1
0
forked from tanchou/Verilog

Add ultrasonic sensor model and driver, update testbench and scripts

This commit is contained in:
Gamenight77
2025-05-19 11:42:28 +02:00
parent 9755b1b0a3
commit 436edae734
17 changed files with 740 additions and 3 deletions

View File

@@ -0,0 +1,102 @@
// Verilog model for single-pin ultrasonic sensor (e.g., HY-SRF05 in single-pin mode)
// Simulates bidirectional pin for trigger/echo with internal random distance for testbenches
// Author: Grok, xAI
// Date: May 14, 2025
module hc_sr04_model #(
parameter CLK_FREQ_MHZ = 27 // Clock frequency in MHz (default 27MHz)
) (
input wire clk, // System clock
inout wire sensor_pin // Bidirectional pin for trigger and echo
);
// Timing constants based on CLK_FREQ_MHZ
localparam CLK_PERIOD_NS = 1000 / CLK_FREQ_MHZ; // Clock period in ns
localparam TRIGGER_MIN_CYCLES = (10_000 / CLK_PERIOD_NS); // 10us minimum trigger pulse
localparam CYCLE_TIME_CYCLES = (60_000_000 / CLK_PERIOD_NS); // 60ms cycle time
localparam ECHO_DELAY_CYCLES = (1000 / CLK_PERIOD_NS); // 1us delay before echo (sensor processing)
// State machine states
localparam IDLE = 3'b000,
CHECK_TRIGGER = 3'b001,
ECHO_DELAY = 3'b010,
ECHO_PULSE = 3'b011,
WAIT_CYCLE = 3'b100;
reg [2:0] state = IDLE;
reg [31:0] counter = 0;
reg sensor_pin_prev = 0;
reg [31:0] random_distance = 0;
reg [31:0] echo_cycles = 0;
reg drive_echo = 0; // Controls when model drives sensor_pin
// Calculate echo pulse width dynamically
// Speed of sound: 343 m/s = 0.0343 cm/us
// Echo duration (us) = 2 * distance (cm) / 0.0343 (cm/us)
// Convert to clock cycles: duration (us) * 1000 / CLK_PERIOD_NS
wire [31:0] echo_duration_us = (2 * random_distance * 1000) / 343; // Echo time in us
wire [31:0] calculated_echo_cycles = (echo_duration_us * 1000) / CLK_PERIOD_NS; // Echo time in cycles
// Bidirectional pin control: drive sensor_pin only during echo pulse
assign sensor_pin = drive_echo ? 1'b1 : 1'bz;
// Main state machine
always @(posedge clk) begin
// Store previous sensor_pin value for edge detection
sensor_pin_prev <= sensor_pin;
case (state)
IDLE: begin
drive_echo <= 0;
counter <= 0;
if (sensor_pin ) begin // Rising edge of trigger
random_distance <= $urandom_range(2, 400); // Generate random distance
state <= CHECK_TRIGGER;
end
end
CHECK_TRIGGER: begin
counter <= counter + 1;
if (!sensor_pin) begin // Trigger pulse ended
if (counter >= TRIGGER_MIN_CYCLES) begin
$display("HC-SR04: Random distance = %0d cm at time %0t", random_distance, $time);
echo_cycles <= calculated_echo_cycles; // Sample echo duration
state <= ECHO_DELAY;
counter <= 0;
end else begin
state <= IDLE; // Trigger too short
end
end
end
ECHO_DELAY: begin
counter <= counter + 1;
if (counter >= ECHO_DELAY_CYCLES) begin
state <= ECHO_PULSE;
drive_echo <= 1; // Start driving sensor_pin
counter <= 0;
end
end
ECHO_PULSE: begin
counter <= counter + 1;
if (counter >= echo_cycles) begin
drive_echo <= 0; // Stop driving sensor_pin
state <= WAIT_CYCLE;
counter <= 0;
end
end
WAIT_CYCLE: begin
counter <= counter + 1;
if (counter >= CYCLE_TIME_CYCLES) begin
state <= IDLE;
counter <= 0;
end
end
default: state <= IDLE;
endcase
end
endmodule

View File

@@ -0,0 +1,154 @@
module ultrason_driver #(
parameter integer CLK_FREQ = 27_000_000 // Fréquence d'horloge en Hz
)(
input wire clk,
input wire start,
inout wire sig, // Broche bidirectionnelle vers le capteur
output reg [15:0] distance, // Distance mesurée en cm
output reg busy,
output reg done
);
reg [15:0] trig_counter = 0;
reg [31:0] echo_counter = 0;
reg [31:0] echo_div_counter = 0;
reg [15:0] distance_counter = 0;
reg sig_out;
reg sig_dir; // 1: output, 0: input
assign sig = sig_dir ? sig_out : 1'bz; // bz pour dire que le fpga laisse le fils libre et n'oblige pas de valeur
reg sig_int, sig_ok;
localparam IDLE = 3'd0,
TRIG_HIGH = 3'd1,
TRIG_LOW = 3'd2,
WAIT_ECHO = 3'd3,
MEASURE_ECHO = 3'd4,
COMPUTE = 3'd5,
DONE = 3'd6,
WAIT_NEXT = 3'd7;
reg [2:0] state = IDLE;
localparam integer TRIG_PULSE_CYCLES = CLK_FREQ / 100_000; // 10us pulse
localparam integer DIST_DIVISOR = (58 * CLK_FREQ) / 1_000_000; // pour conversion us -> cm
localparam integer MAX_CM = 350;
localparam integer TIMEOUT_CYCLES = (MAX_CM * 58 * CLK_FREQ) / 1000000;
localparam WAIT_NEXT_CYCLES = (CLK_FREQ / 1000) * 100; // 60 ms
reg [31:0] wait_counter;
always @(posedge clk) begin
sig_int <= sig;
sig_ok <= sig_int;
end
always @(posedge clk) begin
busy <= (state != IDLE);
end
always @(posedge clk) begin // FSM
case (state)
IDLE: begin
done <= 0;
sig_out <= 0;
sig_dir <= 0;
distance <= 0;
if (start) begin
state <= TRIG_HIGH;
trig_counter <= 0;
done <= 0;
end
end
TRIG_HIGH: begin
sig_out <= 1;
sig_dir <= 1;
if (trig_counter < TRIG_PULSE_CYCLES) begin
trig_counter <= trig_counter + 1;
end else begin
trig_counter <= 0;
state <= TRIG_LOW;
end
end
TRIG_LOW: begin
sig_out <= 0;
sig_dir <= 0; // Mettre en entrée
if (sig_ok) begin
state <= TRIG_LOW;
end else
state <= WAIT_ECHO;
end
WAIT_ECHO: begin
if (sig_ok) begin
echo_counter <= 0;
state <= MEASURE_ECHO;
end else if (echo_counter >= TIMEOUT_CYCLES) begin
distance <= 0;
state <= DONE;
end else begin
echo_counter <= echo_counter + 1;
end
end
MEASURE_ECHO: begin
if (sig_ok) begin
if (echo_counter < TIMEOUT_CYCLES) begin
echo_counter <= echo_counter + 1;
end else begin
state <= DONE;
end
end else begin
state <= COMPUTE;
end
end
COMPUTE: begin
if (echo_counter >= DIST_DIVISOR) begin
echo_counter <= echo_counter - DIST_DIVISOR;
distance_counter <= distance_counter + 1;
state <= COMPUTE;
end else begin
distance <= distance_counter;
state <= DONE;
end
end
DONE: begin
if (start) begin
wait_counter <= 0;
state <= WAIT_NEXT;
end else begin
state <= IDLE;
end
done <= 1;
end
WAIT_NEXT: begin
wait_counter <= wait_counter + 1;
if (wait_counter >= WAIT_NEXT_CYCLES) begin
state <= TRIG_HIGH;
trig_counter <= 0;
distance_counter <= 0;
echo_counter <= 0;
end
end
default: begin
state <= IDLE; // Reset to IDLE state in case of an error
end
endcase
end
endmodule

View File

@@ -0,0 +1,152 @@
module ultrasonic_fpga #(
parameter integer CLK_FREQ = 27_000_000 // Fréquence d'horloge en Hz
)(
input wire clk,
input wire start,
inout wire sig, // Broche bidirectionnelle vers le capteur
output reg [15:0] distance, // Distance mesurée en cm
output reg busy,
output reg done
);
reg [15:0] trig_counter = 0;
reg [31:0] echo_counter = 0;
reg [31:0] echo_div_counter = 0;
reg [15:0] distance_counter = 0;
reg sig_out;
reg sig_dir; // 1: output, 0: input
assign sig = sig_dir ? sig_out : 1'bz; // bz pour dire que le fpga laisse le fils libre et n'oblige pas de valeur
reg sig_int, sig_ok;
localparam IDLE = 3'd0,
TRIG_HIGH = 3'd1,
TRIG_LOW = 3'd2,
WAIT_ECHO = 3'd3,
MEASURE_ECHO = 3'd4,
COMPUTE = 3'd5,
DONE = 3'd6,
WAIT_NEXT = 3'd7;
reg [2:0] state = IDLE;
localparam integer TRIG_PULSE_CYCLES = CLK_FREQ / 100_000; // 10us pulse
localparam integer DIST_DIVISOR = (58 * CLK_FREQ) / 1_000_000; // pour conversion us -> cm
localparam integer MAX_CM = 350;
localparam integer TIMEOUT_CYCLES = (MAX_CM * 58 * CLK_FREQ) / 1000000;
localparam WAIT_NEXT_CYCLES = (CLK_FREQ / 1000) * 100; // 60 ms
reg [31:0] wait_counter;
always @(posedge clk) begin
sig_int <= sig;
sig_ok <= sig_int;
end
always @(posedge clk) begin
busy <= (state != IDLE);
end
always @(posedge clk) begin // FSM
case (state)
IDLE: begin
done <= 0;
sig_out <= 0;
sig_dir <= 0;
distance <= 0;
if (start) begin
state <= TRIG_HIGH;
trig_counter <= 0;
done <= 0;
end
end
TRIG_HIGH: begin
sig_out <= 1;
sig_dir <= 1;
if (trig_counter < TRIG_PULSE_CYCLES) begin
trig_counter <= trig_counter + 1;
end else begin
trig_counter <= 0;
state <= TRIG_LOW;
end
end
TRIG_LOW: begin
sig_out <= 0;
sig_dir <= 0; // Mettre en entrée
if (sig_ok) begin
state <= TRIG_LOW;
end else
state <= WAIT_ECHO;
end
WAIT_ECHO: begin
if (sig_ok) begin
echo_counter <= 0;
state <= MEASURE_ECHO;
end else if (echo_counter >= TIMEOUT_CYCLES) begin
distance <= 0;
state <= DONE;
end else begin
echo_counter <= echo_counter + 1;
end
end
MEASURE_ECHO: begin
if (sig_ok) begin
if (echo_counter < TIMEOUT_CYCLES) begin
echo_counter <= echo_counter + 1;
end else begin
state <= DONE;
end
end else begin
state <= COMPUTE;
end
end
COMPUTE: begin
if (echo_counter >= DIST_DIVISOR) begin
echo_counter <= echo_counter - DIST_DIVISOR;
distance_counter <= distance_counter + 1;
state <= COMPUTE;
end else begin
distance <= distance_counter;
state <= DONE;
end
end
DONE: begin
if (start) begin
wait_counter <= 0;
state <= WAIT_NEXT;
end else begin
state <= IDLE;
end
done <= 1;
end
WAIT_NEXT: begin
wait_counter <= wait_counter + 1;
if (wait_counter >= WAIT_NEXT_CYCLES) begin
state <= TRIG_HIGH;
trig_counter <= 0;
distance_counter <= 0;
echo_counter <= 0;
end
end
default: begin
state <= IDLE; // Reset to IDLE state in case of an error
end
endcase
end
endmodule