, each of said atoms including a control byte
for storing said first bit sequence, said second bit
sequence, and said flag.

5. The method as in claim 4 further including the step

O

15

20

of
storing said first bit sequence in a byte following said

control byte if the number of bits in said group of
gap bytes is larger than a predetermined number. 5

6. An apparatus for compressing data including:
a memory having a first set of bytes for storing the

data, each byte including a plurality of bits for
storing logical values representative of the data,
said logical values being either a one or a zero;

means for classifying a byte of said first set of bytes as
a gap byte if all of said plurality of bits of said byte
store the identical logical value, otherwise classify
ing said byte as a map byte;

means for counting the number of bits in adjacent 35
bytes having the identical classification;

means for storing a first bit sequence representative of
the counted number of bits in a second set of bytes
of said memory for each group of adjacent gap
bytes;

means for storing a second bit sequence representa
tive of the counted number of bits in said second set
of bytes for each group of adjacent map bytes;

means for storing said group of adjacent map bytes in
said second set of bytes, the order of said first and 45
second set of bytes corresponding to each other.

30

40

50

55

65

16
7. The apparatus as in claim 6 further including
means for sensing if a particular group of gap bytes

stores all Zeros or all ones, and
means for storing a flag associated with a particular

first bit sequence, said flag indicative of the sense of
the bits of said particular group of gap bytes.

8. The apparatus as in claim 7 further including
means for sensing if a first byte of a group of map

bytes has exactly one bit different than an immedi
ately preceding group of gap bytes, and

means, response to said sensing means, for storing
said first byte as a bit off-set in said second set of
bytes, said bit off-set associated with a correspond
ing first bit sequence representative of said preced
ing group of gap bytes, said bit off-set indicative of
the position of said one different byte in said first
byte.

9. A method for compressing data comprising the
steps of:

storing the data into a source set of bytes of a storage
device, each source byte having a plurality of bits,
each of said bits to store a logical zero or a logical
one;

determining if all of said plurality of bits of a particu
lar byte of said source set of bytes store the identi
cal logical value;

in response to a true determination, classifying said
particular byte as a gap byte, otherwise classifying
said particular byte as a map byte;

grouping adjacent identically classified bytes of said
source set of bytes;

counting the number of said bits in each group of
adjacent identically classified bytes;

storing in a destination set of bytes of said storage
device, for each group of classified gap bytes, a gap
bit sequence representative of the number of said
counted bits of said groups of gap bytes;

storing in said destination set of bytes of said storage
device, for each group of classified map bytes, a
map bit sequence representative of the number of
said counted bits of said groups of map bytes; stor
ing in said destination set of bytes of said storage
device, each group of classified map bytes, the
order of said source and destination sets of bytes
corresponding to each other.

k st

