AJout de l'exo 1
This commit is contained in:
parent
4b8e103b59
commit
37015daf4a
276
EXO1/README.md
276
EXO1/README.md
@ -1,2 +1,276 @@
|
|||||||
# SAE_2.04
|
# Exercice 1 : Analyse des données démographiques et professionnelles
|
||||||
|
|
||||||
|
## Table des matières
|
||||||
|
1. [Initialisation des variables](#init)
|
||||||
|
2. [Répartition des genres](#q1)
|
||||||
|
3. [Répartition des niveaux d'études selon le genre](#q2)
|
||||||
|
4. [Effectifs des 10 professions les plus représentées](#q3)
|
||||||
|
5. [Profession la plus fréquente selon le genre](#q4)
|
||||||
|
6. [Statistiques par niveau d'études](#q5)
|
||||||
|
7. [Statistiques par genre](#q6)
|
||||||
|
7. [Nuage de points et régression](#q6)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Initialisation des variables {#init}
|
||||||
|
|
||||||
|
Pour cette exercice, veuillez initaliser les variables suivantes :
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/init.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
csvDouble = csvRead("data.csv") //ouvre data.csv en une matrice d'entier
|
||||||
|
csvString = csvRead("data.csv",[],[],'string') //ouvre data.csv en une matrice de string
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Question 1 : Répartition des genres {#q1}
|
||||||
|
|
||||||
|
> Donnez sous forme de camembert la répartition des genres.
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/q1.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
genre = tabul(csvString(:,3),"i") //récupère la liste des genres ainsi que leur occurence
|
||||||
|
->genre(1) //liste les différents genres du tableau
|
||||||
|
->genre(2) //donne l'occurence correspondant aux valeurs de "genre(1)"
|
||||||
|
pie(genre(2),genre(1)) //ouvre un diagramme camembert représentant les genres en fonction de leur occurence
|
||||||
|
```
|
||||||
|
|
||||||
|
**Résultat :**
|
||||||
|
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Question 2 : Répartition des niveaux d'études selon le genre {#q2}
|
||||||
|
|
||||||
|
> Donnez sous forme d'histogramme la répartition des niveaux d'études, suivant le genre.
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/q2.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
genre_lvl = [csvString(:,3),csvString(:,4)] // crée une matrice 6699x2 avec les genres et le niveau d'études
|
||||||
|
|
||||||
|
high_homme = length(find(genre_lvl(:,2) == "0" & genre_lvl(:,1) == "Male")) // renvoie l'occurence d'hommes ayant un niveau d'étude de 0
|
||||||
|
high_femme = length(find(genre_lvl(:,2) == "0" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 0
|
||||||
|
high_autre = length(find(genre_lvl(:,2) == "0" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 0
|
||||||
|
|
||||||
|
b_homme = length(find(genre_lvl(:,2) == "1" & genre_lvl(:,1) == "Male")) // renvoie l'occurence d'hommes ayant un niveau d'étude de 1
|
||||||
|
b_femme = length(find(genre_lvl(:,2) == "1" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 1
|
||||||
|
b_autre = length(find(genre_lvl(:,2) == "1" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 1
|
||||||
|
|
||||||
|
m_homme = length(find(genre_lvl(:,2) == "2" & genre_lvl(:,1) == "Male")) // renvoie l'occurence des hommes ayant un niveau d'étude de 2
|
||||||
|
m_femme = length(find(genre_lvl(:,2) == "2" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 2
|
||||||
|
m_autre = length(find(genre_lvl(:,2) == "2" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 2
|
||||||
|
|
||||||
|
d_homme = length(find(genre_lvl(:,2) == "3" & genre_lvl(:,1) == "Male")) // renvoie l'occurence des hommes ayant un niveau d'étude de 3
|
||||||
|
d_femme = length(find(genre_lvl(:,2) == "3" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 3
|
||||||
|
d_autre = length(find(genre_lvl(:,2) == "3" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 3
|
||||||
|
|
||||||
|
temp = [high_homme, high_femme, high_autre;b_homme, b_femme, b_autre;m_homme, m_femme, m_autre;d_homme, d_femme, d_autre] //crée un tableau
|
||||||
|
lvlEtude = [0,1,2,3]
|
||||||
|
bar(lvlEtude,temp);
|
||||||
|
legend("homme","femme","autre")
|
||||||
|
```
|
||||||
|
|
||||||
|
**Résultat :**
|
||||||
|
|
||||||
|
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Question 3 : Effectifs des 10 professions les plus représentées {#q3}
|
||||||
|
|
||||||
|
> Donnez sous forme d'histogramme, les effectifs des 10 professions les plus représentées.
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/q3.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
|
||||||
|
metiers = tabul(csvString(:,5),"i") //récupère la liste des profession ainsi que leur occurence
|
||||||
|
[occu,indice] = gsort(metiers(2)) //donne la liste des occurence trié ainsi que l'indice que son indice avant le tri
|
||||||
|
profession = metiers(1) //stock la liste des profession dans une variable
|
||||||
|
matrice_occurence = [occu(1:1),occu(2:2),occu(3:3),occu(4:4),occu(5:5),occu(6:6),occu(7:7),occu(8:8),occu(9:9),occu(10:10)]
|
||||||
|
bar(matrice_occurence) //affiche l'histogramme des 10 professions avec le plus de monde
|
||||||
|
legend(profession(indice(1:10))) //légende le graphe pour donner un nom à chaque colonne
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
**Résultat :**
|
||||||
|
|
||||||
|
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
# RESULTAT A AJOUTER ICI
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Question 4 : Profession la plus fréquente selon le genre {#q4}
|
||||||
|
|
||||||
|
> Quelle est la profession la plus fréquente des femmes ? des hommes ?
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/q4.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
// Femme :
|
||||||
|
indice_female = find(csvString(:,3) == "Female") //récupère les indice de la colonne 3 de data.csv contenant "Female"
|
||||||
|
[valeurs] = csvString(indice_female,5) //récupère les métiers situés aux indices récupérés précédemment
|
||||||
|
metiers_female = tabul(valeurs) //récupère les métiers sans doublons ainsi que leur occurence
|
||||||
|
[occurence_tri,indice_tri] = gsort(metiers_female(2)) //récupère et trie dans un tableau ce qu'on a relevé précédemment et relève leur indice d'avant
|
||||||
|
liste_metiers_female = metiers_female(1) //récupère dans une variable la liste des métiers unique dans le but de la parcourir par indice
|
||||||
|
liste_metiers_female(119) //relève le métiers recensant le plus de femmes
|
||||||
|
|
||||||
|
// Homme :
|
||||||
|
indice_male = find(csvString(:,3) == "Male") //récupère les les indice de la colonne 3 de data.csv contenant "Male"
|
||||||
|
[valeurs2] = csvString(indice_male,5) //récupère les métiers situés aux indices récupérés précédemment
|
||||||
|
metiers_male = tabul(valeurs2) //récupère les métiers sans doublons ainsi que leur occurence
|
||||||
|
[occurence_tri,indice_tri] = gsort(metiers_male(2)) //récupère et trie dans un tableau ce qu'on a relevé précédemment et relève leur indice d'avant
|
||||||
|
liste_metiers_male = metiers_male(1) //récupère dans une variable la liste des métiers unique dans le but de la parcourir par indice
|
||||||
|
liste_metiers_male(11) //relève le métiers recensant le plus d'hommes
|
||||||
|
```
|
||||||
|
|
||||||
|
**Résultat :**
|
||||||
|
|
||||||
|
- Profession la plus fréquente des femmes : Data Scientist
|
||||||
|
- Profession la plus fréquente des hommes : Software Engineer
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Question 5 : Statistiques par niveau d'études {#q5}
|
||||||
|
|
||||||
|
> Pour chaque niveau d'études, donnez le salaire moyen, l'âge moyen et l'expérience moyenne.
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/q5.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
indice_high = find(csvDouble(:,4) == 0 )
|
||||||
|
salaire_high = csvDouble(indice_high,7)
|
||||||
|
mean(salaire_high) //36706.694
|
||||||
|
age_high = csvDouble(indice_high,2)
|
||||||
|
mean(age_high) //26.854911
|
||||||
|
exp_high = csvDouble(indice_high,6)
|
||||||
|
mean(exp_high) //1.9151786
|
||||||
|
|
||||||
|
indice_b = find(csvDouble(:,4) == 1 )
|
||||||
|
salaire_b = csvDouble(indice_b,7)
|
||||||
|
mean(salaire_b) //95082.909
|
||||||
|
age_b = csvDouble(indice_b,2)
|
||||||
|
mean(age_b) //30.260179
|
||||||
|
exp_b = csvDouble(indice_b,6)
|
||||||
|
mean(exp_b) //5.4195631
|
||||||
|
|
||||||
|
indice_m = find(csvDouble(:,4) == 2 )
|
||||||
|
salaire_m = csvDouble(indice_m,7)
|
||||||
|
mean(salaire_m) //130112.06
|
||||||
|
age_m = csvDouble(indice_m,2)
|
||||||
|
mean(age_m) //35.171505
|
||||||
|
exp_m = csvDouble(indice_m,6)
|
||||||
|
mean(exp_m) //9.6456989
|
||||||
|
|
||||||
|
indice_p = find(csvDouble(:,4) == 3)
|
||||||
|
salaire_p = csvDouble(indice_p,7)
|
||||||
|
mean(salaire_p) //165651.46
|
||||||
|
age_p = csvDouble(indice_p,2)
|
||||||
|
mean(age_p) //41.154858
|
||||||
|
exp_p = csvDouble(indice_p,6)
|
||||||
|
mean(exp_p) //13.915267
|
||||||
|
```
|
||||||
|
|
||||||
|
**Résultat :**
|
||||||
|
|
||||||
|
- Niveau d'étude 0 :
|
||||||
|
- Salaire moyen : 36,706.69 $
|
||||||
|
- Âge moyen : 26.85 ans
|
||||||
|
- Expérience moyenne : 1.92 ans
|
||||||
|
|
||||||
|
- Niveau d'étude 1 :
|
||||||
|
- Salaire moyen : 95,082.91 $
|
||||||
|
- Âge moyen : 30.26 ans
|
||||||
|
- Expérience moyenne : 5.42 ans
|
||||||
|
|
||||||
|
- Niveau d'étude 2 :
|
||||||
|
- Salaire moyen : 130,112.06 $
|
||||||
|
- Âge moyen : 35.17 ans
|
||||||
|
- Expérience moyenne : 9.65 ans
|
||||||
|
|
||||||
|
- Niveau d'étude 3 :
|
||||||
|
- Salaire moyen : 165,651.46 $
|
||||||
|
- Âge moyen : 41.15 ans
|
||||||
|
- Expérience moyenne : 13.92 ans
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## Question 6 : Statistiques par genre {#q6}
|
||||||
|
|
||||||
|
> Pour chaque genre, donnez le salaire moyen, l'âge moyen et l'expérience moyenne.
|
||||||
|
|
||||||
|
**[Script Scilab](scripts/q6.sce) :**
|
||||||
|
|
||||||
|
```scilab
|
||||||
|
indice_6_female = find(csvString(:,3) == "Female" )
|
||||||
|
salaire_6_female = csvDouble(indice_6_female,7)
|
||||||
|
mean(salaire_6_female) //107889.00
|
||||||
|
age_6_female = csvDouble(indice_6_female,2)
|
||||||
|
mean(age_6_female) //32.626286
|
||||||
|
exp_6_female = csvDouble(indice_6_female,6)
|
||||||
|
mean(exp_6_female) //7.4201792
|
||||||
|
|
||||||
|
indice_6_male = find(csvString(:,3) == "Male" )
|
||||||
|
salaire_6_male = csvDouble(indice_6_male,7)
|
||||||
|
mean(salaire_6_male) //121389.87
|
||||||
|
age_6_male = csvDouble(indice_6_male,2)
|
||||||
|
mean(age_6_male) //34.416394
|
||||||
|
exp_6_male = csvDouble(indice_6_male,6)
|
||||||
|
mean(exp_6_male) //8.6169662
|
||||||
|
|
||||||
|
|
||||||
|
indice_6_other = find(csvString(:,3) == "Other" )
|
||||||
|
salaire_6_other = csvDouble(indice_6_other,7)
|
||||||
|
mean(salaire_6_other) //125869.86
|
||||||
|
age_6_other = csvDouble(indice_6_other,2)
|
||||||
|
mean(age_6_other) //39.571429
|
||||||
|
exp_6_other = csvDouble(indice_6_other,6)
|
||||||
|
mean(exp_6_other) //16.428571
|
||||||
|
```
|
||||||
|
|
||||||
|
**Résultat :**
|
||||||
|
|
||||||
|
- Genre Femme :
|
||||||
|
- Salaire moyen : 107,889.00 $
|
||||||
|
- Âge moyen : 32.63 ans
|
||||||
|
- Expérience moyenne : 7.42 ans
|
||||||
|
|
||||||
|
- Genre Homme :
|
||||||
|
- Salaire moyen : 121,389.87 $
|
||||||
|
- Âge moyen : 34.41 ans
|
||||||
|
- Expérience moyenne : 8.62 ans
|
||||||
|
|
||||||
|
- Genre Autre :
|
||||||
|
- Salaire moyen : 125,869.86 $
|
||||||
|
- Âge moyen : 39.57 ans
|
||||||
|
- Expérience moyenne : 16.43 ans
|
||||||
|
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
[🏠](../ "Retour au sommaire") | [➡️](../EXO2/ "Exercice suivant (Exercice 2)")
|
2
EXO1/scripts/init.sce
Normal file
2
EXO1/scripts/init.sce
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
csvDouble = csvRead("data.csv") //ouvre data.csv en une matrice d'entier
|
||||||
|
csvString = csvRead("data.csv",[],[],'string') //ouvre data.csv en une matrice de string
|
4
EXO1/scripts/q1.sce
Normal file
4
EXO1/scripts/q1.sce
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
genre = tabul(csvString(:,3),"i") //récupère la liste des genres ainsi que leur occurence
|
||||||
|
->genre(1) //liste les différents genres du tableau
|
||||||
|
->genre(2) //donne l'occurence correspondant aux valeurs de "genre(1)"
|
||||||
|
pie(genre(2),genre(1)) //ouvre un diagramme camembert représentant les genres en fonction de leur occurence
|
22
EXO1/scripts/q2.sce
Normal file
22
EXO1/scripts/q2.sce
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
genre_lvl = [csvString(:,3),csvString(:,4)] // crée une matrice 6699x2 avec les genres et le niveau d'études
|
||||||
|
|
||||||
|
high_homme = length(find(genre_lvl(:,2) == "0" & genre_lvl(:,1) == "Male")) // renvoie l'occurence d'hommes ayant un niveau d'étude de 0
|
||||||
|
high_femme = length(find(genre_lvl(:,2) == "0" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 0
|
||||||
|
high_autre = length(find(genre_lvl(:,2) == "0" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 0
|
||||||
|
|
||||||
|
b_homme = length(find(genre_lvl(:,2) == "1" & genre_lvl(:,1) == "Male")) // renvoie l'occurence d'hommes ayant un niveau d'étude de 1
|
||||||
|
b_femme = length(find(genre_lvl(:,2) == "1" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 1
|
||||||
|
b_autre = length(find(genre_lvl(:,2) == "1" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 1
|
||||||
|
|
||||||
|
m_homme = length(find(genre_lvl(:,2) == "2" & genre_lvl(:,1) == "Male")) // renvoie l'occurence des hommes ayant un niveau d'étude de 2
|
||||||
|
m_femme = length(find(genre_lvl(:,2) == "2" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 2
|
||||||
|
m_autre = length(find(genre_lvl(:,2) == "2" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 2
|
||||||
|
|
||||||
|
d_homme = length(find(genre_lvl(:,2) == "3" & genre_lvl(:,1) == "Male")) // renvoie l'occurence des hommes ayant un niveau d'étude de 3
|
||||||
|
d_femme = length(find(genre_lvl(:,2) == "3" & genre_lvl(:,1) == "Female")) // renvoie l'occurence des femmes ayant un niveau d'étude de 3
|
||||||
|
d_autre = length(find(genre_lvl(:,2) == "3" & genre_lvl(:,1) == "Other")) // renvoie l'occurence des autres ayant un niveau d'étude de 3
|
||||||
|
|
||||||
|
temp = [high_homme, high_femme, high_autre;b_homme, b_femme, b_autre;m_homme, m_femme, m_autre;d_homme, d_femme, d_autre] //crée un tableau
|
||||||
|
lvlEtude = [0,1,2,3]
|
||||||
|
bar(lvlEtude,temp);
|
||||||
|
legend("homme","femme","autre")
|
6
EXO1/scripts/q3.sce
Normal file
6
EXO1/scripts/q3.sce
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
metiers = tabul(csvString(:,5),"i") //récupère la liste des profession ainsi que leur occurence
|
||||||
|
[occu,indice] = gsort(metiers(2)) //donne la liste des occurence trié ainsi que l'indice que son indice avant le tri
|
||||||
|
profession = metiers(1) //stock la liste des profession dans une variable
|
||||||
|
matrice_occurence = [occu(1:1),occu(2:2),occu(3:3),occu(4:4),occu(5:5),occu(6:6),occu(7:7),occu(8:8),occu(9:9),occu(10:10)]
|
||||||
|
bar(matrice_occurence) //affiche l'histogramme des 10 professions avec le plus de monde
|
||||||
|
legend(profession(indice(1:10))) //légende le graphe pour donner un nom à chaque colonne
|
17
EXO1/scripts/q4.sce
Normal file
17
EXO1/scripts/q4.sce
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
// Femme :
|
||||||
|
indice_female = find(csvString(:,3) == "Female") //récupère les indice de la colonne 3 de data.csv contenant "Female"
|
||||||
|
[valeurs] = csvString(indice_female,5) //récupère les métiers situés aux indices récupérés précédemment
|
||||||
|
metiers_female = tabul(valeurs) //récupère les métiers sans doublons ainsi que leur occurence
|
||||||
|
[occurence_tri,indice_tri] = gsort(metiers_female(2)) //récupère et trie dans un tableau ce qu'on a relevé précédemment et relève leur indice d'avant
|
||||||
|
liste_metiers_female = metiers_female(1) //récupère dans une variable la liste des métiers unique dans le but de la parcourir par indice
|
||||||
|
liste_metiers_female(119) //relève le métiers recensant le plus de femmes
|
||||||
|
|
||||||
|
// Homme :
|
||||||
|
indice_male = find(csvString(:,3) == "Male") //récupère les les indice de la colonne 3 de data.csv contenant "Male"
|
||||||
|
[valeurs2] = csvString(indice_male,5) //récupère les métiers situés aux indices récupérés précédemment
|
||||||
|
metiers_male = tabul(valeurs2) //récupère les métiers sans doublons ainsi que leur occurence
|
||||||
|
[occurence_tri,indice_tri] = gsort(metiers_male(2)) //récupère et trie dans un tableau ce qu'on a relevé précédemment et relève leur indice d'avant
|
||||||
|
liste_metiers_male = metiers_male(1) //récupère dans une variable la liste des métiers unique dans le but de la parcourir par indice
|
||||||
|
liste_metiers_male(11) //relève le métiers recensant le plus d'hommes
|
||||||
|
|
||||||
|
|
31
EXO1/scripts/q5.sce
Normal file
31
EXO1/scripts/q5.sce
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
indice_high = find(csvDouble(:,4) == 0 )
|
||||||
|
salaire_high = csvDouble(indice_high,7)
|
||||||
|
mean(salaire_high) //36706.694
|
||||||
|
age_high = csvDouble(indice_high,2)
|
||||||
|
mean(age_high) //26.854911
|
||||||
|
exp_high = csvDouble(indice_high,6)
|
||||||
|
mean(exp_high) //1.9151786
|
||||||
|
|
||||||
|
indice_b = find(csvDouble(:,4) == 1 )
|
||||||
|
salaire_b = csvDouble(indice_b,7)
|
||||||
|
mean(salaire_b) //95082.909
|
||||||
|
age_b = csvDouble(indice_b,2)
|
||||||
|
mean(age_b) //30.260179
|
||||||
|
exp_b = csvDouble(indice_b,6)
|
||||||
|
mean(exp_b) //5.4195631
|
||||||
|
|
||||||
|
indice_m = find(csvDouble(:,4) == 2 )
|
||||||
|
salaire_m = csvDouble(indice_m,7)
|
||||||
|
mean(salaire_m) //130112.06
|
||||||
|
age_m = csvDouble(indice_m,2)
|
||||||
|
mean(age_m) //35.171505
|
||||||
|
exp_m = csvDouble(indice_m,6)
|
||||||
|
mean(exp_m) //9.6456989
|
||||||
|
|
||||||
|
indice_p = find(csvDouble(:,4) == 3)
|
||||||
|
salaire_p = csvDouble(indice_p,7)
|
||||||
|
mean(salaire_p) //165651.46
|
||||||
|
age_p = csvDouble(indice_p,2)
|
||||||
|
mean(age_p) //41.154858
|
||||||
|
exp_p = csvDouble(indice_p,6)
|
||||||
|
mean(exp_p) //13.915267
|
24
EXO1/scripts/q6.sce
Normal file
24
EXO1/scripts/q6.sce
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
indice_6_female = find(csvString(:,3) == "Female" )
|
||||||
|
salaire_6_female = csvDouble(indice_6_female,7)
|
||||||
|
mean(salaire_6_female) //107889.00
|
||||||
|
age_6_female = csvDouble(indice_6_female,2)
|
||||||
|
mean(age_6_female) //32.626286
|
||||||
|
exp_6_female = csvDouble(indice_6_female,6)
|
||||||
|
mean(exp_6_female) //7.4201792
|
||||||
|
|
||||||
|
indice_6_male = find(csvString(:,3) == "Male" )
|
||||||
|
salaire_6_male = csvDouble(indice_6_male,7)
|
||||||
|
mean(salaire_6_male) //121389.87
|
||||||
|
age_6_male = csvDouble(indice_6_male,2)
|
||||||
|
mean(age_6_male) //34.416394
|
||||||
|
exp_6_male = csvDouble(indice_6_male,6)
|
||||||
|
mean(exp_6_male) //8.6169662
|
||||||
|
|
||||||
|
|
||||||
|
indice_6_other = find(csvString(:,3) == "Other" )
|
||||||
|
salaire_6_other = csvDouble(indice_6_other,7)
|
||||||
|
mean(salaire_6_other) //125869.86
|
||||||
|
age_6_other = csvDouble(indice_6_other,2)
|
||||||
|
mean(age_6_other) //39.571429
|
||||||
|
exp_6_other = csvDouble(indice_6_other,6)
|
||||||
|
mean(exp_6_other) //16.428571
|
172
EXO4/README.md
172
EXO4/README.md
@ -1,11 +1,23 @@
|
|||||||
# Exercice 4 : Analyse des salaires
|
# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
|
||||||
|
# NON FINIT !!!# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
|
||||||
|
|
||||||
|
# NON FINIT !!!
|
||||||
|
# NON FINIT !!!
|
||||||
|
|
||||||
|
# Exercice 4 : Analyse de la relation entre âge, expérience et salaire
|
||||||
|
|
||||||
## Table des matières
|
## Table des matières
|
||||||
1. [Initialisation des variables](#init)
|
1. [Initialisation des variables](#init)
|
||||||
2. [Distribution des salaires par genre](#q1)
|
2. [Nuage de points et régression linéaire : Age vs Salaire](#q1)
|
||||||
3. [Histogramme des salaires moyens par niveau d'études](#q2)
|
3. [Nuage de points et régression linéaire : Expérience vs Salaire](#q2)
|
||||||
4. [Statistiques descriptives des salaires](#q3)
|
|
||||||
5. [Répartition des salaires par genre](#q4)
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
@ -16,37 +28,54 @@ Pour cette exercice, veuillez initaliser les variables suivantes :
|
|||||||
**[Script Scilab](scripts/init.sce) :**
|
**[Script Scilab](scripts/init.sce) :**
|
||||||
|
|
||||||
```scilab
|
```scilab
|
||||||
D = csvRead('data.csv');
|
// Charger les données depuis le fichier CSV
|
||||||
DD = csvRead('data.csv',',','.','string');
|
data = csvRead('data.csv');
|
||||||
genre = DD(:,3);
|
|
||||||
|
// Extraire les colonnes pertinentes (âge et salaire)
|
||||||
|
age = data(:, 2);
|
||||||
|
salaire = data(:, 7);
|
||||||
```
|
```
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## Question 1 : Distribution des salaires par genre {#q1}
|
## Question 1 : Nuage de points et régression linéaire (Age vs Salaire) {#q1}
|
||||||
|
|
||||||
> Donnez, sous forme d'histogramme, la distribution des salaires suivant le genre.
|
> Tracez un nuage de points (age,salaire), et la droite de regression correspondante. Quel est le coefficient de corrélation ?
|
||||||
|
|
||||||
**[Script Scilab](scripts/q1.sce) :**
|
**[Script Scilab](scripts/q1.sce) :**
|
||||||
|
|
||||||
```scilab
|
```scilab
|
||||||
D_homme = D(genre == 'Male',:);
|
// Vérifier les dimensions
|
||||||
D_femme = D(genre == 'Female',:);
|
disp(size(age));
|
||||||
salaire_homme = D_homme(:,7);
|
disp(size(salaire));
|
||||||
salaire_femme = D_femme(:,7);
|
|
||||||
num_bins = 50;
|
|
||||||
|
|
||||||
subplot(2, 1, 1);
|
clf;
|
||||||
histplot(num_bins, salaire_homme);
|
|
||||||
title("Distribution des salaires pour les hommes");
|
|
||||||
xlabel("Salaire");
|
|
||||||
ylabel("Fréquence");
|
|
||||||
|
|
||||||
subplot(2, 1, 2);
|
// Tracer le nuage de points avec les vraies données
|
||||||
histplot(num_bins, salaire_femme);
|
scatter(age, salaire, 10, 'filled');
|
||||||
title("Distribution des salaires pour les femmes");
|
xlabel('Age');
|
||||||
xlabel("Salaire");
|
ylabel('Salaire');
|
||||||
ylabel("Fréquence");
|
title('Nuage de points : Age vs Salaire');
|
||||||
|
|
||||||
|
A = [ones(length(age), 1), age];
|
||||||
|
coefficients = A \ salaire;
|
||||||
|
salaire_pred = A * coefficients;
|
||||||
|
|
||||||
|
// Tracer la droite de régression
|
||||||
|
plot(age, salaire, '+'); // Tracer le nuage de points
|
||||||
|
plot(age, salaire_pred, '-r'); // Tracer la droite de régression
|
||||||
|
legend(['Données', 'Droite de régression'], 'Location', 'northwest');
|
||||||
|
|
||||||
|
// Calcul manuel du coefficient de corrélation
|
||||||
|
mean_age = mean(age);
|
||||||
|
mean_salaire = mean(salaire);
|
||||||
|
numerateur = sum((age - mean_age) .* (salaire - mean_salaire));
|
||||||
|
denominateur = sqrt(sum((age - mean_age).^2) * sum((salaire - mean_salaire).^2));
|
||||||
|
correlation_coefficient = numerateur / denominateur;
|
||||||
|
|
||||||
|
// Affichage du coefficient de corrélation
|
||||||
|
disp('Le coefficient de corrélation est :');
|
||||||
|
disp(correlation_coefficient);
|
||||||
```
|
```
|
||||||
|
|
||||||
**Résultat :**
|
**Résultat :**
|
||||||
@ -82,98 +111,7 @@ title("Salaire moyen par niveau d''études");
|
|||||||
|
|
||||||
![q2](img/q2.png)
|
![q2](img/q2.png)
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
## Question 3 : Statistiques descriptives des salaires {#q3}
|
|
||||||
|
|
||||||
> Donnez les quartiles, interquartiles, minimum, maximum, moyenne, médiane, et écart-type des salaires. Tracez une boîte à moustaches.
|
|
||||||
|
|
||||||
**[Script Scilab](scripts/q3.sce) :**
|
|
||||||
|
|
||||||
```scilab
|
|
||||||
Q = quart(salaires)
|
|
||||||
IQR = Q(3) - Q(1);
|
|
||||||
min_salaire = min(salaires)
|
|
||||||
max_salaire = max(salaires)
|
|
||||||
mean(salaires)
|
|
||||||
median(salaires)
|
|
||||||
stdev(salaires)
|
|
||||||
boxplot(salaires)
|
|
||||||
```
|
|
||||||
**Résultat :**
|
|
||||||
|
|
||||||
- Quartiles : [Q1, Q2 (médiane), Q3] = [70000, 115000, 160000]
|
|
||||||
- Interquartile Range (IQR) : Q(3) - Q(1) = 90000
|
|
||||||
- Minimum : 350
|
|
||||||
- Maximum : 250000
|
|
||||||
- Moyenne : 115326.96
|
|
||||||
- Médiane : 115000
|
|
||||||
- Écart-type : 52786.184
|
|
||||||
|
|
||||||
![q3](img/q3.png)
|
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## Question 4 : Répartition des salaires par genre {#q4}
|
[⬅️](../EXO3/ "Exercice précédent (Exercice 3)") | [🏠](../ "Retour au sommaire") | [➡️](../EXO5/ "Exercice suivant (Exercice 5)")
|
||||||
|
|
||||||
> Refaire la question précédente, en distinguant les genres. Tracez une boîte à moustache pour chaque genre. Commentaires ?
|
|
||||||
|
|
||||||
**[Script Scilab](scripts/q4.sce) :**
|
|
||||||
|
|
||||||
```scilab
|
|
||||||
QH = quart(salaire_homme)
|
|
||||||
QF = quart(salaire_femme)
|
|
||||||
IQH = QH(3) - QH(1)
|
|
||||||
IQF = QF(3) - QF(1)
|
|
||||||
min(salaire_homme)
|
|
||||||
min(salaire_femme)
|
|
||||||
max(salaire_homme)
|
|
||||||
max(salaire_femme)
|
|
||||||
mean(salaire_homme)
|
|
||||||
mean(salaire_femme)
|
|
||||||
median(salaire_homme)
|
|
||||||
median(salaire_femme)
|
|
||||||
stdev(salaire_homme)
|
|
||||||
stdev(salaire_femme)
|
|
||||||
|
|
||||||
// boite à moustache hommes :
|
|
||||||
boxplot(salaire_homme);
|
|
||||||
title("Boîte à moustaches des salaires des hommes");
|
|
||||||
ylabel("Salaires");
|
|
||||||
|
|
||||||
// boite à moustache femmes :
|
|
||||||
boxplot(salaire_femme);
|
|
||||||
title("Boîte à moustaches des salaires des femmes");
|
|
||||||
ylabel("Salaires");
|
|
||||||
```
|
|
||||||
|
|
||||||
**Résultat :**
|
|
||||||
|
|
||||||
- Hommes :
|
|
||||||
|
|
||||||
- Quartiles : [Q1, Q2 (médiane), Q3] = [75000, 120000, 170000]
|
|
||||||
- Interquartile Range (IQR) : QH(3) - QH(1) = 95000
|
|
||||||
- Minimum : 350
|
|
||||||
- Maximum : 250000
|
|
||||||
- Moyenne : 121389.87
|
|
||||||
- Médiane : 120000
|
|
||||||
- Écart-type : 52092.726
|
|
||||||
|
|
||||||
![q4-homme](img/q4-homme.png)
|
|
||||||
|
|
||||||
|
|
||||||
- Femmes :
|
|
||||||
|
|
||||||
- Quartiles : [Q1, Q2 (médiane), Q3] = [60000, 105000, 150000]
|
|
||||||
- Interquartile Range (IQR) : QF(3) - QF(1) = 90000
|
|
||||||
- Minimum : 500
|
|
||||||
- Maximum : 220000
|
|
||||||
- Moyenne : 107889.00
|
|
||||||
- Médiane : 105000
|
|
||||||
- Écart-type : 52723.610
|
|
||||||
|
|
||||||
![q4-fille](img/q4-fille.png)
|
|
||||||
|
|
||||||
---
|
|
||||||
|
|
||||||
[⬅️](../EXO2/ "Exercice précédent (Exercice 2)") | [🏠](../ "Retour au sommaire") | [➡️](../EXO4/ "Exercice suivant (Exercice 4)")
|
|
6
EXO4/scripts/init.sce
Normal file
6
EXO4/scripts/init.sce
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
// Charger les données depuis le fichier CSV
|
||||||
|
data = csvRead('data.csv');
|
||||||
|
|
||||||
|
// Extraire les colonnes pertinentes (âge et salaire)
|
||||||
|
age = data(:, 2);
|
||||||
|
salaire = data(:, 7);
|
31
EXO4/scripts/q1.sce
Normal file
31
EXO4/scripts/q1.sce
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
// Vérifier les dimensions
|
||||||
|
disp(size(age));
|
||||||
|
disp(size(salaire));
|
||||||
|
|
||||||
|
clf;
|
||||||
|
|
||||||
|
// Tracer le nuage de points avec les vraies données
|
||||||
|
scatter(age, salaire, 10, 'filled');
|
||||||
|
xlabel('Age');
|
||||||
|
ylabel('Salaire');
|
||||||
|
title('Nuage de points : Age vs Salaire');
|
||||||
|
|
||||||
|
A = [ones(length(age), 1), age];
|
||||||
|
coefficients = A \ salaire;
|
||||||
|
salaire_pred = A * coefficients;
|
||||||
|
|
||||||
|
// Tracer la droite de régression
|
||||||
|
plot(age, salaire, '+'); // Tracer le nuage de points
|
||||||
|
plot(age, salaire_pred, '-r'); // Tracer la droite de régression
|
||||||
|
legend(['Données', 'Droite de régression'], 'Location', 'northwest');
|
||||||
|
|
||||||
|
// Calcul manuel du coefficient de corrélation
|
||||||
|
mean_age = mean(age);
|
||||||
|
mean_salaire = mean(salaire);
|
||||||
|
numerateur = sum((age - mean_age) .* (salaire - mean_salaire));
|
||||||
|
denominateur = sqrt(sum((age - mean_age).^2) * sum((salaire - mean_salaire).^2));
|
||||||
|
correlation_coefficient = numerateur / denominateur;
|
||||||
|
|
||||||
|
// Affichage du coefficient de corrélation
|
||||||
|
disp('Le coefficient de corrélation est :');
|
||||||
|
disp(correlation_coefficient);
|
Loading…
Reference in New Issue
Block a user