DS Logique, Ensembles, Applications 2 heures : formulaire A4 recto-verso autorisé Calculatrices et téléphones portables interdits

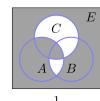
SUJET n°01

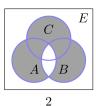
Rendre le sujet avec votre copie

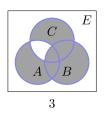
1. [3 pts] Soit f la forme propositionnelle

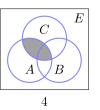
$$f = ((\neg c \lor \neg a) \oplus (b \to a)) \leftrightarrow (c \land \neg b)$$

- (a) Donnez son écriture préfixée.
- (b) Voici sa table de vérité:


c	a	b	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0


- i. Donnez sa forme normale conjonctive.
- ii. Donnez sa forme normale algébrique ("avec les ou-exclusifs").
- 2. [3 pts] Trois personnes a, b, et c peuvent mentir ou dire la vérité :
 - a affirme : si b dit la vérité, alors c aussi
 - b affirme : si c dit la vérité, alors a aussi
 - $\bullet\,$ c affirme : b ment et a dit la vérité
 - (a) Représenter l'énoncé par une forme proposionnelle.
 - (b) A l'aide d'une table de vérité, dire qui ment et qui dit la vérité.
- 3. [3 pts] Dans une promotion de 126 étudiants en IUT d'informatique, 60 ont déjà codé en Python, 58 en C, 63 ont déjà codé en C++, 27 ont déjà codé en Python et en C++, 32 ont déjà codé en C++ et en C, 29 ont déjà codé en C et en Python et 19 n'ont jamais codé aucun de ces trois langages.
 - (a) Combien ont déjà codé en Python, en C et en C++?
 - (b) Combien ont codé en Python et en C++ mais pas en C?
 - (c) Combien ont codé seulement en C++?


4. **[4 pts]** Soient $\begin{cases} A = \{0,3,5,6,7,11,13,14,16\} \\ B = \{0,5,6,8,10,11,13,14\} \\ C = \{0,3,4,5,6,8,11,14,17,18\} \end{cases} \subset E = [0,19]$


 $(\llbracket 0, n \rrbracket = \{0, 1, 2, \dots, n\})$. On donnera les ensembles d'entiers en ordonnant les éléments dans l'ordre croissant.

- (a) Donner en extension l'ensemble D qui vérifie $A\Delta D = C$
- (b) Donner en extension l'ensemble $((A\Delta B) \cup (C \cap \overline{B}))$
- (c) Quelle est la figure qui représente l'ensemble précédent ?

- 5. [4 pts] Soit l'application f de $\mathbb{Z} \to \mathbb{Z}$ définie par $f(n) = n + (-1)^n$
 - (a) Calculer $f(\{-2, -1, 0, 1, 2\})$.
 - (b) Calculer f(f(n)) (on pourra distinguer les cas pair et impair).
 - (c) En déduire que f est bijective, et donner une expression de f^{-1} .
 - (d) Résoudre l'équation $158 = n + (-1)^n$.
- 6. [3 pts] On définit la suite u par $u_0 = 10$ et $\forall n \geq 0$, $u_{n+1} = -3u_n + 16n$
 - (a) Calculer u_2 .
 - (b) Montrer par récurrence

$$\forall n \in \mathbb{N}, \ u_n = 11(-3)^n + 4n - 1$$