1
0
forked from tanchou/Verilog

Add ultrasonic sensor model and driver, update testbench and scripts

This commit is contained in:
Gamenight77
2025-05-19 11:42:28 +02:00
parent 9755b1b0a3
commit 436edae734
17 changed files with 740 additions and 3 deletions

View File

@@ -56,7 +56,7 @@ module top_uart_ultrason_command (
reg [1:0] command = 0; reg [1:0] command = 0;
reg [31:0] delay_counter = 0; reg [31:0] delay_counter = 13500000; // 0.5s
localparam US_STATE_WIDTH = $clog2(NEXT_FIFO)+1; localparam US_STATE_WIDTH = $clog2(NEXT_FIFO)+1;
reg [US_STATE_WIDTH-1:0] mesure_state = IDLE; reg [US_STATE_WIDTH-1:0] mesure_state = IDLE;
@@ -65,6 +65,8 @@ module top_uart_ultrason_command (
if (data_available) begin if (data_available) begin
command <= rd_data[1:0]; command <= rd_data[1:0];
leds <= rd_data[7:2]; leds <= rd_data[7:2];
end else begin
command <= 0;
end end
end end
@@ -97,7 +99,7 @@ module top_uart_ultrason_command (
CONTINUOUSSTART: begin CONTINUOUSSTART: begin
if (command == 3) begin if (command == 3) begin
mesure_state <= NEXT_FIFO; mesure_state <= NEXT_FIFO;
rd_en <= 1; rd_en <= 0;
end else begin end else begin
mesure_state <= CONTINUOUSSTOP; mesure_state <= CONTINUOUSSTOP;
start <= 1; start <= 1;
@@ -111,8 +113,9 @@ module top_uart_ultrason_command (
end end
WAIT: begin // Compteur 0.5s WAIT: begin // Compteur 0.5s
if (delay_counter > 1) begin if (delay_counter > 32'd1) begin
delay_counter <= delay_counter - 1; delay_counter <= delay_counter - 1;
mesure_state <= WAIT;
end else begin end else begin
mesure_state <= CONTINUOUSSTART; mesure_state <= CONTINUOUSSTART;
delay_counter <= 13500000; delay_counter <= 13500000;

5
Semaine_6/ULTRASON/.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
runs
.vscode
workspace.code-workspace
*.pyc
.idea

View File

@@ -0,0 +1,9 @@
# ULTRASON VIA UART
## Description
This project is designed to control an ultrasonic sensor using UART communication. The ultrasonic sensor is used to measure distance, and the data is transmitted via UART to a connected device.
## Commands
0x01: Start one mesurement of the distance.
0x02: Start continuous mesurement of the distance.
0x03: Stop continuous mesurement of the distance.

View File

@@ -0,0 +1,6 @@
@call c:\oss-cad-suite\environment.bat
@echo off
if "%1"=="sim" call scripts\windows\simulate.bat
if "%1"=="wave" call scripts\windows\gtkwave.bat
if "%1"=="clean" call scripts\windows\clean.bat
if "%1"=="build" call scripts\windows\build.bat

View File

@@ -0,0 +1,22 @@
#!/bin/bash
# Charger l'environnement OSS CAD Suite
source /home/louis/oss-cad-suite/environment
case "$1" in
sim)
bash scripts/linux/simulate.sh
;;
wave)
bash scripts/linux/gtkwave.sh
;;
clean)
bash scripts/linux/clean.sh
;;
build)
bash scripts/linux/build.sh
;;
*)
echo "Usage: $0 {sim|wave|clean|build}"
;;
esac

View File

@@ -0,0 +1,46 @@
#!/bin/bash
# Aller à la racine du projet
cd "$(dirname "$0")/../.." || exit 1
# Config de base
DEVICE="GW2AR-LV18QN88C8/I7"
BOARD="tangnano20k"
TOP="top_uart_ultrason_command"
CST_FILE="$TOP.cst"
JSON_FILE="runs/$TOP.json"
PNR_JSON="runs/pnr_$TOP.json"
BITSTREAM="runs/$TOP.fs"
# Créer le dossier runs si nécessaire
mkdir -p runs
echo "=== Étape 1 : Synthèse avec Yosys ==="
yosys -p "read_verilog -sv src/verilog/$TOP.v IP/verilog/ultrasonic_fpga.v IP/verilog/uart_tx_fifo.v IP/verilog/uart_rx_fifo.v IP/verilog/rxuartlite.v IP/verilog/fifo.v IP/verilog/uart_tx.v; synth_gowin -top $TOP -json $JSON_FILE"
if [ $? -ne 0 ]; then
echo "=== Erreur lors de la synthèse ==="
exit 1
fi
echo "=== Étape 2 : Placement & Routage avec nextpnr-himbaechel ==="
nextpnr-himbaechel --json "$JSON_FILE" --write "$PNR_JSON" --device "$DEVICE" --vopt cst=constraints/"$CST_FILE" --vopt family=GW2A-18C
if [ $? -ne 0 ]; then
echo "=== Erreur lors du placement/routage ==="
exit 1
fi
echo "=== Étape 3 : Packing avec gowin_pack ==="
gowin_pack -d "$DEVICE" -o "$BITSTREAM" "$PNR_JSON"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du packing ==="
exit 1
fi
echo "=== Étape 4 : Flash avec openFPGALoader ==="
openFPGALoader -b "$BOARD" "$BITSTREAM"
if [ $? -ne 0 ]; then
echo "=== Erreur lors du flash ==="
exit 1
fi
echo "=== Compilation et flash réussis ==="

View File

@@ -0,0 +1,4 @@
#!/bin/bash
echo "=== Nettoyage des fichiers générés ==="
rm -rf runs/*

View File

@@ -0,0 +1,5 @@
#!/bin/bash
echo "=== Lancement de GTKWave ==="
gtkwave runs/ultrason_commands.vcd
echo "=== GTKWave terminé ==="

View File

@@ -0,0 +1,17 @@
#!/bin/bash
echo "=== Simulation avec Icarus Verilog ==="
OUT="runs/sim.vvp"
TOP="tb_ultrason_commands"
DIRS=("src/verilog" "tests/verilog" "IP/verilog")
FILES=()
for dir in "${DIRS[@]}"; do
for file in "$dir"/*.v; do
FILES+=("$file")
done
done
iverilog -g2012 -o "$OUT" -s "$TOP" "${FILES[@]}"
vvp "$OUT"

View File

@@ -0,0 +1,45 @@
@echo off
setlocal
rem === Aller à la racine du projet ===
cd /d %~dp0\..\..
rem === Config de base ===
set DEVICE=GW2AR-LV18QN88C8/I7
set BOARD=tangnano20k
set TOP=top_uart_ultrason_command
set CST_FILE=%TOP%.cst
set JSON_FILE=runs/%TOP%.json
set PNR_JSON=runs/pnr_%TOP%.json
set BITSTREAM=runs/%TOP%.fs
rem === Créer le dossier runs si nécessaire ===
if not exist runs (
mkdir runs
)
echo === Étape 1 : Synthèse avec Yosys ===
yosys -p "read_verilog -sv src/verilog/%TOP%.v IP/verilog/ultrasonic_fpga.v IP/verilog/uart_tx_fifo.v IP/verilog/uart_rx_fifo.v IP/verilog/rxuartlite.v IP/verilog/txuartlite.v IP/verilog/fifo.v; synth_gowin -top %TOP% -json %JSON_FILE%"
if errorlevel 1 goto error
echo === Étape 2 : Placement & Routage avec nextpnr-himbaechel ===
nextpnr-himbaechel --json %JSON_FILE% --write %PNR_JSON% --device %DEVICE% --vopt cst=constraints/%CST_FILE% --vopt family=GW2A-18C
if errorlevel 1 goto error
echo === Étape 3 : Packing avec gowin_pack ===
gowin_pack -d %DEVICE% -o %BITSTREAM% %PNR_JSON%
if errorlevel 1 goto error
echo === Étape 4 : Flash avec openFPGALoader ===
openFPGALoader -b %BOARD% %BITSTREAM%
if errorlevel 1 goto error
echo === Compilation et flash réussis ===
goto end
:error
echo === Une erreur est survenue ===
:end
endlocal
pause

View File

@@ -0,0 +1,4 @@
@echo off
echo === Nettoyage du dossier runs ===
rd /s /q runs
mkdir runs

View File

@@ -0,0 +1,3 @@
@echo off
echo === Lancement de GTKWave ===
gtkwave runs/sim.vcd

View File

@@ -0,0 +1,29 @@
@echo off
echo === Simulation avec Icarus Verilog ===
setlocal enabledelayedexpansion
:: Dossier de sortie
set OUT=runs/sim.vvp
:: Top-level testbench module
set TOP=hc_sr04_tb
:: Répertoires contenant des fichiers .v
set DIRS=src/verilog tests/verilog IP/verilog
:: Variable pour stocker les fichiers
set FILES=
:: Boucle sur chaque dossier
for %%D in (%DIRS%) do (
for %%F in (%%D\*.v) do (
set FILES=!FILES! %%F
)
)
:: Compilation avec Icarus Verilog
iverilog -g2012 -o %OUT% -s %TOP% %FILES%
endlocal
vvp runs/sim.vvp

View File

@@ -0,0 +1,102 @@
// Verilog model for single-pin ultrasonic sensor (e.g., HY-SRF05 in single-pin mode)
// Simulates bidirectional pin for trigger/echo with internal random distance for testbenches
// Author: Grok, xAI
// Date: May 14, 2025
module hc_sr04_model #(
parameter CLK_FREQ_MHZ = 27 // Clock frequency in MHz (default 27MHz)
) (
input wire clk, // System clock
inout wire sensor_pin // Bidirectional pin for trigger and echo
);
// Timing constants based on CLK_FREQ_MHZ
localparam CLK_PERIOD_NS = 1000 / CLK_FREQ_MHZ; // Clock period in ns
localparam TRIGGER_MIN_CYCLES = (10_000 / CLK_PERIOD_NS); // 10us minimum trigger pulse
localparam CYCLE_TIME_CYCLES = (60_000_000 / CLK_PERIOD_NS); // 60ms cycle time
localparam ECHO_DELAY_CYCLES = (1000 / CLK_PERIOD_NS); // 1us delay before echo (sensor processing)
// State machine states
localparam IDLE = 3'b000,
CHECK_TRIGGER = 3'b001,
ECHO_DELAY = 3'b010,
ECHO_PULSE = 3'b011,
WAIT_CYCLE = 3'b100;
reg [2:0] state = IDLE;
reg [31:0] counter = 0;
reg sensor_pin_prev = 0;
reg [31:0] random_distance = 0;
reg [31:0] echo_cycles = 0;
reg drive_echo = 0; // Controls when model drives sensor_pin
// Calculate echo pulse width dynamically
// Speed of sound: 343 m/s = 0.0343 cm/us
// Echo duration (us) = 2 * distance (cm) / 0.0343 (cm/us)
// Convert to clock cycles: duration (us) * 1000 / CLK_PERIOD_NS
wire [31:0] echo_duration_us = (2 * random_distance * 1000) / 343; // Echo time in us
wire [31:0] calculated_echo_cycles = (echo_duration_us * 1000) / CLK_PERIOD_NS; // Echo time in cycles
// Bidirectional pin control: drive sensor_pin only during echo pulse
assign sensor_pin = drive_echo ? 1'b1 : 1'bz;
// Main state machine
always @(posedge clk) begin
// Store previous sensor_pin value for edge detection
sensor_pin_prev <= sensor_pin;
case (state)
IDLE: begin
drive_echo <= 0;
counter <= 0;
if (sensor_pin ) begin // Rising edge of trigger
random_distance <= $urandom_range(2, 400); // Generate random distance
state <= CHECK_TRIGGER;
end
end
CHECK_TRIGGER: begin
counter <= counter + 1;
if (!sensor_pin) begin // Trigger pulse ended
if (counter >= TRIGGER_MIN_CYCLES) begin
$display("HC-SR04: Random distance = %0d cm at time %0t", random_distance, $time);
echo_cycles <= calculated_echo_cycles; // Sample echo duration
state <= ECHO_DELAY;
counter <= 0;
end else begin
state <= IDLE; // Trigger too short
end
end
end
ECHO_DELAY: begin
counter <= counter + 1;
if (counter >= ECHO_DELAY_CYCLES) begin
state <= ECHO_PULSE;
drive_echo <= 1; // Start driving sensor_pin
counter <= 0;
end
end
ECHO_PULSE: begin
counter <= counter + 1;
if (counter >= echo_cycles) begin
drive_echo <= 0; // Stop driving sensor_pin
state <= WAIT_CYCLE;
counter <= 0;
end
end
WAIT_CYCLE: begin
counter <= counter + 1;
if (counter >= CYCLE_TIME_CYCLES) begin
state <= IDLE;
counter <= 0;
end
end
default: state <= IDLE;
endcase
end
endmodule

View File

@@ -0,0 +1,154 @@
module ultrason_driver #(
parameter integer CLK_FREQ = 27_000_000 // Fréquence d'horloge en Hz
)(
input wire clk,
input wire start,
inout wire sig, // Broche bidirectionnelle vers le capteur
output reg [15:0] distance, // Distance mesurée en cm
output reg busy,
output reg done
);
reg [15:0] trig_counter = 0;
reg [31:0] echo_counter = 0;
reg [31:0] echo_div_counter = 0;
reg [15:0] distance_counter = 0;
reg sig_out;
reg sig_dir; // 1: output, 0: input
assign sig = sig_dir ? sig_out : 1'bz; // bz pour dire que le fpga laisse le fils libre et n'oblige pas de valeur
reg sig_int, sig_ok;
localparam IDLE = 3'd0,
TRIG_HIGH = 3'd1,
TRIG_LOW = 3'd2,
WAIT_ECHO = 3'd3,
MEASURE_ECHO = 3'd4,
COMPUTE = 3'd5,
DONE = 3'd6,
WAIT_NEXT = 3'd7;
reg [2:0] state = IDLE;
localparam integer TRIG_PULSE_CYCLES = CLK_FREQ / 100_000; // 10us pulse
localparam integer DIST_DIVISOR = (58 * CLK_FREQ) / 1_000_000; // pour conversion us -> cm
localparam integer MAX_CM = 350;
localparam integer TIMEOUT_CYCLES = (MAX_CM * 58 * CLK_FREQ) / 1000000;
localparam WAIT_NEXT_CYCLES = (CLK_FREQ / 1000) * 100; // 60 ms
reg [31:0] wait_counter;
always @(posedge clk) begin
sig_int <= sig;
sig_ok <= sig_int;
end
always @(posedge clk) begin
busy <= (state != IDLE);
end
always @(posedge clk) begin // FSM
case (state)
IDLE: begin
done <= 0;
sig_out <= 0;
sig_dir <= 0;
distance <= 0;
if (start) begin
state <= TRIG_HIGH;
trig_counter <= 0;
done <= 0;
end
end
TRIG_HIGH: begin
sig_out <= 1;
sig_dir <= 1;
if (trig_counter < TRIG_PULSE_CYCLES) begin
trig_counter <= trig_counter + 1;
end else begin
trig_counter <= 0;
state <= TRIG_LOW;
end
end
TRIG_LOW: begin
sig_out <= 0;
sig_dir <= 0; // Mettre en entrée
if (sig_ok) begin
state <= TRIG_LOW;
end else
state <= WAIT_ECHO;
end
WAIT_ECHO: begin
if (sig_ok) begin
echo_counter <= 0;
state <= MEASURE_ECHO;
end else if (echo_counter >= TIMEOUT_CYCLES) begin
distance <= 0;
state <= DONE;
end else begin
echo_counter <= echo_counter + 1;
end
end
MEASURE_ECHO: begin
if (sig_ok) begin
if (echo_counter < TIMEOUT_CYCLES) begin
echo_counter <= echo_counter + 1;
end else begin
state <= DONE;
end
end else begin
state <= COMPUTE;
end
end
COMPUTE: begin
if (echo_counter >= DIST_DIVISOR) begin
echo_counter <= echo_counter - DIST_DIVISOR;
distance_counter <= distance_counter + 1;
state <= COMPUTE;
end else begin
distance <= distance_counter;
state <= DONE;
end
end
DONE: begin
if (start) begin
wait_counter <= 0;
state <= WAIT_NEXT;
end else begin
state <= IDLE;
end
done <= 1;
end
WAIT_NEXT: begin
wait_counter <= wait_counter + 1;
if (wait_counter >= WAIT_NEXT_CYCLES) begin
state <= TRIG_HIGH;
trig_counter <= 0;
distance_counter <= 0;
echo_counter <= 0;
end
end
default: begin
state <= IDLE; // Reset to IDLE state in case of an error
end
endcase
end
endmodule

View File

@@ -0,0 +1,152 @@
module ultrasonic_fpga #(
parameter integer CLK_FREQ = 27_000_000 // Fréquence d'horloge en Hz
)(
input wire clk,
input wire start,
inout wire sig, // Broche bidirectionnelle vers le capteur
output reg [15:0] distance, // Distance mesurée en cm
output reg busy,
output reg done
);
reg [15:0] trig_counter = 0;
reg [31:0] echo_counter = 0;
reg [31:0] echo_div_counter = 0;
reg [15:0] distance_counter = 0;
reg sig_out;
reg sig_dir; // 1: output, 0: input
assign sig = sig_dir ? sig_out : 1'bz; // bz pour dire que le fpga laisse le fils libre et n'oblige pas de valeur
reg sig_int, sig_ok;
localparam IDLE = 3'd0,
TRIG_HIGH = 3'd1,
TRIG_LOW = 3'd2,
WAIT_ECHO = 3'd3,
MEASURE_ECHO = 3'd4,
COMPUTE = 3'd5,
DONE = 3'd6,
WAIT_NEXT = 3'd7;
reg [2:0] state = IDLE;
localparam integer TRIG_PULSE_CYCLES = CLK_FREQ / 100_000; // 10us pulse
localparam integer DIST_DIVISOR = (58 * CLK_FREQ) / 1_000_000; // pour conversion us -> cm
localparam integer MAX_CM = 350;
localparam integer TIMEOUT_CYCLES = (MAX_CM * 58 * CLK_FREQ) / 1000000;
localparam WAIT_NEXT_CYCLES = (CLK_FREQ / 1000) * 100; // 60 ms
reg [31:0] wait_counter;
always @(posedge clk) begin
sig_int <= sig;
sig_ok <= sig_int;
end
always @(posedge clk) begin
busy <= (state != IDLE);
end
always @(posedge clk) begin // FSM
case (state)
IDLE: begin
done <= 0;
sig_out <= 0;
sig_dir <= 0;
distance <= 0;
if (start) begin
state <= TRIG_HIGH;
trig_counter <= 0;
done <= 0;
end
end
TRIG_HIGH: begin
sig_out <= 1;
sig_dir <= 1;
if (trig_counter < TRIG_PULSE_CYCLES) begin
trig_counter <= trig_counter + 1;
end else begin
trig_counter <= 0;
state <= TRIG_LOW;
end
end
TRIG_LOW: begin
sig_out <= 0;
sig_dir <= 0; // Mettre en entrée
if (sig_ok) begin
state <= TRIG_LOW;
end else
state <= WAIT_ECHO;
end
WAIT_ECHO: begin
if (sig_ok) begin
echo_counter <= 0;
state <= MEASURE_ECHO;
end else if (echo_counter >= TIMEOUT_CYCLES) begin
distance <= 0;
state <= DONE;
end else begin
echo_counter <= echo_counter + 1;
end
end
MEASURE_ECHO: begin
if (sig_ok) begin
if (echo_counter < TIMEOUT_CYCLES) begin
echo_counter <= echo_counter + 1;
end else begin
state <= DONE;
end
end else begin
state <= COMPUTE;
end
end
COMPUTE: begin
if (echo_counter >= DIST_DIVISOR) begin
echo_counter <= echo_counter - DIST_DIVISOR;
distance_counter <= distance_counter + 1;
state <= COMPUTE;
end else begin
distance <= distance_counter;
state <= DONE;
end
end
DONE: begin
if (start) begin
wait_counter <= 0;
state <= WAIT_NEXT;
end else begin
state <= IDLE;
end
done <= 1;
end
WAIT_NEXT: begin
wait_counter <= wait_counter + 1;
if (wait_counter >= WAIT_NEXT_CYCLES) begin
state <= TRIG_HIGH;
trig_counter <= 0;
distance_counter <= 0;
echo_counter <= 0;
end
end
default: begin
state <= IDLE; // Reset to IDLE state in case of an error
end
endcase
end
endmodule

View File

@@ -0,0 +1,131 @@
`timescale 1ns/1ps
module hc_sr04_tb;
// === Signaux ===
reg clk = 0;
reg start = 0;
wire sensor_pin; // Signal bidirectionnel entre driver et capteur
wire [15:0] distance;
wire busy;
wire done;
// === Paramètres ===
localparam CLK_FREQ = 27_000_000; // 27 MHz
localparam CLK_PERIOD = 37; // Période en ns (~37 ns pour 27 MHz)
// Génération de l'horloge 27 MHz
always #(CLK_PERIOD/2) clk = ~clk;
// === Instanciation des modules ===
// Capteur HC-SR04 simulé
hc_sr04_model #(
.CLK_FREQ_MHZ(27)
) fake_sensor (
.clk(clk),
.sensor_pin(sensor_pin)
);
// Driver pour contrôler le capteur
ultrason_driver #(
.CLK_FREQ(CLK_FREQ)
) driver (
.clk(clk),
.start(start),
.sig(sensor_pin),
.distance(distance),
.busy(busy),
.done(done)
);
// === Tâches pour simplifier les tests ===
// Tâche pour déclencher une mesure
task trigger_measurement;
begin
$display("[%0t ns] Déclenchement d'une mesure", $time);
start = 1;
#(CLK_PERIOD * 2);
start = 0;
// Attendre que la mesure soit terminée
wait(done);
$display("[%0t ns] Mesure terminée, distance=%0d, busy=%b", $time, distance, busy);
end
endtask
// Tâche pour vérifier la distance
task check_distance(input [15:0] expected_distance);
begin
if (distance == expected_distance) begin
$display("[%0t ns] Distance correcte: %0d", $time, distance);
end else begin
$display("[%0t ns] ERREUR: Distance reçue=%0d, attendu=%0d", $time, distance, expected_distance);
end
end
endtask
// === Stimulus de test ===
initial begin
$dumpfile("runs/sim.vcd");
$dumpvars(0, hc_sr04_tb);
$display("==== Début Test HC-SR04 ====");
// Initialisation
#(CLK_PERIOD * 10);
// Test 1: Mesure unique
$display("=== Test 1: Mesure unique ===");
trigger_measurement();
// Supposons que hc_sr04_model simule une distance fixe, par exemple 1000 (à ajuster)
check_distance(16'd1000);
// Test 2: Mesures multiples
$display("=== Test 2: Mesures multiples ===");
repeat (3) begin
#(CLK_PERIOD * 1000); // Attendre entre mesures
trigger_measurement();
check_distance(16'd1000);
end
// Test 3: Vérification de busy
$display("=== Test 3: Vérification de busy ===");
start = 1;
#(CLK_PERIOD * 2);
start = 0;
#(CLK_PERIOD * 10);
if (busy) begin
$display("[%0t ns] Busy actif pendant la mesure, OK", $time);
end else begin
$display("[%0t ns] ERREUR: Busy devrait être actif", $time);
end
wait(done);
if (!busy) begin
$display("[%0t ns] Busy inactif après done, OK", $time);
end else begin
$display("[%0t ns] ERREUR: Busy devrait être inactif", $time);
end
// Test 4: Pas de déclenchement
$display("=== Test 4: Pas de déclenchement ===");
#(CLK_PERIOD * 10000);
if (!busy && !done) begin
$display("[%0t ns] Aucune activité sans déclenchement, OK", $time);
end else begin
$display("[%0t ns] ERREUR: Activité détectée sans déclenchement", $time);
end
// Fin de la simulation
$display("==== Fin Test HC-SR04 ====");
#(CLK_PERIOD * 1000);
$finish;
end
// === Surveillance des signaux ===
initial begin
$monitor("[%0t ns] sensor_pin=%b, start=%b, busy=%b, done=%b, distance=%0d",
$time, sensor_pin, start, busy, done, distance);
end
endmodule