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Définitions



Une fonction f : R — R est appelée fonction polynomiale (fonction
polynéme) s'il existe un entier naturel n est des nombres réels
ao, ai, ao, ..., a, tels que

Vx €R, f(x) =ag+ aix+...a,x"

Les fonctions polyndmes sont des combinaires linéaires des fonctions
x — xk.

Exemples : Les fonctions suivantes sont-elles polynomiales?

e x — mx? — 3x + /2 est une fonction polynéme.

x — (2x — 5)* est une une fonction polynéme (pourquoi?).

x — |x| 77 on ne sait pas pour |'instant.

e x — cosx ?? on ne sait pas pour |'instant.
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Théoréme d’unicité

Soient (ao, a1, a2, - - -, an) € R™1. Alors on a le résultat suivant :
i=n
VXER,Za;x’:0:30231:32:...23,7:0
i=0

Preuve : récurrence sur n.

e n = 0. évident.

e on suppose la propriété vraie pour n. Montrons-la pour n+ 1
n+1

Posons p(x) = Z aix'.
i=0

Vx € R,0 = p(2x) — 2" p(x) = > (2" — 2" )aix’
i=0
D’apres I'hypothése de récurrence, on en déduit que
Vi<n (2 —2"Na=0=a=0

: _ _ 1 "o _
Il vient donc 0 = p(x) = ap,1x™* pour tout x, d'ot a1 = 0. 4/20



Corollaire

Les coefficients d'une fonction polynéme sont uniques. Plus exactement,

Unicité des coefficents

Pour toute fonction polyndme p non identiquement nulle, il existe un
unique entier n et une unique liste (ag, a1, - . ., a,) telle que

an #Z0etVx € R, p(x) = Za,-xi
i=0

Avec les notations du corollaire,

o le degré de p est I'entier n. On le note deg p.

e par convention, le degré de la fonction nulle est deg0 = —o0.
On note R[x] I'ensemble des fonctions polynomiales, et R,[x] celles de
degré < n.
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degré 0: f(x) = a

degré 2 : f(x) = ax®>+ bx +c

degré 1: f(x)=ax+b
y

degrée 3: f(x) = ax® + bx® + cx + d
y
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Opérations



Algebre des polynémes

L'ensemble des fonctions polyndmes est stable par somme, produit, et
produit par une constante.

En particulier, pour p, g polynémes, et a un réel non nul :

e degp+ g < max(deg p, deg q)
e dega.p =degp
e degpg = degp +degqg

C'est encore vrai avec le polynéme nul, en convenant que

max(a, —oco) = aet a+ —00o = —00
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Division euclidienne et racines



Division euclidienne

Théoréme

Soient a et b deux polynémes (b # 0). Alors il existe un unique couple
(g, r) de polyndmes qui vérifie

a=bqg+ret degr <degb

e g est le quotient, et r le reste de la division euclidienne de a par b.

e Lorsque r = 0, on dit que b divise a.

Le plus simple pour la preuve est de donner I'algorithme de division :
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6x3 —2x> 4+ x+3|x2— x+1
- 6x3 — 6x2 + 6x 6x + 4
4x% —5x +3
- 4x%2 —4x + 4
—x—-1

6x3—2x2—|—x—|—3:(xz—x+l)(6x—|—4)+(—x—1)
—_—— N——

quotient reste

Remarque : on pourrait procéder "a I'envers", en cherchant g et r par
résolution d'un systéme obtenu par identification.
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Racine et factorisation

a € R est une racine de p si p(a) =0

Factorisation

Les deux propriétés suivantes sont équivalentes :
1. a est racine de p

2. il existe un polynéme q tel que p = (x — a)g(x) ((x — a) divise p)

Preuve : on effectue la division euclidienne de p par (x — a). Il existe
donc un polynéme g et un polynéme r tels que

p(x) = (x — a)q(x) + r(x)
avec deg r < 1. C'est donc une constante.

Ainsi, p(a) =0 < r(a) =0« r =0, d'od le théoréme.
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Corollaire

Un polynéme p de degré n > 0 posséde au plus n racines distinctes.
(récurrence sur n)

Un polynéme de degré au plus n ayant au moins n+ 1 racines est le
polyndéme nul.
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Dérivation et racines multiples



Dérivée d'un polynéme

k=n
Soit p(x) = Z akx* une fonction polynéme de degré n. On définit la

k=0
fonction polynéme dérivée de p le polynéme de degré n — 1 par :

n—1

Vx €R, p'(x) = > (k+1)aks1x*
k=0

Remarques :

e C'est une notion purement formelle, méme si vous savez qu'elle
coincide avec la dérivée des fonctions en analyse.

e On retrouve les mémes propriétés, a savoir :

L (p+q)=p+4q

2. (Ap) =Ap

3. (p-9) =p'q+pq

4. p(x) = (x—a)" = p'(x) = n(x — a)"*
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Racines Multiples

Soit p une fonction polynomiale. On dit que a est une racine de
multiplicité m s'il existe un polynome g tel que

p(x) = (x — 3)"q(x) et q(a) # 0

Cela revient a dire que m est la plus grande puissance telle que (x — a)™
divisie p.
Caractérisation avec la dérivée

p(a)=p'(a)=...=p" D(a) =0 < (x — a)" divise p
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Démonstration

On montre cette équivalence par récurrence.
Pour n =1, théoréme déja vu sur les racines.
On suppose |'équivalence vraie pour n. On va la montrer pour n+ 1.

Sens direct. Soit p tel que p(a) = ... = p(")(a) = 0. En effectuant la
division euclidienne de p par (x — a)™!, on a

p(x) = (x — a)" ™ qi(x) + r(x) avec degr < n+1
D'ou
p'(x) = (x = a)"[(n + 1)qu(x) + (x — a)q1(x)] + r'(x) avec degr’ < n
Or p’ vérifie I'hyptohése de récurrence au rang n, car
p'(a) =...=p'"1(a) = 0. Donc (x — a)" divise p'(x).

On en déduit que r' = 0, et donc r est constant. Comme a est racine de
p, a est racine de r, donc r =0
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Sens réciproque. On suppose que (x — a)"™! divise p.
p(x) = (x — a)""q(x)
En dérivant, on obtient facilement que (x — a)" divise p/(x).

En appliquant I'hypothése de récurrence, on a donc

ce qu'on réécrit
p'(a)=...=p"(a) =0

Et comme (x — a)"*! divise p, on a aussi p(a) = 0, ce qui achéve la
récurrence.
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Formule de Taylor

Soit p un polynéme. On a la formule de Taylor en un point a € R
quelconque

dep (K)(4
vp() = Y BB gt
k=0 '

Preuve : on forme g la différence

qui est un polynéme de degré au plus celui de p.

En dérivant un nombre de fois quelconque (Faites-le), on a

Vi, q(a) = 0

g est donc nul d'aprés le théoréme précédent.
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Soit p(x) = 4x> — 2x2 + 3x — 10.
La formule de taylor au point 1 donne :

e p(1)=—5

o p/(x)=12x%> —4x+3, p'(1) =11

o PP (x) =24x —4, p(1) =20

o p®(x) =24, pB)(1) = 24

20 24
p(x) = =5+ 11(x = 1)+ - (x - 1?2+ 5 1)3

= 54+ 11(x — 1) + 10(x — 1)? + 4(x — 1)3
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Racines d'une fonction polynéme entiére



Théoréme

Sir= g irréductible est une racine du polyndme a coefficents entiers
p(x)=sx"+ ...+t

Alors b divise t et ¢ divise s.

Application : factorisez p(x) = x* — 7x3 + 17x% — 17x + 6.

Les racines rationnelles é possibles

e b diviseur de 6 : +£1, +2,+3,+6
e c diviseurde 1 : +1

Ce qui donne les racines possibles : +1,+2 +3, +6
p(-1)=14+7+17+17+6 =48

p(l)=1—7+17—17+6 = 0. 1 est racine de p.

Factorisons p par (x — 1)
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x4—7x3—|—17x2—17x+6‘x—1

— e e ‘X3—6x2—|—llx—6
— 6x3 + 17x2
6x3 — 6x2
11x? — 17x
—11x% 4+ 11x
—6x+6
6x — 6
0

p(x) = (x — 1)(x® — 6x3 + 11x — 6) = (x — 1)g(x)

On recommence sur g(x)

On a la méme liste de racines possibles. +1, 42 +3, +6.
Ca ne peut pas étre —1 (pourquoi?)

g(1)=1-6+11-6=0.
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x3—6x24+11x—6|x—1
—x3 4+ x2 x2 —5x+6

—5x2 4+ 11x

5x2 —bx
6x — 6
—6x+6

0
p(x) = (x — 1)g(x) = (x — 1)?(x®> — 5x + 6). Il reste a essayer de
factoriser x?> — 5x + 6 qui est de degré 2.

On sait le faire (comment ?)
x? —bx+6=(x—2)(x—3)
Finalement
p(x) = (x — 1)*(x — 2)(x — 3)
1 est une racine double, 2 et 3 sont des racines simples.
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