forked from tanchou/Verilog
Code FPGA fonctionnel
This commit is contained in:
5
Semaine_7/ESP32/leds_commands/.gitignore
vendored
Normal file
5
Semaine_7/ESP32/leds_commands/.gitignore
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
runs
|
||||
.vscode
|
||||
workspace.code-workspace
|
||||
*.pyc
|
||||
.idea
|
48
Semaine_7/ESP32/leds_commands/IP/verilog/fifo.v
Normal file
48
Semaine_7/ESP32/leds_commands/IP/verilog/fifo.v
Normal file
@@ -0,0 +1,48 @@
|
||||
module fifo #(
|
||||
parameter SIZE = 16,
|
||||
parameter WIDTH = 8
|
||||
)(
|
||||
input wire clk,
|
||||
input wire wr_en,
|
||||
input wire[WIDTH-1:0] wr_data,
|
||||
input wire rd_en,
|
||||
output reg[WIDTH-1:0] rd_data,
|
||||
|
||||
output wire full,
|
||||
output wire empty
|
||||
);
|
||||
|
||||
localparam LOGSIZE = $clog2(SIZE);
|
||||
|
||||
reg [WIDTH-1:0] fifo[0:SIZE-1];
|
||||
reg [LOGSIZE-1:0] wr_ptr;
|
||||
reg [LOGSIZE-1:0] rd_ptr;
|
||||
reg [LOGSIZE:0] count;
|
||||
|
||||
assign full = (count == SIZE);
|
||||
assign empty = (count == 0);
|
||||
|
||||
initial begin
|
||||
wr_ptr = 0;
|
||||
rd_ptr = 0;
|
||||
count = 0;
|
||||
end
|
||||
|
||||
always @(posedge clk) begin // IN
|
||||
rd_data <= fifo[rd_ptr];
|
||||
if (wr_en && !full && rd_en && !empty) begin
|
||||
fifo[wr_ptr] <= wr_data;
|
||||
wr_ptr <= (wr_ptr == SIZE - 1) ? 0 : (wr_ptr + 1) ;
|
||||
rd_ptr <= (rd_ptr == SIZE - 1) ? 0 : (rd_ptr + 1) ;
|
||||
end else if (wr_en && !full) begin
|
||||
fifo[wr_ptr] <= wr_data;
|
||||
wr_ptr <= (wr_ptr == SIZE - 1) ? 0 : (wr_ptr + 1) ;
|
||||
count <= count + 1;
|
||||
end else if (rd_en && !empty) begin // OUT
|
||||
rd_ptr <= (rd_ptr == SIZE - 1) ? 0 : (rd_ptr + 1) ;
|
||||
count <= count - 1;
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
endmodule
|
796
Semaine_7/ESP32/leds_commands/IP/verilog/rxuartlite.v
Normal file
796
Semaine_7/ESP32/leds_commands/IP/verilog/rxuartlite.v
Normal file
File diff suppressed because it is too large
Load Diff
472
Semaine_7/ESP32/leds_commands/IP/verilog/txuartlite.v
Normal file
472
Semaine_7/ESP32/leds_commands/IP/verilog/txuartlite.v
Normal file
@@ -0,0 +1,472 @@
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Filename: txuartlite.v
|
||||
// {{{
|
||||
// Project: wbuart32, a full featured UART with simulator
|
||||
//
|
||||
// Purpose: Transmit outputs over a single UART line. This particular UART
|
||||
// implementation has been extremely simplified: it does not handle
|
||||
// generating break conditions, nor does it handle anything other than the
|
||||
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
|
||||
//
|
||||
// To interface with this module, connect it to your system clock, and
|
||||
// pass it the byte of data you wish to transmit. Strobe the i_wr line
|
||||
// high for one cycle, and your data will be off. Wait until the 'o_busy'
|
||||
// line is low before strobing the i_wr line again--this implementation
|
||||
// has NO BUFFER, so strobing i_wr while the core is busy will just
|
||||
// get ignored. The output will be placed on the o_txuart output line.
|
||||
//
|
||||
// (I often set both data and strobe on the same clock, and then just leave
|
||||
// them set until the busy line is low. Then I move on to the next piece
|
||||
// of data.)
|
||||
//
|
||||
// Creator: Dan Gisselquist, Ph.D.
|
||||
// Gisselquist Technology, LLC
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// }}}
|
||||
// Copyright (C) 2015-2024, Gisselquist Technology, LLC
|
||||
// {{{
|
||||
// This program is free software (firmware): you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as published
|
||||
// by the Free Software Foundation, either version 3 of the License, or (at
|
||||
// your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
// for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along
|
||||
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
||||
// target there if the PDF file isn't present.) If not, see
|
||||
// <http://www.gnu.org/licenses/> for a copy.
|
||||
// }}}
|
||||
// License: GPL, v3, as defined and found on www.gnu.org,
|
||||
// {{{
|
||||
// http://www.gnu.org/licenses/gpl.html
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
`default_nettype none
|
||||
// }}}
|
||||
module txuartlite #(
|
||||
// {{{
|
||||
// TIMING_BITS -- the number of bits required to represent
|
||||
// the number of clocks per baud. 24 should be sufficient for
|
||||
// most baud rates, but you can trim it down to save logic if
|
||||
// you would like. TB is just an abbreviation for TIMING_BITS.
|
||||
parameter [4:0] TIMING_BITS = 5'd8,
|
||||
localparam TB = TIMING_BITS,
|
||||
// CLOCKS_PER_BAUD -- the number of system clocks per baud
|
||||
// interval.
|
||||
parameter [(TB-1):0] CLOCKS_PER_BAUD = 234 // 24'd868
|
||||
// }}}
|
||||
) (
|
||||
// {{{
|
||||
input wire i_clk, i_reset,
|
||||
input wire i_wr,
|
||||
input wire [7:0] i_data,
|
||||
// And the UART input line itself
|
||||
output reg o_uart_tx,
|
||||
// A line to tell others when we are ready to accept data. If
|
||||
// (i_wr)&&(!o_busy) is ever true, then the core has accepted
|
||||
// a byte for transmission.
|
||||
output wire o_busy
|
||||
// }}}
|
||||
);
|
||||
|
||||
// Register/net declarations
|
||||
// {{{
|
||||
localparam [3:0] TXUL_BIT_ZERO = 4'h0,
|
||||
// TXUL_BIT_ONE = 4'h1,
|
||||
// TXUL_BIT_TWO = 4'h2,
|
||||
// TXUL_BIT_THREE = 4'h3,
|
||||
// TXUL_BIT_FOUR = 4'h4,
|
||||
// TXUL_BIT_FIVE = 4'h5,
|
||||
// TXUL_BIT_SIX = 4'h6,
|
||||
// TXUL_BIT_SEVEN = 4'h7,
|
||||
TXUL_STOP = 4'h8,
|
||||
TXUL_IDLE = 4'hf;
|
||||
|
||||
reg [(TB-1):0] baud_counter;
|
||||
reg [3:0] state;
|
||||
reg [7:0] lcl_data;
|
||||
reg r_busy, zero_baud_counter;
|
||||
// }}}
|
||||
|
||||
// Big state machine controlling: r_busy, state
|
||||
// {{{
|
||||
//
|
||||
initial r_busy = 1'b1;
|
||||
initial state = TXUL_IDLE;
|
||||
always @(posedge i_clk)
|
||||
if (i_reset)
|
||||
begin
|
||||
r_busy <= 1'b1;
|
||||
state <= TXUL_IDLE;
|
||||
end else if (!zero_baud_counter)
|
||||
// r_busy needs to be set coming into here
|
||||
r_busy <= 1'b1;
|
||||
else if (state > TXUL_STOP) // STATE_IDLE
|
||||
begin
|
||||
state <= TXUL_IDLE;
|
||||
r_busy <= 1'b0;
|
||||
if ((i_wr)&&(!r_busy))
|
||||
begin // Immediately start us off with a start bit
|
||||
r_busy <= 1'b1;
|
||||
state <= TXUL_BIT_ZERO;
|
||||
end
|
||||
end else begin
|
||||
// One clock tick in each of these states ...
|
||||
r_busy <= 1'b1;
|
||||
if (state <=TXUL_STOP) // start bit, 8-d bits, stop-b
|
||||
state <= state + 1'b1;
|
||||
else
|
||||
state <= TXUL_IDLE;
|
||||
end
|
||||
// }}}
|
||||
|
||||
// o_busy
|
||||
// {{{
|
||||
//
|
||||
// This is a wire, designed to be true is we are ever busy above.
|
||||
// originally, this was going to be true if we were ever not in the
|
||||
// idle state. The logic has since become more complex, hence we have
|
||||
// a register dedicated to this and just copy out that registers value.
|
||||
assign o_busy = (r_busy);
|
||||
// }}}
|
||||
|
||||
// lcl_data
|
||||
// {{{
|
||||
//
|
||||
// This is our working copy of the i_data register which we use
|
||||
// when transmitting. It is only of interest during transmit, and is
|
||||
// allowed to be whatever at any other time. Hence, if r_busy isn't
|
||||
// true, we can always set it. On the one clock where r_busy isn't
|
||||
// true and i_wr is, we set it and r_busy is true thereafter.
|
||||
// Then, on any zero_baud_counter (i.e. change between baud intervals)
|
||||
// we simple logically shift the register right to grab the next bit.
|
||||
initial lcl_data = 8'hff;
|
||||
always @(posedge i_clk)
|
||||
if (i_reset)
|
||||
lcl_data <= 8'hff;
|
||||
else if (i_wr && !r_busy)
|
||||
lcl_data <= i_data;
|
||||
else if (zero_baud_counter)
|
||||
lcl_data <= { 1'b1, lcl_data[7:1] };
|
||||
// }}}
|
||||
|
||||
// o_uart_tx
|
||||
// {{{
|
||||
//
|
||||
// This is the final result/output desired of this core. It's all
|
||||
// centered about o_uart_tx. This is what finally needs to follow
|
||||
// the UART protocol.
|
||||
//
|
||||
initial o_uart_tx = 1'b1;
|
||||
always @(posedge i_clk)
|
||||
if (i_reset)
|
||||
o_uart_tx <= 1'b1;
|
||||
else if (i_wr && !r_busy)
|
||||
o_uart_tx <= 1'b0; // Set the start bit on writes
|
||||
else if (zero_baud_counter) // Set the data bit.
|
||||
o_uart_tx <= lcl_data[0];
|
||||
// }}}
|
||||
|
||||
// Baud counter
|
||||
// {{{
|
||||
// All of the above logic is driven by the baud counter. Bits must last
|
||||
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
|
||||
// make certain of that.
|
||||
//
|
||||
// The basic logic is this: at the beginning of a bit interval, start
|
||||
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
|
||||
// to zero, restart it.
|
||||
//
|
||||
// However, comparing a 28'bit number to zero can be rather complex--
|
||||
// especially if we wish to do anything else on that same clock. For
|
||||
// that reason, we create "zero_baud_counter". zero_baud_counter is
|
||||
// nothing more than a flag that is true anytime baud_counter is zero.
|
||||
// It's true when the logic (above) needs to step to the next bit.
|
||||
// Simple enough?
|
||||
//
|
||||
// I wish we could stop there, but there are some other (ugly)
|
||||
// conditions to deal with that offer exceptions to this basic logic.
|
||||
//
|
||||
// 1. When the user has commanded a BREAK across the line, we need to
|
||||
// wait several baud intervals following the break before we start
|
||||
// transmitting, to give any receiver a chance to recognize that we are
|
||||
// out of the break condition, and to know that the next bit will be
|
||||
// a stop bit.
|
||||
//
|
||||
// 2. A reset is similar to a break condition--on both we wait several
|
||||
// baud intervals before allowing a start bit.
|
||||
//
|
||||
// 3. In the idle state, we stop our counter--so that upon a request
|
||||
// to transmit when idle we can start transmitting immediately, rather
|
||||
// than waiting for the end of the next (fictitious and arbitrary) baud
|
||||
// interval.
|
||||
//
|
||||
// When (i_wr)&&(!r_busy)&&(state == TXUL_IDLE) then we're not only in
|
||||
// the idle state, but we also just accepted a command to start writing
|
||||
// the next word. At this point, the baud counter needs to be reset
|
||||
// to the number of CLOCKS_PER_BAUD, and zero_baud_counter set to zero.
|
||||
//
|
||||
// The logic is a bit twisted here, in that it will only check for the
|
||||
// above condition when zero_baud_counter is false--so as to make
|
||||
// certain the STOP bit is complete.
|
||||
initial zero_baud_counter = 1'b1;
|
||||
initial baud_counter = 0;
|
||||
always @(posedge i_clk)
|
||||
if (i_reset)
|
||||
begin
|
||||
zero_baud_counter <= 1'b1;
|
||||
baud_counter <= 0;
|
||||
end else begin
|
||||
zero_baud_counter <= (baud_counter == 1);
|
||||
|
||||
if (state == TXUL_IDLE)
|
||||
begin
|
||||
baud_counter <= 0;
|
||||
zero_baud_counter <= 1'b1;
|
||||
if ((i_wr)&&(!r_busy))
|
||||
begin
|
||||
baud_counter <= CLOCKS_PER_BAUD - 1'b1;
|
||||
zero_baud_counter <= 1'b0;
|
||||
end
|
||||
end else if (!zero_baud_counter)
|
||||
baud_counter <= baud_counter - 1'b1;
|
||||
else if (state > TXUL_STOP)
|
||||
begin
|
||||
baud_counter <= 0;
|
||||
zero_baud_counter <= 1'b1;
|
||||
end else if (state == TXUL_STOP)
|
||||
// Need to complete this state one clock early, so
|
||||
// we can release busy one clock before the stop bit
|
||||
// is complete, so we can start on the next byte
|
||||
// exactly 10*CLOCKS_PER_BAUD clocks after we started
|
||||
// the last one
|
||||
baud_counter <= CLOCKS_PER_BAUD - 2;
|
||||
else // All other states
|
||||
baud_counter <= CLOCKS_PER_BAUD - 1'b1;
|
||||
end
|
||||
// }}}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// FORMAL METHODS
|
||||
// {{{
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
`ifdef FORMAL
|
||||
// Declarations
|
||||
`ifdef TXUARTLITE
|
||||
`define ASSUME assume
|
||||
`else
|
||||
`define ASSUME assert
|
||||
`endif
|
||||
reg f_past_valid, f_last_clk;
|
||||
reg [(TB-1):0] f_baud_count;
|
||||
reg [9:0] f_txbits;
|
||||
reg [3:0] f_bitcount;
|
||||
reg [7:0] f_request_tx_data;
|
||||
wire [3:0] subcount;
|
||||
|
||||
// Setup
|
||||
// {{{
|
||||
initial f_past_valid = 1'b0;
|
||||
always @(posedge i_clk)
|
||||
f_past_valid <= 1'b1;
|
||||
|
||||
initial `ASSUME(!i_wr);
|
||||
always @(posedge i_clk)
|
||||
if ((f_past_valid)&&($past(i_wr))&&($past(o_busy)))
|
||||
begin
|
||||
`ASSUME(i_wr == $past(i_wr));
|
||||
`ASSUME(i_data == $past(i_data));
|
||||
end
|
||||
// }}}
|
||||
|
||||
// Check the baud counter
|
||||
// {{{
|
||||
always @(posedge i_clk)
|
||||
assert(zero_baud_counter == (baud_counter == 0));
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (f_past_valid && !$past(i_reset) && $past(baud_counter != 0)
|
||||
&& $past(state != TXUL_IDLE))
|
||||
assert(baud_counter == $past(baud_counter - 1'b1));
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (f_past_valid && !$past(i_reset) && !$past(zero_baud_counter)
|
||||
&& $past(state != TXUL_IDLE))
|
||||
assert($stable(o_uart_tx));
|
||||
|
||||
initial f_baud_count = 1'b0;
|
||||
always @(posedge i_clk)
|
||||
if (zero_baud_counter)
|
||||
f_baud_count <= 0;
|
||||
else
|
||||
f_baud_count <= f_baud_count + 1'b1;
|
||||
|
||||
always @(posedge i_clk)
|
||||
assert(f_baud_count < CLOCKS_PER_BAUD);
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (baud_counter != 0)
|
||||
assert(o_busy);
|
||||
// }}}
|
||||
|
||||
// {{{
|
||||
initial f_txbits = 0;
|
||||
always @(posedge i_clk)
|
||||
if (zero_baud_counter)
|
||||
f_txbits <= { o_uart_tx, f_txbits[9:1] };
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (f_past_valid && !$past(i_reset)&& !$past(zero_baud_counter)
|
||||
&& !$past(state==TXUL_IDLE))
|
||||
assert(state == $past(state));
|
||||
|
||||
initial f_bitcount = 0;
|
||||
always @(posedge i_clk)
|
||||
if ((!f_past_valid)||(!$past(f_past_valid)))
|
||||
f_bitcount <= 0;
|
||||
else if ((state == TXUL_IDLE)&&(zero_baud_counter))
|
||||
f_bitcount <= 0;
|
||||
else if (zero_baud_counter)
|
||||
f_bitcount <= f_bitcount + 1'b1;
|
||||
|
||||
always @(posedge i_clk)
|
||||
assert(f_bitcount <= 4'ha);
|
||||
|
||||
always @(*)
|
||||
if (!o_busy)
|
||||
assert(zero_baud_counter);
|
||||
|
||||
always @(posedge i_clk)
|
||||
if ((i_wr)&&(!o_busy))
|
||||
f_request_tx_data <= i_data;
|
||||
|
||||
assign subcount = 10-f_bitcount;
|
||||
always @(posedge i_clk)
|
||||
if (f_bitcount > 0)
|
||||
assert(!f_txbits[subcount]);
|
||||
|
||||
always @(posedge i_clk)
|
||||
if (f_bitcount == 4'ha)
|
||||
begin
|
||||
assert(f_txbits[8:1] == f_request_tx_data);
|
||||
assert( f_txbits[9]);
|
||||
end
|
||||
|
||||
always @(posedge i_clk)
|
||||
assert((state <= TXUL_STOP + 1'b1)||(state == TXUL_IDLE));
|
||||
|
||||
always @(posedge i_clk)
|
||||
if ((f_past_valid)&&($past(f_past_valid))&&($past(o_busy)))
|
||||
cover(!o_busy);
|
||||
// }}}
|
||||
|
||||
`endif // FORMAL
|
||||
`ifdef VERIFIC_SVA
|
||||
reg [7:0] fsv_data;
|
||||
|
||||
//
|
||||
// Grab a copy of the data any time we are sent a new byte to transmit
|
||||
// We'll use this in a moment to compare the item transmitted against
|
||||
// what is supposed to be transmitted
|
||||
//
|
||||
always @(posedge i_clk)
|
||||
if ((i_wr)&&(!o_busy))
|
||||
fsv_data <= i_data;
|
||||
|
||||
//
|
||||
// One baud interval
|
||||
// {{{
|
||||
//
|
||||
// 1. The UART output is constant at DAT
|
||||
// 2. The internal state remains constant at ST
|
||||
// 3. CKS = the number of clocks per bit.
|
||||
//
|
||||
// Everything stays constant during the CKS clocks with the exception
|
||||
// of (zero_baud_counter), which is *only* raised on the last clock
|
||||
// interval
|
||||
sequence BAUD_INTERVAL(CKS, DAT, SR, ST);
|
||||
((o_uart_tx == DAT)&&(state == ST)
|
||||
&&(lcl_data == SR)
|
||||
&&(!zero_baud_counter))[*(CKS-1)]
|
||||
##1 (o_uart_tx == DAT)&&(state == ST)
|
||||
&&(lcl_data == SR)
|
||||
&&(zero_baud_counter);
|
||||
endsequence
|
||||
// }}}
|
||||
|
||||
//
|
||||
// One byte transmitted
|
||||
// {{{
|
||||
//
|
||||
// DATA = the byte that is sent
|
||||
// CKS = the number of clocks per bit
|
||||
//
|
||||
sequence SEND(CKS, DATA);
|
||||
BAUD_INTERVAL(CKS, 1'b0, DATA, 4'h0)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[0], {{(1){1'b1}},DATA[7:1]}, 4'h1)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[1], {{(2){1'b1}},DATA[7:2]}, 4'h2)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[2], {{(3){1'b1}},DATA[7:3]}, 4'h3)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[3], {{(4){1'b1}},DATA[7:4]}, 4'h4)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[4], {{(5){1'b1}},DATA[7:5]}, 4'h5)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[5], {{(6){1'b1}},DATA[7:6]}, 4'h6)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[6], {{(7){1'b1}},DATA[7:7]}, 4'h7)
|
||||
##1 BAUD_INTERVAL(CKS, DATA[7], 8'hff, 4'h8)
|
||||
##1 BAUD_INTERVAL(CKS-1, 1'b1, 8'hff, 4'h9);
|
||||
endsequence
|
||||
// }}}
|
||||
|
||||
//
|
||||
// Transmit one byte
|
||||
// {{{
|
||||
// Once the byte is transmitted, make certain we return to
|
||||
// idle
|
||||
//
|
||||
assert property (
|
||||
@(posedge i_clk)
|
||||
(i_wr)&&(!o_busy)
|
||||
|=> ((o_busy) throughout SEND(CLOCKS_PER_BAUD,fsv_data))
|
||||
##1 (!o_busy)&&(o_uart_tx)&&(zero_baud_counter));
|
||||
// }}}
|
||||
|
||||
// {{{
|
||||
assume property (
|
||||
@(posedge i_clk)
|
||||
(i_wr)&&(o_busy) |=>
|
||||
(i_wr)&&($stable(i_data)));
|
||||
|
||||
//
|
||||
// Make certain that o_busy is true any time zero_baud_counter is
|
||||
// non-zero
|
||||
//
|
||||
always @(*)
|
||||
assert((o_busy)||(zero_baud_counter) );
|
||||
|
||||
// If and only if zero_baud_counter is true, baud_counter must be zero
|
||||
// Insist on that relationship here.
|
||||
always @(*)
|
||||
assert(zero_baud_counter == (baud_counter == 0));
|
||||
|
||||
// To make certain baud_counter stays below CLOCKS_PER_BAUD
|
||||
always @(*)
|
||||
assert(baud_counter < CLOCKS_PER_BAUD);
|
||||
|
||||
//
|
||||
// Insist that we are only ever in a valid state
|
||||
always @(*)
|
||||
assert((state <= TXUL_STOP+1'b1)||(state == TXUL_IDLE));
|
||||
// }}}
|
||||
|
||||
`endif // Verific SVA
|
||||
// }}}
|
||||
endmodule
|
56
Semaine_7/ESP32/leds_commands/IP/verilog/uart_rx_fifo.v
Normal file
56
Semaine_7/ESP32/leds_commands/IP/verilog/uart_rx_fifo.v
Normal file
@@ -0,0 +1,56 @@
|
||||
module uart_rx_fifo #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200,
|
||||
parameter FIFO_SIZE = 8
|
||||
)(
|
||||
input clk,
|
||||
input rd_en,
|
||||
output wire [7:0] rd_data,
|
||||
input rx_pin,
|
||||
output data_available
|
||||
);
|
||||
|
||||
// UART RX wires
|
||||
wire [7:0] rx_data;
|
||||
wire rx_received;
|
||||
|
||||
// FIFO control
|
||||
reg wr_en;
|
||||
wire fifo_empty;
|
||||
wire fifo_full;
|
||||
|
||||
// UART Receiver instance
|
||||
rxuartlite uart_rx_inst (
|
||||
.i_clk(clk),
|
||||
.i_reset(1'b0),
|
||||
.i_uart_rx(rx_pin),
|
||||
.o_wr(rx_received),
|
||||
.o_data(rx_data)
|
||||
);
|
||||
|
||||
// FIFO instance
|
||||
fifo #(
|
||||
.WIDTH(8),
|
||||
.SIZE(FIFO_SIZE)
|
||||
) fifo_inst (
|
||||
.clk(clk),
|
||||
.wr_en(wr_en),
|
||||
.wr_data(rx_data),
|
||||
.rd_en(rd_en),
|
||||
.rd_data(rd_data),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full)
|
||||
);
|
||||
|
||||
assign data_available = ~fifo_empty;
|
||||
|
||||
// Écriture dans la FIFO uniquement si donnée reçue ET FIFO pas pleine
|
||||
always @(posedge clk) begin
|
||||
if (rx_received && !fifo_full) begin
|
||||
wr_en <= 1'b1;
|
||||
end else begin
|
||||
wr_en <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
89
Semaine_7/ESP32/leds_commands/IP/verilog/uart_tx_fifo.v
Normal file
89
Semaine_7/ESP32/leds_commands/IP/verilog/uart_tx_fifo.v
Normal file
@@ -0,0 +1,89 @@
|
||||
module uart_tx_fifo #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200,
|
||||
parameter FIFO_SIZE = 8
|
||||
)(
|
||||
input clk,
|
||||
input wr_en,
|
||||
input [7:0] wr_data,
|
||||
output tx_pin,
|
||||
output fifo_full
|
||||
);
|
||||
|
||||
// FIFO wires
|
||||
wire [7:0] fifo_rd_data;
|
||||
wire fifo_empty;
|
||||
reg fifo_rd_en;
|
||||
|
||||
// UART wires
|
||||
wire tx_busy;
|
||||
reg uart_tx_enable;
|
||||
reg [7:0] uart_tx_data;
|
||||
|
||||
// FSM
|
||||
typedef enum logic [1:0] {
|
||||
IDLE,
|
||||
WAIT_READY,
|
||||
READ_FIFO,
|
||||
SEND
|
||||
} state_t;
|
||||
|
||||
state_t state = IDLE;
|
||||
|
||||
// FIFO instantiation
|
||||
fifo #(
|
||||
.WIDTH(8),
|
||||
.SIZE(FIFO_SIZE)
|
||||
) fifo_inst (
|
||||
.clk(clk),
|
||||
.wr_en(wr_en),
|
||||
.wr_data(wr_data),
|
||||
.rd_en(fifo_rd_en),
|
||||
.rd_data(fifo_rd_data),
|
||||
.empty(fifo_empty),
|
||||
.full(fifo_full)
|
||||
);
|
||||
|
||||
// UART TX instantiation
|
||||
txuartlite uart_tx_inst (
|
||||
.i_clk(clk),
|
||||
.i_reset(1'b0),
|
||||
.i_wr(uart_tx_enable),
|
||||
.i_data(uart_tx_data),
|
||||
.o_uart_tx(tx_pin),
|
||||
.o_busy(tx_busy)
|
||||
);
|
||||
|
||||
always_ff @(posedge clk) begin
|
||||
fifo_rd_en <= 0;
|
||||
uart_tx_enable <= 0;
|
||||
|
||||
case (state)
|
||||
IDLE: begin
|
||||
if (!fifo_empty)
|
||||
state <= WAIT_READY;
|
||||
end
|
||||
|
||||
WAIT_READY: begin
|
||||
if (!tx_busy) begin
|
||||
fifo_rd_en <= 1;
|
||||
uart_tx_data <= fifo_rd_data;
|
||||
state <= READ_FIFO;
|
||||
end
|
||||
end
|
||||
|
||||
READ_FIFO: begin
|
||||
// fifo_rd_data sera valide ici
|
||||
fifo_rd_en <= 0;
|
||||
uart_tx_enable <= 1;
|
||||
state <= SEND;
|
||||
end
|
||||
|
||||
SEND: begin
|
||||
state <= IDLE;
|
||||
uart_tx_enable <= 0;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
21
Semaine_7/ESP32/leds_commands/constraints/fpga_wifi_led.cst
Normal file
21
Semaine_7/ESP32/leds_commands/constraints/fpga_wifi_led.cst
Normal file
@@ -0,0 +1,21 @@
|
||||
IO_LOC "o_tx" 69;
|
||||
IO_PORT "o_tx" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
|
||||
|
||||
IO_LOC "i_rx" 70;
|
||||
IO_PORT "i_rx" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
|
||||
|
||||
IO_LOC "i_clk" 4;
|
||||
IO_PORT "i_clk" IO_TYPE=LVCMOS33 PULL_MODE=UP BANK_VCCIO=3.3;
|
||||
|
||||
IO_LOC "o_leds[0]" 15;
|
||||
IO_PORT "o_leds[0]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
|
||||
IO_LOC "o_leds[1]" 16;
|
||||
IO_PORT "o_leds[1]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
|
||||
IO_LOC "o_leds[2]" 17;
|
||||
IO_PORT "o_leds[2]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
|
||||
IO_LOC "o_leds[3]" 18;
|
||||
IO_PORT "o_leds[3]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
|
||||
IO_LOC "o_leds[4]" 19;
|
||||
IO_PORT "o_leds[4]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
|
||||
IO_LOC "o_leds[5]" 20;
|
||||
IO_PORT "o_leds[5]" PULL_MODE=UP DRIVE=8 BANK_VCCIO=1.8;
|
9
Semaine_7/ESP32/leds_commands/project.bat
Normal file
9
Semaine_7/ESP32/leds_commands/project.bat
Normal file
@@ -0,0 +1,9 @@
|
||||
@call c:\oss-cad-suite\environment.bat
|
||||
@echo off
|
||||
|
||||
mkdir runs
|
||||
|
||||
if "%1"=="sim" call scripts\windows\simulate.bat
|
||||
if "%1"=="wave" call scripts\windows\gtkwave.bat
|
||||
if "%1"=="clean" call scripts\windows\clean.bat
|
||||
if "%1"=="build" call scripts\windows\build.bat
|
24
Semaine_7/ESP32/leds_commands/project.sh
Normal file
24
Semaine_7/ESP32/leds_commands/project.sh
Normal file
@@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Charger l'environnement OSS CAD Suite
|
||||
source /home/louis/oss-cad-suite/environment
|
||||
|
||||
mkdir -p runs
|
||||
|
||||
case "$1" in
|
||||
sim)
|
||||
bash scripts/linux/simulate.sh
|
||||
;;
|
||||
wave)
|
||||
bash scripts/linux/gtkwave.sh
|
||||
;;
|
||||
clean)
|
||||
bash scripts/linux/clean.sh
|
||||
;;
|
||||
build)
|
||||
bash scripts/linux/build.sh
|
||||
;;
|
||||
*)
|
||||
echo "Usage: $0 {sim|wave|clean|build}"
|
||||
;;
|
||||
esac
|
46
Semaine_7/ESP32/leds_commands/scripts/linux/build.sh
Normal file
46
Semaine_7/ESP32/leds_commands/scripts/linux/build.sh
Normal file
@@ -0,0 +1,46 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Aller à la racine du projet
|
||||
cd "$(dirname "$0")/../.." || exit 1
|
||||
|
||||
# Config de base
|
||||
DEVICE="GW2AR-LV18QN88C8/I7"
|
||||
BOARD="tangnano20k"
|
||||
TOP="dht11_uart_top"
|
||||
CST_FILE="$TOP.cst"
|
||||
JSON_FILE="runs/$TOP.json"
|
||||
PNR_JSON="runs/pnr_$TOP.json"
|
||||
BITSTREAM="runs/$TOP.fs"
|
||||
|
||||
# Créer le dossier runs si nécessaire
|
||||
mkdir -p runs
|
||||
|
||||
echo "=== Étape 1 : Synthèse avec Yosys ==="
|
||||
yosys -p "read_verilog -sv src/verilog/$TOP.v IP/verilog/dht11_interface.v IP/verilog/uart_tx_fifo.v IP/verilog/fifo.v IP/verilog/txuartlite.v; synth_gowin -top $TOP -json $JSON_FILE"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "=== Erreur lors de la synthèse ==="
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "=== Étape 2 : Placement & Routage avec nextpnr-himbaechel ==="
|
||||
nextpnr-himbaechel --json "$JSON_FILE" --write "$PNR_JSON" --device "$DEVICE" --vopt cst=constraints/"$CST_FILE" --vopt family=GW2A-18C
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "=== Erreur lors du placement/routage ==="
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "=== Étape 3 : Packing avec gowin_pack ==="
|
||||
gowin_pack -d "$DEVICE" -o "$BITSTREAM" "$PNR_JSON"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "=== Erreur lors du packing ==="
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "=== Étape 4 : Flash avec openFPGALoader ==="
|
||||
sudo /etc/oss-cad-suite/bin/openFPGALoader -b "$BOARD" "$BITSTREAM"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "=== Erreur lors du flash ==="
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "=== Compilation et flash réussis ==="
|
4
Semaine_7/ESP32/leds_commands/scripts/linux/clean.sh
Normal file
4
Semaine_7/ESP32/leds_commands/scripts/linux/clean.sh
Normal file
@@ -0,0 +1,4 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "=== Nettoyage des fichiers générés ==="
|
||||
rm -rf runs/*
|
5
Semaine_7/ESP32/leds_commands/scripts/linux/gtkwave.sh
Normal file
5
Semaine_7/ESP32/leds_commands/scripts/linux/gtkwave.sh
Normal file
@@ -0,0 +1,5 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "=== Lancement de GTKWave ==="
|
||||
gtkwave runs/sim.vcd
|
||||
echo "=== GTKWave terminé ==="
|
17
Semaine_7/ESP32/leds_commands/scripts/linux/simulate.sh
Normal file
17
Semaine_7/ESP32/leds_commands/scripts/linux/simulate.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#!/bin/bash
|
||||
|
||||
echo "=== Simulation avec Icarus Verilog ==="
|
||||
|
||||
OUT="runs/sim.vvp"
|
||||
TOP="tb_dht11"
|
||||
DIRS=("src/verilog" "tests/verilog")
|
||||
|
||||
FILES=()
|
||||
for dir in "${DIRS[@]}"; do
|
||||
for file in "$dir"/*.v; do
|
||||
FILES+=("$file")
|
||||
done
|
||||
done
|
||||
|
||||
iverilog -g2012 -o "$OUT" -s "$TOP" "${FILES[@]}"
|
||||
vvp "$OUT"
|
25
Semaine_7/ESP32/leds_commands/scripts/linux/upload.sh
Normal file
25
Semaine_7/ESP32/leds_commands/scripts/linux/upload.sh
Normal file
@@ -0,0 +1,25 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Aller à la racine du projet
|
||||
cd "$(dirname "$0")/../.." || exit 1
|
||||
|
||||
# Config de base
|
||||
DEVICE="GW2AR-LV18QN88C8/I7"
|
||||
BOARD="tangnano20k"
|
||||
TOP="dht11_uart_top"
|
||||
CST_FILE="$TOP.cst"
|
||||
JSON_FILE="runs/$TOP.json"
|
||||
PNR_JSON="runs/pnr_$TOP.json"
|
||||
BITSTREAM="runs/$TOP.fs"
|
||||
|
||||
# Créer le dossier runs si nécessaire
|
||||
mkdir -p runs
|
||||
|
||||
echo "=== Étape 4 : Flash avec openFPGALoader ==="
|
||||
sudo /etc/oss-cad-suite/bin/openFPGALoader -b "$BOARD" "$BITSTREAM"
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "=== Erreur lors du flash ==="
|
||||
exit 1
|
||||
fi
|
||||
|
||||
echo "=== Compilation et flash réussis ==="
|
47
Semaine_7/ESP32/leds_commands/scripts/windows/build.bat
Normal file
47
Semaine_7/ESP32/leds_commands/scripts/windows/build.bat
Normal file
@@ -0,0 +1,47 @@
|
||||
@echo off
|
||||
setlocal
|
||||
|
||||
rem === Aller à la racine du projet ===
|
||||
cd /d %~dp0\..\..
|
||||
echo Script lancé depuis : %cd%
|
||||
|
||||
|
||||
rem === Config de base ===
|
||||
set DEVICE=GW2AR-LV18QN88C8/I7
|
||||
set BOARD=tangnano20k
|
||||
set TOP=fpga_wifi_led
|
||||
set CST_FILE=%TOP%.cst
|
||||
set JSON_FILE=runs/%TOP%.json
|
||||
set PNR_JSON=runs/pnr_%TOP%.json
|
||||
set BITSTREAM=runs/%TOP%.fs
|
||||
|
||||
rem === Créer le dossier runs si nécessaire ===
|
||||
if not exist ../runs (
|
||||
mkdir ../runs
|
||||
)
|
||||
|
||||
echo === Étape 1 : Synthèse avec Yosys ===
|
||||
yosys -p "read_verilog -sv src/verilog/%TOP%.v IP/verilog/uart_tx_fifo.v IP/verilog/uart_rx_fifo.v IP/verilog/fifo.v IP/verilog/txuartlite.v IP/verilog/rxuartlite.v; synth_gowin -top %TOP% -json %JSON_FILE%"
|
||||
if errorlevel 1 goto error
|
||||
|
||||
echo === Étape 2 : Placement & Routage avec nextpnr-himbaechel ===
|
||||
nextpnr-himbaechel --json %JSON_FILE% --write %PNR_JSON% --device %DEVICE% --vopt cst=constraints/%CST_FILE% --vopt family=GW2A-18C
|
||||
if errorlevel 1 goto error
|
||||
|
||||
echo === Étape 3 : Packing avec gowin_pack ===
|
||||
gowin_pack -d %DEVICE% -o %BITSTREAM% %PNR_JSON%
|
||||
if errorlevel 1 goto error
|
||||
|
||||
echo === Étape 4 : Flash avec openFPGALoader ===
|
||||
openFPGALoader -b %BOARD% %BITSTREAM%
|
||||
if errorlevel 1 goto error
|
||||
|
||||
echo === Compilation et flash réussis ===
|
||||
goto end
|
||||
|
||||
:error
|
||||
echo === Une erreur est survenue ===
|
||||
|
||||
:end
|
||||
endlocal
|
||||
pause
|
4
Semaine_7/ESP32/leds_commands/scripts/windows/clean.bat
Normal file
4
Semaine_7/ESP32/leds_commands/scripts/windows/clean.bat
Normal file
@@ -0,0 +1,4 @@
|
||||
@echo off
|
||||
echo === Nettoyage du dossier runs ===
|
||||
rd /s /q runs
|
||||
mkdir runs
|
@@ -0,0 +1,3 @@
|
||||
@echo off
|
||||
echo === Lancement de GTKWave ===
|
||||
gtkwave runs/sim.vcd
|
29
Semaine_7/ESP32/leds_commands/scripts/windows/simulate.bat
Normal file
29
Semaine_7/ESP32/leds_commands/scripts/windows/simulate.bat
Normal file
@@ -0,0 +1,29 @@
|
||||
@echo off
|
||||
echo === Simulation avec Icarus Verilog ===
|
||||
setlocal enabledelayedexpansion
|
||||
|
||||
:: Dossier de sortie
|
||||
set OUT=runs/sim.vvp
|
||||
|
||||
:: Top-level testbench module
|
||||
set TOP=tb_dht11
|
||||
|
||||
:: Répertoires contenant des fichiers .v
|
||||
set DIRS=src/verilog tests/verilog IP/verilog
|
||||
|
||||
:: Variable pour stocker les fichiers
|
||||
set FILES=
|
||||
|
||||
:: Boucle sur chaque dossier
|
||||
for %%D in (%DIRS%) do (
|
||||
for %%F in (%%D\*.v) do (
|
||||
set FILES=!FILES! %%F
|
||||
)
|
||||
)
|
||||
|
||||
:: Compilation avec Icarus Verilog
|
||||
iverilog -g2012 -o %OUT% -s %TOP% %FILES%
|
||||
|
||||
endlocal
|
||||
|
||||
vvp runs/sim.vvp
|
106
Semaine_7/ESP32/leds_commands/src/esp32/wifi_esp32.ino
Normal file
106
Semaine_7/ESP32/leds_commands/src/esp32/wifi_esp32.ino
Normal file
@@ -0,0 +1,106 @@
|
||||
#include <WiFi.h>
|
||||
#include <WiFiManager.h> // Include WiFiManager library
|
||||
|
||||
// TCP server port
|
||||
const uint16_t port = 1234;
|
||||
|
||||
// TCP server object
|
||||
WiFiServer server(port);
|
||||
|
||||
// TCP client object
|
||||
WiFiClient client;
|
||||
|
||||
// Touch sensor settings
|
||||
const int touchPin = T0; // Use touch pin T0 (GPIO 4)
|
||||
const int touchThreshold = 30; // Adjust based on testing (lower value = touch detected)
|
||||
const unsigned long resetHoldTime = 5000; // 5 seconds to trigger reset
|
||||
unsigned long touchStartTime = 0;
|
||||
bool touchDetected = false;
|
||||
|
||||
void setup() {
|
||||
// Initialize Serial for UART communication (115200 baud)
|
||||
Serial.begin(115200);
|
||||
// Initialize WiFiManager
|
||||
WiFiManager wifiManager;
|
||||
// Check for touch sensor reset
|
||||
if (checkTouchReset()) {
|
||||
wifiManager.resetSettings();
|
||||
Serial.println("WiFi settings reset due to touch sensor");
|
||||
ESP.restart(); // Restart to apply reset
|
||||
}
|
||||
// Connect to WiFi using WiFiManager (creates AP if no saved credentials)
|
||||
if (!wifiManager.autoConnect("ESP32_AP")) {
|
||||
Serial.println("Failed to connect to WiFi and hit timeout");
|
||||
ESP.restart();
|
||||
}
|
||||
Serial.println("WiFi connected");
|
||||
Serial.print("IP address: ");
|
||||
Serial.println(WiFi.localIP());
|
||||
|
||||
// Start TCP server
|
||||
server.begin();
|
||||
Serial.println("TCP server started on port " + String(port));
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// Check for touch sensor reset
|
||||
handleTouchReset();
|
||||
|
||||
// Check for incoming client connections
|
||||
if (!client.connected()) {
|
||||
client = server.available();
|
||||
if (client) {
|
||||
Serial.println("New client connected");
|
||||
}
|
||||
}
|
||||
|
||||
// Relay data from TCP client to UART
|
||||
while (client.connected() && client.available()) {
|
||||
char c = client.read();
|
||||
Serial.write(c); // Send to UART
|
||||
}
|
||||
|
||||
// Relay data from UART to TCP client
|
||||
while (Serial.available() && client.connected()) {
|
||||
char c = Serial.read();
|
||||
client.write(c); // Send to TCP client
|
||||
}
|
||||
|
||||
// Handle client disconnection
|
||||
if (client && !client.connected()) {
|
||||
Serial.println("Client disconnected");
|
||||
client.stop();
|
||||
}
|
||||
}
|
||||
|
||||
// Function to check touch sensor at boot for reset
|
||||
bool checkTouchReset() {
|
||||
int touchValue = touchRead(touchPin);
|
||||
if (touchValue < touchThreshold) {
|
||||
unsigned long startTime = millis();
|
||||
while (touchRead(touchPin) < touchThreshold) {
|
||||
if (millis() - startTime >= resetHoldTime) {
|
||||
return true; // Touch held long enough, trigger reset
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Function to handle touch sensor reset during loop
|
||||
void handleTouchReset() {
|
||||
int touchValue = touchRead(touchPin);
|
||||
if (touchValue < touchThreshold && !touchDetected) {
|
||||
touchDetected = true;
|
||||
touchStartTime = millis();
|
||||
} else if (touchValue >= touchThreshold && touchDetected) {
|
||||
touchDetected = false; // Reset when touch is released
|
||||
}
|
||||
|
||||
if (touchDetected && (millis() - touchStartTime >= resetHoldTime)) {
|
||||
WiFiManager wifiManager;
|
||||
wifiManager.resetSettings();
|
||||
Serial.println("WiFi settings reset due to touch sensor");
|
||||
ESP.restart(); // Restart to apply reset
|
||||
}
|
||||
}
|
134
Semaine_7/ESP32/leds_commands/src/verilog/fpga_wifi_led.v
Normal file
134
Semaine_7/ESP32/leds_commands/src/verilog/fpga_wifi_led.v
Normal file
@@ -0,0 +1,134 @@
|
||||
`default_nettype none
|
||||
module fpga_wifi_led (
|
||||
input i_clk,
|
||||
input i_rx,
|
||||
output o_tx,
|
||||
output [5:0] o_leds
|
||||
);
|
||||
|
||||
// === PARAMÈTRES ===
|
||||
localparam CLK_FREQ = 27_000_000;
|
||||
localparam BAUD_RATE = 115200;
|
||||
localparam FIFO_SIZE = 8;
|
||||
|
||||
// === SIGNAUX UART RX ===
|
||||
wire [7:0] rx_data;
|
||||
wire rx_data_available;
|
||||
reg rx_rd_en;
|
||||
|
||||
// === SIGNAUX UART TX ===
|
||||
reg [7:0] tx_data;
|
||||
reg tx_wr_en;
|
||||
wire tx_fifo_full;
|
||||
|
||||
// === SIGNAUX INTERNES ===
|
||||
reg [5:0] leds_reg;
|
||||
reg [1:0] state;
|
||||
reg [7:0] received_byte;
|
||||
|
||||
// === ÉTATS DE LA FSM ===
|
||||
localparam IDLE = 2'd0,
|
||||
WAIT_BYTE = 2'd1,
|
||||
PROCESS_CMD = 2'd2,
|
||||
SEND_RESPONSE = 2'd3;
|
||||
|
||||
// === INSTANCIATION UART RX FIFO ===
|
||||
uart_rx_fifo #(
|
||||
.CLK_FREQ(CLK_FREQ),
|
||||
.BAUD_RATE(BAUD_RATE),
|
||||
.FIFO_SIZE(FIFO_SIZE)
|
||||
) uart_rx_inst (
|
||||
.clk(i_clk),
|
||||
.rd_en(rx_rd_en),
|
||||
.rd_data(rx_data),
|
||||
.rx_pin(i_rx),
|
||||
.data_available(rx_data_available)
|
||||
);
|
||||
|
||||
// === INSTANCIATION UART TX FIFO ===
|
||||
uart_tx_fifo #(
|
||||
.CLK_FREQ(CLK_FREQ),
|
||||
.BAUD_RATE(BAUD_RATE),
|
||||
.FIFO_SIZE(FIFO_SIZE)
|
||||
) uart_tx_inst (
|
||||
.clk(i_clk),
|
||||
.wr_en(tx_wr_en),
|
||||
.wr_data(tx_data),
|
||||
.tx_pin(o_tx),
|
||||
.fifo_full(tx_fifo_full)
|
||||
);
|
||||
|
||||
// === ASSIGNATION DES LEDS ===
|
||||
assign o_leds = ~leds_reg;
|
||||
|
||||
// === INITIALISATION ===
|
||||
initial begin
|
||||
leds_reg = 6'b000000;
|
||||
state = IDLE;
|
||||
rx_rd_en = 0;
|
||||
tx_wr_en = 0;
|
||||
tx_data = 8'h00;
|
||||
received_byte = 8'h00;
|
||||
end
|
||||
|
||||
// === MACHINE D'ÉTAT PRINCIPALE ===
|
||||
always @(posedge i_clk) begin
|
||||
// Désactiver les signaux de contrôle par défaut
|
||||
rx_rd_en <= 0;
|
||||
tx_wr_en <= 0;
|
||||
|
||||
case (state)
|
||||
IDLE: begin
|
||||
received_byte <= 8'h00;
|
||||
|
||||
if (rx_data_available) begin
|
||||
state <= WAIT_BYTE;
|
||||
end
|
||||
end
|
||||
|
||||
WAIT_BYTE: begin
|
||||
if (rx_data_available) begin
|
||||
rx_rd_en <= 1;
|
||||
received_byte <= rx_data;
|
||||
state <= PROCESS_CMD;
|
||||
end
|
||||
end
|
||||
|
||||
PROCESS_CMD: begin
|
||||
// Vérifier la commande reçue
|
||||
if (received_byte == 8'h01) begin
|
||||
// Allumer la LED 0
|
||||
leds_reg[0] <= 1;
|
||||
|
||||
// Préparer la réponse
|
||||
state <= SEND_RESPONSE;
|
||||
end else if (received_byte == 8'h02) begin
|
||||
// Éteindre la LED 0
|
||||
leds_reg[0] <= 0;
|
||||
|
||||
// Préparer la réponse
|
||||
state <= SEND_RESPONSE;
|
||||
end else begin
|
||||
// Commande non reconnue, éteindre toutes les LEDs
|
||||
leds_reg <= 6'b000000;
|
||||
state <= IDLE;
|
||||
end
|
||||
end
|
||||
|
||||
SEND_RESPONSE: begin
|
||||
if (!tx_fifo_full) begin
|
||||
// Renvoyer le même byte reçu (0x01 ou 0x02)
|
||||
tx_data <= received_byte;
|
||||
tx_wr_en <= 1;
|
||||
state <= IDLE;
|
||||
end
|
||||
end
|
||||
|
||||
default: begin
|
||||
state <= IDLE;
|
||||
end
|
||||
|
||||
endcase
|
||||
end
|
||||
|
||||
endmodule
|
30
Semaine_7/ESP32/leds_commands/tests/pyhton/readSerial.py
Normal file
30
Semaine_7/ESP32/leds_commands/tests/pyhton/readSerial.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import serial
|
||||
import time
|
||||
|
||||
# Configuration du port série
|
||||
ser = serial.Serial(
|
||||
port='/dev/ttyUSB0', # Remplace par ton port (ex : COM3 sous Windows)
|
||||
baudrate=115200,
|
||||
timeout=1 # En secondes
|
||||
)
|
||||
|
||||
print("Lecture du port série... (Ctrl+C pour quitter)")
|
||||
|
||||
try:
|
||||
while True:
|
||||
# Lire 2 octets
|
||||
data = ser.read(2)
|
||||
|
||||
if len(data) == 2:
|
||||
temperature = data[0]
|
||||
humidite = data[1]
|
||||
print(f"Température: {temperature}°C, Humidité: {humidite}%")
|
||||
else:
|
||||
print("Pas assez de données reçues.")
|
||||
|
||||
time.sleep(1)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\nArrêt du script.")
|
||||
finally:
|
||||
ser.close()
|
65
Semaine_7/ESP32/leds_commands/tests/verilog/tb_dht11.v
Normal file
65
Semaine_7/ESP32/leds_commands/tests/verilog/tb_dht11.v
Normal file
@@ -0,0 +1,65 @@
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module tb_dht11;
|
||||
|
||||
reg clk = 0;
|
||||
always #18.5 clk = ~clk; // Génère une clock 27 MHz
|
||||
|
||||
// === Registres ===
|
||||
wire io_dht11_sig;
|
||||
reg dht11_start;
|
||||
wire dht11_data_ready;
|
||||
wire dht11_busy;
|
||||
wire [7:0] dht11_temp_data;
|
||||
wire [7:0] dht11_hum_data;
|
||||
wire dht11_error;
|
||||
|
||||
// === Simulation du module DHT11 ===
|
||||
dht11_model dht11_model (
|
||||
.data(io_dht11_sig),
|
||||
.clk(clk),
|
||||
.rst_n(1'b1) // Reset non utilisé dans ce test
|
||||
);
|
||||
|
||||
// === Module DHT11 INTERFACE ===
|
||||
dht11_interface dht11_interface (
|
||||
.i_clk(clk),
|
||||
.io_dht11_sig(io_dht11_sig),
|
||||
.i_start(dht11_start),
|
||||
.o_dht11_data_ready(dht11_data_ready),
|
||||
.o_busy(dht11_busy),
|
||||
.o_temp_data(dht11_temp_data),
|
||||
.o_hum_data(dht11_hum_data),
|
||||
.o_dht11_error(dht11_error)
|
||||
);
|
||||
|
||||
pullup(io_dht11_sig);
|
||||
|
||||
// === TEST SEQUENCE ===
|
||||
initial begin
|
||||
$dumpfile("runs/sim.vcd");
|
||||
$dumpvars(0, tb_dht11);
|
||||
dht11_start = 0;
|
||||
|
||||
$display("==== Start DHT11 Test ====");
|
||||
|
||||
#100;
|
||||
dht11_start = 1; // Démarre la lecture des données
|
||||
$display("DHT11 start...");
|
||||
|
||||
wait(dht11_busy); // Attend que le module soit occupé
|
||||
$display("DHT11 busy...");
|
||||
|
||||
dht11_start = 0;
|
||||
|
||||
wait(dht11_data_ready); // Attend que les données soient prêtes
|
||||
$display("DHT11 data ready...");
|
||||
|
||||
$display("Température : %d.%d °C", dht11_temp_data);
|
||||
$display("Humidité : %d.%d %%", dht11_hum_data);
|
||||
|
||||
$display("==== End DHT11 Test ====");
|
||||
$finish;
|
||||
end
|
||||
|
||||
endmodule
|
Reference in New Issue
Block a user