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Définitions
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Définitions
e Un graphe G =(V,E) est un couple constitué d'un ensemble :

e V d'éléments appelés sommets (vertices) ;
e EcVxV d'éléments appelés arcs (edges).

(x,x) € E est une boucle

Si E est symétrique : graphe non orienté (GNO) et aréte (notée
{x,y}) plutdt qu'arc. Sinon c’est un graphe orienté (GO).

card(V) =|V| : ordre du graphe (parfois noté |G])

e Sixy€E : x et y sont adjacents (ou voisins)

e N(x) : ensemble des voisins (neighbours) de x
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Définitions
e G simple : au plus une aréte reliant deux sommets (sinon
multigraphe) et pas de boucle
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e G simple : au plus une aréte reliant deux sommets (sinon
multigraphe) et pas de boucle

G complet : simple et tous les sommets sont adjacents

degré d'un sommet x (noté d(x)) : IN(x)I

graphe k-régulier : ¥xeV  d(x)=k

Pour un GO, on distingue :

e degré sortant (d*(x)) : nombre d'arcs ayant x pour origine;
e degré entrant (d~(x)) : nombre d'arcs ayant x pour extrémité;

5/90



Exemple

Graphe non orienté d'ordre 4

V=1{1,2,3,4} G °
E={{1,2},{1,3}4{2,4},{3,4}} "
OO

simple, non complet, 2-régulier
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Exemple

Graphe non orienté d'ordre 4
V=1{1,2,3,4}

E =1{{1,2},{1,3},{2,4},1{3,4}}
simple, non complet, 2-régulier

Exemple

Graphe orienté d'ordre 4

V ={1,2,3,4}
E={(1,2),(3,1),(2,4),(4,3),(4,1)}
simple, non complet

d (1)=2;d*(3)=1

O A
o lofe
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Question
Existe-t-il un graphe d'ordre 3 dont les sommets ont pour degrés
respectifs 1, 2, 27
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Question
Existe-t-il un graphe d'ordre 3 dont les sommets ont pour degrés
respectifs 1, 2, 27

Proposition
Soit G =(V,E) un GNO.

Y. d(x)=2IE|

xeV

Soit G =(V,E) un GO.

Y (dF(x)+d(x)) =2IE|

xeV
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Preuve : par un exemple pour un GNO.

Vp

Classique en mathématiques. Double comptage des cases rouges
(extrémités des arétes) : en ligne, et en colonne.
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1. Généralités

Représentations
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Matrice d’'adjacence

Définition

Soit G =(V/,E) un graphe. La matrice d'adjacence de G est définie par :

1 siijeE
Mij = .
0 sinon

Pour un GNO, M est symétrique.
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Matrice d’'adjacence

Définition
Soit G =(V/,E) un graphe. La matrice d'adjacence de G est définie par :
1 sijeE

0 sinon

Pour un GNO, M est symétrique.

Exemple

OOOH@X?
o o o (S(»)

O~ Rk O
Il
= O O o
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Liste d’'adjacence

Définition

On mémorise pour chaque sommet la liste de ses voisins.

N
n
n

[roi] [ =
EESES
==

1
2
3
4
9

=
~]

Structure de liste (doublement) chainée.
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1. Généralités

Familles de graphes
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e chaine P, (path) ® ® ® ® Py
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e chaine P, (path) ® ® ® ® Py

e cycle C, Cs
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e chaine P, (path) ® ® ® ® Py

e cycle C, Cs

e complet K, Ke
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e biparti complet K, , Ka3
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e biparti complet K, , W Ka3

e roue W, (wheel) We
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e biparti complet K, , W Ka3

e roue W, (wheel) Wi

e étoile S, (en fait c'est Ky p-1!) &
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1. Généralités

Sous-graphes
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Définition
Un sous-graphe de G = (V,E) est de la forme G'=(V’,E’) avec V' cV
et E'cE.
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et E'={xye E|xeV'AyeV'}. Autrement, on retire des sommets, et

on ne garde que les arétes qui existent encore.

Un sous-graphe complet est appelé une clique.
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et E'cE.

Définition

Un sous-graphe induit de G est de la forme G’ = (V' E’) avec V' c V,

et E'={xye E|xeV'AyeV'}. Autrement, on retire des sommets, et
on ne garde que les arétes qui existent encore.

Un sous-graphe complet est appelé une clique.

Définition

Un sous-graphe partiel de G est de la forme G’ =(V,E') avec E'c E.
Autrement, on garde tous les sommets, et on retire des arétes.
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Exemple

Ky est un sous-graphe induit de Ks.

Py est un sous-graphe partiel de Cy.
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1. Généralités

Isomorphismes

18/90



Définition
Deux graphes G = (V,E) et G'=(V',E’) sont isomorphes s'il existe une
bijection @: V — V' telle que

Vx,yeV xyeE <= @(x)p(y)eE’ .

Si G =G', on dit que ¢ est un automorphisme.
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Définition
Deux graphes G = (V,E) et G'=(V',E’) sont isomorphes s'il existe une
bijection @: V — V' telle que

Vx,yeV xyeE <= @(x)p(y)eE’ .

Si G =G', on dit que ¢ est un automorphisme.

Exemple

¢:{1,2,3,4—1{A,B,C,D}
" ‘\ o6
b 9,9

9(4)=D
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Définition
Un graphe est planaire s'il admet une représentation sans croisement
d'arétes
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planarity.net

Définition
Un graphe est planaire s'il admet une représentation sans croisement
d'arétes.

Exemple

D’'apres |'exemple précédent, K4 est planaire.

Pour prouver qu’un graphe est planaire, il suffit de le représenter
correctement. Mais pour prouver qu'il ne |'est pas ...

Jeu : planarity.net

Android : Untangle et bien d'autres
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2. Graphes et chemins
Chafnes et cycles
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Définitions
e chaine (resp. cycle) d'un GNO G : sous-graphe de G qui est
lui-méme une chaine (resp. un cycle)
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Définitions
e chaine (resp. cycle) d'un GNO G : sous-graphe de G qui est
lui-méme une chaine (resp. un cycle)

e longueur d'une chaine (resp.cycle) : nombre d'arétes qui la
composent

e Pour un GO, chaine — chemin et cycle — circuit.

Remarque

e Ces définitions correspondent a la notion de chaines et cycles
élémentaires chez certains auteurs : les sommets (et donc les arétes)
empruntés sont distincts.

e Lorsque I'on emprunte plusieurs fois la méme aréte et/ou le méme
sommet, on parlera de parcours ou de marche.
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Proposition
Tout GNO sans cycle avec |E| =1 posséde au moins deux sommets
pendants (de degré 1).
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pendants (de degré 1).

Démonstration.
Il'y a des chaines, puisque |E|=1. Considérons une chaine de longueur
maximale (x1,x2,...,Xp) avec p=2.
Si d(x1) =2, il admet un autre voisin z # x2.
e Ou bien z ¢ {x3,...,xp}, et alors (z,x1,x2,...,Xp) est une chaine plus
longue, ce qui est impossible.
e Ou bien z€{x3,...,xp}, et alors (z,x1,x,...,2) est un cycle, ce qui
est impossible.

O

23/90



Proposition
Tout GNO sans cycle avec |E| =1 posséde au moins deux sommets
pendants (de degré 1).

Démonstration.
Il'y a des chaines, puisque |E|=1. Considérons une chaine de longueur
maximale (x1,x2,...,Xp) avec p=2.
Si d(x1) =2, il admet un autre voisin z # x2.
e Ou bien z ¢ {x3,...,xp}, et alors (z,x1,x2,...,Xp) est une chaine plus
longue, ce qui est impossible.
e Ou bien z€{x3,...,xp}, et alors (z,x1,x,...,2) est un cycle, ce qui
est impossible.

De méme d(xp) = 1. O
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Soit M la matrice d'adjacence d'un graphe, et soit pe N*.
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Soit M la matrice d'adjacence d'un graphe, et soit pe N*.

Proposition

Le coefficient (MP), ; est le nombre de parcours de longueur p reliant

les sommets / et j.

000
‘00
(O——

M3 =

= = = N P> w o

ON W HFH =2 OW

= 1NN o =D

= o1 AN o= N

= = O &~ N W

W NN = oo

O W H K1 = O K
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Soit M la matrice d'adjacence d'un graphe, et soit pe N*.

Proposition

Le coefficient (MP), ; est le nombre de parcours de longueur p reliant

les sommets / et j.

0 3 4211

eea 301132
‘ 4 1 2 5 2 5
M3=|2 1 5 2 4 5

°° 1 32 401
1 255 12

a e 101113

Il'y a 5 parcours de longueur 3 reliant le sommet 3 au sommet 4.
Lesquels ?

O W H K1 = O K
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2. Graphes et chemins

Connexité
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Définitions
e Un GNO est dit connexe si, pour toute paire {x,y} c V, il existe une
chaine reliant x a y.
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Définitions
e Un GNO est dit connexe si, pour toute paire {x,y} c V, il existe une
chaine reliant x a y.

e UN GO est dit fortement connexe si, pour tout couple (x,y) € V2,
il existe un chemin d'origine x et d'extrémité y.

Relation
Soit G un graphe, non nécessairement connexe. Pour x,y € V on
définit :

xRy < il existe une chaine reliant x 3 y ou x=y

Z est une relation d'équivalence; les classes d'équivalence sont
appelées composantes connexes de G.
Un GNO est donc connexe s'il n’a qu'une seule composante connexe.
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Soit G un GNO connexe.
Définitions
e La distance entre deux sommets est la longueur minimale d'une
chaine reliant x a y. On la note d(x,y).
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Soit G un GNO connexe.
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Soit G un GNO connexe.
Définitions
e La distance entre deux sommets est la longueur minimale d'une
chaine reliant x a y. On la note d(x,y).

e Le diamétre de G est la plus grande distance séparant deux de ses

sommets.
Exemple
9‘6 @)
020
(D)—()
d(2,4)=2 d(1,4)=2 diam(G) = d(2,7) =4
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

© g k& w Db =

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

G est sans cycle et |E|=|V|-1.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

On montre 1 < 5 < 6 par récurrence sur n=|V/|.

Si n=1, les trois assertions sont bien équivalentes.

Soit n=2. Supposons les assertions équivalentes pour tous les graphes
d’ordre strictement inférieur a n.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

1= 6 : supprimons une aréte. Cela déconnecte G (sinon il y aurait un
cycle). Les deux composantes obtenues sont connexes et sans cycle,
d'ordre inférieur a n. Par HR :
[El=IE1l+|E2l+1=|V1|-1+|Vo|-1+1=|V|-1.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

6 =15 : notons Gi,..., G, ses composantes connexes. Elles sont connexes,
sans cycle car G l'est, et d’ordres inférieurs a n. Par HR :
IEI=Y|Ejl=XY|Vi|-k=|V|-k. Or |E|=|V|-1. Donc k=1 et G est
connexe !
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

5=1: G a un sommet pendant, sinon ) d(x)=2|E|=2|V|-2=2|V/|.
xeV
Le sous-graphe induit G’ en retirant ce sommet vérifie HR. G’ est donc

sans cycle, tout comme G.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.
1=3: Supposons que G soit connexe en retirant un aréte e = xy. Par

connexité, il existe une chaine reliant x et y. On aurait donc un cycle, ce
qui est exclu.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.
3=2: Soit {x,y} < V. Il existe une chaine de x a y car G est connexe.

Supposons par I'absurde qu'il y en a une autre. Alors il y a un cycle. En
retirant une aréte de ce cycle, G reste connexe!
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

2=4 :si G admettait un cycle, deux sommets de ce cycle seraient reliés
par 2 chaines; donc G est sans cycle.

Si x et y ne sont pas adjacents; il y a une unique chaine de x vers y.
Mais en ajoutant |'aréte xy on crée une deuxiéme chaine.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

4 =1 : Soient x et y 2 sommets non adjacents. Si on ajoute |'aréte xy,
on crée un cycle. Donc il existe un chaine reliant x et y. G est connexe.
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Proposition

Soit G un GNO. Les assertions suivantes sont équivalentes.

G est connexe et sans cycle.

Pour tous sommets x et y, il existe une unique chaine reliant x et y.
G est connexe, et ne I'est plus en retirant une aréte.

G est sans cycle, et on crée un cycle en ajoutant une aréte.

G est connexe et |E|=|V]|-1.

© g k& w Db =

G est sans cycle et |E|=|V|-1.

Définition

Un GNO qui vérifie I'une quelconque des assertions précédentes est
appelé un arbre.
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2. Graphes et chemins

Graphes eulériens / hamiltoniens
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Peut-on trouver un cycle passant une fois et une seule par chaque aréte ?

Un tel cycle est appelé eulérien.
Peut-on trouver un cycle passant une fois et une seule par chaque

sommet ? Un tel cycle est appelé hamiltonien.

Remarque : le terme "cycle eulérien" ne correspond pas & notre définition
du cycle élémentaire. Il faudrait parler de parcours, mais ce n'est pas

grave.
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Définitions
e Un graphe est eulérien (resp. hamiltonien) s'il admet un cycle
eulérien (resp. hamiltonien).
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Définitions
e Un graphe est eulérien (resp. hamiltonien) s'il admet un cycle
eulérien (resp. hamiltonien).
e Un graphe est semi-eulérien (resp. semi-hamiltonien) s'il admet une
chaine eulérienne (resp. hamiltonienne).
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Définitions
e Un graphe est eulérien (resp. hamiltonien) s'il admet un cycle
eulérien (resp. hamiltonien).
e Un graphe est semi-eulérien (resp. semi-hamiltonien) s'il admet une
chaine eulérienne (resp. hamiltonienne).

Existe-t-il des conditions nécessaires et suffisantes « simples » pour
justifier qu'une graphe est eulérien / hamiltonien 7

31/90



Eulérien

Théoréme (Euler 1736)

Soit G un GNO sans sommet isolé.

o G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.
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Eulérien

Théoréme (Euler 1736)
Soit G un GNO sans sommet isolé.
o G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.
o G est semi-eulérien SSI il est connexe et tous ses sommets, sauf

deux, sont de degré pair.
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Eulérien

Théoréme (Euler 1736)
Soit G un GNO sans sommet isolé.

o G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.
o G est semi-eulérien SSI il est connexe et tous ses sommets, sauf

deux, sont de degré pair.

Exemple

e.o G semi-eulérien
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Eulérien

Théoréme (Euler 1736)
Soit G un GNO sans sommet isolé.

o G est eulérien SSI il est connexe et tous ses sommets sont de degré
pair.
o G est semi-eulérien SSI il est connexe et tous ses sommets, sauf

deux, sont de degré pair.

Exemple

e‘ ool
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Hamiltonien, une toute autre affaire. . .

Probléme NP-complet, on ne connait pas de « bonne » condition
(vérifiable en temps polynomial).
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Hamiltonien, une toute autre affaire. . .

Probléme NP-complet, on ne connait pas de « bonne » condition
(vérifiable en temps polynomial).

Exemple

e o semi-hamiltonien
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Hamiltonien, une toute autre affaire. . .

Probléme NP-complet, on ne connait pas de « bonne » condition
(vérifiable en temps polynomial).

Exemple

e.o hamiltonien
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Quelques conditions suffisantes (mais non nécessaires) :
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Quelques conditions suffisantes (mais non nécessaires) :

Théoréme (Dirac 1952)

Si, dans un graphe d’ordre n= 3, tous les sommets sont de degré
supérieur ou égal a n/2, alors le graphe est hamiltonien.

34/90



Quelques conditions suffisantes (mais non nécessaires) :

Théoréme (Dirac 1952)

Si, dans un graphe d’ordre n= 3, tous les sommets sont de degré
supérieur ou égal a n/2, alors le graphe est hamiltonien.

Théoréme (Ore 1960)

Si, dans un graphe d’ordre n=3, pour toute paire de sommets {x, y}
non adjacents, on a d(x)+d(y)=n, alors le graphe est hamiltonien.
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Quelques conditions suffisantes (mais non nécessaires) :

Théoréme (Dirac 1952)

Si, dans un graphe d’ordre n= 3, tous les sommets sont de degré
supérieur ou égal a n/2, alors le graphe est hamiltonien.

Théoréme (Ore 1960)

Si, dans un graphe d’ordre n=3, pour toute paire de sommets {x, y}
non adjacents, on a d(x)+d(y)=n, alors le graphe est hamiltonien.

Remarque : le théoréme de Dirac est un cas particlulier du théoréme Ore.
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Exercice

Montrez que dans un graphe orienté complet, on peut toujours trouver
un chemin Hamiltonien.
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2. Graphes et chemins

Parcours
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On veut parcourir (ou déterminer) une composante connexe en
numérotant les sommets. Deux parcours classiques :

e Parcours en largeur (BFS : breadth-first search)

e Parcours en profondeur (DFS : depth-first search)
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Parcours en largeur

Données : un graphe G = (V,E) et un sommet xg € V

Résultat : une numérotation « en largeur de la composante connexe

contenant xp, et les distances d depuis xg

début

fin

FILE — Xxp ;

j—1;

a(xg) —1;

dist(xp) <— 0 ;

tant que FILE # @ faire

x «— DEFILER ;

pour chaque y € N(x) non numéroté faire
f—i+1;
a(y)—i;
dist(y) < dist(x)+1;
ENFILER(y) ;

fin

fin
retourner «, dist ;
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Exemple de BFS

FILE : vide
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Exemple de BFS

FILE : A
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Exemple de BFS

FILE:B C D
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Exemple de BFS

FILE:C D H
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Exemple de BFS

FILE:D H
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Exemple de BFS

FILE: H E
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Exemple de BFS

FILE:E | J
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Exemple de BFS

FILE:I J F
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Exemple de BFS

FILE:J F
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Exemple de BFS

FILE : F
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Exemple de BFS

&—O—©
642 943  10d=

FILE : G
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Exemple de BFS

FILE : vide
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L'algorithme fournit :

e une partition des sommets en couches (couche i/ = sommets a

distance / du sommet initial)
e une chaine de longueur minimal entre le sommet initial et les autres

sommets.
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Parcours en profondeur

Données : un graphe G = (V,E) et un sommet xg € V
Résultat : une numérotation a en profondeur de la composante
connexe contenant xg

début

PILE — xp ;

i—1;

a(xg) — 7 ;

tant que PILE # & faire

si le sommet de la pile a un voisin x pas encore visité alors
i—i+1;
a(x)—i;
EMPILER(x) ;

sinon

| x— DEPILER ;
fin

fin
retourner a ;

fin
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Parcours en profondeur récursif

Données : un graphe G =(V,E) et un sommet xg € V
Résultat : une numérotation a en profondeur de la composante
connexe contenant xg
début
i—0;
Fonction DFS_rec(graphe G, sommet s)
begin
f—i+1;
a(s) —i;
pour chaque y € N(s) non numéroté faire
‘ DFS_rec(Gy) ;
fin
end
DFS_rec(G,xp) ;
retourner « ;

fin
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Exemple de DFS

PILE : vide

43/90



Exemple de DFS

PILE : A
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Exemple de DFS

PILE: A D
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Exemple de DFS

PILE: A D E
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Exemple de DFS

PILE: AD EF
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Exemple de DFS

PILE: ADEF G
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Exemple de DFS

PILE: AD EF
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Exemple de DFS

PILE: A D E
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Exemple de DFS

PILE: A D
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Exemple de DFS

PILE: A D H
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Exemple de DFS

PILE: ADH J
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Exemple de DFS

PILE: ADH J I
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Exemple de DFS

PILE: ADH J
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Exemple de DFS

PILE: A D H
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Exemple de DFS

PILE: A D H B
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Exemple de DFS

PILE: A D H
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Exemple de DFS

PILE: A D
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Exemple de DFS

PILE : A
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Exemple de DFS

PILE: A C
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Exemple de DFS

PILE : A
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Exemple de DFS

PILE : vide
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Tri topologique

Soit G=(V,E) un GO
Un tri topologique de G est la donnée d'une injection f: E — N telle que

V(x,y)eV, xye E=f(x)<f(y)

La numérotation des sommets est compatible avec les arcs de G.
Proposition

Un graphe admet un tri topologigie ssi il est sans circuit.

Proposition
Les dates de fin de visites d'un parcours en profondeur d'un GO
acyclique fournissent un tri topologique.
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DFS en partant du sommet 4

D——() ?
[ (®)

Tri topologique :
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DFS en partant du sommet 4

@ :@ :?
1 2, @

Tri topologique :
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DFS en partant du sommet 4

© S@ ?
1, 2, @

Tri topologique :
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DFS en partant du sommet 4

O ?
1, 2,
®

Y

Tri topologique :
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DFS en partant du sommet 4

Tri topologique :
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DFS en partant du sommet 4

Tri topologique : 6
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DFS en partant du sommet 4

Tri topologique : 3 6
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DFS en partant du sommet 4

Tri topologique : 2 3 6
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DFS en partant du sommet 4

© 3@ i?
1, 2 5@

Tri topologique : 52 36
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DFS en partant du sommet 4

10@ E@ i?
1, 2 5@

Tri topologique : 52 36
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DFS en partant du sommet 4

B2 ?
1, 2, 5@

Tri topologique : 15236

Yy W
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DFS en partant du sommet 4

B2 ?
1 2, 5@

Tri topologique : 415236

Yy W
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DFS en partant du sommet 4

B2

Y -
w

o
N
o

®

Tri topologique : 415236

O=ONO=O=ON0
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Application a I'ordonancement de taches

Construire une maison. Arc x — y : "commencer y que si x est terminé"

fondations

crep|s
fenétres
c|0|sons
/
cuisine

sanltalre

Y
papier/peinture
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Application a I'ordonancement de taches

Construire une maison. Arc x — y : "commencer y que si x est terminé"

0,21 [ fondations Ordre possible :
13,16 fondations 21

__________ N murs 20

toit 19

\ 14.15 1:OI . -
12,17 | fenétres pelouse enetres

X crépis 16
2,11 | cloisons clouse =
@970 Peo 11

o

cloisons
181 - —
8, 9 3,6 [ cuisine 10

eau

AY

. Y sanitaires 9

AN sanitaire | 8,9 L.
N cuisine 6
\ e
AN o papiers/peinture 5
A Y ¥

4,5 | papier/peinture
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Graphes et couleurs



3. Graphes et couleurs
Nombre chromatique
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Colorier un graphe, c'est attribuer une couleur & chaque sommet, de sorte
que deux sommets adjacents aient une couleur différente.
But : utiliser le moins de couleurs
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Colorier un graphe, c'est attribuer une couleur & chaque sommet, de sorte
que deux sommets adjacents aient une couleur différente.

But : utiliser le moins de couleurs

Définition

On appelle nombre chromatique d'un graphe G, noté x(G), le plus petit
nombre de couleurs nécessaires a la coloration de G.
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Colorier un graphe, c'est attribuer une couleur & chaque sommet, de sorte
que deux sommets adjacents aient une couleur différente.

But : utiliser le moins de couleurs

Définition

On appelle nombre chromatique d'un graphe G, noté x(G), le plus petit
nombre de couleurs nécessaires a la coloration de G.

Exemples

X(Kn)=n X(Pn)=2 x(Can) =2 x(Cons1) =3
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Colorier un graphe, c'est attribuer une couleur & chaque sommet, de sorte
que deux sommets adjacents aient une couleur différente.

But : utiliser le moins de couleurs

Définition

On appelle nombre chromatique d'un graphe G, noté x(G), le plus petit
nombre de couleurs nécessaires a la coloration de G.

Exemples

X(Kn)=n X(Pn)=2 x(Can) =2 x(Cons1) =3

Pas facile en pratique sur un graphe quelconque. . .
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Encadrement de x(G)

On note w(G) la taille d'une clique maximale et A(G) le degré maximal
de ses sommets.
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Encadrement de x(G)

On note w(G) la taille d'une clique maximale et A(G) le degré maximal
de ses sommets.

Proposition

0(G)<x(G)<A(G)+1<|V]
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Encadrement de x(G)

On note w(G) la taille d'une clique maximale et A(G) le degré maximal

de ses sommets.

Proposition

0(G)<x(G)<A(G)+1<|V]

e Résultat général optimal car les quatre membres sont égaux si
G=Kp;

e mais décevant car |'écart entre x(G) et A(G) peut tendre vers
I'infini ! (considérer Sy);

e »(G) est généralement difficile a déterminer.
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Algorithme de Welsh-Powell

algorithme heuristique (solution approchée) et glouton (donc efficace)

Données : un graphe G =(V/,E) non orienté

Résultat : une coloration o des sommets
début

fin

L — liste des sommets par ordre décroissant des degrés ;

couleur —1 ;

tant que des sommets ne sont pas coloriés faire

s «— premier sommet de L non colorié ;

a(s) «— couleur ;

pour x € L non adjacent a s et non adjacent a un sommet de
couleur faire
‘ a(x) — couleur ;

fin

couleur — couleur +1 ;
fin
retourner « ;
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Sommet | Degré | Couleur

A 5

W T mOoon
N W W w b



Sommet | Degré | Couleur

A 5 bleu

W T mOoon
N W W w b



Sommet | Degré | Couleur

A 5 bleu

bleu

W T mOoon
N W W w b



Sommet | Degré | Couleur

A 5 bleu
C 4 rouge
G 4
D 3
E 3
F 3 bleu
B 2




Sommet | Degré | Couleur
A 5 bleu
C 4 rouge
G 4 rouge
D 3
E 3
F 3 bleu
B 2




Sommet | Degré | Couleur

A 5 bleu
C 4 rouge
G 4 rouge
D 3 vert
E 3

F 3 bleu
B 2




Sommet | Degré | Couleur

A 5 bleu
C 4 rouge
G 4 rouge
D 3 vert
E 3 vert
F 3 bleu
B 2




Sommet | Degré | Couleur

A 5 bleu

rouge

rouge
vert
vert
bleu
vert

W T mOoon
N W W w b
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Sommet | Degré | Couleur
A 5 bleu
rouge

rouge
vert
vert

bleu
vert

W T mOoon
N W W w b

Ainsi x(G) <3.
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Sommet | Degré | Couleur

A 5 bleu
rouge
rouge
vert
vert
bleu
vert

W T mOoon
N W W w b

Ainsi x(G) <3.
Or w(G) =3 car G contient
des triangles.
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Sommet | Degré | Couleur
A 5 bleu
C 4 rouge
G 4 rouge
D 3 vert
E 3 vert
F 3 bleu
B 2 vert

Ainsi x(G) <3.
Or w(G) =3 car G contient
des triangles.

Donc [ x(G)=3|
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La coloration de graphe permet de résoudre des problémes divers :

e tiches a effectuer mais certaines ne pouvant se faire simultanément
(gestion d'emplois du temps. . .);

e créer des groupes en respectant des incompatibilités ;

e théoréeme de la galerie d’art (voir TD).
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3. Graphes et couleurs

Planarité et coloration
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Formule d’Euler

B
C
Nombre de sommets : n=6
E A Nombre d’arétes : m=7
Nombre de faces : f =3
D
E

54/90



Formule d’Euler

B
C
F
D
E
LN,
D E F

Nombre de sommets : n=6
Nombre d’arétes : m=7
Nombre de faces : f =3

Nombre de sommets : n=7
Nombre d’arétes : m=10
Nombre de faces : f =5
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Formule d’Euler

B
C
Nombre de sommets : n=6
E A Nombre d’arétes : m=7
Nombre de faces : f =3
D
E
e N Nombre de sommets : n=7

mv Nombre d’arétes : m=10
Nombre de faces : f =5
On constate que n+f —m semble valoir toujours 2.
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Formule d'Euler 1752

Théoréeme

Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+f —m=2.
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Formule d'Euler 1752

Théoréeme

Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+f —m=2.

Par récurrence sur m.
Si m=1, alors par connexité G = Kp, donc n=2 et f =1. La formule
d'Euler est bien vérifiée.
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Formule d'Euler 1752

Théoréeme

Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+f —m=2.

Supposons le théoréme vrai pour les graphes ayant moins de me N*
arétes. Soit G un graphe planaire connexe avec m arétes (n sommets et f
faces) :
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Formule d'Euler 1752

Théoréeme

Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+f —m=2.

Supposons le théoréme vrai pour les graphes ayant moins de me N*
arétes. Soit G un graphe planaire connexe avec m arétes (n sommets et f
faces) :

- soit G a un cycle; en retirant une aréte de ce cycle, le graphe reste
planaire et connexe, avec n sommets, m—1 arétes et f —1 faces. Par HR,
onan+(f-1)—(m-1)=2. En développant on trouve n+f—m=2.
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Formule d'Euler 1752

Théoréeme

Tout représentation plane d’un graphe G planaire connexe vérifie la
formule d’Euler : n+f —m=2.

Supposons le théoréme vrai pour les graphes ayant moins de me N*
arétes. Soit G un graphe planaire connexe avec m arétes (n sommets et f
faces) :

- soit G a un cycle; en retirant une aréte de ce cycle, le graphe reste
planaire et connexe, avec n sommets, m—1 arétes et f —1 faces. Par HR,
onan+(f-1)—(m-1)=2. En développant on trouve n+f—m=2.

- soit G n’a pas de cycle : c’est un arbre; soit x un sommet pendant (il y
en a au moins deux!). En retirant x et la seule aréte issue de x, on obtient
un graphe planaire connexe 3 n—1 sommets, m—1 arétes et f faces. Par
HR: (n—1)+f—(m—1)=2. En développant on trouve n+f—m=2.
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Pas trop d’arétes. ..

Théoréme

1.

Dans un graphe planaire connexe avec n>2, on a toujours
m<3n—-6. (et méme m<2n-4 si aucun triangle)

Tout graphe planaire connexe admet au moins un sommet de degré

au plus égal a 5.
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Pas trop d’arétes. ..

Théoréme

1. Dans un graphe planaire connexe avec n>2, on a toujours
m<3n—-6. (et méme m<2n-4 si aucun triangle)

2. Tout graphe planaire connexe admet au moins un sommet de degré

au plus égal a 5.

1. Toute face est bordée par au moins 3 arétes, et une aréte appartient
a au plus 2 faces, donc 3f <2m soit f < %m. D’aprés la formule
d'Euler, on a

2
m:n+f—2sn+§m—2

d'ot m<3n-6.
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Pas trop d’arétes. ..

Théoréme

1. Dans un graphe planaire connexe avec n>2, on a toujours
m<3n—-6. (et méme m<2n-4 si aucun triangle)

2. Tout graphe planaire connexe admet au moins un sommet de degré
au plus égal a 5.

1. Toute face est bordée par au moins 3 arétes, et une aréte appartient
a au plus 2 faces, donc 3f <2m soit f < %m. D’aprés la formule
d'Euler, on a

2
m:n+f—2sn+§m—2
d'ot m<3n-6.
2. Par I'absurde, si tous les sommets étaient de degré au moins 6, la

somme des degrés vaudrait au moins 6n. Or cette somme vaut 2m.
Donc on aurait m=3n, ce qui contredit le point précédent.
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Théoréeme

Ks n'est pas planaire.
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Théoréeme

Ks n'est pas planaire.

Démonstration.

Dans Ks, on a n=5, donc 3n—6=9. Mais m=10>3n-6. Donc Kjg a
trop d'arétes pour étre planaire. O
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Théoréeme

K33 n'est pas planaire.
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Théoréeme

K33 n'est pas planaire.

Le méme argument que pour Kg ne fonctionne pas car 3n—6=12 et
m=09, donc K33 n'a pas trop d'aréte.
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Théoréeme

K33 n'est pas planaire.
Le méme argument que pour Kg ne fonctionne pas car 3n—6=12 et
m=09, donc K33 n'a pas trop d'aréte.

Par |'absurde, supposons qu'il le soit. Il admet alors une représentation
plane qui vérifie la formule d’Euler, d'oti un nombre de faces

f=2—-n+m=2-6+9=5.

. 2m 18 o N
Cela fait en moyenne — = — arétes par face. Ce nombre est inférieur a
4, alors qu'une face d'un graphe biparti est bordée par au moins 4 arétes
(pas de cycle de longueur impair).
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Et c'est tout!

Théoréme (Kuratowski 1930)

Un graphe est planaire SSI aucun de ses sous-graphes n’est une
subdivision de Ky ou K3 3.
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Colorier des cartes

Théoréme

Le nombre chromatique d'un graphe planaire est au plus 6.
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Colorier des cartes

Théoréme

Le nombre chromatique d'un graphe planaire est au plus 6.

Démonstration.

Par récurrence sur n en utilisant le théoréeme précédent (sommet de
degré au plus 5). O
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Colorier des cartes

Théoréme

Le nombre chromatique d'un graphe planaire est au plus 6.

Démonstration.
Par récurrence sur n en utilisant le théoréeme précédent (sommet de
degré au plus 5). O

Théoréme (Heawood 1890)

Le nombre chromatique d'un graphe planaire est au plus 5.
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Colorier des cartes

Théoréme

Le nombre chromatique d'un graphe planaire est au plus 6.

Démonstration.
Par récurrence sur n en utilisant le théoréeme précédent (sommet de
degré au plus 5). O

Théoréme (Heawood 1890)

Le nombre chromatique d'un graphe planaire est au plus 5.

Démonstration.
Par récurrence sur n en utilisant le théoréme précédent (sommet de
degré au plus 5) et une idée géniale. O
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Colorier des cartes

Théoréme

Le nombre chromatique d'un graphe planaire est au plus 6.

Démonstration.
Par récurrence sur n en utilisant le théoréeme précédent (sommet de
degré au plus 5). O

Théoréme (Heawood 1890)

Le nombre chromatique d'un graphe planaire est au plus 5.

Démonstration.
Par récurrence sur n en utilisant le théoréme précédent (sommet de
degré au plus 5) et une idée géniale. O

Théoréme (Appel & Haken 1976)

Le nombre chromatique d'un graphe planaire est au plus 4.
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Graphes valués



Un graphe valué est un triplet G =(V,E,f) ou f est une fonction de E
dans R. Autrement dit chaque aréte est munie d'une valeur.
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4. Graphes valués
Plus court chemin
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Etant donné un graphe valué et un sommet initial s€ V, on cherche le
plus court (de poids minimal) chemin de s aux autres sommets du graphe.

Deux algorithmes :
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Etant donné un graphe valué et un sommet initial s€ V, on cherche le
plus court (de poids minimal) chemin de s aux autres sommets du graphe.
Deux algorithmes :

e Dijkstra : uniquement avec des valuations positives

e Bellman-Ford : tous les graphes valués, mais sans cycle de poids
total négatif
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Algorithme de Dijkstra 1959 (glouton)

Données : un graphe G =(V,E, p) pondéré par une fonction p, un
sommet de départ se V
Résultat : une valuation d qui est la distance d'un PCC a partir
de s; une fonction pere sur V donnant une arborescence
représentant les PCC trouvés
début
TRAITE — ¢ ;
pour x € V faire
‘ d(x) «— +00 ;
fin
d(s)—0;
tant que TRAITE # V faire
choisir x ¢ TRAITE tel que d(x) soit minimal ;
TRAITE «— x ;
pour y € N(x)\TRAITE faire
si d(x)+p(xy)<d(y) alors
d(y) —d(x)+p(xy) ;
pere(y) —x ;
fin
fin
fin

retourner d et pere
fin
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Exemple Dijsktra depuis E

E A B C D S Traité

0| +co | +oco | 400 +00 +00 E

2@3
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Exemple Dijsktra depuis E

E A B C D S Traité
0| +co | +oco | 400 +00 +00 E

3(E) | 2(E) | 400 | +o0 +00 B

2@3
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Exemple Dijsktra depuis E

E A B C D S Traité

0| 400 | 400 | +o00 +00 +00 E
3(E) | 2(E) | 400 +00 +00 B
3(E) 7(B) | 6(B) | +o0 A

2@3
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Exemple Dijsktra depuis E

E A B C D S Traité
0| 400 | +00 | +00 | +o00 | 400 E
3(E) | 2(E) | 400 | +00 | +o00 B
3(E) 7(B) | 6(B) | +o0 A
D

2 @ 3
3 Agg 6(A) | 5(A) | +oo
5 2
4 3
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Exemple Dijsktra depuis E

E A B C D S Traité

0| +co | +oco | 400 +00 +00 E

(B) &

2 3 (B) A

(BY—3 4&%} 6(A) | 5(A) | +oo D

g sB 2 6(A) 70) | C
4 3

65/90



Exemple Dijsktra depuis E

E A B C D S Traité
0| +o0 | +00 | +00 | +00 | +00 E
@ 3(E) | 2(E) | 400 | +o0 +00 B
2 3 3(E) 7(B) 6(B) +00 A
* 3 Z i > 6(A) | 5(A) | +oo D
9 6(A) 7(D) C
5 2
4 3 7(D) S
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Exemple Dijsktra depuis E

E A B C D S Traité
0| 400 | +00 | +00 | +o00 | 400 E
@ 3(E) | 2(E) | 400 | +00 | +o00 B
2 3 3(E) 7(B) 6(B) +00 A
3 6(A) | 5(A) | +oo D
5 o 6(A) 7(D) C
4 3 7(D) S
Q 5 G La derniére case de chaque colonne donne la dis-
tance minimale depuis E ainsi que le sommet
2 @ 2 d’'ou I'on vient, ce qui permet de reconstituer le

trajet.
Par exemple, le plus court chemin de E vers S
est de poids7: E-A-D-S.
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Algorithme de Bellman-Ford 1956

un graphe G =(V,E,p) pondéré par une fonction p; un

sommet départ se V
une valuation d qui est la distance d'un PCC a partir

de s; une fonction pere sur V donnant une arborescence

Données :

Résultat :

représentant les PCC trouvés

début
pour x € V faire
d(x,0) — +o00 ;
pere(x) — NULL ;

fin
d(s,0)—0;
pour kde 1a|V|-1 faire
pour xy € E faire

si d(x,k—1)+p(xy) <d(y,k—1) alors
d(y.k) — d(xk=1)+p(xy) ;

pere(y) — x ;

fin
fin
fin
// cycle de poids négatifs 7
pour xy € E faire

si d(x)+p(xy) <d(y) alors
retourner ("Erreur : G contient un cycle de poids total

négatif")
fin
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fin
retourner d et pere

fin



Contre-exemple Bellman-Ford
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Contre-exemple Bellman-Ford

L’algorithme va afficher une erreur car le cycle
A-B-C-D-A est de poids total —1.
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Exemple Bellman-Ford

E A B C D S Passage n°
0 +00 +00 +00 +00 +00 0
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Exemple Bellman-Ford

E A B C D S Passage n°
0 +00 +00 +00 +00 +00 0
3(E) 2(E) +00 +00 +00 1
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Exemple Bellman-Ford

E A B C D S Passage n°

0 +00 +00 +00 +00 +00 0
3(E) 2(E) +00 +00 +00 1
3(E) 1(A) 7(B) 6(B) +00 2
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Exemple Bellman-Ford

E A B C D S Passage n°
0 +00 +00 +00 +00 +00 0
3(E) 2(E) +00

+00 +00 1
3(E) 1(A) 7(B) 6(B) +00 2
3(E) 1(A) 6(B) 5(C) 8(D) 3
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Exemple Bellman-Ford

E A B C D S Passage n°

0 +00 +00 +00 +00 +00 0
3(E) 2(E) +00 +00 +00 1
3(E) 1(A) 7(B) 6(B) +00 2
3(E) 1(A) 6(B) 5(C) 8(D) 3
3(E) 1(A) 6(B) 4(C) 7(D) 4
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Exemple Bellman-Ford

E A B C D S Passage n°

0 +00 +00 +00 +00 +00 0
3(E) 2(E) +00 +00 +00 1
3(E) 1(A) 7(B) 6(B) +00 2
3(E) 1(A) 6(B) 5(C) 8(D) 3
3(E) 1(A) 6(B) 4(C) 7(D) 4
3(E) 1(A) 6(B) 4(C) 6(D) 5
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Exemple Bellman-Ford

E A B C D S Passage n°

0 +00 +00 +00 +00 +00 0
3(E) 2(E) +00 +00 +00 1
3(E) 1(A) | 7(B) | 6(B) +00 2
3(E) 1(A) | 6(B) 5(C) 8(D) 3
3(E) 1(A) | 6(B) | 4(C) 7(D) 4
3(E) 1(A) | 6(B) | 4(C) 6(D) 5
3(E) 1(A) | 6(B) | 4(C) | 6(D) vérification

On est censé faire 5 passages, mais dés qu'un pas-
sage s'est fait sans modification, c’est qu'il n'y aura
plus de modification.

La derniére information de chaque colonne donne la
distance minimale depuis E ainsi que le sommet d'ou
I'on vient, ce qui permet de reconstituer le trajet.

Par exemple, le plus court chemin de E vers S est
de poids6 : E-A-B-C-D-S.

Pour accélerer I'algorithme, il est possible de re-
garder les valeurs déja calculées dans I'itération en

68/90
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4. Graphes valués

Arbre recouvrant minimal
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Etant donné un graphe valué, on cherche un sous-graphe partiel qui soit
un arbre (arbre recouvrant) et dont la somme des poids des arétes soit
minimale.
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Algorithme de Prim 1957 (Jarnik 1930) (glouton)

Données : un graphe G =(V/,E, p) pondéré par une fonction p
Résultat : un arbre recouvrant T (ensemble d'arétes) de poids
minimal val

début
choisir un sommet de départ xge V ;
ATTEINT «— xq ;
T—o;
val — 0 ;
tant que ATTEINT # V faire

trouver xy € E de poids minimal avec x € ATTEINT et

y ¢ ATTEINT ;

T — T+{xy};

val — val + p(xy) ;
fin

retourner T et val
fin
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Exemple Prim partant de B

A chaque étape de Prim, notre arbre grandit.
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A chaque étape de Prim, notre arbre grandit.
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Exemple Prim partant de B

A chaque étape de Prim, notre arbre grandit.
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Exemple Prim partant de B

A chaque étape de Prim, notre arbre grandit.
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Exemple Prim partant de B

A chaque étape de Prim, notre arbre grandit.
On obtient un ARM de poids 12.
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Algorithme de Kruskal 1956 (glouton)

Données : un graphe G = (V,E,p) pondéré par une fonction p
Résultat : un arbre recouvrant T (ensemble d'arétes) de poids

début

fin

minimal val
L — liste des arétes triées par poids croissant ;
T —o;
val — 0 ;

pour e€ L faire
si T +{e} n'a pas de cycle alors
T —T+{e};
val — val +p(e) ;
fin
fin
retourner T et val

73/90



Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.
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Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.
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Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.
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Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.

74/90



Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.
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Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.
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Exemple Kruskal

A chaque étape de Kruskal, deux arbres s'unissent.
On obtient un ARM de poids 12.
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4. Graphes valués

Graphes de flot
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Définitions

e Un réseau de flot est un graphe simple valué G =(V,E,c);
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Définitions
e Un réseau de flot est un graphe simple valué G =(V,E,c);

e c:E— R" est la capacité du réseau;;
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Définitions
e Un réseau de flot est un graphe simple valué G =(V,E,c);
e c:E— R" est la capacité du réseau;;

e se V est la source, pe V est le puits.
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Définitions
e Un réseau de flot est un graphe simple valué G =(V,E,c);
e c:E— R" est la capacité du réseau;;
e se V est la source, pe V est le puits.

e Un flot est une fonction f: E— R* qui vérifie deux conditions :
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Définitions
e Un réseau de flot est un graphe simple valué G =(V,E,c);
e c:E— R" est la capacité du réseau;;
e se V est la source, pe V est le puits.

e Un flot est une fonction f: E— R* qui vérifie deux conditions :

e flot < capacité :
Vee E f(e)<c(e)
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Définitions
e Un réseau de flot est un graphe simple valué G =(V,E,c);
e c:E— R" est la capacité du réseau;;

e se V est la source, pe V est le puits.
e Un flot est une fonction f: E— R* qui vérifie deux conditions :

e flot < capacité :
Vee E f(e)<c(e)

e flot entrant = flot sortant (conservation du flot) :

VveV\{s,p} Y fw)= > f(xv)
vyeE xveE
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un flot possible de valeur 11
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e Par conservation du flot en chaque nceud, le flot arrivant en P est
égal au flot sortant de S.
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Par conservation du flot en chaque nceud, le flot arrivant en P est
égal au flot sortant de S.

Comment rendre ce flot maximal ?
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e Par conservation du flot en chaque nceud, le flot arrivant en P est

égal au flot sortant de S.
e Comment rendre ce flot maximal ?

e On va pouvoir parcourir les arcs éventuellement en sens inverse.
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e Par conservation du flot en chaque nceud, le flot arrivant en P est

égal au flot sortant de S.
e Comment rendre ce flot maximal 7
e On va pouvoir parcourir les arcs éventuellement en sens inverse.
Définition
Soit (x,y) € E.
e L'arc (x,y) (sens direct) est dit saturési f(x,y)=c(x,y).

e L'arc (y,x) (sens inverse) est dit saturé si f(x,y)=0.
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e Par conservation du flot en chaque nceud, le flot arrivant en P est
égal au flot sortant de S.

e Comment rendre ce flot maximal 7

e On va pouvoir parcourir les arcs éventuellement en sens inverse.
Définition
Soit (x,y) € E.

e L'arc (x,y) (sens direct) est dit saturési f(x,y)=c(x,y).

e L'arc (y,x) (sens inverse) est dit saturé si f(x,y)=0.
Définition

Une chaine (suite d'arcs peu importe leur orientation) est dite
améliorante si elle est constituée d'arcs non saturés.
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Notons E™ (resp. E7) I'ensemble des arcs de sens direct (resp. indirect)
d'une chaine améliorante. On pose

e" = min c(e)—f(e)
eeE*

€ =min f(e
eeE- ( )
e=min(e,€e7)
On peut alors augmenter le flot de € :
e chaque arc de E* voit son flot augmenté de ¢;

e chaque arc de E~ voit son flot diminué de «.
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Algorithme de Ford-Fulkerson 1962

Données : un réseau de flot G =(V,E,c) de capacité ¢
Résultat : un flot maximal
début
tant que il existe une chaine améliorante faire
Améliorer le flot ;
fin
retourner flot
fin
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Peut-on anticiper la valeur du flot maximal ?
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Peut-on anticiper la valeur du flot maximal ?

Définitions
e Une coupe est une partition de V de la forme (X, X) avec se X et
peX.
e La capacité d'une coupe est
Y c(xy).

xyeE
xeX

yeX
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Peut-on anticiper la valeur du flot maximal ?
Définitions
e Une coupe est une partition de V de la forme (X, X) avec se X et
peX.

e La capacité d'une coupe est

> clxy).

xyeE
xeX
yeX

e Une coupe est minimale si sa capacité est minimale parmi toutes les
coupes possibles.
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Théoréme flot maximal/coupe minimale (1956)

Théoréme

La valeur d’un flot maximal est égal a la valeur d’une coupe minimale.

De plus toutes les arcs de la coupe minimale (ayant donc leur origine
dans X et leur extrémité dans X) sont saturés par le flot maximal

(« goulot d'étranglement »).
mpechaud.fr/scripts/maxflow/index.html

www.cambridge.org/core/services/aop-cambridge-core/
content/view/5D6E55D3B06C4F7B1043BC1D82D40764/
S50008414X00036890a.pdf /maximal_flow_through_a_network.pdf
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/5 /10
no—57

X =1{S,A B} et X={C,D, P}
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/4 /%
hCAINGd

X =1{S,A B} et X={C,D, P}

est une coupe minimale
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4. Graphes valués

Ordonnancement
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La réalisation d'un projet nécessite un certain nombre de taches dont les
durées et les contraintes d'antériorité sont les suivantes :

Taches | Durées | Taches antérieures
A 7 -
B 3 A
C 1 B
D 8 A
E 2 D, C
F 1 D, C
G 1 D, C
H 3 F
I 2 H
J 1 E, G, I
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Représentation MPM

Pour la représentation du graphe MPM associé a la réalisation de ce
projet, il est fortement conseillé de tester que le graphe est sans circuit ;

Niveau o|1]2]1 3 g 3 4 |5 6

Sommets | A| B | C|D E F G H I J
Précédents A|B|A|DC|DC|DC|F|HI|EGI

Si le projet commence a la date t =0, la durée totale du projet est égale
a la longueur d’'un plus long chemin de début a fin.
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e T; (début de la tache i) est la date & laquelle peut commencer au

plus tét la tache i.

e |l s’agit de la longueur d’un plus long chemin, au sens des délais

dans le graphe, reliant le sommet 1 au sommt /.

Les dates au plus tot se calculent en partant du sommet initial :

0

max
peP(i

T
T;

P désigne les précedents.

)[Tp+dp',']
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e |l s’agit de la longueur d’un plus long chemin, au sens des délais

dans le graphe, reliant le sommet 1 au sommt /.
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T
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)[Tp+dp',']
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Il s'agit, pour une tiche i, de connaitre le retard de sa mise en route que
|'on peut se permettre sans pour cela modifier la date de fin des travaux.
Les taches critiques sont celles que I'on ne peut pas retarder. Pour les
autres, un retard sans retard final. On les calcule cette fois-ci en partant
de la fin. En notant T* les dates au plus tard

TF = T,
T = min [T -d;
i 5215'8)[ < —dis]

S désigne les successeurs.
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Dates

Il s'agit, pour une tiche i, de connaitre le retard de sa mise en route que
|'on peut se permettre sans pour cela modifier la date de fin des travaux.
Les taches critiques sont celles que I'on ne peut pas retarder. Pour les
autres, un retard sans retard final. On les calcule cette fois-ci en partant
de la fin. En notant T* les dates au plus tard

gy = Tg

TS = min(T-di

seS(i

S désigne les successeurs.
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