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Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :

• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;

• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)

• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• Un graphe G = (V ,E ) est un couple constitué d’un ensemble :
• V d’éléments appelés sommets (vertices) ;
• E ⊂V ×V d’éléments appelés arcs (edges).

• (x ,x) ∈E est une boucle

• Si E est symétrique : graphe non orienté (GNO) et arête (notée
{x ,y }) plutôt qu’arc. Sinon c’est un graphe orienté (GO).

• card(V )= |V | : ordre du graphe (parfois noté |G |)
• Si xy ∈E : x et y sont adjacents (ou voisins)

• N(x) : ensemble des voisins (neighbours) de x

4/90



Définitions

• G simple : au plus une arête reliant deux sommets (sinon
multigraphe) et pas de boucle

• G complet : simple et tous les sommets sont adjacents

• degré d’un sommet x (noté d(x)) : |N(x)|
• graphe k-régulier : ∀x ∈V d(x)= k

• Pour un GO, on distingue :

• degré sortant (d+(x)) : nombre d’arcs ayant x pour origine ;
• degré entrant (d−(x)) : nombre d’arcs ayant x pour extrémité ;
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Exemple

Graphe non orienté d’ordre 4
V = {1,2,3,4}

E = {{1,2}, {1,3}, {2,4}, {3,4}}

simple, non complet, 2-régulier

1

2 3

4

Exemple
Graphe orienté d’ordre 4
V = {1,2,3,4}

E = {(1,2),(3,1),(2,4),(4,3),(4,1)}

simple, non complet
d−(1)= 2 ; d+(3)= 1

1

2 3

4
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Question
Existe-t-il un graphe d’ordre 3 dont les sommets ont pour degrés
respectifs 1, 2, 2 ?

Proposition
Soit G = (V ,E ) un GNO. ∑

x∈V
d(x)= 2|E |

Soit G = (V ,E ) un GO.∑
x∈V

(
d+(x)+d−(x)

)= 2|E |
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Preuve : par un exemple pour un GNO.

E

e1 e2 e3 . . . en

V

v1 . . .

v2 . . .

v3 . . .

v4 . . .
...

...
...

...
...

...
vp . . .

Classique en mathématiques. Double comptage des cases rouges
(extrémités des arêtes) : en ligne, et en colonne.
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Matrice d’adjacence

Définition
Soit G = (V ,E ) un graphe. La matrice d’adjacence de G est définie par :

Mij =
1 si ij ∈E

0 sinon

Pour un GNO, M est symétrique.

Exemple

1

2 3

4 1

2 3

4

M =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 M =


0 1 0 0
0 0 0 1
1 0 0 0
1 0 1 0


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Liste d’adjacence

Définition
On mémorise pour chaque sommet la liste de ses voisins.

1

2
3

4

5

2 3 5 /

1 4 /

1 4 /

2 3 /

1 /

1

2

3

4

5

Structure de liste (doublement) chaînée.
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• chaîne Pn (path) P4

• cycle Cn C5

• complet Kn K6
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• biparti complet Kn,p K4,3

• roue Wn (wheel) W6

• étoile Sn (en fait c’est K1,n−1 !) S6
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Définition
Un sous-graphe de G = (V ,E ) est de la forme G ′ = (V ′,E ′) avec V ′ ⊂V

et E ′ ⊂E .

Définition
Un sous-graphe induit de G est de la forme G ′ = (V ′,E ′) avec V ′ ⊂V ,
et E ′ = {xy ∈E | x ∈V ′∧y ∈V ′}. Autrement, on retire des sommets, et
on ne garde que les arêtes qui existent encore.

Un sous-graphe complet est appelé une clique.

Définition
Un sous-graphe partiel de G est de la forme G ′ = (V ,E ′) avec E ′ ⊂E .
Autrement, on garde tous les sommets, et on retire des arêtes.
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Exemple
K4 est un sous-graphe induit de K5.

P4 est un sous-graphe partiel de C4.

Ce graphe contient deux 4-cliques.
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Définition
Deux graphes G = (V ,E ) et G ′ = (V ′,E ′) sont isomorphes s’il existe une
bijection ϕ :V →V ′ telle que

∀x ,y ∈V xy ∈E ⇐⇒ϕ(x)ϕ(y) ∈E ′ .

Si G =G ′, on dit que ϕ est un automorphisme.

Exemple

1

2 3

4 A

B

CD

ϕ : {1,2,3,4} → {A,B ,C ,D}

ϕ(1)=A

ϕ(2)=B

ϕ(3)=C

ϕ(4)=D
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Définition
Un graphe est planaire s’il admet une représentation sans croisement
d’arêtes.

Exemple
D’après l’exemple précédent, K4 est planaire.
Pour prouver qu’un graphe est planaire, il suffit de le représenter
correctement. Mais pour prouver qu’il ne l’est pas . . .
Jeu : planarity.net
Androïd : Untangle et bien d’autres

20/90
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Définitions

• chaîne (resp. cycle) d’un GNO G : sous-graphe de G qui est
lui-même une chaîne (resp. un cycle)

• longueur d’une chaîne (resp.cycle) : nombre d’arêtes qui la
composent

• Pour un GO, chaîne → chemin et cycle → circuit.

Remarque

• Ces définitions correspondent à la notion de chaînes et cycles
élémentaires chez certains auteurs : les sommets (et donc les arêtes)
empruntés sont distincts.

• Lorsque l’on emprunte plusieurs fois la même arête et/ou le même
sommet, on parlera de parcours ou de marche.
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Proposition
Tout GNO sans cycle avec |E | Ê 1 possède au moins deux sommets
pendants (de degré 1).

Démonstration.

Il y a des chaînes, puisque |E | Ê 1. Considérons une chaîne de longueur
maximale (x1,x2, . . . ,xp) avec p Ê 2.
Si d(x1)Ê 2, il admet un autre voisin z ̸= x2.

• Ou bien z ∉ {x3, . . . ,xp}, et alors (z ,x1,x2, . . . ,xp) est une chaîne plus
longue, ce qui est impossible.

• Ou bien z ∈ {x3, . . . ,xp}, et alors (z ,x1,x2, . . . ,z) est un cycle, ce qui
est impossible.

De même d(xp)= 1.
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Proposition
Tout GNO sans cycle avec |E | Ê 1 possède au moins deux sommets
pendants (de degré 1).

Démonstration.
Il y a des chaînes, puisque |E | Ê 1. Considérons une chaîne de longueur
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Soit M la matrice d’adjacence d’un graphe, et soit p ∈N∗.

Proposition
Le coefficient (Mp)i ,j est le nombre de parcours de longueur p reliant
les sommets i et j .

1 2

3

4 5

6 7

M3 =



0 3 4 2 1 1 1
3 0 1 1 3 2 0
4 1 2 2 5 1
2 1 5 2 4 5 1
1 3 2 4 0 1 1
1 2 5 5 1 2 3
1 0 1 1 1 3 0


Il y a 5 parcours de longueur 3 reliant le sommet 3 au sommet 4.
Lesquels ?
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1. Généralités
Définitions
Représentations
Familles de graphes
Sous-graphes
Isomorphismes

2. Graphes et chemins
Chaînes et cycles
Connexité
Graphes eulériens / hamiltoniens
Parcours

3. Graphes et couleurs
Nombre chromatique
Planarité et coloration

4. Graphes valués
Plus court chemin
Arbre recouvrant minimal
Graphes de flot
Ordonnancement
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Définitions

• Un GNO est dit connexe si, pour toute paire {x ,y } ⊂V , il existe une
chaîne reliant x à y .

• UN GO est dit fortement connexe si, pour tout couple (x ,y) ∈V 2,
il existe un chemin d’origine x et d’extrémité y .

Relation
Soit G un graphe, non nécessairement connexe. Pour x ,y ∈V on
définit :

xRy ⇔ il existe une chaîne reliant x à y ou x = y

R est une relation d’équivalence ; les classes d’équivalence sont
appelées composantes connexes de G .
Un GNO est donc connexe s’il n’a qu’une seule composante connexe.
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xRy ⇔ il existe une chaîne reliant x à y ou x = y

R est une relation d’équivalence ; les classes d’équivalence sont
appelées composantes connexes de G .
Un GNO est donc connexe s’il n’a qu’une seule composante connexe.
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Soit G un GNO connexe.

Définitions

• La distance entre deux sommets est la longueur minimale d’une
chaîne reliant x à y . On la note d(x ,y).

• Le diamètre de G est la plus grande distance séparant deux de ses
sommets.

Exemple

1 2

3

4 5

6 7

d(2,4)= 2 d(1,4)= 2 diam(G )= d(2,7)= 4
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

On montre 1⇔ 5⇔ 6 par récurrence sur n= |V |.
Si n= 1, les trois assertions sont bien équivalentes.
Soit nÊ 2. Supposons les assertions équivalentes pour tous les graphes
d’ordre strictement inférieur à n.

28/90



Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

1⇒ 6 : supprimons une arête. Cela déconnecte G (sinon il y aurait un
cycle). Les deux composantes obtenues sont connexes et sans cycle,
d’ordre inférieur à n. Par HR :
|E | = |E1|+ |E2|+1= |V1|−1+|V2|−1+1= |V |−1.
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

6⇒ 5 : notons G1, . . . ,Gk ses composantes connexes. Elles sont connexes,
sans cycle car G l’est, et d’ordres inférieurs à n. Par HR :
|E | =∑ |Ei | =

∑ |Vi |−k = |V |−k. Or |E | = |V |−1. Donc k = 1 et G est
connexe !
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

5⇒ 1 : G a un sommet pendant, sinon
∑
x∈V

d(x)= 2|E | = 2|V |−2Ê 2|V |.
Le sous-graphe induit G ′ en retirant ce sommet vérifie HR. G ′ est donc
sans cycle, tout comme G .

28/90



Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

1⇒ 3 : Supposons que G soit connexe en retirant un arête e = xy . Par
connexité, il existe une chaîne reliant x et y . On aurait donc un cycle, ce
qui est exclu.
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

3⇒ 2 : Soit {x ,y } ⊂V . Il existe une chaîne de x à y car G est connexe.
Supposons par l’absurde qu’il y en a une autre. Alors il y a un cycle. En
retirant une arête de ce cycle, G reste connexe !
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

2⇒ 4 : si G admettait un cycle, deux sommets de ce cycle seraient reliés
par 2 chaînes ; donc G est sans cycle.
Si x et y ne sont pas adjacents ; il y a une unique chaîne de x vers y .
Mais en ajoutant l’arête xy on crée une deuxième chaîne.
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

4⇒ 1 : Soient x et y 2 sommets non adjacents. Si on ajoute l’arête xy ,
on crée un cycle. Donc il existe un chaîne reliant x et y . G est connexe.
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Arbres

Proposition
Soit G un GNO. Les assertions suivantes sont équivalentes.

1. G est connexe et sans cycle.

2. Pour tous sommets x et y , il existe une unique chaîne reliant x et y .

3. G est connexe, et ne l’est plus en retirant une arête.

4. G est sans cycle, et on crée un cycle en ajoutant une arête.

5. G est connexe et |E | = |V |−1.

6. G est sans cycle et |E | = |V |−1.

Définition
Un GNO qui vérifie l’une quelconque des assertions précédentes est
appelé un arbre.
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Peut-on trouver un cycle passant une fois et une seule par chaque arête ?
Un tel cycle est appelé eulérien.

Peut-on trouver un cycle passant une fois et une seule par chaque
sommet ? Un tel cycle est appelé hamiltonien.

Remarque : le terme "cycle eulérien" ne correspond pas à notre définition
du cycle élémentaire. Il faudrait parler de parcours, mais ce n’est pas
grave.
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Définitions

• Un graphe est eulérien (resp. hamiltonien) s’il admet un cycle
eulérien (resp. hamiltonien).

• Un graphe est semi-eulérien (resp. semi-hamiltonien) s’il admet une
chaîne eulérienne (resp. hamiltonienne).

Existe-t-il des conditions nécessaires et suffisantes « simples » pour
justifier qu’une graphe est eulérien / hamiltonien ?

31/90



Définitions

• Un graphe est eulérien (resp. hamiltonien) s’il admet un cycle
eulérien (resp. hamiltonien).

• Un graphe est semi-eulérien (resp. semi-hamiltonien) s’il admet une
chaîne eulérienne (resp. hamiltonienne).

Existe-t-il des conditions nécessaires et suffisantes « simples » pour
justifier qu’une graphe est eulérien / hamiltonien ?

31/90



Définitions

• Un graphe est eulérien (resp. hamiltonien) s’il admet un cycle
eulérien (resp. hamiltonien).

• Un graphe est semi-eulérien (resp. semi-hamiltonien) s’il admet une
chaîne eulérienne (resp. hamiltonienne).

Existe-t-il des conditions nécessaires et suffisantes « simples » pour
justifier qu’une graphe est eulérien / hamiltonien ?

31/90



Eulérien

Théorème (Euler 1736)
Soit G un GNO sans sommet isolé.

• G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.

• G est semi-eulérien SSI il est connexe et tous ses sommets, sauf
deux, sont de degré pair.

Exemple

A

B

C

D

E
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Soit G un GNO sans sommet isolé.

• G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.

• G est semi-eulérien SSI il est connexe et tous ses sommets, sauf
deux, sont de degré pair.

Exemple

A

B

C

D

E semi-eulérien
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Eulérien

Théorème (Euler 1736)
Soit G un GNO sans sommet isolé.

• G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.

• G est semi-eulérien SSI il est connexe et tous ses sommets, sauf
deux, sont de degré pair.

Exemple

A

B

C

D

E eulérien
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Hamiltonien, une toute autre affaire. . .

Problème NP-complet, on ne connaît pas de « bonne » condition
(vérifiable en temps polynomial).

Exemple

A

B

C

D
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Hamiltonien, une toute autre affaire. . .

Problème NP-complet, on ne connaît pas de « bonne » condition
(vérifiable en temps polynomial).

Exemple

A

B

C

D

semi-hamiltonien
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Hamiltonien, une toute autre affaire. . .

Problème NP-complet, on ne connaît pas de « bonne » condition
(vérifiable en temps polynomial).

Exemple

A

B

C

D

hamiltonien
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Quelques conditions suffisantes (mais non nécessaires) :

Théorème (Dirac 1952)
Si, dans un graphe d’ordre nÊ 3, tous les sommets sont de degré
supérieur ou égal à n/2, alors le graphe est hamiltonien.

Théorème (Ore 1960)
Si, dans un graphe d’ordre nÊ 3, pour toute paire de sommets {x ,y }

non adjacents, on a d(x)+d(y)Ê n, alors le graphe est hamiltonien.

Remarque : le théorème de Dirac est un cas particlulier du théorème Ore.

34/90



Quelques conditions suffisantes (mais non nécessaires) :

Théorème (Dirac 1952)
Si, dans un graphe d’ordre nÊ 3, tous les sommets sont de degré
supérieur ou égal à n/2, alors le graphe est hamiltonien.

Théorème (Ore 1960)
Si, dans un graphe d’ordre nÊ 3, pour toute paire de sommets {x ,y }

non adjacents, on a d(x)+d(y)Ê n, alors le graphe est hamiltonien.

Remarque : le théorème de Dirac est un cas particlulier du théorème Ore.

34/90



Quelques conditions suffisantes (mais non nécessaires) :

Théorème (Dirac 1952)
Si, dans un graphe d’ordre nÊ 3, tous les sommets sont de degré
supérieur ou égal à n/2, alors le graphe est hamiltonien.

Théorème (Ore 1960)
Si, dans un graphe d’ordre nÊ 3, pour toute paire de sommets {x ,y }

non adjacents, on a d(x)+d(y)Ê n, alors le graphe est hamiltonien.

Remarque : le théorème de Dirac est un cas particlulier du théorème Ore.

34/90



Quelques conditions suffisantes (mais non nécessaires) :

Théorème (Dirac 1952)
Si, dans un graphe d’ordre nÊ 3, tous les sommets sont de degré
supérieur ou égal à n/2, alors le graphe est hamiltonien.

Théorème (Ore 1960)
Si, dans un graphe d’ordre nÊ 3, pour toute paire de sommets {x ,y }

non adjacents, on a d(x)+d(y)Ê n, alors le graphe est hamiltonien.
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Exercice

Montrez que dans un graphe orienté complet, on peut toujours trouver
un chemin Hamiltonien.
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On veut parcourir (ou déterminer) une composante connexe en
numérotant les sommets. Deux parcours classiques :

• Parcours en largeur (BFS : breadth-first search)

• Parcours en profondeur (DFS : depth-first search)
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Parcours en largeur

Données : un graphe G = (V ,E ) et un sommet x0 ∈V
Résultat : une numérotation α en largeur de la composante connexe

contenant x0, et les distances d depuis x0
début

FILE ←− x0 ;
i ←− 1 ;
α(x0)←− 1 ;
dist(x0)←− 0 ;
tant que FILE ̸=∅ faire

x ←− DEFILER ;
pour chaque y ∈N(x) non numéroté faire

i ←− i +1 ;
α(y)←− i ;
dist(y)← dist(x)+1;
ENFILER(y) ;

fin
fin
retourner α,dist ;

fin 38/90



Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : vide
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : A

39/90



Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : B C D
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : C D H
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : D H
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : H E
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : E I J
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3

10,d=4

FILE : I J F
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3

10,d=4

FILE : J F
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3

10,d=4

FILE : F
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : G
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Exemple de BFS

A C

B

D

H

I

J

D E F G

1,d=0

2,d=1

3,d=1

4,d=1

5,d=2

6,d=2

7,d=3

8,d=3

9,d=3 10,d=4

FILE : vide
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L’algorithme fournit :

• une partition des sommets en couches (couche i = sommets à
distance i du sommet initial)

• une chaîne de longueur minimal entre le sommet initial et les autres
sommets.
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Parcours en profondeur

Données : un graphe G = (V ,E ) et un sommet x0 ∈V
Résultat : une numérotation α en profondeur de la composante

connexe contenant x0
début

PILE ←− x0 ;
i ←− 1 ;
α(x0)←− i ;
tant que PILE ̸=∅ faire

si le sommet de la pile a un voisin x pas encore visité alors
i ←− i +1 ;
α(x)←− i ;
EMPILER(x) ;

sinon
x ←− DEPILER ;

fin
fin
retourner α ;

fin
41/90



Parcours en profondeur récursif

Données : un graphe G = (V ,E ) et un sommet x0 ∈V
Résultat : une numérotation α en profondeur de la composante

connexe contenant x0
début

i ←− 0 ;
Fonction DFS_rec(graphe G, sommet s)
begin

i ←− i +1 ;
α(s)←− i ;
pour chaque y ∈N(s) non numéroté faire

DFS_rec(G,y) ;
fin

end
DFS_rec(G,x0) ;
retourner α ;

fin
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-1,20

2,-2,17 3,-3,8 4,-4,7 5,-5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : vide

43/90



Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-2,17 3,-3,8 4,-4,7 5,-5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-3,8 4,-4,7 5,-5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8 4,-4,7 5,-5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D E
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7 5,-5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D E F
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7

5,-

5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D E F G
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7 5,-

5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D E F
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8 4,-

4,7

5,-

5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D E
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D H
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-11,12

18,-18,19

14,-14,15

PILE : A D H J
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-14,15

PILE : A D H J I
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-14,15

PILE : A D H J
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-14,15

PILE : A D H
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-

14,15

PILE : A D H B
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-

14,15

PILE : A D H
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17 3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-

14,15

PILE : A D
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-18,19

14,-

14,15

PILE : A
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-

18,19

14,-

14,15

PILE : A C
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Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-

18,19

14,-

14,15

PILE : A

43/90



Exemple de DFS

A C

B

D

H

I

J

D E F G

1,-

1,20

2,-

2,17

3,-

3,8

4,-

4,7

5,-

5,6

9,-

9,16

10,-

10,13

11,-

11,12

18,-

18,19

14,-

14,15

PILE : vide
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Tri topologique

Soit G = (V ,E ) un GO

Un tri topologique de G est la donnée d’une injection f :E →N telle que

∀(x ,y) ∈V , xy ∈E ⇒ f (x)< f (y)

La numérotation des sommets est compatible avec les arcs de G .

Proposition
Un graphe admet un tri topologiqie ssi il est sans circuit.

Proposition
Les dates de fin de visites d’un parcours en profondeur d’un GO
acyclique fournissent un tri topologique.
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Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-2,9

3,-3,8 4,-4,7

5,-5,6

Tri topologique :

1 2 34 5 6
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Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-2,9

3,-3,8 4,-4,7

5,-5,6

Tri topologique :

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-3,8 4,-4,7

5,-5,6

Tri topologique :

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8 4,-4,7

5,-5,6

Tri topologique :

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-5,6

Tri topologique :

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique :

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 6

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8 4,-

4,7

5,-

5,6

Tri topologique : 3 6

1 2 34 5 6
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Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 2 3 6

1 2 34 5 6
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Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 5 2 3 6

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-

10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 5 2 3 6

1 2 34 5 6

45/90



Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-

1,12

10,-

10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 1 5 2 3 6

1 2 34 5 6
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Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-1,12

10,-

10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 4 1 5 2 3 6

1 2 34 5 6
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Exemple

DFS en partant du sommet 4

1 2 3

4 5 6
1,-1,12

10,-

10,11

2,-

2,9

3,-

3,8

4,-

4,7

5,-

5,6

Tri topologique : 4 1 5 2 3 6

1 2 34 5 6
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Application à l’ordonancement de tâches

Construire une maison. Arc x → y : "commencer y que si x est terminé"

fondations

murs crépis

fenêtres
cloisons

pelouse

eau

cuisine

sanitaire

toit

papier/peinture

14,15

0,21

18,19

12,17

13,16

2,11

1,20

3,6

4,5

7,10

8,9
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Application à l’ordonancement de tâches

Construire une maison. Arc x → y : "commencer y que si x est terminé"

fondations

murs crépis

fenêtres
cloisons

pelouse

eau

cuisine

sanitaire

toit

papier/peinture

14,15

0,21

18,19

12,17

13,16

2,11

1,20

3,6

4,5

7,10

8,9

Ordre possible :
fondations 21
murs 20
toit 19
fenêtres 17
crépis 16
pelouse 15
cloisons 11
eau 10
sanitaires 9
cuisine 6
papiers/peinture 5
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Graphes et couleurs



1. Généralités
Définitions
Représentations
Familles de graphes
Sous-graphes
Isomorphismes

2. Graphes et chemins
Chaînes et cycles
Connexité
Graphes eulériens / hamiltoniens
Parcours

3. Graphes et couleurs
Nombre chromatique
Planarité et coloration

4. Graphes valués
Plus court chemin
Arbre recouvrant minimal
Graphes de flot
Ordonnancement
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Colorier un graphe, c’est attribuer une couleur à chaque sommet, de sorte
que deux sommets adjacents aient une couleur différente.
But : utiliser le moins de couleurs

Définition
On appelle nombre chromatique d’un graphe G , noté χ(G ), le plus petit
nombre de couleurs nécessaires à la coloration de G .

Exemples
χ(Kn)= n χ(Pn)= 2 χ(C2n)= 2 χ(C2n+1)= 3

Pas facile en pratique sur un graphe quelconque. . .
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Colorier un graphe, c’est attribuer une couleur à chaque sommet, de sorte
que deux sommets adjacents aient une couleur différente.
But : utiliser le moins de couleurs

Définition
On appelle nombre chromatique d’un graphe G , noté χ(G ), le plus petit
nombre de couleurs nécessaires à la coloration de G .

Exemples
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Encadrement de χ(G )

On note ω(G ) la taille d’une clique maximale et ∆(G ) le degré maximal
de ses sommets.

Proposition

ω(G )É χ(G )É∆(G )+1É |V |

• Résultat général optimal car les quatre membres sont égaux si
G =Kn ;

• mais décevant car l’écart entre χ(G ) et ∆(G ) peut tendre vers
l’infini ! (considérer Sn) ;

• ω(G ) est généralement difficile à déterminer.
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On note ω(G ) la taille d’une clique maximale et ∆(G ) le degré maximal
de ses sommets.

Proposition
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Algorithme de Welsh-Powell

algorithme heuristique (solution approchée) et glouton (donc efficace)

Données : un graphe G = (V ,E ) non orienté
Résultat : une coloration α des sommets
début

L←− liste des sommets par ordre décroissant des degrés ;
couleur ←− 1 ;
tant que des sommets ne sont pas coloriés faire

s ←− premier sommet de L non colorié ;
α(s)←− couleur ;
pour x ∈ L non adjacent à s et non adjacent à un sommet de
couleur faire
α(x)←− couleur ;

fin
couleur ←− couleur +1 ;

fin
retourner α ;

fin 50/90



A

B
C

D

E

F
G

Sommet Degré Couleur
A 5

bleu

C 4

rouge

G 4

rouge

D 3

vert

E 3

vert

F 3

bleu

B 2

vert

Ainsi χ(G )É 3.
Or ω(G ) Ê 3 car G contient

des triangles.
Donc χ(G )= 3 .
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La coloration de graphe permet de résoudre des problèmes divers :

• tâches à effectuer mais certaines ne pouvant se faire simultanément
(gestion d’emplois du temps. . .) ;

• créer des groupes en respectant des incompatibilités ;

• théorème de la galerie d’art (voir TD).
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1. Généralités
Définitions
Représentations
Familles de graphes
Sous-graphes
Isomorphismes

2. Graphes et chemins
Chaînes et cycles
Connexité
Graphes eulériens / hamiltoniens
Parcours

3. Graphes et couleurs
Nombre chromatique
Planarité et coloration

4. Graphes valués
Plus court chemin
Arbre recouvrant minimal
Graphes de flot
Ordonnancement
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Formule d’Euler

A

B

C

D

E

F

Nombre de sommets : n= 6
Nombre d’arêtes : m= 7
Nombre de faces : f = 3

A B C

D E F G

Nombre de sommets : n= 7
Nombre d’arêtes : m= 10
Nombre de faces : f = 5

On constate que n+ f −m semble valoir toujours 2.
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Formule d’Euler

A

B

C
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F
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Formule d’Euler 1752

Théorème
Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+ f −m= 2.
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Formule d’Euler 1752

Théorème
Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+ f −m= 2.

Par récurrence sur m.
Si m= 1, alors par connexité G =K2, donc n= 2 et f = 1. La formule
d’Euler est bien vérifiée.
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Formule d’Euler 1752

Théorème
Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+ f −m= 2.

Supposons le théorème vrai pour les graphes ayant moins de m ∈N∗

arêtes. Soit G un graphe planaire connexe avec m arêtes (n sommets et f
faces) :
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Supposons le théorème vrai pour les graphes ayant moins de m ∈N∗

arêtes. Soit G un graphe planaire connexe avec m arêtes (n sommets et f
faces) :

- soit G a un cycle ; en retirant une arête de ce cycle, le graphe reste
planaire et connexe, avec n sommets, m−1 arêtes et f −1 faces. Par HR,
on a n+ (f −1)− (m−1)= 2. En développant on trouve n+ f −m= 2.
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planaire et connexe, avec n sommets, m−1 arêtes et f −1 faces. Par HR,
on a n+ (f −1)− (m−1)= 2. En développant on trouve n+ f −m= 2.

- soit G n’a pas de cycle : c’est un arbre ; soit x un sommet pendant (il y
en a au moins deux !). En retirant x et la seule arête issue de x , on obtient
un graphe planaire connexe à n−1 sommets, m−1 arêtes et f faces. Par
HR : (n−1)+ f − (m−1)= 2. En développant on trouve n+ f −m= 2.
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Pas trop d’arêtes. . .

Théorème

1. Dans un graphe planaire connexe avec n> 2, on a toujours
mÉ 3n−6. (et même mÉ 2n−4 si aucun triangle)

2. Tout graphe planaire connexe admet au moins un sommet de degré
au plus égal à 5.

1. Toute face est bordée par au moins 3 arêtes, et une arête appartient
à au plus 2 faces, donc 3f É 2m soit f É 2

3m. D’après la formule
d’Euler, on a

m= n+ f −2É n+ 2
3
m−2

d’où mÉ 3n−6.
2. Par l’absurde, si tous les sommets étaient de degré au moins 6, la

somme des degrés vaudrait au moins 6n. Or cette somme vaut 2m.
Donc on aurait mÊ 3n, ce qui contredit le point précédent.
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Cas de K5

Théorème
K5 n’est pas planaire.

Démonstration.
Dans K5, on a n= 5, donc 3n−6= 9. Mais m= 10> 3n−6. Donc K5 a
trop d’arêtes pour être planaire.
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Cas de K3,3

Théorème
K3,3 n’est pas planaire.

Le même argument que pour K5 ne fonctionne pas car 3n−6= 12 et
m= 9, donc K3,3 n’a pas trop d’arête.

Par l’absurde, supposons qu’il le soit. Il admet alors une représentation
plane qui vérifie la formule d’Euler, d’où un nombre de faces

f = 2−n+m= 2−6+9= 5 .

Cela fait en moyenne
2m
f

= 18
5

arêtes par face. Ce nombre est inférieur à
4, alors qu’une face d’un graphe biparti est bordée par au moins 4 arêtes
(pas de cycle de longueur impair).
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Et c’est tout !

Théorème (Kuratowski 1930)
Un graphe est planaire SSI aucun de ses sous-graphes n’est une
subdivision de K5 ou K3,3.
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Colorier des cartes

Théorème
Le nombre chromatique d’un graphe planaire est au plus 6.

Démonstration.
Par récurrence sur n en utilisant le théorème précédent (sommet de
degré au plus 5).

Théorème (Heawood 1890)
Le nombre chromatique d’un graphe planaire est au plus 5.

Démonstration.
Par récurrence sur n en utilisant le théorème précédent (sommet de
degré au plus 5) et une idée géniale.

Théorème (Appel & Haken 1976)
Le nombre chromatique d’un graphe planaire est au plus 4.
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Graphes valués



Un graphe valué est un triplet G = (V ,E , f ) où f est une fonction de E

dans R. Autrement dit chaque arête est munie d’une valeur.
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1. Généralités
Définitions
Représentations
Familles de graphes
Sous-graphes
Isomorphismes

2. Graphes et chemins
Chaînes et cycles
Connexité
Graphes eulériens / hamiltoniens
Parcours

3. Graphes et couleurs
Nombre chromatique
Planarité et coloration

4. Graphes valués
Plus court chemin
Arbre recouvrant minimal
Graphes de flot
Ordonnancement
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Étant donné un graphe valué et un sommet initial s ∈V , on cherche le
plus court (de poids minimal) chemin de s aux autres sommets du graphe.

Deux algorithmes :

• Dijkstra : uniquement avec des valuations positives

• Bellman-Ford : tous les graphes valués, mais sans cycle de poids
total négatif
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Algorithme de Dijkstra 1959 (glouton)

Données : un graphe G = (V ,E ,p) pondéré par une fonction p, un
sommet de départ s ∈V

Résultat : une valuation d qui est la distance d’un PCC à partir
de s ; une fonction pere sur V donnant une arborescence
représentant les PCC trouvés

début
TRAITE ←−; ;
pour x ∈V faire

d(x)←−+∞ ;
fin
d(s)←− 0 ;
tant que TRAITE ̸=V faire

choisir x ∉ TRAITE tel que d(x) soit minimal ;
TRAITE ←− x ;
pour y ∈N(x)\ TRAITE faire

si d(x)+p(xy)< d(y) alors
d(y)←− d(x)+p(xy) ;
pere(y)←− x ;

fin
fin

fin
retourner d et pere

fin
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Exemple Dijsktra depuis E

AB

D C

E

S

32
3

34

2
22

25

E A B C D S Traité
0 +∞ +∞ +∞ +∞ +∞ E

3(E) 2(E) +∞ +∞ +∞ B
3(E) 7(B) 6(B) +∞ A

6(A) 5(A) +∞ D
6(A) 7(D) C

7(D) S

La dernière case de chaque colonne donne la dis-
tance minimale depuis E ainsi que le sommet
d’où l’on vient, ce qui permet de reconstituer le
trajet.
Par exemple, le plus court chemin de E vers S

est de poids 7 : E - A - D - S.
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Algorithme de Bellman-Ford 1956

Données : un graphe G = (V ,E ,p) pondéré par une fonction p ; un
sommet départ s ∈V

Résultat : une valuation d qui est la distance d’un PCC à partir
de s ; une fonction pere sur V donnant une arborescence
représentant les PCC trouvés

début
pour x ∈V faire

d(x ,0)←−+∞ ;
pere(x)←−NULL ;

fin
d(s ,0)←− 0 ;
pour k de 1 à |V |−1 faire

pour xy ∈E faire
si d(x ,k −1)+p(xy)< d(y ,k −1) alors

d(y ,k)←− d(x ,k −1)+p(xy) ;
pere(y)←− x ;

fin
fin

fin
// cycle de poids négatifs ?
pour xy ∈E faire

si d(x)+p(xy)< d(y) alors
retourner ("Erreur : G contient un cycle de poids total
négatif")

fin
fin
retourner d et pere

fin 66/90



Contre-exemple Bellman-Ford

AB

D C

E

S

32
−2

44

−2
22

−2

5
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Contre-exemple Bellman-Ford

AB

D C

E

S

32
−2

44

−2
22

−2

5 L’algorithme va afficher une erreur car le cycle
A-B-C-D-A est de poids total −1.
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Exemple Bellman-Ford

AB

D C

E

S

32
−2

44

−2
22

−1

5

E A B C D S Passage no

0 +∞ +∞ +∞ +∞ +∞ 0

3(E) 2(E) +∞ +∞ +∞ 1
3(E) 1(A) 7(B) 6(B) +∞ 2
3(E) 1(A) 6(B) 5(C) 8(D) 3
3(E) 1(A) 6(B) 4(C) 7(D) 4
3(E) 1(A) 6(B) 4(C) 6(D) 5
3(E) 1(A) 6(B) 4(C) 6(D) vérification

On est censé faire 5 passages, mais dès qu’un pas-
sage s’est fait sans modification, c’est qu’il n’y aura
plus de modification.
La dernière information de chaque colonne donne la
distance minimale depuis E ainsi que le sommet d’où
l’on vient, ce qui permet de reconstituer le trajet.
Par exemple, le plus court chemin de E vers S est
de poids 6 : E - A - B- C - D - S.
Pour accélerer l’algorithme, il est possible de re-
garder les valeurs déjà calculées dans l’itération en
cours.
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Étant donné un graphe valué, on cherche un sous-graphe partiel qui soit
un arbre (arbre recouvrant) et dont la somme des poids des arêtes soit
minimale.
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Algorithme de Prim 1957 (Jarník 1930) (glouton)

Données : un graphe G = (V ,E ,p) pondéré par une fonction p

Résultat : un arbre recouvrant T (ensemble d’arêtes) de poids
minimal val

début
choisir un sommet de départ x0 ∈V ;
ATTEINT ←− x0 ;
T ←−∅ ;
val ←− 0 ;
tant que ATTEINT ̸=V faire

trouver xy ∈E de poids minimal avec x ∈ ATTEINT et
y ∉ ATTEINT ;
T ←−T + {xy } ;
val ←− val +p(xy) ;

fin
retourner T et val

fin
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Exemple Prim partant de B

A

B

F

E

D

C

3
3

5

7

2
2

4
1

B

À chaque étape de Prim, notre arbre grandit.

On obtient un ARM de poids 12.
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Algorithme de Kruskal 1956 (glouton)

Données : un graphe G = (V ,E ,p) pondéré par une fonction p

Résultat : un arbre recouvrant T (ensemble d’arêtes) de poids
minimal val

début
L←− liste des arêtes triées par poids croissant ;
T ←−∅ ;
val ←− 0 ;
pour e ∈ L faire

si T + {e} n’a pas de cycle alors
T ←−T + {e} ;
val ←− val +p(e) ;

fin
fin
retourner T et val

fin
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À chaque étape de Kruskal, deux arbres s’unissent.

On obtient un ARM de poids 12.
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Définitions

• Un réseau de flot est un graphe simple valué G = (V ,E ,c) ;

• c :E −→R+ est la capacité du réseau ;

• s ∈V est la source, p ∈V est le puits.

• Un flot est une fonction f :E −→R+ qui vérifie deux conditions :

• flot É capacité :
∀e ∈E f (e)É c(e)

• flot entrant = flot sortant (conservation du flot) :

∀v ∈V \ {s ,p}
∑

vy∈E
f (vy)= ∑

xv∈E
f (xv)
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• Par conservation du flot en chaque nœud, le flot arrivant en P est
égal au flot sortant de S .

• Comment rendre ce flot maximal ?

• On va pouvoir parcourir les arcs éventuellement en sens inverse.

Définition
Soit (x ,y) ∈E .

• L’arc (x ,y) (sens direct) est dit saturé si f (x ,y)= c(x ,y).

• L’arc (y ,x) (sens inverse) est dit saturé si f (x ,y)= 0.

Définition
Une chaîne (suite d’arcs peu importe leur orientation) est dite
améliorante si elle est constituée d’arcs non saturés.
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Notons E+ (resp. E−) l’ensemble des arcs de sens direct (resp. indirect)
d’une chaîne améliorante. On pose

ε+ = min
e∈E+ c(e)− f (e)

ε− = min
e∈E− f (e)

ε=min(ε+,ε−)

On peut alors augmenter le flot de ε :

• chaque arc de E+ voit son flot augmenté de ε ;

• chaque arc de E− voit son flot diminué de ε.
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Algorithme de Ford-Fulkerson 1962

Données : un réseau de flot G = (V ,E ,c) de capacité c

Résultat : un flot maximal
début

tant que il existe une chaîne améliorante faire
Améliorer le flot ;

fin
retourner flot

fin
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Coupe

Peut-on anticiper la valeur du flot maximal ?

Définitions

• Une coupe est une partition de V de la forme (X ,X ) avec s ∈X et
p ∈X .

• La capacité d’une coupe est ∑
xy∈E
x∈X
y∈X

c(x ,y) .

• Une coupe est minimale si sa capacité est minimale parmi toutes les
coupes possibles.
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Théorème flot maximal/coupe minimale (1956)

Théorème
La valeur d’un flot maximal est égal à la valeur d’une coupe minimale.

De plus toutes les arcs de la coupe minimale (ayant donc leur origine
dans X et leur extrémité dans X ) sont saturés par le flot maximal
(« goulot d’étranglement »).

mpechaud.fr/scripts/maxflow/index.html

www.cambridge.org/core/services/aop-cambridge-core/
content/view/5D6E55D3B06C4F7B1043BC1D82D40764/
S0008414X00036890a.pdf/maximal_flow_through_a_network.pdf
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Exemple

La réalisation d’un projet nécessite un certain nombre de tâches dont les
durées et les contraintes d’antériorité sont les suivantes :

Tâches Durées Tâches antérieures
A 7 -
B 3 A
C 1 B
D 8 A
E 2 D, C
F 1 D, C
G 1 D, C
H 3 F
I 2 H
J 1 E, G, I

86/90



Représentation MPM

Pour la représentation du graphe MPM associé à la réalisation de ce
projet, il est fortement conseillé de tester que le graphe est sans circuit ;

Niveau 0 1 2 1 3 3 3 4 5 6
Sommets A B C D E F G H I J

Précédents A B A D, C D, C D, C F H E, G, I

Si le projet commence à la date t = 0, la durée totale du projet est égale
à la longueur d’un plus long chemin de début à fin.
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Dates

• Ti (début de la tâche i) est la date à laquelle peut commencer au
plus tôt la tâche i .

• Il s’agit de la longueur d’un plus long chemin, au sens des délais
dans le graphe, reliant le sommet 1 au sommt i .

Les dates au plus tôt se calculent en partant du sommet initial :

T1 = 0
Ti = max

p∈P(i)
[Tp +dp,i ]

P désigne les précedents.
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Dates

Il s’agit, pour une tâche i , de connaître le retard de sa mise en route que
l’on peut se permettre sans pour cela modifier la date de fin des travaux.
Les tâches critiques sont celles que l’on ne peut pas retarder. Pour les
autres, un retard sans retard final. On les calcule cette fois-ci en partant
de la fin. En notant T ∗ les dates au plus tard

T ∗
n = Tn

T ∗
i = min

s∈S(i)
[T ∗

s −di ,s ]

S désigne les successeurs.
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