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Définitions



Une fonction f : R → R est appelée fonction polynomiale (fonction
polynôme) s’il existe un entier naturel n est des nombres réels
a0, a1, a2, . . . , an tels que

∀x ∈ R, f (x) = a0 + a1x + . . . anx
n

.

Les fonctions polynômes sont des combinaires linéaires des fonctions
x → xk .

Exemples : Les fonctions suivantes sont-elles polynomiales ?

• x → πx2 − 3x +
√

2 est une fonction polynôme.

• x → (2x − 5)4 est une une fonction polynôme (pourquoi ?).

• x → |x | ? ? on ne sait pas pour l’instant.

• x → cos x ? ? on ne sait pas pour l’instant.
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Théorème d’unicité

Soient (a0, a1, a2, . . . , an) ∈ Rn+1. Alors on a le résultat suivant :

∀x ∈ R,
i=n∑
i=0

aix
i = 0 ⇒ a0 = a1 = a2 = . . . = an = 0

Preuve : récurrence sur n.

• n = 0. évident.
• on suppose la propriété vraie pour n. Montrons-la pour n + 1

Posons p(x) =
n+1∑
i=0

aix
i .

∀x ∈ R, 0 = p(2x)− 2n+1p(x) =
i=n∑
i=0

(2i − 2n+1)aix
i

D’après l’hypothèse de récurrence, on en déduit que

∀i ≤ n, (2i − 2n+1)ai = 0 ⇒ ai = 0

Il vient donc 0 = p(x) = an+1x
n+1 pour tout x , d’où an+1 = 0.
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Corollaire

Les coefficients d’une fonction polynôme sont uniques. Plus exactement,

Unicité des coefficents
Pour toute fonction polynôme p non identiquement nulle, il existe un
unique entier n et une unique liste (a0, a1, . . . , an) telle que

an ̸= 0 et ∀x ∈ R, p(x) =
i=n∑
i=0

aix
i

Avec les notations du corollaire,

• le degré de p est l’entier n. On le note deg p.

• par convention, le degré de la fonction nulle est deg 0 = −∞.

On note R[x ] l’ensemble des fonctions polynomiales, et Rn[x ] celles de
degré ≤ n.
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degré 0 : f (x) = a degré 1 : f (x) = ax + b

x

y

x

y

degré 2 : f (x) = ax2 + bx + c degré 3 : f (x) = ax3 + bx2 + cx + d

x

y

x

y
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Opérations



Algèbre des polynômes

L’ensemble des fonctions polynômes est stable par somme, produit, et
produit par une constante.

En particulier, pour p, q polynômes, et a un réel non nul :

• deg p + q ≤ max(deg p, deg q)

• deg a.p = deg p

• deg pq = deg p + deg q

C’est encore vrai avec le polynôme nul, en convenant que

max(a,−∞) = a et a+−∞ = −∞
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Division euclidienne et racines



Division euclidienne

Théorème

Soient a et b deux polynômes (b ̸= 0). Alors il existe un unique couple
(q, r) de polynômes qui vérifie

a = bq + r et deg r < deg b

• q est le quotient, et r le reste de la division euclidienne de a par b.

• Lorsque r = 0, on dit que b divise a.

Le plus simple pour la preuve est de donner l’algorithme de division :
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Exemple

6x3 − 2x2 + x + 3

6x3 − 6x2 + 6x

4x2 − 5x + 3

4x2 − 4x + 4

−x − 1

−

−

x2 − x + 1

6x + 4

6x3 − 2x2 + x + 3 = (x2 − x + 1) (6x + 4)︸ ︷︷ ︸
quotient

+(−x − 1)︸ ︷︷ ︸
reste

Remarque : on pourrait procéder "à l’envers", en cherchant q et r par
résolution d’un système obtenu par identification.
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Racine et factorisation

a ∈ R est une racine de p si p(a) = 0

Factorisation
Les deux propriétés suivantes sont équivalentes :

1. a est racine de p

2. il existe un polynôme q tel que p = (x − a)q(x) ((x − a) divise p)

Preuve : on effectue la division euclidienne de p par (x − a). Il existe
donc un polynôme q et un polynôme r tels que

p(x) = (x − a)q(x) + r(x)

avec deg r < 1. C’est donc une constante.

Ainsi, p(a) = 0 ⇔ r(a) = 0 ⇔ r = 0, d’où le théorème.
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Corollaire

Un polynôme p de degré n ≥ 0 possède au plus n racines distinctes.
(récurrence sur n)

Un polynôme de degré au plus n ayant au moins n + 1 racines est le
polynôme nul.
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Dérivation et racines multiples



Dérivée d’un polynôme

Soit p(x) =
k=n∑
k=0

akx
k une fonction polynôme de degré n. On définit la

fonction polynôme dérivée de p le polynôme de degré n − 1 par :

∀x ∈ R, p′(x) =
n−1∑
k=0

(k + 1)ak+1x
k

Remarques :

• C’est une notion purement formelle, même si vous savez qu’elle
coïncide avec la dérivée des fonctions en analyse.

• On retrouve les mêmes propriétés, à savoir :
1. (p + q)′ = p′ + q′

2. (λ.p)′ = λ.p′

3. (p.q)′ = p′q + pq′

4. p(x) = (x − a)n ⇒ p′(x) = n(x − a)n−1

12/20



Racines Multiples

Soit p une fonction polynomiale. On dit que a est une racine de
multiplicité m s’il existe un polynome q tel que

p(x) = (x − a)mq(x) et q(a) ̸= 0

Cela revient à dire que m est la plus grande puissance telle que (x − a)m

divisie p.

Caractérisation avec la dérivée

p(a) = p′(a) = . . . = p(n−1)(a) = 0 ⇔ (x − a)n divise p
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Démonstration

On montre cette équivalence par récurrence.

Pour n = 1, théorème déjà vu sur les racines.

On suppose l’équivalence vraie pour n. On va la montrer pour n + 1.

Sens direct. Soit p tel que p(a) = . . . = p(n)(a) = 0. En effectuant la
division euclidienne de p par (x − a)n+1, on a

p(x) = (x − a)n+1q1(x) + r(x) avec deg r < n + 1

D’où

p′(x) = (x − a)n[(n + 1)q1(x) + (x − a)q′1(x)] + r ′(x) avec deg r ′ < n

Or p′ vérifie l’hyptohése de récurrence au rang n, car
p′(a) = . . . = p′(n−1)(a) = 0. Donc (x − a)n divise p′(x).

On en déduit que r ′ = 0, et donc r est constant. Comme a est racine de
p, a est racine de r , donc r = 0
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Sens réciproque. On suppose que (x − a)n+1 divise p.
p(x) = (x − a)n+1q(x)

En dérivant, on obtient facilement que (x − a)n divise p′(x).

En appliquant l’hypothèse de récurrence, on a donc

p′(a) = . . . = p′(n−1)(a) = 0

ce qu’on réécrit
p′(a) = . . . = p(n)(a) = 0

Et comme (x − a)n+1 divise p, on a aussi p(a) = 0, ce qui achève la
récurrence.
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Formule de Taylor

Soit p un polynôme. On a la formule de Taylor en un point a ∈ R
quelconque

∀x , p(x) =
deg p∑
k=0

p(k)(a)

k!
(x − a)k

Preuve : on forme q la différence

q(x) = p(x)−
deg p∑
k=0

p(k)(a)

k!
(x − a)k

qui est un polynôme de degré au plus celui de p.

En dérivant un nombre de fois quelconque (Faites-le), on a

∀i , q(i)(a) = 0

q est donc nul d’après le théorème précédent.
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Exemple

Soit p(x) = 4x3 − 2x2 + 3x − 10.

La formule de taylor au point 1 donne :

• p(1) = −5

• p′(x) = 12x2 − 4x + 3, p′(1) = 11

• p(2)(x) = 24x − 4, p(2)(1) = 20

• p(3)(x) = 24, p(3)(1) = 24

p(x) = −5 + 11(x − 1) +
20
2
(x − 1)2 +

24
6
(x − 1)3

= −5 + 11(x − 1) + 10(x − 1)2 + 4(x − 1)3
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Racines d’une fonction polynôme entière



Théorème

Si r =
b

c
irréductible est une racine du polynôme à coefficents entiers

p(x) = sxn + . . .+ t

Alors b divise t et c divise s.

Application : factorisez p(x) = x4 − 7x3 + 17x2 − 17x + 6.

Les racines rationnelles
b

c
possibles

• b diviseur de 6 : ±1,±2,±3,±6

• c diviseur de 1 : ±1

Ce qui donne les racines possibles : ±1,±2,±3,±6
p(−1) = 1 + 7 + 17 + 17 + 6 = 48

p(1) = 1 − 7 + 17 − 17 + 6 = 0. 1 est racine de p.

Factorisons p par (x − 1)
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x4 − 7x3 + 17x2 − 17x + 6 x − 1
x3 − 6x2 + 11x − 6− x4 + x3

− 6x3 + 17x2

6x3 − 6x2

11x2 − 17x
− 11x2 + 11x

− 6x + 6
6x − 6

0

p(x) = (x − 1)(x3 − 6x3 + 11x − 6) = (x − 1)q(x)

On recommence sur q(x)

On a la même liste de racines possibles. ±1,±2,±3,±6.

Ca ne peut pas être −1 (pourquoi ?)

q(1) = 1 − 6 + 11 − 6 = 0.
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x3 − 6x2 + 11x − 6 x − 1
x2 − 5x + 6− x3 + x2

− 5x2 + 11x
5x2 − 5x

6x − 6
− 6x + 6

0

p(x) = (x − 1)q(x) = (x − 1)2(x2 − 5x + 6). Il reste à essayer de
factoriser x2 − 5x + 6 qui est de degré 2.

On sait le faire (comment ?)

x2 − 5x + 6 = (x − 2)(x − 3)

Finalement
p(x) = (x − 1)2(x − 2)(x − 3)

1 est une racine double, 2 et 3 sont des racines simples.
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