1
0
forked from tanchou/Verilog

Code FPGA fonctionnel

This commit is contained in:
Gamenight77
2025-05-27 15:36:40 +02:00
parent 4e16bb3cbe
commit 168431849b
24 changed files with 2038 additions and 4 deletions

View File

@@ -0,0 +1,5 @@
runs
.vscode
workspace.code-workspace
*.pyc
.idea

View File

@@ -0,0 +1,48 @@
module fifo #(
parameter SIZE = 16,
parameter WIDTH = 8
)(
input wire clk,
input wire wr_en,
input wire[WIDTH-1:0] wr_data,
input wire rd_en,
output reg[WIDTH-1:0] rd_data,
output wire full,
output wire empty
);
localparam LOGSIZE = $clog2(SIZE);
reg [WIDTH-1:0] fifo[0:SIZE-1];
reg [LOGSIZE-1:0] wr_ptr;
reg [LOGSIZE-1:0] rd_ptr;
reg [LOGSIZE:0] count;
assign full = (count == SIZE);
assign empty = (count == 0);
initial begin
wr_ptr = 0;
rd_ptr = 0;
count = 0;
end
always @(posedge clk) begin // IN
rd_data <= fifo[rd_ptr];
if (wr_en && !full && rd_en && !empty) begin
fifo[wr_ptr] <= wr_data;
wr_ptr <= (wr_ptr == SIZE - 1) ? 0 : (wr_ptr + 1) ;
rd_ptr <= (rd_ptr == SIZE - 1) ? 0 : (rd_ptr + 1) ;
end else if (wr_en && !full) begin
fifo[wr_ptr] <= wr_data;
wr_ptr <= (wr_ptr == SIZE - 1) ? 0 : (wr_ptr + 1) ;
count <= count + 1;
end else if (rd_en && !empty) begin // OUT
rd_ptr <= (rd_ptr == SIZE - 1) ? 0 : (rd_ptr + 1) ;
count <= count - 1;
end
end
endmodule

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,472 @@
////////////////////////////////////////////////////////////////////////////////
//
// Filename: txuartlite.v
// {{{
// Project: wbuart32, a full featured UART with simulator
//
// Purpose: Transmit outputs over a single UART line. This particular UART
// implementation has been extremely simplified: it does not handle
// generating break conditions, nor does it handle anything other than the
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
//
// To interface with this module, connect it to your system clock, and
// pass it the byte of data you wish to transmit. Strobe the i_wr line
// high for one cycle, and your data will be off. Wait until the 'o_busy'
// line is low before strobing the i_wr line again--this implementation
// has NO BUFFER, so strobing i_wr while the core is busy will just
// get ignored. The output will be placed on the o_txuart output line.
//
// (I often set both data and strobe on the same clock, and then just leave
// them set until the busy line is low. Then I move on to the next piece
// of data.)
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2015-2024, Gisselquist Technology, LLC
// {{{
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
// }}}
// License: GPL, v3, as defined and found on www.gnu.org,
// {{{
// http://www.gnu.org/licenses/gpl.html
//
////////////////////////////////////////////////////////////////////////////////
//
`default_nettype none
// }}}
module txuartlite #(
// {{{
// TIMING_BITS -- the number of bits required to represent
// the number of clocks per baud. 24 should be sufficient for
// most baud rates, but you can trim it down to save logic if
// you would like. TB is just an abbreviation for TIMING_BITS.
parameter [4:0] TIMING_BITS = 5'd8,
localparam TB = TIMING_BITS,
// CLOCKS_PER_BAUD -- the number of system clocks per baud
// interval.
parameter [(TB-1):0] CLOCKS_PER_BAUD = 234 // 24'd868
// }}}
) (
// {{{
input wire i_clk, i_reset,
input wire i_wr,
input wire [7:0] i_data,
// And the UART input line itself
output reg o_uart_tx,
// A line to tell others when we are ready to accept data. If
// (i_wr)&&(!o_busy) is ever true, then the core has accepted
// a byte for transmission.
output wire o_busy
// }}}
);
// Register/net declarations
// {{{
localparam [3:0] TXUL_BIT_ZERO = 4'h0,
// TXUL_BIT_ONE = 4'h1,
// TXUL_BIT_TWO = 4'h2,
// TXUL_BIT_THREE = 4'h3,
// TXUL_BIT_FOUR = 4'h4,
// TXUL_BIT_FIVE = 4'h5,
// TXUL_BIT_SIX = 4'h6,
// TXUL_BIT_SEVEN = 4'h7,
TXUL_STOP = 4'h8,
TXUL_IDLE = 4'hf;
reg [(TB-1):0] baud_counter;
reg [3:0] state;
reg [7:0] lcl_data;
reg r_busy, zero_baud_counter;
// }}}
// Big state machine controlling: r_busy, state
// {{{
//
initial r_busy = 1'b1;
initial state = TXUL_IDLE;
always @(posedge i_clk)
if (i_reset)
begin
r_busy <= 1'b1;
state <= TXUL_IDLE;
end else if (!zero_baud_counter)
// r_busy needs to be set coming into here
r_busy <= 1'b1;
else if (state > TXUL_STOP) // STATE_IDLE
begin
state <= TXUL_IDLE;
r_busy <= 1'b0;
if ((i_wr)&&(!r_busy))
begin // Immediately start us off with a start bit
r_busy <= 1'b1;
state <= TXUL_BIT_ZERO;
end
end else begin
// One clock tick in each of these states ...
r_busy <= 1'b1;
if (state <=TXUL_STOP) // start bit, 8-d bits, stop-b
state <= state + 1'b1;
else
state <= TXUL_IDLE;
end
// }}}
// o_busy
// {{{
//
// This is a wire, designed to be true is we are ever busy above.
// originally, this was going to be true if we were ever not in the
// idle state. The logic has since become more complex, hence we have
// a register dedicated to this and just copy out that registers value.
assign o_busy = (r_busy);
// }}}
// lcl_data
// {{{
//
// This is our working copy of the i_data register which we use
// when transmitting. It is only of interest during transmit, and is
// allowed to be whatever at any other time. Hence, if r_busy isn't
// true, we can always set it. On the one clock where r_busy isn't
// true and i_wr is, we set it and r_busy is true thereafter.
// Then, on any zero_baud_counter (i.e. change between baud intervals)
// we simple logically shift the register right to grab the next bit.
initial lcl_data = 8'hff;
always @(posedge i_clk)
if (i_reset)
lcl_data <= 8'hff;
else if (i_wr && !r_busy)
lcl_data <= i_data;
else if (zero_baud_counter)
lcl_data <= { 1'b1, lcl_data[7:1] };
// }}}
// o_uart_tx
// {{{
//
// This is the final result/output desired of this core. It's all
// centered about o_uart_tx. This is what finally needs to follow
// the UART protocol.
//
initial o_uart_tx = 1'b1;
always @(posedge i_clk)
if (i_reset)
o_uart_tx <= 1'b1;
else if (i_wr && !r_busy)
o_uart_tx <= 1'b0; // Set the start bit on writes
else if (zero_baud_counter) // Set the data bit.
o_uart_tx <= lcl_data[0];
// }}}
// Baud counter
// {{{
// All of the above logic is driven by the baud counter. Bits must last
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
// make certain of that.
//
// The basic logic is this: at the beginning of a bit interval, start
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
// to zero, restart it.
//
// However, comparing a 28'bit number to zero can be rather complex--
// especially if we wish to do anything else on that same clock. For
// that reason, we create "zero_baud_counter". zero_baud_counter is
// nothing more than a flag that is true anytime baud_counter is zero.
// It's true when the logic (above) needs to step to the next bit.
// Simple enough?
//
// I wish we could stop there, but there are some other (ugly)
// conditions to deal with that offer exceptions to this basic logic.
//
// 1. When the user has commanded a BREAK across the line, we need to
// wait several baud intervals following the break before we start
// transmitting, to give any receiver a chance to recognize that we are
// out of the break condition, and to know that the next bit will be
// a stop bit.
//
// 2. A reset is similar to a break condition--on both we wait several
// baud intervals before allowing a start bit.
//
// 3. In the idle state, we stop our counter--so that upon a request
// to transmit when idle we can start transmitting immediately, rather
// than waiting for the end of the next (fictitious and arbitrary) baud
// interval.
//
// When (i_wr)&&(!r_busy)&&(state == TXUL_IDLE) then we're not only in
// the idle state, but we also just accepted a command to start writing
// the next word. At this point, the baud counter needs to be reset
// to the number of CLOCKS_PER_BAUD, and zero_baud_counter set to zero.
//
// The logic is a bit twisted here, in that it will only check for the
// above condition when zero_baud_counter is false--so as to make
// certain the STOP bit is complete.
initial zero_baud_counter = 1'b1;
initial baud_counter = 0;
always @(posedge i_clk)
if (i_reset)
begin
zero_baud_counter <= 1'b1;
baud_counter <= 0;
end else begin
zero_baud_counter <= (baud_counter == 1);
if (state == TXUL_IDLE)
begin
baud_counter <= 0;
zero_baud_counter <= 1'b1;
if ((i_wr)&&(!r_busy))
begin
baud_counter <= CLOCKS_PER_BAUD - 1'b1;
zero_baud_counter <= 1'b0;
end
end else if (!zero_baud_counter)
baud_counter <= baud_counter - 1'b1;
else if (state > TXUL_STOP)
begin
baud_counter <= 0;
zero_baud_counter <= 1'b1;
end else if (state == TXUL_STOP)
// Need to complete this state one clock early, so
// we can release busy one clock before the stop bit
// is complete, so we can start on the next byte
// exactly 10*CLOCKS_PER_BAUD clocks after we started
// the last one
baud_counter <= CLOCKS_PER_BAUD - 2;
else // All other states
baud_counter <= CLOCKS_PER_BAUD - 1'b1;
end
// }}}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//
// FORMAL METHODS
// {{{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
// Declarations
`ifdef TXUARTLITE
`define ASSUME assume
`else
`define ASSUME assert
`endif
reg f_past_valid, f_last_clk;
reg [(TB-1):0] f_baud_count;
reg [9:0] f_txbits;
reg [3:0] f_bitcount;
reg [7:0] f_request_tx_data;
wire [3:0] subcount;
// Setup
// {{{
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
initial `ASSUME(!i_wr);
always @(posedge i_clk)
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
begin
`ASSUME(i_wr == $past(i_wr));
`ASSUME(i_data == $past(i_data));
end
// }}}
// Check the baud counter
// {{{
always @(posedge i_clk)
assert(zero_baud_counter == (baud_counter == 0));
always @(posedge i_clk)
if (f_past_valid && !$past(i_reset) && $past(baud_counter != 0)
&& $past(state != TXUL_IDLE))
assert(baud_counter == $past(baud_counter - 1'b1));
always @(posedge i_clk)
if (f_past_valid && !$past(i_reset) && !$past(zero_baud_counter)
&& $past(state != TXUL_IDLE))
assert($stable(o_uart_tx));
initial f_baud_count = 1'b0;
always @(posedge i_clk)
if (zero_baud_counter)
f_baud_count <= 0;
else
f_baud_count <= f_baud_count + 1'b1;
always @(posedge i_clk)
assert(f_baud_count < CLOCKS_PER_BAUD);
always @(posedge i_clk)
if (baud_counter != 0)
assert(o_busy);
// }}}
// {{{
initial f_txbits = 0;
always @(posedge i_clk)
if (zero_baud_counter)
f_txbits <= { o_uart_tx, f_txbits[9:1] };
always @(posedge i_clk)
if (f_past_valid && !$past(i_reset)&& !$past(zero_baud_counter)
&& !$past(state==TXUL_IDLE))
assert(state == $past(state));
initial f_bitcount = 0;
always @(posedge i_clk)
if ((!f_past_valid)||(!$past(f_past_valid)))
f_bitcount <= 0;
else if ((state == TXUL_IDLE)&&(zero_baud_counter))
f_bitcount <= 0;
else if (zero_baud_counter)
f_bitcount <= f_bitcount + 1'b1;
always @(posedge i_clk)
assert(f_bitcount <= 4'ha);
always @(*)
if (!o_busy)
assert(zero_baud_counter);
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
f_request_tx_data <= i_data;
assign subcount = 10-f_bitcount;
always @(posedge i_clk)
if (f_bitcount > 0)
assert(!f_txbits[subcount]);
always @(posedge i_clk)
if (f_bitcount == 4'ha)
begin
assert(f_txbits[8:1] == f_request_tx_data);
assert( f_txbits[9]);
end
always @(posedge i_clk)
assert((state <= TXUL_STOP + 1'b1)||(state == TXUL_IDLE));
always @(posedge i_clk)
if ((f_past_valid)&&($past(f_past_valid))&&($past(o_busy)))
cover(!o_busy);
// }}}
`endif // FORMAL
`ifdef VERIFIC_SVA
reg [7:0] fsv_data;
//
// Grab a copy of the data any time we are sent a new byte to transmit
// We'll use this in a moment to compare the item transmitted against
// what is supposed to be transmitted
//
always @(posedge i_clk)
if ((i_wr)&&(!o_busy))
fsv_data <= i_data;
//
// One baud interval
// {{{
//
// 1. The UART output is constant at DAT
// 2. The internal state remains constant at ST
// 3. CKS = the number of clocks per bit.
//
// Everything stays constant during the CKS clocks with the exception
// of (zero_baud_counter), which is *only* raised on the last clock
// interval
sequence BAUD_INTERVAL(CKS, DAT, SR, ST);
((o_uart_tx == DAT)&&(state == ST)
&&(lcl_data == SR)
&&(!zero_baud_counter))[*(CKS-1)]
##1 (o_uart_tx == DAT)&&(state == ST)
&&(lcl_data == SR)
&&(zero_baud_counter);
endsequence
// }}}
//
// One byte transmitted
// {{{
//
// DATA = the byte that is sent
// CKS = the number of clocks per bit
//
sequence SEND(CKS, DATA);
BAUD_INTERVAL(CKS, 1'b0, DATA, 4'h0)
##1 BAUD_INTERVAL(CKS, DATA[0], {{(1){1'b1}},DATA[7:1]}, 4'h1)
##1 BAUD_INTERVAL(CKS, DATA[1], {{(2){1'b1}},DATA[7:2]}, 4'h2)
##1 BAUD_INTERVAL(CKS, DATA[2], {{(3){1'b1}},DATA[7:3]}, 4'h3)
##1 BAUD_INTERVAL(CKS, DATA[3], {{(4){1'b1}},DATA[7:4]}, 4'h4)
##1 BAUD_INTERVAL(CKS, DATA[4], {{(5){1'b1}},DATA[7:5]}, 4'h5)
##1 BAUD_INTERVAL(CKS, DATA[5], {{(6){1'b1}},DATA[7:6]}, 4'h6)
##1 BAUD_INTERVAL(CKS, DATA[6], {{(7){1'b1}},DATA[7:7]}, 4'h7)
##1 BAUD_INTERVAL(CKS, DATA[7], 8'hff, 4'h8)
##1 BAUD_INTERVAL(CKS-1, 1'b1, 8'hff, 4'h9);
endsequence
// }}}
//
// Transmit one byte
// {{{
// Once the byte is transmitted, make certain we return to
// idle
//
assert property (
@(posedge i_clk)
(i_wr)&&(!o_busy)
|=> ((o_busy) throughout SEND(CLOCKS_PER_BAUD,fsv_data))
##1 (!o_busy)&&(o_uart_tx)&&(zero_baud_counter));
// }}}
// {{{
assume property (
@(posedge i_clk)
(i_wr)&&(o_busy) |=>
(i_wr)&&($stable(i_data)));
//
// Make certain that o_busy is true any time zero_baud_counter is
// non-zero
//
always @(*)
assert((o_busy)||(zero_baud_counter) );
// If and only if zero_baud_counter is true, baud_counter must be zero
// Insist on that relationship here.
always @(*)
assert(zero_baud_counter == (baud_counter == 0));
// To make certain baud_counter stays below CLOCKS_PER_BAUD
always @(*)
assert(baud_counter < CLOCKS_PER_BAUD);
//
// Insist that we are only ever in a valid state
always @(*)
assert((state <= TXUL_STOP+1'b1)||(state == TXUL_IDLE));
// }}}
`endif // Verific SVA
// }}}
endmodule

View File

@@ -0,0 +1,56 @@
module uart_rx_fifo #(
parameter CLK_FREQ = 27_000_000,
parameter BAUD_RATE = 115200,
parameter FIFO_SIZE = 8
)(
input clk,
input rd_en,
output wire [7:0] rd_data,
input rx_pin,
output data_available
);
// UART RX wires
wire [7:0] rx_data;
wire rx_received;
// FIFO control
reg wr_en;
wire fifo_empty;
wire fifo_full;
// UART Receiver instance
rxuartlite uart_rx_inst (
.i_clk(clk),
.i_reset(1'b0),
.i_uart_rx(rx_pin),
.o_wr(rx_received),
.o_data(rx_data)
);
// FIFO instance
fifo #(
.WIDTH(8),
.SIZE(FIFO_SIZE)
) fifo_inst (
.clk(clk),
.wr_en(wr_en),
.wr_data(rx_data),
.rd_en(rd_en),
.rd_data(rd_data),
.empty(fifo_empty),
.full(fifo_full)
);
assign data_available = ~fifo_empty;
// Écriture dans la FIFO uniquement si donnée reçue ET FIFO pas pleine
always @(posedge clk) begin
if (rx_received && !fifo_full) begin
wr_en <= 1'b1;
end else begin
wr_en <= 1'b0;
end
end
endmodule

View File

@@ -0,0 +1,89 @@
module uart_tx_fifo #(
parameter CLK_FREQ = 27_000_000,
parameter BAUD_RATE = 115200,
parameter FIFO_SIZE = 8
)(
input clk,
input wr_en,
input [7:0] wr_data,
output tx_pin,
output fifo_full
);
// FIFO wires
wire [7:0] fifo_rd_data;
wire fifo_empty;
reg fifo_rd_en;
// UART wires
wire tx_busy;
reg uart_tx_enable;
reg [7:0] uart_tx_data;
// FSM
typedef enum logic [1:0] {
IDLE,
WAIT_READY,
READ_FIFO,
SEND
} state_t;
state_t state = IDLE;
// FIFO instantiation
fifo #(
.WIDTH(8),
.SIZE(FIFO_SIZE)
) fifo_inst (
.clk(clk),
.wr_en(wr_en),
.wr_data(wr_data),
.rd_en(fifo_rd_en),
.rd_data(fifo_rd_data),
.empty(fifo_empty),
.full(fifo_full)
);
// UART TX instantiation
txuartlite uart_tx_inst (
.i_clk(clk),
.i_reset(1'b0),
.i_wr(uart_tx_enable),
.i_data(uart_tx_data),
.o_uart_tx(tx_pin),
.o_busy(tx_busy)
);
always_ff @(posedge clk) begin
fifo_rd_en <= 0;
uart_tx_enable <= 0;
case (state)
IDLE: begin
if (!fifo_empty)
state <= WAIT_READY;
end
WAIT_READY: begin
if (!tx_busy) begin
fifo_rd_en <= 1;
uart_tx_data <= fifo_rd_data;
state <= READ_FIFO;
end
end
READ_FIFO: begin
// fifo_rd_data sera valide ici
fifo_rd_en <= 0;
uart_tx_enable <= 1;
state <= SEND;
end
SEND: begin
state <= IDLE;
uart_tx_enable <= 0;
end
endcase
end
endmodule

View File

@@ -0,0 +1,21 @@
IO_LOC "o_tx" 69;
IO_PORT "o_tx" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
IO_LOC "i_rx" 70;
IO_PORT "i_rx" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
IO_LOC "i_clk" 4;
IO_PORT "i_clk" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
IO_LOC "o_leds[0]" 15;
IO_PORT "o_leds[0]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "o_leds[1]" 16;
IO_PORT "o_leds[1]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "o_leds[2]" 17;
IO_PORT "o_leds[2]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "o_leds[3]" 18;
IO_PORT "o_leds[3]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "o_leds[4]" 19;
IO_PORT "o_leds[4]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
IO_LOC "o_leds[5]" 20;
IO_PORT "o_leds[5]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;

View File

@@ -0,0 +1,9 @@
@call c:\oss-cad-suite\environment.bat
@echo off
mkdir runs
if "%1"=="sim" call scripts\windows\simulate.bat
if "%1"=="wave" call scripts\windows\gtkwave.bat
if "%1"=="clean" call scripts\windows\clean.bat
if "%1"=="build" call scripts\windows\build.bat

View File

@@ -0,0 +1,24 @@
#!/bin/bash
# Charger l'environnement OSS CAD Suite
source /home/louis/oss-cad-suite/environment
mkdir -p runs
case "$1" in
sim)
bash scripts/linux/simulate.sh
;;
wave)
bash scripts/linux/gtkwave.sh
;;
clean)
bash scripts/linux/clean.sh
;;
build)
bash scripts/linux/build.sh
;;
*)
echo "Usage: $0 {sim|wave|clean|build}"
;;
esac

View File

@@ -0,0 +1,46 @@
#!/bin/bash
# Aller à la racine du projet
cd "$(dirname "$0")/../.." || exit 1
# Config de base
DEVICE="GW2AR-LV18QN88C8/I7"
BOARD="tangnano20k"
TOP="dht11_uart_top"
CST_FILE="$TOP.cst"
JSON_FILE="runs/$TOP.json"
PNR_JSON="runs/pnr_$TOP.json"
BITSTREAM="runs/$TOP.fs"
# Créer le dossier runs si nécessaire
mkdir -p runs
echo "=== Étape 1 : Synthèse avec Yosys ==="
yosys -p "read_verilog -sv src/verilog/$TOP.v IP/verilog/dht11_interface.v IP/verilog/uart_tx_fifo.v IP/verilog/fifo.v IP/verilog/txuartlite.v; synth_gowin -top $TOP -json $JSON_FILE"
if [ $? -ne 0 ]; then
echo "=== Erreur lors de la synthèse ==="
exit 1
fi
echo "=== Étape 2 : Placement & Routage avec nextpnr-himbaechel ==="
nextpnr-himbaechel --json "$JSON_FILE" --write "$PNR_JSON" --device "$DEVICE" --vopt cst=constraints/"$CST_FILE" --vopt family=GW2A-18C
if [ $? -ne 0 ]; then
echo "=== Erreur lors du placement/routage ==="
exit 1
fi
echo "=== Étape 3 : Packing avec gowin_pack ==="
gowin_pack -d "$DEVICE" -o "$BITSTREAM" "$PNR_JSON"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du packing ==="
exit 1
fi
echo "=== Étape 4 : Flash avec openFPGALoader ==="
sudo /etc/oss-cad-suite/bin/openFPGALoader -b "$BOARD" "$BITSTREAM"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du flash ==="
exit 1
fi
echo "=== Compilation et flash réussis ==="

View File

@@ -0,0 +1,4 @@
#!/bin/bash
echo "=== Nettoyage des fichiers générés ==="
rm -rf runs/*

View File

@@ -0,0 +1,5 @@
#!/bin/bash
echo "=== Lancement de GTKWave ==="
gtkwave runs/sim.vcd
echo "=== GTKWave terminé ==="

View File

@@ -0,0 +1,17 @@
#!/bin/bash
echo "=== Simulation avec Icarus Verilog ==="
OUT="runs/sim.vvp"
TOP="tb_dht11"
DIRS=("src/verilog" "tests/verilog")
FILES=()
for dir in "${DIRS[@]}"; do
for file in "$dir"/*.v; do
FILES+=("$file")
done
done
iverilog -g2012 -o "$OUT" -s "$TOP" "${FILES[@]}"
vvp "$OUT"

View File

@@ -0,0 +1,25 @@
#!/bin/bash
# Aller à la racine du projet
cd "$(dirname "$0")/../.." || exit 1
# Config de base
DEVICE="GW2AR-LV18QN88C8/I7"
BOARD="tangnano20k"
TOP="dht11_uart_top"
CST_FILE="$TOP.cst"
JSON_FILE="runs/$TOP.json"
PNR_JSON="runs/pnr_$TOP.json"
BITSTREAM="runs/$TOP.fs"
# Créer le dossier runs si nécessaire
mkdir -p runs
echo "=== Étape 4 : Flash avec openFPGALoader ==="
sudo /etc/oss-cad-suite/bin/openFPGALoader -b "$BOARD" "$BITSTREAM"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du flash ==="
exit 1
fi
echo "=== Compilation et flash réussis ==="

View File

@@ -0,0 +1,47 @@
@echo off
setlocal
rem === Aller à la racine du projet ===
cd /d %~dp0\..\..
echo Script lancé depuis : %cd%
rem === Config de base ===
set DEVICE=GW2AR-LV18QN88C8/I7
set BOARD=tangnano20k
set TOP=fpga_wifi_led
set CST_FILE=%TOP%.cst
set JSON_FILE=runs/%TOP%.json
set PNR_JSON=runs/pnr_%TOP%.json
set BITSTREAM=runs/%TOP%.fs
rem === Créer le dossier runs si nécessaire ===
if not exist ../runs (
mkdir ../runs
)
echo === Étape 1 : Synthèse avec Yosys ===
yosys -p "read_verilog -sv src/verilog/%TOP%.v IP/verilog/uart_tx_fifo.v IP/verilog/uart_rx_fifo.v IP/verilog/fifo.v IP/verilog/txuartlite.v IP/verilog/rxuartlite.v; synth_gowin -top %TOP% -json %JSON_FILE%"
if errorlevel 1 goto error
echo === Étape 2 : Placement & Routage avec nextpnr-himbaechel ===
nextpnr-himbaechel --json %JSON_FILE% --write %PNR_JSON% --device %DEVICE% --vopt cst=constraints/%CST_FILE% --vopt family=GW2A-18C
if errorlevel 1 goto error
echo === Étape 3 : Packing avec gowin_pack ===
gowin_pack -d %DEVICE% -o %BITSTREAM% %PNR_JSON%
if errorlevel 1 goto error
echo === Étape 4 : Flash avec openFPGALoader ===
openFPGALoader -b %BOARD% %BITSTREAM%
if errorlevel 1 goto error
echo === Compilation et flash réussis ===
goto end
:error
echo === Une erreur est survenue ===
:end
endlocal
pause

View File

@@ -0,0 +1,4 @@
@echo off
echo === Nettoyage du dossier runs ===
rd /s /q runs
mkdir runs

View File

@@ -0,0 +1,3 @@
@echo off
echo === Lancement de GTKWave ===
gtkwave runs/sim.vcd

View File

@@ -0,0 +1,29 @@
@echo off
echo === Simulation avec Icarus Verilog ===
setlocal enabledelayedexpansion
:: Dossier de sortie
set OUT=runs/sim.vvp
:: Top-level testbench module
set TOP=tb_dht11
:: Répertoires contenant des fichiers .v
set DIRS=src/verilog tests/verilog IP/verilog
:: Variable pour stocker les fichiers
set FILES=
:: Boucle sur chaque dossier
for %%D in (%DIRS%) do (
for %%F in (%%D\*.v) do (
set FILES=!FILES! %%F
)
)
:: Compilation avec Icarus Verilog
iverilog -g2012 -o %OUT% -s %TOP% %FILES%
endlocal
vvp runs/sim.vvp

View File

@@ -0,0 +1,106 @@
#include <WiFi.h>
#include <WiFiManager.h> // Include WiFiManager library
// TCP server port
const uint16_t port = 1234;
// TCP server object
WiFiServer server(port);
// TCP client object
WiFiClient client;
// Touch sensor settings
const int touchPin = T0; // Use touch pin T0 (GPIO 4)
const int touchThreshold = 30; // Adjust based on testing (lower value = touch detected)
const unsigned long resetHoldTime = 5000; // 5 seconds to trigger reset
unsigned long touchStartTime = 0;
bool touchDetected = false;
void setup() {
// Initialize Serial for UART communication (115200 baud)
Serial.begin(115200);
// Initialize WiFiManager
WiFiManager wifiManager;
// Check for touch sensor reset
if (checkTouchReset()) {
wifiManager.resetSettings();
Serial.println("WiFi settings reset due to touch sensor");
ESP.restart(); // Restart to apply reset
}
// Connect to WiFi using WiFiManager (creates AP if no saved credentials)
if (!wifiManager.autoConnect("ESP32_AP")) {
Serial.println("Failed to connect to WiFi and hit timeout");
ESP.restart();
}
Serial.println("WiFi connected");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
// Start TCP server
server.begin();
Serial.println("TCP server started on port " + String(port));
}
void loop() {
// Check for touch sensor reset
handleTouchReset();
// Check for incoming client connections
if (!client.connected()) {
client = server.available();
if (client) {
Serial.println("New client connected");
}
}
// Relay data from TCP client to UART
while (client.connected() && client.available()) {
char c = client.read();
Serial.write(c); // Send to UART
}
// Relay data from UART to TCP client
while (Serial.available() && client.connected()) {
char c = Serial.read();
client.write(c); // Send to TCP client
}
// Handle client disconnection
if (client && !client.connected()) {
Serial.println("Client disconnected");
client.stop();
}
}
// Function to check touch sensor at boot for reset
bool checkTouchReset() {
int touchValue = touchRead(touchPin);
if (touchValue < touchThreshold) {
unsigned long startTime = millis();
while (touchRead(touchPin) < touchThreshold) {
if (millis() - startTime >= resetHoldTime) {
return true; // Touch held long enough, trigger reset
}
}
}
return false;
}
// Function to handle touch sensor reset during loop
void handleTouchReset() {
int touchValue = touchRead(touchPin);
if (touchValue < touchThreshold && !touchDetected) {
touchDetected = true;
touchStartTime = millis();
} else if (touchValue >= touchThreshold && touchDetected) {
touchDetected = false; // Reset when touch is released
}
if (touchDetected && (millis() - touchStartTime >= resetHoldTime)) {
WiFiManager wifiManager;
wifiManager.resetSettings();
Serial.println("WiFi settings reset due to touch sensor");
ESP.restart(); // Restart to apply reset
}
}

View File

@@ -0,0 +1,134 @@
`default_nettype none
module fpga_wifi_led (
input i_clk,
input i_rx,
output o_tx,
output [5:0] o_leds
);
// === PARAMÈTRES ===
localparam CLK_FREQ = 27_000_000;
localparam BAUD_RATE = 115200;
localparam FIFO_SIZE = 8;
// === SIGNAUX UART RX ===
wire [7:0] rx_data;
wire rx_data_available;
reg rx_rd_en;
// === SIGNAUX UART TX ===
reg [7:0] tx_data;
reg tx_wr_en;
wire tx_fifo_full;
// === SIGNAUX INTERNES ===
reg [5:0] leds_reg;
reg [1:0] state;
reg [7:0] received_byte;
// === ÉTATS DE LA FSM ===
localparam IDLE = 2'd0,
WAIT_BYTE = 2'd1,
PROCESS_CMD = 2'd2,
SEND_RESPONSE = 2'd3;
// === INSTANCIATION UART RX FIFO ===
uart_rx_fifo #(
.CLK_FREQ(CLK_FREQ),
.BAUD_RATE(BAUD_RATE),
.FIFO_SIZE(FIFO_SIZE)
) uart_rx_inst (
.clk(i_clk),
.rd_en(rx_rd_en),
.rd_data(rx_data),
.rx_pin(i_rx),
.data_available(rx_data_available)
);
// === INSTANCIATION UART TX FIFO ===
uart_tx_fifo #(
.CLK_FREQ(CLK_FREQ),
.BAUD_RATE(BAUD_RATE),
.FIFO_SIZE(FIFO_SIZE)
) uart_tx_inst (
.clk(i_clk),
.wr_en(tx_wr_en),
.wr_data(tx_data),
.tx_pin(o_tx),
.fifo_full(tx_fifo_full)
);
// === ASSIGNATION DES LEDS ===
assign o_leds = ~leds_reg;
// === INITIALISATION ===
initial begin
leds_reg = 6'b000000;
state = IDLE;
rx_rd_en = 0;
tx_wr_en = 0;
tx_data = 8'h00;
received_byte = 8'h00;
end
// === MACHINE D'ÉTAT PRINCIPALE ===
always @(posedge i_clk) begin
// Désactiver les signaux de contrôle par défaut
rx_rd_en <= 0;
tx_wr_en <= 0;
case (state)
IDLE: begin
received_byte <= 8'h00;
if (rx_data_available) begin
state <= WAIT_BYTE;
end
end
WAIT_BYTE: begin
if (rx_data_available) begin
rx_rd_en <= 1;
received_byte <= rx_data;
state <= PROCESS_CMD;
end
end
PROCESS_CMD: begin
// Vérifier la commande reçue
if (received_byte == 8'h01) begin
// Allumer la LED 0
leds_reg[0] <= 1;
// Préparer la réponse
state <= SEND_RESPONSE;
end else if (received_byte == 8'h02) begin
// Éteindre la LED 0
leds_reg[0] <= 0;
// Préparer la réponse
state <= SEND_RESPONSE;
end else begin
// Commande non reconnue, éteindre toutes les LEDs
leds_reg <= 6'b000000;
state <= IDLE;
end
end
SEND_RESPONSE: begin
if (!tx_fifo_full) begin
// Renvoyer le même byte reçu (0x01 ou 0x02)
tx_data <= received_byte;
tx_wr_en <= 1;
state <= IDLE;
end
end
default: begin
state <= IDLE;
end
endcase
end
endmodule

View File

@@ -0,0 +1,30 @@
import serial
import time
# Configuration du port série
ser = serial.Serial(
port='/dev/ttyUSB0', # Remplace par ton port (ex : COM3 sous Windows)
baudrate=115200,
timeout=1 # En secondes
)
print("Lecture du port série... (Ctrl+C pour quitter)")
try:
while True:
# Lire 2 octets
data = ser.read(2)
if len(data) == 2:
temperature = data[0]
humidite = data[1]
print(f"Température: {temperature}°C, Humidité: {humidite}%")
else:
print("Pas assez de données reçues.")
time.sleep(1)
except KeyboardInterrupt:
print("\nArrêt du script.")
finally:
ser.close()

View File

@@ -0,0 +1,65 @@
`timescale 1ns/1ps
module tb_dht11;
reg clk = 0;
always #18.5 clk = ~clk; // Génère une clock 27 MHz
// === Registres ===
wire io_dht11_sig;
reg dht11_start;
wire dht11_data_ready;
wire dht11_busy;
wire [7:0] dht11_temp_data;
wire [7:0] dht11_hum_data;
wire dht11_error;
// === Simulation du module DHT11 ===
dht11_model dht11_model (
.data(io_dht11_sig),
.clk(clk),
.rst_n(1'b1) // Reset non utilisé dans ce test
);
// === Module DHT11 INTERFACE ===
dht11_interface dht11_interface (
.i_clk(clk),
.io_dht11_sig(io_dht11_sig),
.i_start(dht11_start),
.o_dht11_data_ready(dht11_data_ready),
.o_busy(dht11_busy),
.o_temp_data(dht11_temp_data),
.o_hum_data(dht11_hum_data),
.o_dht11_error(dht11_error)
);
pullup(io_dht11_sig);
// === TEST SEQUENCE ===
initial begin
$dumpfile("runs/sim.vcd");
$dumpvars(0, tb_dht11);
dht11_start = 0;
$display("==== Start DHT11 Test ====");
#100;
dht11_start = 1; // Démarre la lecture des données
$display("DHT11 start...");
wait(dht11_busy); // Attend que le module soit occupé
$display("DHT11 busy...");
dht11_start = 0;
wait(dht11_data_ready); // Attend que les données soient prêtes
$display("DHT11 data ready...");
$display("Température : %d.%d °C", dht11_temp_data);
$display("Humidité : %d.%d %%", dht11_hum_data);
$display("==== End DHT11 Test ====");
$finish;
end
endmodule