1
0
forked from tanchou/Verilog
Files
Verilog_Louis/Semaine_4/UART/IP/verilog/other_tx.v

133 lines
3.1 KiB
Coq
Raw Normal View History

2025-05-05 09:51:23 +02:00
module other_uart_tx
#(
parameter CLK_FRE = 27, //clock frequency(Mhz)
parameter BAUD_RATE = 115200 //serial baud rate
)
(
input clk, //clock input
input rst_n, //asynchronous reset input, low active
input[7:0] tx_data, //data to send
input tx_data_valid, //data to be sent is valid
output reg tx_data_ready, //send ready
output tx_pin //serial data output
);
//calculates the clock cycle for baud rate
localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE;
//state machine code
localparam S_IDLE = 1;
localparam S_START = 2;//start bit
localparam S_SEND_BYTE = 3;//data bits
localparam S_STOP = 4;//stop bit
reg[2:0] state;
reg[2:0] next_state;
reg[15:0] cycle_cnt; //baud counter
reg[2:0] bit_cnt;//bit counter
reg[7:0] tx_data_latch; //latch data to send
reg tx_reg; //serial data output
assign tx_pin = tx_reg;
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
state <= S_IDLE;
else
state <= next_state;
end
always@(*)
begin
case(state)
S_IDLE:
if(tx_data_valid == 1'b1)
next_state <= S_START;
else
next_state <= S_IDLE;
S_START:
if(cycle_cnt == CYCLE - 1)
next_state <= S_SEND_BYTE;
else
next_state <= S_START;
S_SEND_BYTE:
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7)
next_state <= S_STOP;
else
next_state <= S_SEND_BYTE;
S_STOP:
if(cycle_cnt == CYCLE - 1)
next_state <= S_IDLE;
else
next_state <= S_STOP;
default:
next_state <= S_IDLE;
endcase
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
tx_data_ready <= 1'b0;
end
else if(state == S_IDLE)
if(tx_data_valid == 1'b1)
tx_data_ready <= 1'b0;
else
tx_data_ready <= 1'b1;
else if(state == S_STOP && cycle_cnt == CYCLE - 1)
tx_data_ready <= 1'b1;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
tx_data_latch <= 8'd0;
end
else if(state == S_IDLE && tx_data_valid == 1'b1)
tx_data_latch <= tx_data;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
begin
bit_cnt <= 3'd0;
end
else if(state == S_SEND_BYTE)
if(cycle_cnt == CYCLE - 1)
bit_cnt <= bit_cnt + 3'd1;
else
bit_cnt <= bit_cnt;
else
bit_cnt <= 3'd0;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
cycle_cnt <= 16'd0;
else if((state == S_SEND_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
cycle_cnt <= 16'd0;
else
cycle_cnt <= cycle_cnt + 16'd1;
end
always@(posedge clk or negedge rst_n)
begin
if(rst_n == 1'b0)
tx_reg <= 1'b1;
else
case(state)
S_IDLE,S_STOP:
tx_reg <= 1'b1;
S_START:
tx_reg <= 1'b0;
S_SEND_BYTE:
tx_reg <= tx_data_latch[bit_cnt];
default:
tx_reg <= 1'b1;
endcase
end
endmodule