TD n° 1: Calcul matriciel

- 1. (a) Écrire les matrices suivantes définies par leur terme général
 - $A = (a_{ij}) \in M_{2,3}(\mathbb{R}), a_{ij} = (-1)^{i+j}$
 - $B = (b_{ij}) \in M_{3,4}(\mathbb{R}), b_{ij} = j^{i-1}$
 - $C = (c_{ij}) \in M_{4,2}(\mathbb{R}), c_{ij} = i j$
 - (b) Parmi les produits suivants, dire lesquels sont définis et donner les dimensions du produit :

$$A \times A$$
, $A \times B$, $A \times C$, $B \times A$, $B \times C$, $C \times A$, $C \times B$, ${}^tC \times C$

- (c) Quelle est la taille de la matrice $D = A \times B \times C$? donner deux manières différentes de calculer D. En effectuer une. Quelle propriété de la multiplication des matrices met-on en évidence?
- (d) Quelle est la taille de la matrice $E = {}^t(C \times A)$? Donner deux manières différentes de calculer E. En effectuer une. Quelle propriété de la multiplication des matrices met-on en évidence?
- (e) Quelle est la taille de la matrice $F = A \times (B + E)$? Calculer de deux manières différentes F. Quelle propriété de la multiplication des matrices met-on en évidence?
- 2. Soient $A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
 - Calculer $A^2 + 2.A.B + B^2$ et $(A + B)^2$.
 - Conclusion ?
- 3. Soit la matrice

$$M = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -3 & -2 & 0 \\ -2 & 0 & 1 \end{array}\right)$$

Calculer M^3 .

En déduire M^{-1} , M^9 et M^{13} .

4. Soit la matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ -1 & 0 & -2 \\ 0 & 2 & 0 \end{array}\right)$$

- (a) Calculer $A^3 A^2 + 6.A$ et exprimer le résultat en fonction de I_3 .
- (b) En déduire que A est inversible et donner son inverse en fonction de I_3, A, A^2 .
- 5. Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 - (a) On pose $B = A I_3$. Calculer B^n pour $n \ge 0$.
 - (b) En déduire A^n pour $n \ge 0$. on pourra utiliser, en la justifiant, la formule du binôme de Newton

6. On consigne les notes d'un semestre d'IUT dans une matrice M où chaque ligne représente un des 100 étudiants et chaque colonne représente une des 10 matières.

Trouver une méthode matricielle pour calculer les moyennes semestrielles

- (a) dans chacune des matières.
- (b) de chacun des étudiants. Les coefficients des matières sont $\alpha_1, \ldots, \alpha_{10}$.
- 7. Soit à résoudre le problème d'affectation de matrice des coûts :

$$A = \begin{pmatrix} 4 & 3 & 5 \\ 3 & 6 & 3 \\ 7 & 3 & 8 \end{pmatrix}$$

 a_{ij} représente le coût d'affectation de l'ouvrier O_i à la tâche T_j .

- (a) Décomposer A en somme de 3 matrices : A=C+L+R où C est colonnes- constantes, L lignes-constantes et R comporte un zéro au moins par rangée.
- (b) Donner un minorant du coût de toute affectation.
- (c) Montrer ensuite que toute affectation où O_3 ne fait pas T_2 coûte au moins 13. Conclure.
- 8. Soit à résoudre le problème d'affectation de matrice des coûts :

$$A = \left(\begin{array}{ccccc} 2 & 8 & 6 & 3 & 6 \\ 4 & 13 & 9 & 20 & 10 \\ 3 & 3 & 5 & 22 & 14 \\ 5 & 6 & 11 & 11 & 18 \\ 1 & 9 & 15 & 14 & 18 \end{array}\right)$$

Ses coûts représentent des frais de déplacements de 5 inspecteurs vers des chantiers (en ligne k figurent les frais de l'inspecteur I_k vers les chantiers C_1 , C_2 , C_3 , C_4 et C_5). On veut affecter un inspecteur et un seul à chaque chantier de façon à minimiser la somme des coûts des 5 déplacements.

- (a) Décomposer A en somme de 3 matrices : A = C + L + R dans $M_{5,5}(\mathbb{R}_+)$ où C est colonnes-constantes, L lignes-constantes et R comporte un zéro au moins par rangée.
- (b) Donner un minorant m du coût de toute affectation (m=coût par rapport à C + L).
- (c) Quel est le "deuxième minimum" r dans la ligne 5 de R? Déduire que (m+r) est un minorant du coût de toute affectation où I_5 ne va pas en C_1 .
- (d) Si le cinquième inspecteur va en C_1 , la sous-matrice correspondante S de R obtenue en éliminant la ligne 5 et la colonne 1 se décompose comme en 1), soit S = C' + L' + R'. Préciser. Déduire l'affectation de moindre coût dans ce sous-problème. Conclure.