
R4.01-R4.A.10

Compléments javascript

monnerat@u-pec.fr

23 janvier 2026

IUT de Fontainebleau

Variables et types
Flow d’exécution en js
Objets
Fonctions

Fonction comme constructeur

Fermetures (closures)

Chaînage des objets, prototype
Décomposition
Fonction fléchées
Itération d’un tableau

1/96

monnerat@u-pec.fr

Sommaire

Variables et types

Flow d’exécution en js

Objets

Fonctions

Chaînage des objets, prototype

Décomposition

Fonction fléchées

Itération d’un tableau
41/96

Variables et types

Déclaration

var

var a = 0, b = 1
var c //typeof c === 'undefined'

• En dehors de toute fonction, la variable est assignée à l’objet global,
et visible partout.

• Dans une fonction, elle est assignée à la fonction, visible
(uniquement) dans toute la fonction.

let : limite la portée (scope) d’une variable au bloc où elle est déclarée.

const : idem let, mais on ne peut plus modifier la valeur de la variable.

const a = 'toto'

Si la variable a est une référence sur un objet, const ne rend pas l’objet
immutable !

42/96

Scope/portée

Portée lexicale (statique)

43/96

Pas de portée dynamique en javascript

function foo() {
console.log(a); // affiche 2

}

function bar() {
let a = 3;
foo();

}

let a = 2;
bar();

44/96

Typage

Le type est déterminé lors de l’inialisation ou d’une affectation. Il peut
changer lors d’une affectation.

Types primitifs

null littéral null : représente la "nullité" (aucune valeur pour
l’objet n’est présente).

undefined propriété de l’objet global, qui vaut undefined. type "un-
defined"

boolean booléens : true,false
number Entier : 102,0xaef,075.

Réel : 3.1415,-6.23e-12.
string Chaîne de caractères. "toto",’toto’. Les caractères

d’échappement du C sont reconnus

Tout le reste est constitué d’objets et de fonctions (objet aussi).

45/96

⇝ typeof(x) retourne, sous forme d’une chaîne, le type de x. typeof
sur une variable non définie renvoie la chaîne "undefined".

⇝ A noter la présence de l’opérateur a===b qui renvoit true si a et b
sont de même type et de même valeur (et !==).

⇝ Sur des objets, a===b teste directement l’adresse (a et b doivent
correspondre à la même adresse).

Remarques :

• l’opérateur typeof ne renvoie pas d’erreur si l’objet n’est pas défini.

• toute variable définie, non initialisé a pour type "undefined".

>let x
>x === undefined
true
>typeof x
"undefined"
>typeof y
"undefined"

46/96

Conversion de type

Le type String (immuable) est dominant.

⇝ Conversion implicite avec les opérateurs d’égalités faibles (==). JS
essaie dans beaucoup de situtations de transtyper vers le type
Number (cf algo sur MDN).

⇝ Conversion explicite avec Boolean(), Number(), String()

⇝ Toutes les valeurs de types primitifs peuvent être transtypés en
booléens.

⇝ Pas de conversion avec les oprérateurs d’égalités strictes (===).

N=12;
T="34";
X=N+T;// X est la chaîne 1234
X=N+Number(T);// X vaut 46

47/96

Gabarit de chaîne de caractères

• Délimité avec ‘....‘, éventuellement sur plusieurs lignes (les sauts
de lignes font parties de la chaîne).

• Interpolation d’expressions avec ${...}.

const sanctionMaximale = 5;
let message = `

<h1>Attention!</h1>
<p>La pratique non autorisée du hockey peut résulter en
une sanction maximale de ${sanctionMaximale} minutes.</p>

`;

Atention aux xss avec des données "dynamiques" évidemment.

48/96

Gabarit étiqueté

Étiquette (fonction) qui "calcule" la valeur finale du gabarit.

let personne = 'Michou';
let age = 28;

function monEtiquette(chaines, expPersonne, expAge) {
let chn0 = chaines[0]; // "ce "
let chn1 = chaines[1]; // " est un "
let chnAge;
if (expAge > 99){

chnAge = 'centenaire';
} else {

chnAge = 'jeunot';
}
// On peut tout à fait renvoyer une chaîne construite avec un gabarit
return `${chn0}${expPersonne}${chn1}${chnAge}`;

}

let sortie = monEtiquette`ce ${ personne } est un ${ age }`;
console.log(sortie); // ce Michou est un jeunot

49/96

Booléens et opérateurs logiques

Les (seules) 6 valeurs sont converties en false

false
undefined
null
NaN
0
"" (empty string)

Tout le reste est transtypé en true

On peut faire un transtypage vers un booléen avec

let a = []
b = !!a

50/96

!expr

Renvoie false si expr peut être transtypé en true, sinon true.

expr1 && expr2

Attention, renvoie expr1 si elle peut être convertie en false et renvoie
expr2 sinon.

expr1 || expr2

Attention, renvoie expr1 si elle peut être convertie en true et renvoie
expr2 sinon.

const or = '' || 'hi'; // "hi"
const or = [] || 'hi'; // []

const and = '' && 'hi'; // ""
const and = [] && 'hi'; // "hi"

51/96

null, undefined

js> var x=null;
js> typeof(x)

"object"
js> var y
js> typeof(y)

"undefined"
js> x==y

true
js> x===y

false
js> !x

true
js> !y

true
js> z == null
typein:1: ReferenceError: z is not defined
js> z == undefined
typein:2: ReferenceError: z is not defined
js> typeof z
"undefined"

js> var s=""
js> s==null

false
js> !s

true
js> var t={}
js> t==null

false
js> !t

false
js> typeof(t)

"object"

52/96

Nullish coalescing operator ??

L’opérateur de coalescence des nuls (??), est un opérateur logique qui
renvoie son opérande de droite lorsque son opérande de gauche vaut null
ou undefined et qui renvoie son opérande de gauche sinon.

const foo = null ?? 'default string';
console.log(foo);

const baz = 0 ?? 42;
console.log(baz);
// expected output: 0

53/96

Value vs réferénce

• Les variables de type primitifs sont copiées/passées par valeur.

var x = 10;
var a = x;
x=15
console.log(x, a); // -> 15,10

• Les variables qui ne sont pas de type primitifs (les objets en gros)
sont en fait une référence.

var reference = [1];
var refCopy = reference;

reference.push(2);
console.log(reference, refCopy); // -> [1, 2], [1, 2]

Réassigner une variable avec un autre objet remplace la référence.

54/96

Comparer/assigner par valeur

var arr1 = ['Hi!'];
var arr2 = ['Hi!'];
console.log(arr1 === arr2); // -> false

Stringifier les objets pour comparer leur contenu :

var arr1str = JSON.stringify(arr1);
var arr2str = JSON.stringify(arr2);
console.log(arr1str === arr2str); // true

Copier un objet par valeur :

b=JSON.parse(JSON.stringify(a))

Pas toujours possible. Attention au problème de copie
superficiel/profondeur. On a aussi

structuredClone()

55/96

Passage des arguments à une fonction :

• Le passage des arguments de type primitif se fait par valeur.

• Le reste se fait par référence.

56/96

Flow d’exécution en js

Une fenêtre de navigateur utilise un seul thread pour parser l’html, gérer
les évenements et exécuter le code javascript.

• le code de "haut niveau" dans les balises script est exécuté
pendant le chargement de la page.

• les handlers d’évènements à exécuter sont enfilés dans une file de
messages (Queue) et consommés (la fonction correspondante est
exécutée complétement) au fur et à mesure (Event Loop).

Remarques

• Il existe une api pour exécuter du code dans un thread séparé : Web
Workers. Communication par message avec le thread principal.

• La plupart des opérations d’E/S sont asynchrones. Il est possible que
le navigateur utilise suivant son implantation un thread dédié ou pas.

• On peut écrire des fonctions qui s’exécutent de manière asynchrone
avec les promesses.

57/96

58/96

Objets

Les objets

Ils sont traités en interne comme des tableaux associatifs. Pas de vraies
classes.

• pas de "vrai" héritage.

• uniquement des créations d’objets et de propriétés prototypes.

• les méthodes statiques existent.

• notation pointée.

Remarques

• Certains objets sont justes des agrégateurs de propriétés, d’autres
peuvent être exécutés (fonctions).

• La méthode Object.assign() permet de copier les propriétés
"directes" d’un objet dans un autre.

59/96

Déclaration d’un objet avec la syntaxe JSON

var obj=
{

x:2,
y:3,
somme(){

return this.x+this.y;
}

};
alert(obj.x);
alert(obj['x']);
alert(obj.somme());

Déclaration d’une "classe" par la définition de son constructeur.

60/96

Opérateur de chaînage optionnel

L’opérateur ?. (en cours de support) permet de lire une propriété d’un
objet. Si la propriété n’existe pas, l’expression ne provoque pas une
erreur, mais est évaluée en undefined.

const adventurer = {
name: 'Alice',
cat: {

name: 'Dinah'
}

};
const dogName = adventurer.dog?.name; // undefined

61/96

On peut les emplier

let client = {
nom: "Carl",
details: {

age: 82,
localisation: "Paradise Falls"
// adresse détaillée inconnue

}
};
let villeDuClient = client.details?.adresse?.ville;

// Cela fonctionne aussi avec le chaînage optionnel
// sur les appels de fonction
let duree = vacations.trip?.getTime?.();

Fonctionne avec les tableaux et les appels de fonctions.

62/96

Fonctions

Les fonctions sont des objets !

js> var obj = {};
js> var fn = function(){};
js> obj.prop = "some value";
js> fn.prop = "some value";
js> obj.prop == fn.prop
true

Pas de problème. Les fonctions
ont des propriétés.

Une fonction peut

• être affectée à des variables ou des structures de données.

• être passée comme paramètre.

• être retournée par une fonction.

• être construite lors de l’exécution.

63/96

Utilisation d’un cache

function isPrime(num) {
if (isPrime.cache[num])

return isPrime.cache[num];
let prime = num != 1; // Everything but 1 can be prime
for (let i = 2; i < num; i++) {

if (num % i === 0) {
prime = false;
break;

}
}
isPrime.cache[num] = prime
return prime;

}
isPrime.cache = {};
js> isPrime(5)
true
js> isPrime.cache[5]
true

64/96

Contexte et this

Une fonction s’éxécute dans un "contexte" accessible par le mot clé this.

ici l’objet global

js> this
({})
js> var x=3;this
({x:3})
js> function f(){this.y=4;}
js> f()
js> y
4
js> this
({x:3, f:function f() {this.y = 4;}, y:4})

ici l’objet katana

js> var katana = {
isSharp: true,
use (){
this.isSharp = !this.isSharp;

}
};
js> katana.use();
js> katana.isSharp
false

• this dans une fonction est l’objet qui l’appelle.
• En mode strict, (’use strict’), en dehors de tout objet, this est
undefined.

• Dans une fonction fléchée, this n’est pas défini, mais provient de sa
portée lexical (comme une autre variable).

65/96

Expliquez

var prop = 10
let o = {prop: 37}

function alone() {
return this.prop

}

o.f = alone

console.log(alone()) // 10
console.log(o.f()) // 37

66/96

apply, call

On peut le changer avec apply ou call lors de l’appel

js> function S(a){return this.x + a;}
js> x=2
js> S.call(this,2)
4
js> var obj={x:3}
js> S.apply(obj,[2])
5

67/96

bind

bind crée une copie d’une fonction liéé (contexte this) à un objet donné.

let o = {
prop: 0,
getProp(){

return this.prop
}

}

let oo = {prop : 1}

o.getProp = o.getProp.bind(oo)
console.log(o.getProp()) // 1

Expliquez.

68/96

Tableau arguments :

function test() {
alert("Nombre de parametres: " + arguments.length);
for(var i=0; i<arguments.length; i++) {

alert("Parametre " + i + ": " + arguments[i]);
}

}
test("valeur1", "valeur2");
test("valeur1", "valeur2", "valeur3", "valeur4");

Obsolète avec ES6 (cf opérateur de décomposition). On préfèrera la
forme (compatible avec les fonctions fléchées)

function test(...args){
// le tableau args contient tous
// les paramètres d'appel.
}

69/96

Fonctions

Fonction comme constructeur

Le mot clé new

function user(prenom,nom){
this.prenom = prenom;
this.nom=nom;
this.changerNom = function (n){

this.nom=n;
};

}

js> var Denis = user("denis","monnerat");
js> Denis.prenom
typein:16: TypeError: Denis is undefined
js> var Moi = new user("denis","monnerat");
js> Moi.prenom
Denis

70/96

L’opérateur new, suivi de la fonction équivaut à :

function user(prenom,nom){
this.prenom = prenom;
this.nom=nom;
this.changerNom = function (n){

this.nom=n;
};

}

js> var Denis={};
js> user.call(Denis,"Denis","Monnerat");

• On peut voir cela comme la définition d’une classe user, et d’une
instanciation avec new.

• Chaque objet garde une trace du "constructeur" avec la propriété
(fonction) constructor.

71/96

Fonctions

Fermetures (closures)

Closures/fermetures

function compteur() {
let count = 0;

return function() {
return count++;

};
}

let plusUn = compteur();
let plusUnBis = compteur();

console.log(plusUn());
0
console.log(plusUn());
1
console.log(plusUnBis());
0
console.log(plusUn());
2
console.log(plusUnBis());
1

Quand une fonction est appelée, elle s’exécute dans le scope défini lors de
sa déclaration (scope/portée lexical).

72/96

Dans une fonction réflexe :

let results = jQuery("#results").html("Loading...");
jQuery.get("test.html", function(html){

results.html(html);
});

Dans un timer :

let count = 0;
let timer = setInterval(function(){

if (count < 5) {
count++;

} else {
clearInterval(timer);

}
}, 100);

73/96

Propriété privée avec une fermeture

function T(){
let x = 0;
this.getX = function(){

return x;
};
this.X = function(){

x++;
};

}
js> let t=new T()
js> t.x == undefined
true
js> t.getX()
0
js>t.X()
js>t.getX()
1

74/96

Modules

(function() {

// declare private variables and/or functions
return {

// declare public variables and/or functions
}

})();

Remarque : la notion de modules est maintenant explicite avec export et
import.

75/96

var counter = (function(){
let x = 0;
function _inc(){

x++;
}
function _dec(){

x--;
}
return {

INC:_inc,
DEC:_dec,
GET:function(){

return x;
},
SET:function(a){

x=a;
}

}
})();

counter.SET(0);
counter.INC();
counter.DEC();
console.log(counter.GET());

76/96

Chaînage des objets, prototype

Propriété [[prototype]]

En ce qui concerne l’héritage, js n’utilise qu’une seule structure : les
objets.

• Chaque objet posséde une propriété "privée" qui contient un lien
vers un autre objet appelé prototype.

• Cet objet a également un prototype, et ainsi de suite, jusqu’à null.

• La majorité des objets js sont des "instances" de Object, qui est
l’avant dernier maillon de la chaîne de prototype.

Quand on accéde à une propriété d’un objet en lecture, celle-ci est
cherché dans l’objet lui-même, puis dans son prototype, et ainsi de suite.

Héritage (chaînage) prototypal

77/96

[[prototype]] est accessible via la propriété __proto__ (obsolète)

On peut utiliser les accesseurs Object.getPrototypeOf() et
Object.setPrototypeOf()

let animal = {
eats : true,
walk(){

return "animal walks"
}

}

let rabbit ={
jumps : true

}

let hare = {
earLength : 10

}
Object.setPrototypeOf(rabbit , animal)
console.log(rabbit.walk()) // animal walk

Object.setPrototypeOf(hare , rabbit)
console.log(hare.walk()) // animal walk

78/96

Héritage avec fonction constructeur (ou classe)

On a déjà vu qu’il est possible de créer des objets en passant par une
fonction constructeur (ou une classe), en utilisant l’opérateur new.

function Rectangle(l,h){
this.l = l
this.h = h

}
let r1 = new Rectangle (10,20)

Que vaut [[prototype]] de l’objet r1 ?

L’opérateur new F(...) utilise la propriété "publique" (c’est un objet)
F.prototype de la fonction constructeur pour définir [[prototype]]
du nouvel objet.

Remarque : la création d’un objet littéral utilise new Object().

79/96

Toute fonction a la propriété prototype. Par défaut, c’est un objet avec
comme seule propriété constructor qui renvoie à la fonction elle-même.

On peut donc rajouter de manière dynamique des propriétés à une
instance en passant par le prototype de son constructeur.

r1 = new Rectangle(10,20)
Rectangle.prototype.surface = function (){

return this.l * this.h
}

console.log(r1.surface())

• Expliquez précisemment ce qui se passe au moment de l’appel
r1.surface() .

• Expliquez la différence si on intégre à priori la méthode surface dans
le constructeur.

80/96

Classes

Depuis ECMAScript 2015, la notion de classe (sucre syntaxique) a été
introduite :

class Animal {
constructor(name) {

this.speed = 0
this.name = name

}
run(speed) {

this.speed = speed
return `${this.name} runs with speed ${this.speed}.`

}
stop() {

this.speed = 0;
return `${this.name} stands still.`

}
}
let animal = new Animal("My animal")

81/96

Animal constructor: Animal
run: function
stop: function

Animal.prototype

name: "My animal"

new Animal

prototype

[[prototype]]

Remarques :

• les méthodes de la classe Animal sont placées dans le prototype.

• exécution en mode strict même sans "use strict".

82/96

Méthodes statiques

class Point {
constructor(x, y) {

this.x = x;
this.y = y;

}
static distance(a, b) {

const dx = a.x - b.x;
const dy = a.y - b.y;
return Math.hypot(dx, dy);

}
}
const p1 = new Point(5, 5);
const p2 = new Point(10, 10);
console.log(Point.distance(p1, p2));

83/96

Sous-classe

class Rabbit extends Animal {
hide() {

return `${this.name} hides!`
}

}

let rabbit = new Rabbit("White Rabbit")

rabbit.run(5) // White Rabbit court à la vitesse 5.
console.log(rabbit.hide()) // White Rabbit se cache!

Comment fonctionne en interne le mot clé extends ? Il utilise le
prototype

84/96

Animal constructor: Animal
run: function
stop: function

Animal.prototype

Rabbit
constructor: Rabbit
hide: function

Rabbit.prototype

name: "White Rabbit"

new Rabbit

prototype

prototype

extends [[prototype]]

[[prototype]]

Expliquez ce qui se passe lors de l’appel rabbit.run()
85/96

Décomposition

Opérateur de décomposition

// dans un appel de fonction f(...objetIterable);
function sum(x, y, z) {

return x + y + z;
}
const numbers = [1, 2, 3];
sum(...numbers);

// Pour les littéraux de tableaux [...objetIterable, 4, 5, 6]
let arr1 = ['A', 'B', 'C'];
let arr2 = ['X', 'Y', 'Z'];
let result = [...arr1, ...arr2];

// les literraux objets { ...obj };
let g = { x:{z:3},s:"toto"};
let gg = {h:true,...g};

86/96

Opérateur de décomposition

Fonction avec un nombre d’arguments variables

let sum = function (...args){
return args.reduce(function (a, b) {

return a + b
}, 0)
}

On pourra même écrire avec les fonctions fléchées

let sum = (...args) => args.reduce((a, b) => a+b , 0)

87/96

Affectation par décomposition

Avec les tableaux (itérables)

let [a,b] = [1,2]
let [a,...b] = [1,2,3,4]
let [,,b] = [1,2,3]
[a,b] = [b,a]

88/96

Avec les objets

const o = {p: 42, q: true};
const {p, q} = o;

console.log(p); // 42
console.log(q); // true
// Assign new variable names
const {p: toto, q: truc} = o;

console.log(toto); // 42
console.log(truc); // true

let {a, b, ...reste } = {a: 10, b: 20, c: 30, d: 40};
a; // 10
b; // 20
reste; // { c: 30, d: 40 }

89/96

Dans la déclaration d’une fonction

let obj = {x:1,y:2}
function f({x}){
return x + 1
}

f(obj) // ?

90/96

Fonction fléchées

Expression de fonction fléchée

(param1, param2, ... , paramn) => expression
// équivalent à
(param1, param2, ... , paramn) => {

return expression;
}
// Parenthèses non nécessaires quand
// il n'y a qu'un seul argument
param => expression
// Une fonction sans paramètre peut s'écrire avec un couple
// de parenthèses
() => { instructions }

• Syntaxe synthétique.

• Les fonctions fléchées utilisent la valeur this de leur portée
englobante, pas celle de l’appel.

91/96

Expliquez

let obj = {
x:1,
inc(){

this.x++
},
incBis : (()=> {

this.x++
})

}
obj.inc()
obj.incBis()
obj.incBis()
console.log(obj.x) // expliquez ?

92/96

Expression de fonction fléchée

document
.getElementById("img")
.onclick=function(){

this.src="on.png";
// qui est this ?

}

document
.getElementById"img")
.onclick=(()=>{

this.setTimeout(
() => console.log("OK")

),1000);
// qui est this ?

93/96

Itération d’un tableau

Itération

for, while, do...while (boucle for classique)

const arr = [1, 2, 3];
for (let i = 0; i < arr.length; i++) {

console.log(arr[i]);
}

for...of

for (const value of arr) {
console.log(value);

}

Array.prototype.forEach()

arr.forEach((value, index, array) => {
console.log(value, index);

});

94/96

Itération

map() (transformation)

const doubled = arr.map(value => value * 2);

filter() (filtrage)

const even = arr.filter(value => value % 2 === 0);

reduce() (accumulation)

const sum = arr.reduce((acc, value) => acc + value, 0);

95/96

Itération (recherche)

some(), every()

arr.some(v => v > 2); // true si au moins un élément correspond
arr.every(v => v > 0); // true si tous correspondent

find(),findIndex()

const numbers = [3, 7, 10, 15];

const result = numbers.find(n => n > 8);
const index = numbers.findIndex(result);
console.log(result); // 10
console.log(index); // 2

includes()

const fruits = ["pomme", "banane", "orange"];

const hasBanana = fruits.includes("banane");
console.log(hasBanana); // true

96/96

	Variables et types
	Flow d'exécution en js
	Objets
	Fonctions
	Fonction comme constructeur
	Fermetures (closures)

	Chaînage des objets, prototype
	Décomposition
	Fonction fléchées
	Itération d'un tableau

