Ensembles, relations, fonctions

R1.06 - Mathématiques discrètes

monnerat@u-pec.fr ₺

26 septembre 2025

IUT de Fontainebleau

Partie 2

Relations

Relations

Généralités

Vocabulaires

Propriétés

Relation d'équivalence

Relations Généralités

Relation binaire

Soient E et F deux ensembles. Une relation binaire sur $E \times F$ est une partie \mathcal{R} de $E \times F$.

$$\mathcal{R}$$
 relation binaire $\Leftrightarrow \mathcal{R} \in \mathcal{P}(E \times F) \Leftrightarrow \mathcal{R} \subset E \times F$

- Lorsque $(x, y) \in \mathcal{R}$, on dit que x est en relation avec y. on note aussi $x\mathcal{R}y$.
- Lorsque E = F, on parle de relation binaire sur E.
- On peut définir de manière équivalente une relation binaire à l'aide d'un prédicat binaire.

Cas particuliers:

- $\mathcal{R} = \emptyset$.
- $\mathcal{R} = E \times F$.
- L'égalité Δ sur $E:(x,y)\in\mathcal{R}\Leftrightarrow x=y$ (notée aussi id_E).

Exemples

Soient

$$A = \{a, b, c, d, e\}$$

l'ensemble des élèves et

$$B = \{Math, Info, Ang, Ec\}$$

l'ensemble des cours.

On peut définir les relations suivantes :

ullet ${\cal R}$ qui décrit si un étudiant suit un cours :

$$\mathcal{R} = \{(a, Math), (a, Ec), (b, Info), \\ (c, Ang), (d, Ang), (e, Math), (e, Ang)\}$$

 S décrit si un étudiant a acheté un cadeau à un autre étudiant définie par

$$S = \{(b, b), (b, a), (c, a), (c, b), (a, d), (d, c)\}$$

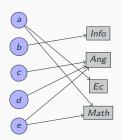
Représentations

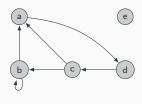
Diagramme cartésien et matrice de relation

\mathcal{R}	Math	Ec	Ang	Info
а	V	V		
Ь				V
С			V	
d			V	
е	V		V	

\mathcal{S}	а	Ь	С	d	е
а				V	
Ь	V	V			
С	V	V			
d			V		
е					

Diagramme sagittal





Opérations sur les relations

Les relations sont des ensembles. On a droit à inclusion, égalité, union, intersection, différence, etc.

Relation réciproque

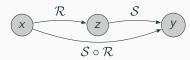
Soit $\mathcal R$ une relation sur $E \times F$. On note $\mathcal R^{-1}$ la relation sur $F \times E$ définie par

$$x\mathcal{R}^{-1}y \Leftrightarrow y\mathcal{R}x$$

Composée de relations

Soient $\mathcal R$ une relation de E vers F et $\mathcal S$ une relation de F vers G. On définit la composée $\mathcal T$ de $\mathcal S$ et $\mathcal R$ la relation binaire de E vers G notée $\mathcal T=\mathcal S\circ\mathcal R=\mathcal S\mathcal R$ définie par

$$\forall (x,y) \in E \times G, \ (x\mathcal{T}y) \leftrightarrow (\exists z \in F \ x\mathcal{R}z \land z\mathcal{S}y)$$



Vocabulaires

Relations

Vocabulaire

Soit $\mathcal{R} \subset E \times F$ une relation. On définit :

 $\forall x \in E$,

$$\mathcal{R}(x) = \{ y \in F, x\mathcal{R}y \}$$

(là ou arrivent les flèches qui partent de x)

 $A \subset E$,

$$\mathcal{R}(A) = \cup_{x \in A} \mathcal{R}(x)$$

(là ou arrivent les flèches qui partent d'un élément de A)

Image. On note

$$\operatorname{im} \mathcal{R} = \mathcal{R}(E)$$

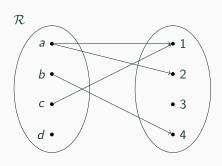
(les éléments de F où arrive une flèche)

Domaine. On note

$$\operatorname{\mathsf{dom}} \mathcal{R} = \operatorname{\mathsf{im}} \mathcal{R}^{-1}$$

(les éléments de E d'où part une flèche)

Exemple



$$\mathcal{R}(\{a\}) = \{1, 2\}$$

$$\mathcal{R}(\{d\}) = \emptyset$$

$$\mathcal{R}(\{a, b, c\}) = \{1, 2, 4\} = \operatorname{im} \mathcal{R}$$

$$\operatorname{dom} \mathcal{R} = \{a, b, c\}$$

Relations

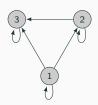
Propriétés

Réfléxité

Réflexive

Une relation \mathcal{R} est réflexive ssi $\forall x \in E \ x \mathcal{R} x$

- Diagramme cartésien : la diagonale doit être pleine.
- Diagramme sagittal : chaque sommet porte une boucle.



\mathcal{R}	1	2	3
1	V	V	V
2		V	V
3			V

Exemples:

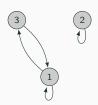
Quel que soit l'ensemble, la relation d'égalité = est réflexive. Sur \mathbb{N} , la relation \leq est réflexive, mais < n'est pas réflexive.

Symétrie

Symétrie

Une relation \mathcal{R} est symétrique ssi $\forall (x,y) \in E^2, x\mathcal{R}y \leftrightarrow y\mathcal{R}x$.

- Diagramme cartésien : symétrie par rapport à la diagonale.
- Diagramme sagittal : quand une fléche va de *a* vers *b*, il y a aussi une fléche de *b* vers *a*.



\mathcal{R}	1	2	3
1	V		V
2		V	
3	V		

Exemples:

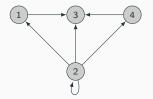
Quel que soit l'ensemble, la relation d'égalité = est symétrique. Sur \mathbb{N} , la relation \leq est n'est pas symétrique.

Transitivité

Transitivité

Une relation \mathcal{R} est transitive ssi $\forall (x, y, z) \in E^3 \times \mathcal{R}y \land y\mathcal{R}z \rightarrow x\mathcal{R}z$

 Diagramme sagittal: tout chemin qui part d'un sommet s et va à un sommet s' en suivant la direction des fléches admet un raccourci, c'est à dire un chemin de longueur un.



	1	2	3	4
1			V	
2	V	V	V	V
3				
4			V	

Exemples : Quel que soit l'ensemble, la relation d'égalité = est transitive.

Sur \mathbb{N} , la relation \leq est transitive.

La relation "est le père de" n'est pas transitive.

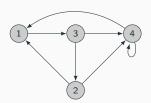
Antisymétrique

Antisymétie

Une relation $\mathcal R$ est antisymétrique ssi

$$\forall (x, y) \in E^2 \ x \mathcal{R} y \land y \mathcal{R} x \rightarrow x = y$$

• Diagramme sagittal : les seuls aller-retours sont des boucles.



	1	2	3	4
1			V	
2	V			V
3		V		V
4	V			V

Exemples : Sur \mathbb{N} , la relation \leq est antisymétrique.

Fermetures d'une relation

Problème : à partir d'une relation binaire sur un ensemble E, on cherche à rajouter le minimum de couples pour que \mathcal{R} acquiert une propriété donnée.

- Fermeture reflexive : On appelle fermeture réflexive $r(\mathcal{R})$ de \mathcal{R} "la plus petite relation" (au sens de l'inclusion) réflexive contenant \mathcal{R} .
- Fermeture symétrique : On appelle fermeture symétrique $s(\mathcal{R})$ de \mathcal{R} "la plus petite relation" (au sens de l'inclusion) symétrique contenant \mathcal{R} .
- Fermeture transitive : On appelle fermeture transitive $t(\mathcal{R})$ de \mathcal{R} "la plus petite relation" (au sens de l'inclusion) transitive contenant \mathcal{R} .

Propriété : soit \mathcal{R} une relation binaire sur E.

- $r(\mathcal{R}) = \mathcal{R} \cup \Delta$ avec Δ est la relation d'égalité sur E.

•
$$s(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^{-1}$$

• $t(\mathcal{R}) = \bigcup_{i=1}^{\infty} \mathcal{R}^{i}$

Relations
Relation d'équivalence

Définition et exemples

Définition

Une relation binaire définie sur E est une relation d'équivalence ssi elle est réflexive, symétrique et transitive.

Exemple : Par définition, pour $x, y \in \mathbb{Z}$, on note $x \equiv_n y$, lire x est congru à y modulo n, si et seulement s'il existe $k \in \mathbb{Z}$ tel que x - y = kn.

 \equiv_n est une relation d'équivalence.

- Réflexivité $x \equiv_n x$ car x x = 0.n et $0 \in \mathbb{Z}$.
- Symétrie si $x \equiv_n y$ alors il existe $k \in \mathbb{Z}$ tel que x y = k.n, on a donc y x = -k.n et $-k \in \mathbb{Z}$ d'où $y \equiv_n x$.
- Transitivité si $x \equiv_n y$ et $y \equiv_n z$ alors il existe $k, k' \in \mathbb{Z}$ tels que x y = k.n et y z = k'.n. Ainsi x z = x y + y z = (k + k').n. On en déduit que $x \equiv_n z$

Classes d'équivalence et partition

Classes d'équivalence

Soit $\mathcal R$ une relation d'équivalence sur un ensemble E. La classe d'équivalence d'un élément x, noté $\overline x$, est l'ensemble des éléments de E qui sont en relation avec x. Autrement dit

$$\overline{x} = \{ y \in E : x \mathcal{R} y \}.$$

Proposition

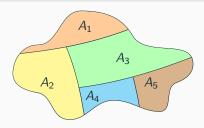
- Une classe d'équivalence n'est jamais vide.
- $\forall x, y \in E$, ou bien $\overline{x} = \overline{y}$, ou bien $\overline{x} \cap \overline{y} = \emptyset$.

Classes d'équivalence et partition

Partition

Soit E un ensemble, la famille d'ensembles $(A_i)_{i \in I}$ indexée par I est une partition si :

- l'union des $(A_i)_{i \in I}$ est égale à E, ie $E = \bigcup_{i \in I} A_i$,
- deux éléments de $(A_i)_{i\in I}$ distincts sont disjoints, ie si $i\neq j$ alors $A_i\cap A_j=\emptyset$.



Théorème

Etant donnée une relation d'équivalence sur un ensemble, les classes d'équivalences forment une partition.

Exemple : classes d'équivalence de \equiv_3 sur $\mathbb Z$

$$\begin{split} \overline{0} &= \{\dots, -6, -3, 0, 3, 6, 9, \dots\} \\ &= 3\mathbb{Z} \\ \overline{1} &= \{\dots, -8, -5, -2, 1, 4, 7, 10, \dots\} \\ &= 1 + 3\mathbb{Z} \\ \overline{2} &= \{\dots, -7, -4, -1, 2, 5, 8, \dots\} \\ &= 2 + 3\mathbb{Z} \end{split}$$

Ensemble quotient

Soit E un ensemble muni d'une relation d'équivalence \mathcal{R} . L'ensemble quotient est l'ensemble des classes d'équivalence de tous les éléments de E. On le note E/\mathcal{R} .