R4.01-R4.A.10

DOM et api javascript

Denis Monnerat

monnerat@u-pec.fr&

29 janvier 2026

IUT de Fontainebleau

1/46

monnerat@u-pec.fr

Sommaire

Le DOM : introduction
Structure du DOM
Manipulation du DOM
DOM HTML

DOM et CSS

DOM Events

2/46

Le DOM : introduction

Chaque navigateur implantait ses propres méthodes de manipulation du
contenu html. D’ou la nécessité :

e Uniformiser et abstraire (indépendance de tout langage) la
représentation d'un document html (et xml)
e Spécifier une api de manipulation de cette représentation.
Le Dom
Dom

e une représentation objet normalisée des documents html et xml,
sous forme arborescente.

e une api qui permet d'accéder au document et de manipuler son
contenu, sa structure et ses styles.

e permet ainsi d'interfacer un document avec un langage, comme
javascript, mais aussi python, php, java, etc....

3/46

Plusieurs niveaux de spécification ont vu le jour :

DOM 1 (1998) : manipulation d'un document html ou xml.

DOM 2 (2001) : derniére version finalisée : ajout de méthodes de
parcours de |'arbre, gestion des evénements et des feuilles de styles,

vues filtrées.

DOM 3/4 (2004/2014) : interface de chargement et de sauvegarde
de documents xml, événement clavier, XPath...

e DOM Living Standard : n'est plus versionné.

Tous les navigateurs supportent le DOM 2/3.

Quelques références
® https://developer.mozilla.org/fr/docs/DOM&

® http://www.w3.org/DOM&

4/46

https://developer.mozilla.org/fr/docs/DOM
http://www.w3.org/DOM

Structure du DOM

Structure du DOM

Un arbre

Structure arborescente de noeuds (node).

Chaque noeud est un objet, avec des méthodes et des attributs.

Cette interface est implanté pour plusieurs langages, comme
javascript, php, java, python, perl, activeX.

Les noms des interfaces, classes, méthodes et propriétés sont
indépendantes du langages.

e Interface DOM pour d’autres documents (xml) du WEB : MathML,
SVG, X3D, etc.

5/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">

<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1li>
 Elément li

</div>
Element
texte

6/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">

<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1li>
 Elément li

</div>
Element
texte

6/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">

<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1li>
 Elément li

</div>
Element
texte

6/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">
<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1i> Element
Elément li
 texte
</div>
Element
texte

6/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">

<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1li>
 Elément li

</div>
Element
texte

6/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">

<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1li>
 Elément li

</div>
Element
texte

6/46

Un exemple

HTML = DOM = Vue

; Navigateur = parseur HTML + moteur graphique
Parseur HTML : construit I'arbre DOM en mémoire
Moteur graphique : construit une représentation de
I'arbre DOM, suivant les régles données dans les CSS

' Document '

Elément div

Représentation hiérarchique sous forme

d’arbre.

<div id="exemple">

<p>un paragraphe</p> (Elément p) (Element ul)

un element de liste</1li>
 Elément li

</div>
Element
texte

6/46

DOM Core API

DOM Living Standard

https://dom.spec.whatwg.org/ &

~ Pour chaque classe, il existe des méthodes (noms explicites en
camelCase) et propriétés pour accéder aux données et les modifier.

~~ DOM HTML spécialise le DOM CORE.

7/46

https://dom.spec.whatwg.org/

Type de noeud

Il'y a une interface Node, dont dérive les noeuds de type :

e Element : représente un élément HTML.

e Text : représente du texte (forcément une feuille de I'arbre).

Un noeud de type Element peut avoir des fils éléments et/ou textes.

8/46

Principaux objets

Voir la référence sur MDN

https://developer.mozilla.org/en-US/docs/Web/API/Document_0Object_Model &

e Node : les noeuds, qui peuvent étre de différents types :
e Document : le document (racine) duquel on a construit le DOM
e Element : nceuds éléments HTML (ou XML), contiennent d’autres
noeuds (de type Element, Comment. . .)

e CharacterData : noeuds de texte, contiennent du texte (objet Text)
e Event : les événements

e ctc.
Deux objets représentent des collections :

e NodeList : liste de noeuds (par exemple la liste des fils d'un noeud)
e HTMLCollection : liste d'éléments

Une collection peut &tre statique ou "vivante" (live), c'est-a-dire que les
changements du DOM vy sont reflétés en permanence.

9/46

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

Manipulation du DOM

Manipulation du DOM

Les noeuds

Accéder a un noeud

Directement

~~ avec un nom d'élément :
NodeList getElementsByTagName(in DOMString tagname) ;
avec l'interface correspondante a une liste de noeud :

interface NodeList {
Node item(in unsigned long index);
readonly attribute unsigned long length;

3

~~ avec un identifiant :

Element getElementById(in DOMString elementId);

10/46

Accéder a un noeud

Avec un selecteur css (http://www.wS.org/TR/selectors—api/@0

e Selector Api du DOM : reprend le mécanisme de selections de
jquery qui utilise des selecteurs css.

e Un selecteur css : une régle css (qui selectionne donc un ensemble de
noeuds).

let el = document.querySelector(".myclass");

// renvoie le premier noeud correspondant

let special = document.querySelectorAll("p.warning, p.note");

// renvoie tous les noeuds sous forme d'une NodelList

let cells = document.querySelectorAll("#score>tr>td:nth-of-type(2)");
// si aucune correspondance, renvoie null

// Les pseudo-classes css ne sont pas supportées

11/46

http://www.w3.org/TR/selectors-api/

Accéder a un noeud

readonly
readonly
readonly
readonly
readonly
readonly

readonly

attribute
attribute
attribute
attribute
attribute
attribute
attribute

node

Node
NodeList
Node

Node

Node

Node
NamedNodeMap

en parcourant |'arbre avec les propriétés de la classe

parentNode;
childNodes;
firstChild;
lastChild;
previousSibling;
nextSibling;
attributes;

@Firefox stocke |'ensemble des espaces du document html sous forme

de noeuds texte. il faut les prendre en compte lors des traitements.

12/46

Créer un noeud

Dans la classe Document

~~ un noeud élément :

Element createElement (in DOMString tagName)
raises(DOMException) ;

~ un noeud texte :
Text createTextNode (in DOMString data);
~~ un noeud attribut :

Attr createAttribute(in DOMString name)
raises (DOMException) ;

13/46

Créer un noeud

On peut également dupliquer un noeud avec la méthode cloneNode de
la classe Node :

let elem=document.getElementById("mon_div");
let sous_arbre=elem.cloneNode(true);
let div=elem.cloneNode(false);

14/46

ter/Supprimer

Méthode de la classe node :

Node insertBefore(
in Node newChild,
in Node refChild)
raises(DOMException) ;

Node replaceChild(
in Node newChild,
in Node 01ldChild)
raises (DOMException) ;

Node removeChild(in Node o0ldChild)

raises (DOMException) ;

Node appendChild(in Node newChild)
raises (DOMException) ;

15/46

AlJouter/Supprimer

Méthode récente d'ajout :

let div = document.createElement("div");
let p = document.createElement("p");
div.append("Du texte", p, "<p>paragraphe</p>");

Méthode récente de remplacement :

let div = document.querySelector ("#myDiv") ;
let p = document.createElement("p");
div.replaceChildren(p,"Du texte","<p>paragraphe</p>");

div.replaceChildren(); // efface les fils

16/46

1. Arbre initial

<div id="mon_div">
toto</1i>
</div>

2. Exécution du code

let zone=document.getElementById("mon_div");

let p=document.createElement("p") ;

let texte=document.createTextNode("blablabla ...");
p.appendChild(texte);

zone . appendChild(p) ;

3. Nouvel arbre

<div id="mon_div"> div
toto</1i>
<p>blablablabla ...</p> (") (5)
</div>

17/46

1. Arbre initial

<div id="mon_div">
toto</1i>
</div>

2. Exécution du code

let zone=document.getElementById("mon_div");

let p=document.createElement("p") ;

let texte=document.createTextNode("blablabla ...");
p.appendChild(texte);

zone . appendChild(p) ;

3. Nouvel arbre

<div id="mon_div"> div
toto</1i>
<p>blablablabla ...</p> (") (5)
</div>

17/46

1. Arbre initial

<div id="mon_div">
toto</1i>
</div>

2. Exécution du code

let zone=document.getElementById("mon_div");

let p=document.createElement("p") ;

let texte=document.createTextNode("blablabla ...");
p.appendChild(texte);

zone . appendChild(p) ;

3. Nouvel arbre

<div id="mon_div"> div
toto</1i>
<p>blablablabla ...</p> (") (=)
</div>

17/46

Manipulation du DOM

Les attributs

Attributs

Tout élément (node de type NODE_ELEMENT) peut contenir des attributs,
c'est a dire une paire (clé,valeur) rajoutant des informations.

interface Element : Node {

readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name) ;
void setAttribute(in DOMString name,

in DOMString value)

raises (DOMException) ;

void removeAttribute(in DOMString name)
raises (DOMException) ;

Attr getAttributeNode (in DOMString name) ;

Attr setAttributeNode(in Attr newAttr)
raises (DOMException) ;

Attr removeAttributeNode (in Attr oldAttr)

raises (DOMException) ;
boolean hasAttribute(in DOMString name);

18/46

DOM HTML

La plupart des attributs HTML sont accessibles via des propriétés de
I'objet JS représentant un élément :

e id : identifiant d'un élément

e href : attribut href, pour un lien

e src : attribut src, pour une image

e style : objet représentant le contenu de I'attribut style (voir plus
loin)

e classList : objet représentant le contenu de I'attribut class (voir
plus loin)

e etc.

Attention, la valeur de ces propriétés n'est pas forcément exactement
identique a celle de I'attribut (par exemple, la propriété src d'un
HTMLImageElement contient I'URL absolue vers I'image, telle que
résolue par le navigateur)

19/46

Sous-arbre

On peut manipuler des sous-arbres avec I'objet DocumentFragment.

On utilise un fragment comme un noeud.

let zone=document.getElementById("ma_zone" 5

let fragment=document.createDocumentFragment();

let jours=["lundi",'"mardi","mercredi","jeudi","vendredi",
"samedi","dimanche"];

for(let j of jours) {
let p=document.createElement("p");
let texte=document.createTextNode(j);
p.appendChild(texte) ;
fragment.appendChild(p) ;

}

zone . appendChild (fragment) ;

Quel est le pére des paragraphes crées?

20/46

Trés utile lorsque I'on aurait été obligé de modifier le dom aprés chaque
insertion de noeud, comme c'est le cas dans |'exemple précédent.
Permet de gagner en performance (pas de reflow).

Il 'est important de savoir comment une librairie qui abstrait le dom gére
sa modification.

21/46

Manipulation du DOM

Dom et XML

Javascript permet :

e de créer des documents xml, vierges ou a partir d'un fichier xml
local.

e de le parser avec I'api DOM.

e de le transformer avec xslt.

22/46

DOM HTML

Dom HTML

Le DOM HTML est une extension du DOM CORE.

Pourquoi ?

e Spécialiser et ajouter des attributs et fonctionnalités spécifiques aux
documents et éléments HTML.
e Assurer la compatibilité avec le DOM 0.

e Ajouter des mécanismes, des traitements utiles, communs et
pratiques dans le cas spécifique d'HTML.

23/46

DOM HTML

e HTMLDocument dérive de Document du DOM CORE.
e HTMLElement dérive de Element du DOM CORE.

e Nouvelle Interface pour chaque type d'éléments html qui spécialise
HTMLElement.

24/46

HTMLDocument

interface HTMLDocument : Document {

attribute DOMString
readonly attribute
readonly attribute
readonly attribute
attribute HTMLEleme:
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
attribute DOMString
// raises(DOMExzcept

void
void
void
void
NodeList

title;
DOMString referrer;
DOMString domain;
DOMString URL;
nt body;

HTMLCollection images;

HTMLCollection applets;

HTMLCollection 1links;

HTMLCollection forms;

HTMLCollection anchors;
cookie;

ion) on setting

open() ;

close();

write(in DOMString text);

writeln(in DOMString text);
getElementsByName (in DOMString elementName) ;

25/46

HTMLElement

interface HTMLElement : Element {
// DOM tree accessors
NodeList getElementsByClassName(in DOMString classNames) ;

// dynamic markup insertion
attribute DOMString innerHTML;

// metadata attributes
attribute DOMString id;
attribute DOMString title;
attribute DOMString lang;
attribute DOMString dir;
attribute DOMString className;

La plupart des éléments html spécialisent cette classe. Voici deux
exemples

26/46

HTMLFormElement

interface HTMLFormElement : HTMLElement {
readonly attribute HTMLCollection elements;

readonly attribute long length;
attribute DOMString name;

attribute DOMString acceptCharset;
attribute DOMString action;
attribute DOMString enctype;
attribute DOMString method;
attribute DOMString target;

void submit () ;

void reset();

27/46

HTMLTableElement

interface HTMLTableElement : HTMLElement {

// Modified in DOM Level 2:
attribute HTMLTableCaptionElement caption;
// raises(DOMEzception) on setting

// Modified in DOM Level 2:
attribute HTMLTableSectionElement tHead;
// raises(DOMEzception) on setting

// Modified in DOM Level 2:
attribute HTMLTableSectionElement tFoot;
// raises(DOMEzception) on setting

readonly attribute HTMLCollection rows;
readonly attribute HTMLCollection tBodies;

attribute DOMString align;
attribute DOMString bgColor;
attribute DOMString border;
attribute DOMString cellPadding;
attribute DOMString cellSpacing;
attribute DOMString frame;
attribute DOMString rules;
attribute DOMString summary ;
attribute DOMString width;

28/46

HTMLTableElement (suite)

interface HTMLTableElement : HTMLElement {

HTMLElement createTHead () ;
void deleteTHead () ;
HTMLElement createTFoot () ;
void deleteTFoot();
HTMLElement createCaption();
void deleteCaption();
// Modified in DOM Level 2:
HTMLElement insertRow(in long index)

raises (DOMException) ;

// Modified in DOM Level 2:

void deleteRow(in long index)
raises(DOMException) ;

by

Spécifications complétes
http://www.w3.org/TR/DOM-Level-2-HTML/ &

20/46

http://www.w3.org/TR/DOM-Level-2-HTML/

La propriété innerHTML permet de récupérer ou fixer le contenu html
d'un élément, a partir d'une chaine de caractéres (représentant un

fragment d'html)

document
.getElementById("ma_div")
. innerHTML="<p>youpi !!!</p>";

On a aussi innerText et textContent.

30/46

DOM et CSS

Attribut style d'un noeud.

let toto = document.getElementById('toto');
toto.style.color="green";
toto.style.backgroundColor="blue";
toto.style.display="none";

Attribut ClassList d'un noeud.

div.classList.toggle("visible", i < 10);

// ajouter ou supprimer plusieurs classes
div.classList.add("foo", "bar", "baz");
div.classList.remove("foo", "bar", "baz");

const cls = ["foo", "bar"];
div.classList.add(...cls);
div.classList.remove(...cls);

// remplacer la classe "foo" par la classe "bar"

div.classList.replace("foo", "bar");

31/46

DOM Events

Des événements peuvent étre associé a des balises html en utilisant

certains de leur attribut dont le nom est préfixé par on (onload, onclick,
etc...)

e dans I'html directement.

e directement dans la noeud.

@mélange (x)html et javascript @

DOM fournit un support a la gestion des événements.

32/46

Support DOM des evts

e Modéle générique qui permet :
e |'enregistrement de handlers d'evénements.
e de décrire le mécanisme de propagation des evénements dans une
structure d'arbre.
e de décrire une information contextuel pour chaque événement.

e Fournir un sous-ensemble commun pour ce qui est déja utilisé dans
DOM 0. (augmenter la portabilité)

e Consulter les pages

https://www.w3.org/TR/uievents/ &

33/46

https://www.w3.org/TR/uievents/

DOM Events

Propagation

Le flot

prd
~—| DefaultView
/ -~
\ \
\,

~.
Phase =
1) y>
-~ BebieY _ Bubbling
\ N, Phase
. J (3)
(— -
\, ~~_
4 << S\ 5
X. | TUUe—=

Phase
(2)
Shady Grove Aeolian Over the River,
arlie

34/46

e Basiquement, chaque événement posséde une cible (EventTarget)
a qui il est délivré.
e Tous les handlers correspondant sont alors éxécutés (ordre 7).

Il existe deux modes de propagations :

Modes

Ascendant nommé bubbling, bas niveau vers haut niveau.(I.E
au début)

Descendant nommé capturing, haut niveau vers bas niveau.

(Netscape au début)

35/46

e capturing
Lors de la délivrance d’un événement a sa cible, I'événement peut
étre délivré a un noeud parent (en partant de la racine) si le noeud a
enregistré une fonction reflexe en autorisant la capture avec le
paramétre useCapture dans la fonction d’enregistrement
(addEventListener).
La propagation peut-étre interrompu avec la méthode
stopProgagation de la classe Event.

e bubbling
Certains événements, aprés la phase de descente, sont alors délivrés
aux parents de la cible (qui ont enregsitré une fonction reflexe), en
remontant vers la racine. (ceux qui avaient capturé en sont exclus!)
La propagation peut étre interrompue avec la méthode
stopProgagation de la classe Event.

36/46

e Cancelation : L'implémentation Dom (I'application) posséde un
traitement par défaut pour certains événements (click et hyperlien
par exemple)

Quand I'événement survient, les fonctions reflexes sont exécutées. Le
traitement par défaut peut étre alors inhibé par la méthode
preventDefault de la classe Event.

37/46

DOM Events

Evts

function ReponseClick(e){

/* traitement*/

// e.target : siége de l'evenement

// e.currentTarget : propagation ou capture
}
let n=document.getElementById("mon_noeud") ;
n.addEventListener("click”,ReponseClick,false);

n.removeEventListener ("click" ,ReponseClick,true);

38/46

Types d’evts

I existe plusieurs catégories logiques d'événements :

‘ Evénement ‘ Event ‘ Evenement générique ‘
Interface UlEvent DOMActivate, DOMFocusln,
Utilisateur DOMFocusOut et événements
claviers

Evt souris MouseEvent click, mousedown, mouseup, mou-
seover, mouseout

WheelEvent

Evt clavier KeyboardEvent | input, keydown, keyup, etc.

Evt élément HTMLEvent abort, blur, change, focus, error,

html load, unload, reset, scroll, select,
submit, ...

Evt de MutationEvent | modification du DOM obsoléte

mutation (Mutation observer)

39/46

Evénements souris

‘ Nom ‘ Description ‘
click clic de souris dans I'élément
mousedown, mouseup bouton enfoncé, relaché
mouseover, mouseout le pointeur entre ou sort de I'élément
mousemove déplacement du pointeur

e Tous ces événements sont transmis aux ascendants (bubbling).
e Seul mousemove n’a pas de traitement par défaut (cancelable).

e || existe également une interface WheelEvent qui dérive de
MouseEvent. Le nom de |I'événement est wheel

40/46

Evénements clavier

e |l n'existe pas dans DOM 2!
e Introduction dans DOM 3 (depuis 2009)

e L'interface correspondante est KeyboardEvent

41/46

Evénements clavier

Nom Description

input

keydown

keypress touches qui produisent un caractére
keyup

42/46

Html Events

Evénements relatifs a I'interface graphique.

Nom Description

focus, blur un élément gagne ou perd le focus

load chargement complet d'une page

resize fenétre du navigateur redimensionnée

scroll page scrollée

unload page déchargée

abort chargement d'une page stoppée avant le charge-
ment complet d'une image

error erreur de chargement ou dans un script

43/46

Html Events

Evénements relatifs aux éléments de formulaire

Nom ‘ Description

change changement dans un élément de formulaire
(quand il perd le focus)

input déclenché aprés chaque changement

reset réinialisation du formulaire

select selection de texte

submit soumission d'un formulaire

44/46

	Le DOM : introduction
	Structure du DOM
	Manipulation du DOM
	Les noeuds
	Les attributs
	Dom et XML

	DOM HTML
	DOM et CSS
	DOM Events
	Propagation
	Evts

