forked from tanchou/Verilog
TX tested with other's rx code (its work)
This commit is contained in:
143
Semaine_4/UART/IP/verilog/other_rx.v
Normal file
143
Semaine_4/UART/IP/verilog/other_rx.v
Normal file
@@ -0,0 +1,143 @@
|
||||
module uart_rx
|
||||
#(
|
||||
parameter CLK_FRE = 27, //clock frequency(Mhz)
|
||||
parameter BAUD_RATE = 115200 //serial baud rate
|
||||
)
|
||||
(
|
||||
input clk, //clock input
|
||||
input rst_n, //asynchronous reset input, low active
|
||||
output reg[7:0] rx_data, //received serial data
|
||||
output reg rx_data_valid, //received serial data is valid
|
||||
input rx_data_ready, //data receiver module ready
|
||||
input rx_pin //serial data input
|
||||
);
|
||||
//calculates the clock cycle for baud rate
|
||||
localparam CYCLE = CLK_FRE * 1000000 / BAUD_RATE;
|
||||
//state machine code
|
||||
localparam S_IDLE = 1;
|
||||
localparam S_START = 2; //start bit
|
||||
localparam S_REC_BYTE = 3; //data bits
|
||||
localparam S_STOP = 4; //stop bit
|
||||
localparam S_DATA = 5;
|
||||
|
||||
reg[2:0] state;
|
||||
reg[2:0] next_state;
|
||||
reg rx_d0; //delay 1 clock for rx_pin
|
||||
reg rx_d1; //delay 1 clock for rx_d0
|
||||
wire rx_negedge; //negedge of rx_pin
|
||||
reg[7:0] rx_bits; //temporary storage of received data
|
||||
reg[15:0] cycle_cnt; //baud counter
|
||||
reg[2:0] bit_cnt; //bit counter
|
||||
|
||||
assign rx_negedge = rx_d1 && ~rx_d0;
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
rx_d0 <= 1'b0;
|
||||
rx_d1 <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
rx_d0 <= rx_pin;
|
||||
rx_d1 <= rx_d0;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
state <= S_IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*)
|
||||
begin
|
||||
case(state)
|
||||
S_IDLE:
|
||||
if(rx_negedge)
|
||||
next_state <= S_START;
|
||||
else
|
||||
next_state <= S_IDLE;
|
||||
S_START:
|
||||
if(cycle_cnt == CYCLE - 1)//one data cycle
|
||||
next_state <= S_REC_BYTE;
|
||||
else
|
||||
next_state <= S_START;
|
||||
S_REC_BYTE:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
|
||||
next_state <= S_STOP;
|
||||
else
|
||||
next_state <= S_REC_BYTE;
|
||||
S_STOP:
|
||||
if(cycle_cnt == CYCLE/2 - 1)//half bit cycle,to avoid missing the next byte receiver
|
||||
next_state <= S_DATA;
|
||||
else
|
||||
next_state <= S_STOP;
|
||||
S_DATA:
|
||||
if(rx_data_ready) //data receive complete
|
||||
next_state <= S_IDLE;
|
||||
else
|
||||
next_state <= S_DATA;
|
||||
default:
|
||||
next_state <= S_IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
rx_data_valid <= 1'b0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data_valid <= 1'b1;
|
||||
else if(state == S_DATA && rx_data_ready)
|
||||
rx_data_valid <= 1'b0;
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
rx_data <= 8'd0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data <= rx_bits;//latch received data
|
||||
end
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
begin
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
else if(state == S_REC_BYTE)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
cycle_cnt <= 16'd0;
|
||||
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
//receive serial data bit data
|
||||
always@(posedge clk or negedge rst_n)
|
||||
begin
|
||||
if(rst_n == 1'b0)
|
||||
rx_bits <= 8'd0;
|
||||
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
|
||||
rx_bits[bit_cnt] <= rx_pin;
|
||||
else
|
||||
rx_bits <= rx_bits;
|
||||
end
|
||||
endmodule
|
@@ -1,4 +1,29 @@
|
||||
@echo off
|
||||
echo === Simulation avec Icarus Verilog ===
|
||||
iverilog -g2012 -o runs/sim.vvp -s uart_tb src/verilog/*.v tests/verilog/*.v IP/verilog/*.v
|
||||
setlocal enabledelayedexpansion
|
||||
|
||||
:: Dossier de sortie
|
||||
set OUT=runs/sim.vvp
|
||||
|
||||
:: Top-level testbench module
|
||||
set TOP=tb_uart_tx
|
||||
|
||||
:: Répertoires contenant des fichiers .v
|
||||
set DIRS=src/verilog tests/verilog IP/verilog
|
||||
|
||||
:: Variable pour stocker les fichiers
|
||||
set FILES=
|
||||
|
||||
:: Boucle sur chaque dossier
|
||||
for %%D in (%DIRS%) do (
|
||||
for %%F in (%%D\*.v) do (
|
||||
set FILES=!FILES! %%F
|
||||
)
|
||||
)
|
||||
|
||||
:: Compilation avec Icarus Verilog
|
||||
iverilog -g2012 -o %OUT% -s %TOP% %FILES%
|
||||
|
||||
endlocal
|
||||
|
||||
vvp runs/sim.vvp
|
@@ -1,145 +0,0 @@
|
||||
module uart_rx #(
|
||||
parameter CLK_FREQ = 27_000_000,
|
||||
parameter BAUD_RATE = 115200
|
||||
)(
|
||||
input clk, //clock input
|
||||
input rst_p, //asynchronous reset input, high active
|
||||
input rx_data_ready, //data receiver module ready
|
||||
input rx_pin, //serial data input
|
||||
|
||||
output reg[7:0] rx_data, //received serial data
|
||||
output reg rx_data_valid //received serial data is valid
|
||||
);
|
||||
|
||||
localparam CYCLE = CLK_FREQ / BAUD_RATE;
|
||||
|
||||
//state machine code
|
||||
localparam S_IDLE = 1;
|
||||
localparam S_START = 2; //start bit
|
||||
localparam S_REC_BYTE = 3; //data bits
|
||||
localparam S_STOP = 4; //stop bit
|
||||
localparam S_DATA = 5;
|
||||
|
||||
reg[2:0] state;
|
||||
reg[2:0] next_state;
|
||||
|
||||
reg rx_d0; //delay 1 clock for rx_pin
|
||||
reg rx_d1; //delay 1 clock for rx_d0
|
||||
wire rx_negedge; //negedge of rx_pin
|
||||
reg[7:0] rx_bits; //temporary storage of received data
|
||||
reg[15:0] cycle_cnt; //baud counter
|
||||
reg[2:0] bit_cnt; //bit counter
|
||||
|
||||
assign rx_negedge = rx_d1 && ~rx_d0; // Front déscendant
|
||||
|
||||
always@(posedge clk or posedge rst_p) // Filtrage du signial
|
||||
begin
|
||||
if(rst_p == 1'b1)begin
|
||||
rx_d0 <= 1'b0;
|
||||
rx_d1 <= 1'b0;
|
||||
|
||||
end else begin
|
||||
rx_d0 <= rx_pin;
|
||||
rx_d1 <= rx_d0;
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // Compteur d'etat
|
||||
if(rst_p == 1'b1)
|
||||
state <= S_IDLE;
|
||||
else
|
||||
state <= next_state;
|
||||
end
|
||||
|
||||
always@(*)begin
|
||||
case(state)
|
||||
S_IDLE:
|
||||
if(rx_negedge) // Detection du start bit
|
||||
next_state = S_START;
|
||||
else
|
||||
next_state = S_IDLE;
|
||||
|
||||
S_START:
|
||||
if(cycle_cnt == CYCLE - 1) //one data cycle
|
||||
next_state = S_REC_BYTE;
|
||||
else
|
||||
next_state = S_START;
|
||||
|
||||
S_REC_BYTE:
|
||||
if(cycle_cnt == CYCLE - 1 && bit_cnt == 3'd7) //receive 8bit data
|
||||
next_state = S_STOP;
|
||||
else
|
||||
next_state = S_REC_BYTE;
|
||||
|
||||
S_STOP:
|
||||
if(cycle_cnt == CYCLE/2 - 1) //half bit cycle,to avoid missing the next byte receiver
|
||||
next_state = S_DATA;
|
||||
else
|
||||
next_state = S_STOP;
|
||||
|
||||
S_DATA:
|
||||
if(rx_data_ready) //data receive complete
|
||||
next_state = S_IDLE;
|
||||
else
|
||||
next_state = S_DATA;
|
||||
|
||||
default:
|
||||
next_state = S_IDLE;
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_data_valid <= 1'b0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data_valid <= 1'b1;
|
||||
else if(state == S_DATA && rx_data_ready)
|
||||
rx_data_valid <= 1'b0;
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_data <= 8'd0;
|
||||
else if(state == S_STOP && next_state != state)
|
||||
rx_data <= rx_bits;//latch received data
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
begin
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
else if(state == S_REC_BYTE)
|
||||
if(cycle_cnt == CYCLE - 1)
|
||||
bit_cnt <= bit_cnt + 3'd1;
|
||||
else
|
||||
bit_cnt <= bit_cnt;
|
||||
else
|
||||
bit_cnt <= 3'd0;
|
||||
end
|
||||
|
||||
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
cycle_cnt <= 16'd0;
|
||||
else if((state == S_REC_BYTE && cycle_cnt == CYCLE - 1) || next_state != state)
|
||||
cycle_cnt <= 16'd0;
|
||||
else
|
||||
cycle_cnt <= cycle_cnt + 16'd1;
|
||||
end
|
||||
//receive serial data bit data
|
||||
always@(posedge clk or posedge rst_p)
|
||||
begin
|
||||
if(rst_p == 1'b1)
|
||||
rx_bits <= 8'd0;
|
||||
else if(state == S_REC_BYTE && cycle_cnt == CYCLE/2 - 1)
|
||||
rx_bits[bit_cnt] <= rx_pin;
|
||||
else
|
||||
rx_bits <= rx_bits;
|
||||
end
|
||||
endmodule
|
@@ -5,10 +5,10 @@ module uart_tx #(
|
||||
input wire clk,
|
||||
input wire rst_p,
|
||||
input wire[7:0] data,
|
||||
input wire tx_data_valid,
|
||||
input wire tx_enable,
|
||||
|
||||
output wire tx,
|
||||
output reg tx_data_ready
|
||||
output reg tx_ready,
|
||||
output wire tx
|
||||
);
|
||||
|
||||
localparam CYCLE = CLK_FREQ / BAUD_RATE;
|
||||
@@ -38,7 +38,7 @@ module uart_tx #(
|
||||
always@(*) begin
|
||||
case(state)
|
||||
IDLE:
|
||||
if(tx_data_valid == 1'b1)
|
||||
if(tx_enable == 1'b1)
|
||||
next_state = START;
|
||||
else
|
||||
next_state = IDLE;
|
||||
@@ -65,17 +65,17 @@ module uart_tx #(
|
||||
endcase
|
||||
end
|
||||
|
||||
always@(posedge clk or posedge rst_p)begin // tx_data_ready block
|
||||
always@(posedge clk or posedge rst_p)begin // tx_ready block
|
||||
if(rst_p == 1'b1)
|
||||
tx_data_ready <= 1'b0; // Reset
|
||||
else if(state == IDLE && tx_data_valid == 1'b1)
|
||||
tx_data_ready <= 1'b0; // Pas prêt tant que les données sont valides
|
||||
tx_ready <= 1'b0; // Reset
|
||||
else if(state == IDLE && tx_enable == 1'b1)
|
||||
tx_ready <= 1'b0; // Pas prêt tant que les données sont valides
|
||||
else if(state == IDLE)
|
||||
tx_data_ready <= 1'b1;
|
||||
tx_ready <= 1'b1;
|
||||
else if(state == STOP && cycle_cnt == CYCLE - 1)
|
||||
tx_data_ready <= 1'b1; // Prêt une fois le bit STOP envoyé
|
||||
tx_ready <= 1'b1; // Prêt une fois le bit STOP envoyé
|
||||
else
|
||||
tx_data_ready <= tx_data_ready; // Reste inchangé dans d'autres cas
|
||||
tx_ready <= tx_ready; // Reste inchangé dans d'autres cas
|
||||
end
|
||||
|
||||
|
||||
@@ -83,7 +83,7 @@ module uart_tx #(
|
||||
always@(posedge clk or posedge rst_p) begin // tx_data_latch block
|
||||
if(rst_p == 1'b1) begin
|
||||
tx_data_latch <= 8'd0;
|
||||
end else if(state == IDLE && tx_data_valid == 1'b1) begin
|
||||
end else if(state == IDLE && tx_enable == 1'b1) begin
|
||||
tx_data_latch <= data; // Charger les données de `data` dans `tx_data_latch`
|
||||
end
|
||||
end
|
||||
|
@@ -1,64 +0,0 @@
|
||||
`timescale 1ns / 1ps
|
||||
|
||||
module tb_uart_rx;
|
||||
|
||||
reg clk = 0;
|
||||
reg rx = 1;
|
||||
wire [7:0] data;
|
||||
wire valid;
|
||||
wire ready;
|
||||
|
||||
localparam CLK_FREQ = 27_000_000;
|
||||
localparam BAUD_RATE = 115_200;
|
||||
localparam BIT_PERIOD = CLK_FREQ / BAUD_RATE;
|
||||
localparam CLK_PERIOD_NS = 1000000000 / CLK_FREQ;
|
||||
|
||||
uart_rx #(
|
||||
.CLK_FREQ(CLK_FREQ),
|
||||
.BAUD_RATE(BAUD_RATE)
|
||||
) rx_instance (
|
||||
.clk(clk),
|
||||
.rx(rx),
|
||||
.data(data),
|
||||
.valid(valid),
|
||||
.ready(ready)
|
||||
);
|
||||
|
||||
always #(CLK_PERIOD_NS/2) clk = ~clk;
|
||||
|
||||
task send_bit(input reg b);
|
||||
begin
|
||||
rx <= b;
|
||||
#(BIT_PERIOD * CLK_PERIOD_NS);
|
||||
end
|
||||
endtask
|
||||
|
||||
integer i;
|
||||
|
||||
task send_byte(input [7:0] byte);
|
||||
begin
|
||||
send_bit(0);
|
||||
for (i = 0; i < 8; i = i + 1)
|
||||
send_bit(byte[i]);
|
||||
send_bit(1);
|
||||
|
||||
#(BIT_PERIOD * CLK_PERIOD_NS);
|
||||
end
|
||||
endtask
|
||||
|
||||
initial begin
|
||||
$display("Start UART RX test");
|
||||
#100;
|
||||
|
||||
send_byte(8'b01010101);
|
||||
|
||||
#(10 * BIT_PERIOD * CLK_PERIOD_NS);
|
||||
|
||||
if (valid && data == 8'b01010101)
|
||||
$display("Test ok : data = %b", data);
|
||||
else
|
||||
$display("Test pas ok : data = %b, valid = %b", data, valid);
|
||||
|
||||
$finish;
|
||||
end
|
||||
endmodule
|
@@ -3,44 +3,68 @@
|
||||
module tb_uart_tx;
|
||||
|
||||
reg clk = 0;
|
||||
reg start = 0;
|
||||
reg [7:0] data = 8'h00;
|
||||
reg tx_enable = 0;
|
||||
reg [7:0] data_in = 8'h00;
|
||||
reg [7:0] data_out;
|
||||
wire tx;
|
||||
wire busy;
|
||||
reg tx_ready;
|
||||
|
||||
wire rx_recieved;
|
||||
|
||||
always #18.5 clk = ~clk;
|
||||
|
||||
uart_rx rx_instance(
|
||||
.clk(clk),
|
||||
.rx_pin(tx), // tx is connected to rx for testing
|
||||
.rst_n(1'b1),
|
||||
.rx_data(data_out),
|
||||
.rx_data_valid(rx_recieved),
|
||||
.rx_data_ready(1'b1)
|
||||
);
|
||||
|
||||
uart_tx #(
|
||||
.CLK_FREQ(27_000_000),
|
||||
.BAUD_RATE(115_200)
|
||||
)tx_instance (
|
||||
.clk(clk),
|
||||
.start(start),
|
||||
.data(data),
|
||||
.tx_enable(tx_enable),
|
||||
.tx_ready(tx_ready),
|
||||
.data(data_in),
|
||||
.tx(tx),
|
||||
.busy(busy)
|
||||
.rst_p(1'b0)
|
||||
);
|
||||
|
||||
initial begin
|
||||
$dumpfile("uart_tx.vcd");
|
||||
$dumpfile("runs/uart_tx.vcd");
|
||||
$dumpvars(0, tb_uart_tx);
|
||||
|
||||
#100;
|
||||
|
||||
data <= 8'hA5; // 10100101 0xA5
|
||||
start <= 1;
|
||||
#37 start <= 0;
|
||||
data_in <= 8'd234; // 234
|
||||
tx_enable <= 1;
|
||||
wait(tx_ready == 1'b0);
|
||||
tx_enable <= 0;
|
||||
|
||||
// Attendre
|
||||
wait (busy == 0);
|
||||
wait (rx_recieved == 1'b1); // Attendre que le signal de reception soit actif
|
||||
|
||||
$display("Data received: %d", data_out); // Afficher la valeur recu
|
||||
$display("Data expected: %d", data_in); // Afficher la valeur envoyee
|
||||
|
||||
#1000;
|
||||
|
||||
data <= 8'h3C; // 00111100 0x3C
|
||||
start <= 1;
|
||||
#37 start <= 0;
|
||||
wait(tx_ready == 1'b1); // Attendre que le signal de reception soit actif
|
||||
|
||||
wait (busy == 0);
|
||||
data_in <= 8'd202; // 202
|
||||
tx_enable <= 1;
|
||||
wait(tx_ready == 1'b0);
|
||||
tx_enable <= 0;
|
||||
|
||||
// Attendre
|
||||
wait (rx_recieved == 1'b1); // Attendre que le signal de reception soit actif
|
||||
|
||||
$display("Data received: %d", data_out); // Afficher la valeur recu
|
||||
$display("Data expected: %d", data_in); // Afficher la valeur envoyee
|
||||
|
||||
#1000;
|
||||
$stop;
|
||||
|
Reference in New Issue
Block a user