diff --git a/Semaine_4/UART_FIFO/IP/verilog/fifo.v b/Semaine_4/UART_FIFO/IP/verilog/fifo.v new file mode 100644 index 0000000..a67914e --- /dev/null +++ b/Semaine_4/UART_FIFO/IP/verilog/fifo.v @@ -0,0 +1,43 @@ + module fifo #( + parameter DEPTH = 16, + parameter WIDTH = 8 +)( + input wire clk, + input wire wr_en, + input wire[WIDTH-1:0] wr_data, + input wire rd_en, + output wire[WIDTH-1:0] rd_data, + + output wire full, + output wire empty +); + + reg [WIDTH-1:0] fifo[0:DEPTH-1]; + reg [3:0] wr_ptr; + reg [3:0] rd_ptr; + reg [3:0] count; + + assign full = (count == DEPTH); + assign empty = (count == 0); + assign rd_data = fifo[rd_ptr]; + + initial begin + wr_ptr = 0; + rd_ptr = 0; + count = 0; + end + + always @(posedge clk) begin + if (wr_en && !full) begin + fifo[wr_ptr] <= wr_data; + wr_ptr <= (wr_ptr + 1) % DEPTH; + count <= count + 1; + end + + if (rd_en && !empty) begin + rd_ptr <= (rd_ptr + 1) % DEPTH; + count <= count - 1; + end + end + +endmodule diff --git a/Semaine_4/UART_FIFO/IP/verilog/other_rx.v b/Semaine_4/UART_FIFO/IP/verilog/other_rx.v new file mode 100644 index 0000000..0b49b74 --- /dev/null +++ b/Semaine_4/UART_FIFO/IP/verilog/other_rx.v @@ -0,0 +1,143 @@ +module other_uart_rx +#( + parameter CLK_FRE = 27, //clock frequency(Mhz) + parameter BAUD_RATE = 115200 //serial baud rate +) +( + input clk, //clock input + input rst_n, //asynchronous reset input, low active + output reg[7:0] rx_data, //received serial data + output reg rx_data_valid, //received serial data is valid + input rx_data_ready, //data receiver module ready + input rx_pin //serial data input +); +//calculates the clock cycle for baud rate +localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE; +//state machine code +localparam S_IDLE = 1; +localparam S_START = 2; //start bit +localparam S_REC_BYTE = 3; //data bits +localparam S_STOP = 4; //stop bit +localparam S_DATA = 5; + +reg[2:0] state; +reg[2:0] next_state; +reg rx_d0; //delay 1 clock for rx_pin +reg rx_d1; //delay 1 clock for rx_d0 +wire rx_negedge; //negedge of rx_pin +reg[7:0] rx_bits; //temporary storage of received data +reg[15:0] cycle_cnt; //baud counter +reg[2:0] bit_cnt; //bit counter + +assign rx_negedge = rx_d1 && ~rx_d0; + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + begin + rx_d0 <= 1'b0; + rx_d1 <= 1'b0; + end + else + begin + rx_d0 <= rx_pin; + rx_d1 <= rx_d0; + end +end + + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + state <= S_IDLE; + else + state <= next_state; +end + +always@(*) +begin + case(state) + S_IDLE: + if(rx_negedge) + next_state <= S_START; + else + next_state <= S_IDLE; + S_START: + if(cycle_cnt == CYCLE - 1)//one data cycle + next_state <= S_REC_BYTE; + else + next_state <= S_START; + S_REC_BYTE: + if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data + next_state <= S_STOP; + else + next_state <= S_REC_BYTE; + S_STOP: + if(cycle_cnt == CYCLE/2 - 1)//half bit cycle,to avoid missing the next byte receiver + next_state <= S_DATA; + else + next_state <= S_STOP; + S_DATA: + if(rx_data_ready) //data receive complete + next_state <= S_IDLE; + else + next_state <= S_DATA; + default: + next_state <= S_IDLE; + endcase +end + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + rx_data_valid <= 1'b0; + else if(state == S_STOP && next_state != state) + rx_data_valid <= 1'b1; + else if(state == S_DATA && rx_data_ready) + rx_data_valid <= 1'b0; +end + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + rx_data <= 8'd0; + else if(state == S_STOP && next_state != state) + rx_data <= rx_bits;//latch received data +end + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + begin + bit_cnt <= 3'd0; + end + else if(state == S_REC_BYTE) + if(cycle_cnt == CYCLE - 1) + bit_cnt <= bit_cnt + 3'd1; + else + bit_cnt <= bit_cnt; + else + bit_cnt <= 3'd0; +end + + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + cycle_cnt <= 16'd0; + else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state) + cycle_cnt <= 16'd0; + else + cycle_cnt <= cycle_cnt + 16'd1; +end +//receive serial data bit data +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + rx_bits <= 8'd0; + else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1) + rx_bits[bit_cnt] <= rx_pin; + else + rx_bits <= rx_bits; +end +endmodule \ No newline at end of file diff --git a/Semaine_4/UART_FIFO/IP/verilog/other_tx.v b/Semaine_4/UART_FIFO/IP/verilog/other_tx.v new file mode 100644 index 0000000..31cbb21 --- /dev/null +++ b/Semaine_4/UART_FIFO/IP/verilog/other_tx.v @@ -0,0 +1,133 @@ +module other_uart_tx +#( + parameter CLK_FRE = 27, //clock frequency(Mhz) + parameter BAUD_RATE = 115200 //serial baud rate +) +( + input clk, //clock input + input rst_n, //asynchronous reset input, low active + input[7:0] tx_data, //data to send + input tx_data_valid, //data to be sent is valid + output reg tx_data_ready, //send ready + output tx_pin //serial data output +); +//calculates the clock cycle for baud rate +localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE; +//state machine code +localparam S_IDLE = 1; +localparam S_START = 2;//start bit +localparam S_SEND_BYTE = 3;//data bits +localparam S_STOP = 4;//stop bit +reg[2:0] state; +reg[2:0] next_state; +reg[15:0] cycle_cnt; //baud counter +reg[2:0] bit_cnt;//bit counter +reg[7:0] tx_data_latch; //latch data to send +reg tx_reg; //serial data output +assign tx_pin = tx_reg; +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + state <= S_IDLE; + else + state <= next_state; +end + +always@(*) +begin + case(state) + S_IDLE: + if(tx_data_valid == 1'b1) + next_state <= S_START; + else + next_state <= S_IDLE; + S_START: + if(cycle_cnt == CYCLE - 1) + next_state <= S_SEND_BYTE; + else + next_state <= S_START; + S_SEND_BYTE: + if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) + next_state <= S_STOP; + else + next_state <= S_SEND_BYTE; + S_STOP: + if(cycle_cnt == CYCLE - 1) + next_state <= S_IDLE; + else + next_state <= S_STOP; + default: + next_state <= S_IDLE; + endcase +end +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + begin + tx_data_ready <= 1'b0; + end + else if(state == S_IDLE) + if(tx_data_valid == 1'b1) + tx_data_ready <= 1'b0; + else + tx_data_ready <= 1'b1; + else if(state == S_STOP && cycle_cnt == CYCLE - 1) + tx_data_ready <= 1'b1; +end + + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + begin + tx_data_latch <= 8'd0; + end + else if(state == S_IDLE && tx_data_valid == 1'b1) + tx_data_latch <= tx_data; + +end + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + begin + bit_cnt <= 3'd0; + end + else if(state == S_SEND_BYTE) + if(cycle_cnt == CYCLE - 1) + bit_cnt <= bit_cnt + 3'd1; + else + bit_cnt <= bit_cnt; + else + bit_cnt <= 3'd0; +end + + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + cycle_cnt <= 16'd0; + else if((state == S_SEND_BYTE && cycle_cnt == CYCLE - 1) || next_state != state) + cycle_cnt <= 16'd0; + else + cycle_cnt <= cycle_cnt + 16'd1; +end + +always@(posedge clk or negedge rst_n) +begin + if(rst_n == 1'b0) + tx_reg <= 1'b1; + else + case(state) + S_IDLE,S_STOP: + tx_reg <= 1'b1; + S_START: + tx_reg <= 1'b0; + S_SEND_BYTE: + tx_reg <= tx_data_latch[bit_cnt]; + default: + tx_reg <= 1'b1; + endcase +end + +endmodule \ No newline at end of file diff --git a/Semaine_4/UART_FIFO/IP/verilog/uart_rx.v b/Semaine_4/UART_FIFO/IP/verilog/uart_rx.v new file mode 100644 index 0000000..6723b5f --- /dev/null +++ b/Semaine_4/UART_FIFO/IP/verilog/uart_rx.v @@ -0,0 +1,145 @@ +module uart_rx #( + parameter CLK_FREQ = 27_000_000, + parameter BAUD_RATE = 115200 +)( + input clk, //clock input + input rst_p, //asynchronous reset input, high active + input rx_enable, //data receiver module ready + input rx_pin, //serial data input + + output reg[7:0] rx_data, //received serial data + output reg rx_received //received serial data is valid +); + +localparam CYCLE = CLK_FREQ / BAUD_RATE; + +//state machine code +localparam S_IDLE = 1; +localparam S_START = 2; //start bit +localparam S_REC_BYTE = 3; //data bits +localparam S_STOP = 4; //stop bit +localparam S_DATA = 5; + +reg[2:0] state; +reg[2:0] next_state; + +reg rx_d0; //delay 1 clock for rx_pin +reg rx_d1; //delay 1 clock for rx_d0 +wire rx_negedge; //negedge of rx_pin +reg[7:0] rx_bits; //temporary storage of received data +reg[15:0] cycle_cnt; //baud counter +reg[2:0] bit_cnt; //bit counter + +assign rx_negedge = rx_d1 && ~rx_d0; // Front déscendant + +always@(posedge clk or posedge rst_p) // Filtrage du signial +begin + if(rst_p == 1'b1)begin + rx_d0 <= 1'b0; + rx_d1 <= 1'b0; + + end else begin + rx_d0 <= rx_pin; + rx_d1 <= rx_d0; + end +end + + +always@(posedge clk or posedge rst_p)begin // Compteur d'etat + if(rst_p == 1'b1) + state <= S_IDLE; + else + state <= next_state; +end + +always@(*)begin + case(state) + S_IDLE: + if(rx_negedge) // Detection du start bit + next_state = S_START; + else + next_state = S_IDLE; + + S_START: + if(cycle_cnt == CYCLE - 1) //one data cycle + next_state = S_REC_BYTE; + else + next_state = S_START; + + S_REC_BYTE: + if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data + next_state = S_STOP; + else + next_state = S_REC_BYTE; + + S_STOP: + if(cycle_cnt == CYCLE/2 - 1) //half bit cycle,to avoid missing the next byte receiver + next_state = S_DATA; + else + next_state = S_STOP; + + S_DATA: + if(rx_enable) //data receive complete + next_state = S_IDLE; + else + next_state = S_DATA; + + default: + next_state = S_IDLE; + endcase +end + +always@(posedge clk or posedge rst_p) +begin + if(rst_p == 1'b1) + rx_received <= 1'b0; + else if(state == S_STOP && next_state != state) + rx_received <= 1'b1; + else if(state == S_DATA && rx_enable) + rx_received <= 1'b0; +end + +always@(posedge clk or posedge rst_p) +begin + if(rst_p == 1'b1) + rx_data <= 8'd0; + else if(state == S_STOP && next_state != state) + rx_data <= rx_bits;//latch received data +end + +always@(posedge clk or posedge rst_p) +begin + if(rst_p == 1'b1) + begin + bit_cnt <= 3'd0; + end + else if(state == S_REC_BYTE) + if(cycle_cnt == CYCLE - 1) + bit_cnt <= bit_cnt + 3'd1; + else + bit_cnt <= bit_cnt; + else + bit_cnt <= 3'd0; +end + + +always@(posedge clk or posedge rst_p) +begin + if(rst_p == 1'b1) + cycle_cnt <= 16'd0; + else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state) + cycle_cnt <= 16'd0; + else + cycle_cnt <= cycle_cnt + 16'd1; +end +//receive serial data bit data +always@(posedge clk or posedge rst_p) +begin + if(rst_p == 1'b1) + rx_bits <= 8'd0; + else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1) + rx_bits[bit_cnt] <= rx_pin; + else + rx_bits <= rx_bits; +end +endmodule \ No newline at end of file diff --git a/Semaine_4/UART_FIFO/IP/verilog/uart_tx.v b/Semaine_4/UART_FIFO/IP/verilog/uart_tx.v new file mode 100644 index 0000000..9f48d93 --- /dev/null +++ b/Semaine_4/UART_FIFO/IP/verilog/uart_tx.v @@ -0,0 +1,131 @@ +module uart_tx #( + parameter CLK_FREQ = 27_000_000, + parameter BAUD_RATE = 115200 +)( + input wire clk, + input wire rst_p, + input wire[7:0] data, + input wire tx_enable, + + output reg tx_ready, + output wire tx +); + + localparam CYCLE = CLK_FREQ / BAUD_RATE; + + localparam IDLE = 2'd0; + localparam START = 2'd1; + localparam DATA = 2'd2; + localparam STOP = 2'd3; + + reg [1:0] state = IDLE; + reg [1:0] next_state; + reg [15:0] cycle_cnt; //baud counter + reg tx_reg; + reg [2:0] bit_cnt; + reg [7:0] tx_data_latch = 0; + + + assign tx = tx_reg; + + always@(posedge clk or posedge rst_p)begin // Avance d'etat + if(rst_p == 1'b1) + state <= IDLE; + else + state <= next_state; + end + + always@(*) begin + case(state) + IDLE: + if(tx_enable == 1'b1) + next_state = START; + else + next_state = IDLE; + + START: + if(cycle_cnt == CYCLE - 1) + next_state = DATA; + else + next_state = START; + + DATA: + if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) + next_state = STOP; + else + next_state = DATA; + + STOP: + if(cycle_cnt == CYCLE - 1) + next_state = IDLE; + else + next_state = STOP; + default: + next_state = IDLE; + endcase + end + + always@(posedge clk or posedge rst_p)begin // tx_ready block + if(rst_p == 1'b1) + tx_ready <= 1'b0; // Reset + else if(state == IDLE && tx_enable == 1'b1) + tx_ready <= 1'b0; // Pas prêt tant que les données sont valides + else if(state == IDLE) + tx_ready <= 1'b1; + else if(state == STOP && cycle_cnt == CYCLE - 1) + tx_ready <= 1'b1; // Prêt une fois le bit STOP envoyé + else + tx_ready <= tx_ready; // Reste inchangé dans d'autres cas + end + + + + always@(posedge clk or posedge rst_p) begin // tx_data_latch block + if(rst_p == 1'b1) begin + tx_data_latch <= 8'd0; + end else if(state == IDLE && tx_enable == 1'b1) begin + tx_data_latch <= data; // Charger les données de data dans tx_data_latch + end + end + + + always@(posedge clk or posedge rst_p)begin // DATA bit_cnt block + if(rst_p == 1'b1)begin + bit_cnt <= 3'd0; + + end else if(state == DATA) + if(cycle_cnt == CYCLE - 1) + bit_cnt <= bit_cnt + 3'd1; + else + bit_cnt <= bit_cnt; + else + bit_cnt <= 3'd0; + end + + + always@(posedge clk or posedge rst_p)begin // Cycle counter + if(rst_p == 1'b1) + cycle_cnt <= 16'd0; + + else if((state == DATA && cycle_cnt == CYCLE - 1) || next_state != state) + cycle_cnt <= 16'd0; + else + cycle_cnt <= cycle_cnt + 16'd1; + end + + always@(posedge clk or posedge rst_p)begin // tx state managment + if(rst_p == 1'b1) + tx_reg <= 1'b1; + else + case(state) + IDLE,STOP: + tx_reg <= 1'b1; + START: + tx_reg <= 1'b0; + DATA: + tx_reg <= tx_data_latch[bit_cnt]; // SENDING BYTE HERE + default: + tx_reg <= 1'b1; + endcase + end +endmodule diff --git a/Semaine_4/UART_FIFO/scripts/gtkwave.bat b/Semaine_4/UART_FIFO/scripts/gtkwave.bat index ae1cd1b..4e7673e 100644 --- a/Semaine_4/UART_FIFO/scripts/gtkwave.bat +++ b/Semaine_4/UART_FIFO/scripts/gtkwave.bat @@ -1,3 +1,3 @@ @echo off echo === Lancement de GTKWave === -gtkwave runs/uart.vcd +gtkwave runs/uart_tx_fifo.vcd diff --git a/Semaine_4/UART_FIFO/scripts/simulate.bat b/Semaine_4/UART_FIFO/scripts/simulate.bat index a681db1..54604a3 100644 --- a/Semaine_4/UART_FIFO/scripts/simulate.bat +++ b/Semaine_4/UART_FIFO/scripts/simulate.bat @@ -6,7 +6,7 @@ setlocal enabledelayedexpansion set OUT=runs/sim.vvp :: Top-level testbench module -set TOP=tb_uart +set TOP=tb_uart_tx_fifo :: Répertoires contenant des fichiers .v set DIRS=src/verilog tests/verilog IP/verilog diff --git a/Semaine_4/UART_FIFO/src/verilog/uart_rx_fifo.v b/Semaine_4/UART_FIFO/src/verilog/uart_rx_fifo.v index 6723b5f..06c1b1f 100644 --- a/Semaine_4/UART_FIFO/src/verilog/uart_rx_fifo.v +++ b/Semaine_4/UART_FIFO/src/verilog/uart_rx_fifo.v @@ -1,145 +1,68 @@ -module uart_rx #( +module uart_rx_fifo #( parameter CLK_FREQ = 27_000_000, - parameter BAUD_RATE = 115200 + parameter BAUD_RATE = 115200, + parameter FIFO_DEPTH = 8 )( - input clk, //clock input - input rst_p, //asynchronous reset input, high active - input rx_enable, //data receiver module ready - input rx_pin, //serial data input - - output reg[7:0] rx_data, //received serial data - output reg rx_received //received serial data is valid + input clk, + input rd_en, + output reg [7:0] rd_data, + input rx_pin, + output data_available ); - -localparam CYCLE = CLK_FREQ / BAUD_RATE; -//state machine code -localparam S_IDLE = 1; -localparam S_START = 2; //start bit -localparam S_REC_BYTE = 3; //data bits -localparam S_STOP = 4; //stop bit -localparam S_DATA = 5; + // UART RX wires + wire [7:0] rx_data; + wire rx_received; -reg[2:0] state; -reg[2:0] next_state; + // FIFO control + reg wr_en; + wire fifo_empty; + wire fifo_full; + wire [7:0] fifo_rd_data; -reg rx_d0; //delay 1 clock for rx_pin -reg rx_d1; //delay 1 clock for rx_d0 -wire rx_negedge; //negedge of rx_pin -reg[7:0] rx_bits; //temporary storage of received data -reg[15:0] cycle_cnt; //baud counter -reg[2:0] bit_cnt; //bit counter + // UART Receiver instance + uart_rx #( + .CLK_FREQ(CLK_FREQ), + .BAUD_RATE(BAUD_RATE) + ) uart_rx_inst ( + .clk(clk), + .rst_p(1'b0), + .rx_enable(1'b1), + .rx_pin(rx_pin), + .rx_data(rx_data), + .rx_received(rx_received) + ); -assign rx_negedge = rx_d1 && ~rx_d0; // Front déscendant + // FIFO instance + fifo #( + .WIDTH(8), + .DEPTH(FIFO_DEPTH) + ) fifo_inst ( + .clk(clk), + .wr_en(wr_en), + .wr_data(rx_data), + .rd_en(rd_en), + .rd_data(fifo_rd_data), + .empty(fifo_empty), + .full(fifo_full) + ); -always@(posedge clk or posedge rst_p) // Filtrage du signial -begin - if(rst_p == 1'b1)begin - rx_d0 <= 1'b0; - rx_d1 <= 1'b0; - - end else begin - rx_d0 <= rx_pin; - rx_d1 <= rx_d0; - end -end + assign data_available = ~fifo_empty; - -always@(posedge clk or posedge rst_p)begin // Compteur d'etat - if(rst_p == 1'b1) - state <= S_IDLE; - else - state <= next_state; -end - -always@(*)begin - case(state) - S_IDLE: - if(rx_negedge) // Detection du start bit - next_state = S_START; - else - next_state = S_IDLE; - - S_START: - if(cycle_cnt == CYCLE - 1) //one data cycle - next_state = S_REC_BYTE; - else - next_state = S_START; - - S_REC_BYTE: - if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data - next_state = S_STOP; - else - next_state = S_REC_BYTE; - - S_STOP: - if(cycle_cnt == CYCLE/2 - 1) //half bit cycle,to avoid missing the next byte receiver - next_state = S_DATA; - else - next_state = S_STOP; - - S_DATA: - if(rx_enable) //data receive complete - next_state = S_IDLE; - else - next_state = S_DATA; - - default: - next_state = S_IDLE; - endcase -end - -always@(posedge clk or posedge rst_p) -begin - if(rst_p == 1'b1) - rx_received <= 1'b0; - else if(state == S_STOP && next_state != state) - rx_received <= 1'b1; - else if(state == S_DATA && rx_enable) - rx_received <= 1'b0; -end - -always@(posedge clk or posedge rst_p) -begin - if(rst_p == 1'b1) - rx_data <= 8'd0; - else if(state == S_STOP && next_state != state) - rx_data <= rx_bits;//latch received data -end - -always@(posedge clk or posedge rst_p) -begin - if(rst_p == 1'b1) - begin - bit_cnt <= 3'd0; + // Enregistrement explicite des données lues pour stabilité + always @(posedge clk) begin + if (rd_en && !fifo_empty) begin + rd_data <= fifo_rd_data; end - else if(state == S_REC_BYTE) - if(cycle_cnt == CYCLE - 1) - bit_cnt <= bit_cnt + 3'd1; - else - bit_cnt <= bit_cnt; - else - bit_cnt <= 3'd0; -end + end - -always@(posedge clk or posedge rst_p) -begin - if(rst_p == 1'b1) - cycle_cnt <= 16'd0; - else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state) - cycle_cnt <= 16'd0; - else - cycle_cnt <= cycle_cnt + 16'd1; -end -//receive serial data bit data -always@(posedge clk or posedge rst_p) -begin - if(rst_p == 1'b1) - rx_bits <= 8'd0; - else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1) - rx_bits[bit_cnt] <= rx_pin; - else - rx_bits <= rx_bits; -end + // Écriture dans la FIFO uniquement si donnée reçue ET FIFO pas pleine + always @(posedge clk) begin + if (rx_received && !fifo_full) begin + wr_en <= 1'b1; + end else begin + wr_en <= 1'b0; + end + end + endmodule \ No newline at end of file diff --git a/Semaine_4/UART_FIFO/src/verilog/uart_tx_fifo.v b/Semaine_4/UART_FIFO/src/verilog/uart_tx_fifo.v index cbc9505..80ebb84 100644 --- a/Semaine_4/UART_FIFO/src/verilog/uart_tx_fifo.v +++ b/Semaine_4/UART_FIFO/src/verilog/uart_tx_fifo.v @@ -1,131 +1,86 @@ -module uart_tx #( - parameter CLK_FREQ = 27_000_000, - parameter BAUD_RATE = 115200 +module uart_tx_fifo #( + parameter CLK_FREQ = 27_000_000, + parameter BAUD_RATE = 115200, + parameter FIFO_DEPTH = 8 )( - input wire clk, - input wire rst_p, - input wire[7:0] data, - input wire tx_enable, - - output reg tx_ready, - output wire tx + input clk, + input wr_en, + input [7:0] wr_data, + output tx_pin, + output fifo_full ); - localparam CYCLE = CLK_FREQ / BAUD_RATE; + // FIFO wires + wire [7:0] fifo_rd_data; + wire fifo_empty; + reg fifo_rd_en; - localparam IDLE = 2'd0; - localparam START = 2'd1; - localparam DATA = 2'd2; - localparam STOP = 2'd3; + // UART wires + wire tx_ready; + reg uart_tx_enable; + reg [7:0] uart_tx_data; - reg [1:0] state = IDLE; - reg [1:0] next_state; - reg [15:0] cycle_cnt; //baud counter - reg tx_reg; - reg [2:0] bit_cnt; - reg [7:0] tx_data_latch = 0; + // FSM + typedef enum logic [1:0] { + IDLE, + WAIT_READY, + SEND + } state_t; + state_t state = IDLE; - assign tx = tx_reg; + // FIFO instantiation + fifo #( + .WIDTH(8), + .DEPTH(FIFO_DEPTH) + ) fifo_inst ( + .clk(clk), + .wr_en(wr_en), + .wr_data(wr_data), + .rd_en(fifo_rd_en), + .rd_data(fifo_rd_data), + .empty(fifo_empty), + .full(fifo_full) + ); - always@(posedge clk or posedge rst_p)begin // Avance d'etat - if(rst_p == 1'b1) - state <= IDLE; - else - state <= next_state; - end + // UART TX instantiation + uart_tx #( + .CLK_FREQ(CLK_FREQ), + .BAUD_RATE(BAUD_RATE) + ) uart_tx_inst ( + .clk(clk), + .rst_p(1'b0), + .data(uart_tx_data), + .tx_enable(uart_tx_enable), + .tx_ready(tx_ready), + .tx(tx_pin) + ); - always@(*) begin - case(state) - IDLE: - if(tx_enable == 1'b1) - next_state = START; - else - next_state = IDLE; + always_ff @(posedge clk) begin + // Valeurs par défaut + fifo_rd_en <= 0; + uart_tx_enable <= 0; - START: - if(cycle_cnt == CYCLE - 1) - next_state = DATA; - else - next_state = START; + case (state) + IDLE: begin + if (!fifo_empty) begin + state <= WAIT_READY; + end + end - DATA: - if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) - next_state = STOP; - else - next_state = DATA; + WAIT_READY: begin + if (tx_ready) begin + fifo_rd_en <= 1; + state <= SEND; + end + end - STOP: - if(cycle_cnt == CYCLE - 1) - next_state = IDLE; - else - next_state = STOP; - default: - next_state = IDLE; + SEND: begin + uart_tx_data <= fifo_rd_data; + uart_tx_enable <= 1; + state <= IDLE; + end endcase end - always@(posedge clk or posedge rst_p)begin // tx_ready block - if(rst_p == 1'b1) - tx_ready <= 1'b0; // Reset - else if(state == IDLE && tx_enable == 1'b1) - tx_ready <= 1'b0; // Pas prêt tant que les données sont valides - else if(state == IDLE) - tx_ready <= 1'b1; - else if(state == STOP && cycle_cnt == CYCLE - 1) - tx_ready <= 1'b1; // Prêt une fois le bit STOP envoyé - else - tx_ready <= tx_ready; // Reste inchangé dans d'autres cas - end - - - - always@(posedge clk or posedge rst_p) begin // tx_data_latch block - if(rst_p == 1'b1) begin - tx_data_latch <= 8'd0; - end else if(state == IDLE && tx_enable == 1'b1) begin - tx_data_latch <= data; // Charger les données de `data` dans `tx_data_latch` - end - end - - - always@(posedge clk or posedge rst_p)begin // DATA bit_cnt block - if(rst_p == 1'b1)begin - bit_cnt <= 3'd0; - - end else if(state == DATA) - if(cycle_cnt == CYCLE - 1) - bit_cnt <= bit_cnt + 3'd1; - else - bit_cnt <= bit_cnt; - else - bit_cnt <= 3'd0; - end - - - always@(posedge clk or posedge rst_p)begin // Cycle counter - if(rst_p == 1'b1) - cycle_cnt <= 16'd0; - - else if((state == DATA && cycle_cnt == CYCLE - 1) || next_state != state) - cycle_cnt <= 16'd0; - else - cycle_cnt <= cycle_cnt + 16'd1; - end - - always@(posedge clk or posedge rst_p)begin // tx state managment - if(rst_p == 1'b1) - tx_reg <= 1'b1; - else - case(state) - IDLE,STOP: - tx_reg <= 1'b1; - START: - tx_reg <= 1'b0; - DATA: - tx_reg <= tx_data_latch[bit_cnt]; // SENDING BYTE HERE - default: - tx_reg <= 1'b1; - endcase - end -endmodule +endmodule \ No newline at end of file diff --git a/Semaine_4/UART_FIFO/tests/verilog/tb_uart_rx_fifo.v b/Semaine_4/UART_FIFO/tests/verilog/tb_uart_rx_fifo.v index 2fce3dc..ea3918d 100644 --- a/Semaine_4/UART_FIFO/tests/verilog/tb_uart_rx_fifo.v +++ b/Semaine_4/UART_FIFO/tests/verilog/tb_uart_rx_fifo.v @@ -1,6 +1,6 @@ `timescale 1ns / 1ps -module tb_uart_rx; +module tb_uart_rx_fifo; reg clk = 0; reg rx; @@ -10,8 +10,8 @@ module tb_uart_rx; reg tx_data_valid; reg tx_data_ready; - reg rx_received; - wire rx_enable = 1'b1; // Enable the receiver + reg rd_en; + wire data_available; localparam CLK_FREQ = 27_000_000; localparam BAUD_RATE = 115_200; @@ -27,23 +27,24 @@ module tb_uart_rx; .rst_n(1'b1) ); - uart_rx #( + uart_rx_fifo #( .CLK_FREQ(CLK_FREQ), - .BAUD_RATE(BAUD_RATE) - ) rx_instance ( + .BAUD_RATE(BAUD_RATE), + .FIFO_DEPTH(8) + ) rx_fifo_instance ( .clk(clk), .rx_pin(rx), - .rx_data(data_out), - .rx_received(rx_received), - .rx_enable(rx_enable) + .rd_en(rd_en), + .rd_data(data_out), + .data_available(data_available) ); always #(CLK_PERIOD_NS/2) clk = ~clk; initial begin - $dumpfile("runs/uart_rx.vcd"); - $dumpvars(0, tb_uart_rx); - $display("======== Start UART RX test ========="); + $dumpfile("runs/uart_rx_fifo.vcd"); + $dumpvars(0, tb_uart_rx_fifo); + $display("======== Start UART RX FIFO test ========="); #100; data_in = 8'd123; // Data to send @@ -56,12 +57,41 @@ module tb_uart_rx; tx_data_valid = 1'b0; // Clear the valid signal - wait(rx_received); // Wait for the receiver to receive the data + data_in = 8'd234; // Data to send + wait(tx_data_ready); // Wait for the transmitter to be ready + #1; // Small delay to ensure the data is latched - $display("Data sent: %d", data_in); + tx_data_valid = 1'b1; // Indicate that the data is valid + + wait(tx_data_ready == 0); + + tx_data_valid = 1'b0; // Clear the valid signal + + data_in = 8'd101; // Data to send + wait(tx_data_ready); // Wait for the transmitter to be ready + #1; // Small delay to ensure the data is latched + + tx_data_valid = 1'b1; // Indicate that the data is valid + + wait(tx_data_ready == 0); + + tx_data_valid = 1'b0; // Clear the valid signal + + wait(data_available); // Wait for the receiver to receive the data + + rd_en = 1'b1; // Enable read from FIFO + #37; // Small delay to ensure the data is read $display("Data received: %d", data_out); // Display the received data + rd_en = 1'b0; // Disable read from FIFO + #37; // Small delay to ensure the data is read - $display("======== END UART RX test ========="); + rd_en = 1'b1; // Enable read from FIFO + #37; // Small delay to ensure the data is read + $display("Data received: %d", data_out); // Display the received data + rd_en = 1'b0; // Disable read from FIFO + #37; // Small delay to ensure the data is read + + $display("======== END UART RX FIFO test ========="); $finish; end endmodule diff --git a/Semaine_4/UART_FIFO/tests/verilog/tb_uart_tx_fifo.v b/Semaine_4/UART_FIFO/tests/verilog/tb_uart_tx_fifo.v index 85921f2..a95c11a 100644 --- a/Semaine_4/UART_FIFO/tests/verilog/tb_uart_tx_fifo.v +++ b/Semaine_4/UART_FIFO/tests/verilog/tb_uart_tx_fifo.v @@ -1,16 +1,17 @@ `timescale 1ns/1ps -module tb_uart_tx; +module tb_uart_tx_fifo; reg clk = 0; - reg tx_enable = 0; reg [7:0] data_in = 8'h00; reg [7:0] data_out; wire tx; - reg tx_ready; wire rx_recieved; + wire fifo_full; + reg wr_en = 0; + always #18.5 clk = ~clk; other_uart_rx rx_instance( @@ -22,55 +23,44 @@ module tb_uart_tx; .rx_data_ready(1'b1) ); - uart_tx #( + uart_tx_fifo #( .CLK_FREQ(27_000_000), - .BAUD_RATE(115_200) - )tx_instance ( + .BAUD_RATE(115_200), + .FIFO_DEPTH(8) + )tx_fifo_instance ( .clk(clk), - .tx_enable(tx_enable), - .tx_ready(tx_ready), - .data(data_in), - .tx(tx), - .rst_p(1'b0) + .wr_en(wr_en), + .wr_data(data_in), + .tx_pin(tx), + .fifo_full(fifo_full) ); initial begin - $dumpfile("runs/uart_tx.vcd"); - $dumpvars(0, tb_uart_tx); + $dumpfile("runs/uart_tx_fifo.vcd"); + $dumpvars(0, tb_uart_tx_fifo); - $display("======== Start UART TX test ========="); + $display("======== Start UART TX FIFO test ========="); - #100; + #50; - data_in <= 8'd234; // 234 - tx_enable <= 1; - wait(tx_ready == 1'b0); - tx_enable <= 0; + data_in <= 8'd234; + wr_en <= 1'b1; // Activer l'écriture dans la FIFO + #37; + wr_en <= 1'b0; // Désactiver l'écriture dans la FIFO - // Attendre - wait (rx_recieved == 1'b1); // Attendre que le signal de reception soit actif + data_in <= 8'd123; + wr_en <= 1'b1; // Activer l'écriture dans la FIFO + #37; + wr_en <= 1'b0; // Désactiver l'écriture dans la FIFO - $display("Data received: %d", data_out); // Afficher la valeur recu - $display("Data expected: %d", data_in); // Afficher la valeur envoyee + data_in <= 8'd45; + wr_en <= 1'b1; // Activer l'écriture dans la FIFO + #37; + wr_en <= 1'b0; // Désactiver l'écriture dans la FIFO - #1000; + $display("======== END UART TX FIFO test ========="); - wait(tx_ready == 1'b1); // Attendre que le signal de reception soit actif - - data_in <= 8'd202; // 202 - tx_enable <= 1; - wait(tx_ready == 1'b0); - tx_enable <= 0; - - // Attendre - wait (rx_recieved == 1'b1); // Attendre que le signal de reception soit actif - - $display("Data received: %d", data_out); // Afficher la valeur recu - $display("Data expected: %d", data_in); // Afficher la valeur envoyee - - $display("======== END UART TX test ========="); - - #1000; + #1000000; $stop; end