diff --git a/Semaine_4/UART/IP/verilog/rxuartlite.v b/Semaine_4/UART/IP/verilog/rxuartlite.v new file mode 100644 index 0000000..3584395 --- /dev/null +++ b/Semaine_4/UART/IP/verilog/rxuartlite.v @@ -0,0 +1,796 @@ +//////////////////////////////////////////////////////////////////////////////// +// +// Filename: rxuartlite.v +// {{{ +// Project: wbuart32, a full featured UART with simulator +// +// Purpose: Receive and decode inputs from a single UART line. +// +// +// To interface with this module, connect it to your system clock, +// and a UART input. Set the parameter to the number of clocks per +// baud. When data becomes available, the o_wr line will be asserted +// for one clock cycle. +// +// This interface only handles 8N1 serial port communications. It does +// not handle the break, parity, or frame error conditions. +// +// +// Creator: Dan Gisselquist, Ph.D. +// Gisselquist Technology, LLC +// +//////////////////////////////////////////////////////////////////////////////// +// }}} +// Copyright (C) 2015-2024, Gisselquist Technology, LLC +// {{{ +// This program is free software (firmware): you can redistribute it and/or +// modify it under the terms of the GNU General Public License as published +// by the Free Software Foundation, either version 3 of the License, or (at +// your option) any later version. +// +// This program is distributed in the hope that it will be useful, but WITHOUT +// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or +// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +// for more details. +// +// You should have received a copy of the GNU General Public License along +// with this program. (It's in the $(ROOT)/doc directory. Run make with no +// target there if the PDF file isn't present.) If not, see +// for a copy. +// }}} +// License: GPL, v3, as defined and found on www.gnu.org, +// {{{ +// http://www.gnu.org/licenses/gpl.html +// +//////////////////////////////////////////////////////////////////////////////// +// +`default_nettype none +// }}} +module rxuartlite #( + // {{{ + parameter TIMER_BITS = 10, +`ifdef FORMAL + parameter [(TIMER_BITS-1):0] CLOCKS_PER_BAUD = 16, // Necessary for formal proof +`else + parameter [(TIMER_BITS-1):0] CLOCKS_PER_BAUD = 868, // 115200 Baud at 100MHz +`endif + localparam TB = TIMER_BITS, + // + localparam [3:0] RXUL_BIT_ZERO = 4'h0, + // Verilator lint_off UNUSED + // These are used by the formal solver + localparam [3:0] RXUL_BIT_ONE = 4'h1, + localparam [3:0] RXUL_BIT_TWO = 4'h2, + localparam [3:0] RXUL_BIT_THREE = 4'h3, + localparam [3:0] RXUL_BIT_FOUR = 4'h4, + localparam [3:0] RXUL_BIT_FIVE = 4'h5, + localparam [3:0] RXUL_BIT_SIX = 4'h6, + localparam [3:0] RXUL_BIT_SEVEN = 4'h7, + // Verilator lint_on UNUSED + localparam [3:0] RXUL_STOP = 4'h8, + localparam [3:0] RXUL_WAIT = 4'h9, + localparam [3:0] RXUL_IDLE = 4'hf + // }}} + ) ( + // {{{ + input wire i_clk, i_reset, + input wire i_uart_rx, + output reg o_wr, + output reg [7:0] o_data + // }}} + ); + + // Signal/register declarations + // {{{ + wire [(TB-1):0] half_baud; + reg [3:0] state; + + assign half_baud = { 1'b0, CLOCKS_PER_BAUD[(TB-1):1] }; + reg [(TB-1):0] baud_counter; + reg zero_baud_counter; + + reg q_uart, qq_uart, ck_uart; + reg [(TB-1):0] chg_counter; + reg half_baud_time; + reg [7:0] data_reg; + // }}} + + // ck_uart + // {{{ + // Since this is an asynchronous receiver, we need to register our + // input a couple of clocks over to avoid any problems with + // metastability. We do that here, and then ignore all but the + // ck_uart wire. + initial q_uart = 1'b1; + initial qq_uart = 1'b1; + initial ck_uart = 1'b1; + always @(posedge i_clk) + if (i_reset) + { ck_uart, qq_uart, q_uart } <= 3'b111; + else + { ck_uart, qq_uart, q_uart } <= { qq_uart, q_uart, i_uart_rx }; + // }}} + + // chg_counter + // {{{ + // Keep track of the number of clocks since the last change. + // + // This is used to determine if we are in either a break or an idle + // condition, as discussed further below. + initial chg_counter = {(TB){1'b1}}; + always @(posedge i_clk) + if (i_reset) + chg_counter <= {(TB){1'b1}}; + else if (qq_uart != ck_uart) + chg_counter <= 0; + else if (chg_counter != { (TB){1'b1} }) + chg_counter <= chg_counter + 1; + // }}} + + // half_baud_time + // {{{ + // Are we in the middle of a baud iterval? Specifically, are we + // in the middle of a start bit? Set this to high if so. We'll use + // this within our state machine to transition out of the IDLE + // state. + initial half_baud_time = 0; + always @(posedge i_clk) + if (i_reset) + half_baud_time <= 0; + else + half_baud_time <= (!ck_uart)&&(chg_counter >= half_baud-1'b1-1'b1); + // }}} + + // state + // {{{ + initial state = RXUL_IDLE; + always @(posedge i_clk) + if (i_reset) + begin + state <= RXUL_IDLE; + end else if (state == RXUL_IDLE) + begin // Idle state, independent of baud counter + // {{{ + // By default, just stay in the IDLE state + state <= RXUL_IDLE; + if ((!ck_uart)&&(half_baud_time)) + // UNLESS: We are in the center of a valid + // start bit + state <= RXUL_BIT_ZERO; + // }}} + end else if ((state >= RXUL_WAIT)&&(ck_uart)) + state <= RXUL_IDLE; + else if (zero_baud_counter) + begin + // {{{ + if (state <= RXUL_STOP) + // Data arrives least significant bit first. + // By the time this is clocked in, it's what + // you'll have. + state <= state + 1; + // }}} + end + // }}} + + // data_reg + // {{{ + // Data bit capture logic. + // + // This is drastically simplified from the state machine above, based + // upon: 1) it doesn't matter what it is until the end of a captured + // byte, and 2) the data register will flush itself of any invalid + // data in all other cases. Hence, let's keep it real simple. + always @(posedge i_clk) + if ((zero_baud_counter)&&(state != RXUL_STOP)) + data_reg <= { qq_uart, data_reg[7:1] }; + // }}} + + // o_wr, o_data + // {{{ + // Our data bit logic doesn't need nearly the complexity of all that + // work above. Indeed, we only need to know if we are at the end of + // a stop bit, in which case we copy the data_reg into our output + // data register, o_data, and tell others (for one clock) that data is + // available. + // + initial o_wr = 1'b0; + initial o_data = 8'h00; + always @(posedge i_clk) + if (i_reset) + begin + o_wr <= 1'b0; + o_data <= 8'h00; + end else if ((zero_baud_counter)&&(state == RXUL_STOP)&&(ck_uart)) + begin + o_wr <= 1'b1; + o_data <= data_reg; + end else + o_wr <= 1'b0; + // }}} + + // baud_counter -- The baud counter + // {{{ + // This is used as a "clock divider" if you will, but the clock needs + // to be reset before any byte can be decoded. In all other respects, + // we set ourselves up for CLOCKS_PER_BAUD counts between baud + // intervals. + initial baud_counter = 0; + always @(posedge i_clk) + if (i_reset) + baud_counter <= 0; + else if (((state==RXUL_IDLE))&&(!ck_uart)&&(half_baud_time)) + baud_counter <= CLOCKS_PER_BAUD-1'b1; + else if (state == RXUL_WAIT) + baud_counter <= 0; + else if ((zero_baud_counter)&&(state < RXUL_STOP)) + baud_counter <= CLOCKS_PER_BAUD-1'b1; + else if (!zero_baud_counter) + baud_counter <= baud_counter-1'b1; + // }}} + + // zero_baud_counter + // {{{ + // Rather than testing whether or not (baud_counter == 0) within our + // (already too complicated) state transition tables, we use + // zero_baud_counter to pre-charge that test on the clock + // before--cleaning up some otherwise difficult timing dependencies. + initial zero_baud_counter = 1'b1; + always @(posedge i_clk) + if (i_reset) + zero_baud_counter <= 1'b1; + else if ((state == RXUL_IDLE)&&(!ck_uart)&&(half_baud_time)) + zero_baud_counter <= 1'b0; + else if (state == RXUL_WAIT) + zero_baud_counter <= 1'b1; + else if ((zero_baud_counter)&&(state < RXUL_STOP)) + zero_baud_counter <= 1'b0; + else if (baud_counter == 1) + zero_baud_counter <= 1'b1; + // }}} +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// Formal properties +// {{{ +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + // Declarations + // {{{ +`ifdef FORMAL +`define FORMAL_VERILATOR +`else +`ifdef VERILATOR +`define FORMAL_VERILATOR +`endif +`endif + +`ifdef FORMAL + localparam F_CKRES = 10; + + (* anyseq *) wire f_tx_start; + (* anyconst *) wire [(F_CKRES-1):0] f_tx_step; + (* gclk *) wire gbl_clk; + reg f_tx_zclk; + reg [(TB-1):0] f_tx_timer; + wire [7:0] f_rx_newdata; + reg [TB-1:0] f_tx_baud; + wire f_tx_zbaud; + + wire [(TB-1):0] f_max_baud_difference; + reg [(TB-1):0] f_baud_difference; + reg [(TB+3):0] f_tx_count, f_rx_count; + (* anyseq *) wire [7:0] f_tx_data; + + wire f_txclk; + reg [1:0] f_rx_clock; + reg [(F_CKRES-1):0] f_tx_clock; + reg f_past_valid, f_past_valid_tx; + + reg [9:0] f_tx_reg; + reg f_tx_busy; + + // }}} + + initial f_past_valid = 1'b0; + always @(posedge i_clk) + f_past_valid <= 1'b1; + + initial f_rx_clock = 3'h0; + always @(posedge gbl_clk) + f_rx_clock <= f_rx_clock + 1'b1; + + always @(*) + assume(i_clk == f_rx_clock[1]); + + always @(posedge gbl_clk) + if (!$rose(i_clk)) + assume(!$fell(i_reset)); + + + //////////////////////////////////////////////////////////////////////// + // + // Assume a transmitted signal + // {{{ + //////////////////////////////////////////////////////////////////////// + // + // + + // First, calculate the transmit clock + localparam [(F_CKRES-1):0] F_MIDSTEP = { 2'b01, {(F_CKRES-2){1'b0}} }; + // + // Need to allow us to slip by half a baud clock over 10 baud intervals + // + // (F_STEP / (2^F_CKRES)) * (CLOCKS_PER_BAUD)*10 < CLOCKS_PER_BAUD/2 + // F_STEP * 2 * 10 < 2^F_CKRES + localparam [(F_CKRES-1):0] F_HALFSTEP= F_MIDSTEP/32; + localparam [(F_CKRES-1):0] F_MINSTEP = F_MIDSTEP - F_HALFSTEP + 1; + localparam [(F_CKRES-1):0] F_MAXSTEP = F_MIDSTEP + F_HALFSTEP - 1; + + initial assert(F_MINSTEP <= F_MIDSTEP); + initial assert(F_MIDSTEP <= F_MAXSTEP); + + // assume((f_tx_step >= F_MINSTEP)&&(f_tx_step <= F_MAXSTEP)); + // + // + always @(*) assume((f_tx_step == F_MINSTEP) + ||(f_tx_step == F_MIDSTEP) + ||(f_tx_step == F_MAXSTEP)); + + always @(posedge gbl_clk) + f_tx_clock <= f_tx_clock + f_tx_step; + + assign f_txclk = f_tx_clock[F_CKRES-1]; + // + initial f_past_valid_tx = 1'b0; + always @(posedge f_txclk) + f_past_valid_tx <= 1'b1; + + initial assume(i_uart_rx); + + always @(*) + if (i_reset) + assume(i_uart_rx); + + //////////////////////////////////////////////////////////////////////// + // + // The simulated timing generator + + always @(*) + if (i_reset) + assume(!f_tx_busy); + + always @(*) + if (f_tx_busy || i_reset) + assume(!f_tx_start); + + always @(*) + if (i_reset) + assume(f_tx_baud == CLOCKS_PER_BAUD-1); + + initial f_tx_baud = 0; + always @(posedge f_txclk) + if (f_tx_zbaud && (f_tx_busy || f_tx_start)) + f_tx_baud <= CLOCKS_PER_BAUD-1; + else if (!f_tx_zbaud) + f_tx_baud <= f_tx_baud - 1; + + always @(*) + assert(f_tx_baud < CLOCKS_PER_BAUD); + + always @(*) + if (!f_tx_busy) + assert(f_tx_baud == 0); + + assign f_tx_zbaud = (f_tx_baud == 0); + + // But only if we aren't busy + initial assume(f_tx_data == 0); + always @(posedge f_txclk) + if ((!f_tx_zbaud)||(f_tx_busy)||(!f_tx_start)) + assume(f_tx_data == $past(f_tx_data)); + + // Force the data to change on a clock only + always @(posedge gbl_clk) + if ((f_past_valid)&&(!$rose(f_txclk))) + assume($stable(f_tx_data)); + else if (f_tx_busy) + assume($stable(f_tx_data)); + + // + always @(posedge gbl_clk) + if ((!f_past_valid)||(!$rose(f_txclk))) + begin + assume($stable(f_tx_start)); + assume($stable(f_tx_data)); + end + + // + // + // + + // Here's the transmitter itself (roughly) + initial f_tx_busy = 1'b0; + initial f_tx_reg = 0; + always @(posedge f_txclk) + if (!f_tx_zbaud) + begin + assert(f_tx_busy); + end else begin + f_tx_reg <= { 1'b0, f_tx_reg[9:1] }; + if (f_tx_start) + f_tx_reg <= { 1'b1, f_tx_data, 1'b0 }; + end + + // Create a busy flag that we'll use + always @(*) + if (!f_tx_zbaud) + f_tx_busy <= 1'b1; + else if (|f_tx_reg) + f_tx_busy <= 1'b1; + else + f_tx_busy <= 1'b0; + + // + // Tie the TX register to the TX data + always @(posedge f_txclk) + if (f_tx_reg[9]) + begin + assert(f_tx_reg[8:0] == { f_tx_data, 1'b0 }); + end else if (f_tx_reg[8]) + begin + assert(f_tx_reg[7:0] == f_tx_data[7:0] ); + end else if (f_tx_reg[7]) + begin + assert(f_tx_reg[6:0] == f_tx_data[7:1] ); + end else if (f_tx_reg[6]) + begin + assert(f_tx_reg[5:0] == f_tx_data[7:2] ); + end else if (f_tx_reg[5]) + begin + assert(f_tx_reg[4:0] == f_tx_data[7:3] ); + end else if (f_tx_reg[4]) + begin + assert(f_tx_reg[3:0] == f_tx_data[7:4] ); + end else if (f_tx_reg[3]) + begin + assert(f_tx_reg[2:0] == f_tx_data[7:5] ); + end else if (f_tx_reg[2]) + begin + assert(f_tx_reg[1:0] == f_tx_data[7:6] ); + end else if (f_tx_reg[1]) + begin + assert(f_tx_reg[0] == f_tx_data[7]); + end + + // Our counter since we start + initial f_tx_count = 0; + always @(posedge f_txclk) + if (!f_tx_busy) + f_tx_count <= 0; + else + f_tx_count <= f_tx_count + 1'b1; + + always @(*) + if (f_tx_reg == 10'h0) + assume(i_uart_rx); + else + assume(i_uart_rx == f_tx_reg[0]); + + // + // Make sure the absolute transmit clock timer matches our state + // + always @(posedge f_txclk) + if (!f_tx_busy) + begin + if ((!f_past_valid_tx)||(!$past(f_tx_busy))) + assert(f_tx_count == 0); + end else if (f_tx_reg[9]) + begin + assert(f_tx_count == + CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[8]) + begin + assert(f_tx_count == + 2 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[7]) + begin + assert(f_tx_count == + 3 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[6]) + begin + assert(f_tx_count == + 4 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[5]) + begin + assert(f_tx_count == + 5 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[4]) + begin + assert(f_tx_count == + 6 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[3]) + begin + assert(f_tx_count == + 7 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[2]) + begin + assert(f_tx_count == + 8 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[1]) + begin + assert(f_tx_count == + 9 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else if (f_tx_reg[0]) + begin + assert(f_tx_count == + 10 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end else begin + assert(f_tx_count == + 11 * CLOCKS_PER_BAUD -1 -f_tx_baud); + end + + // }}} + //////////////////////////////////////////////////////////////////////// + // + // Receiver + // {{{ + //////////////////////////////////////////////////////////////////////// + // + // + // Count RX clocks since the start of the first stop bit, measured in + // rx clocks + initial f_rx_count = 0; + always @(posedge i_clk) + if (i_reset) + f_rx_count <= 0; + else if (state == RXUL_IDLE) + f_rx_count <= (!ck_uart) ? (chg_counter+2) : 0; + else + f_rx_count <= f_rx_count + 1'b1; + + always @(posedge i_clk) + case(state) + 0: assert(f_rx_count == half_baud + (CLOCKS_PER_BAUD-baud_counter)); + 1: assert(f_rx_count == half_baud + 2 * CLOCKS_PER_BAUD + - baud_counter); + 2: assert(f_rx_count == half_baud + 3 * CLOCKS_PER_BAUD + - baud_counter); + 3: assert(f_rx_count == half_baud + 4 * CLOCKS_PER_BAUD + - baud_counter); + 4: assert(f_rx_count == half_baud + 5 * CLOCKS_PER_BAUD + - baud_counter); + 5: assert(f_rx_count == half_baud + 6 * CLOCKS_PER_BAUD + - baud_counter); + 6: assert(f_rx_count == half_baud + 7 * CLOCKS_PER_BAUD + - baud_counter); + 7: assert(f_rx_count == half_baud + 8 * CLOCKS_PER_BAUD + - baud_counter); + 8: assert((f_rx_count == half_baud + 9 * CLOCKS_PER_BAUD + - baud_counter) + ||(f_rx_count == half_baud + 10 * CLOCKS_PER_BAUD + - baud_counter)); + 9: begin end + 4'hf: begin end + default: + assert(1'b0); + endcase + + always @(*) + assert( ((!zero_baud_counter) + &&(state == RXUL_IDLE) + &&(baud_counter == 0)) + ||((zero_baud_counter)&&(baud_counter == 0)) + ||((!zero_baud_counter)&&(baud_counter != 0))); + + always @(posedge i_clk) + if (!f_past_valid) + assert((state == RXUL_IDLE)&&(baud_counter == 0) + &&(zero_baud_counter)); + + always @(*) + begin + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h2); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h4); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h5); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h6); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'h9); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'ha); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'hb); + assert({ ck_uart,qq_uart,q_uart,i_uart_rx } != 4'hd); + end + + always @(posedge i_clk) + if ((f_past_valid)&&($past(state) >= RXUL_WAIT)&&($past(ck_uart))) + assert(state == RXUL_IDLE); + + always @(posedge i_clk) + if ((f_past_valid)&&($past(state) >= RXUL_WAIT) + &&(($past(state) != RXUL_IDLE)||(state == RXUL_IDLE))) + assert(zero_baud_counter); + + // Calculate an absolute value of the difference between the two baud + // clocks + always @(posedge i_clk) + if (f_past_valid && !$past(i_reset) + && $past(state)==RXUL_IDLE &&(state == RXUL_IDLE)) + begin + assert(($past(ck_uart)) + ||(chg_counter <= + { 1'b0, CLOCKS_PER_BAUD[(TB-1):1] })); + end + + always @(posedge f_txclk) + if (!f_past_valid_tx) + assert((state == RXUL_IDLE)&&(baud_counter == 0) + &&(zero_baud_counter)&&(!f_tx_busy)); + + wire [(TB+3):0] f_tx_count_two_clocks_ago; + assign f_tx_count_two_clocks_ago = f_tx_count - 2; + always @(*) + if (f_tx_count >= f_rx_count + 2) + f_baud_difference = f_tx_count_two_clocks_ago - f_rx_count; + else + f_baud_difference = f_rx_count - f_tx_count_two_clocks_ago; + + localparam F_SYNC_DLY = 8; + + reg [(TB+4+F_CKRES-1):0] f_sub_baud_difference; + reg [F_CKRES-1:0] ck_tx_clock; + reg [((F_SYNC_DLY-1)*F_CKRES)-1:0] q_tx_clock; + reg [TB+3:0] ck_tx_count; + reg [(F_SYNC_DLY-1)*(TB+4)-1:0] q_tx_count; + initial q_tx_count = 0; + initial ck_tx_count = 0; + initial q_tx_clock = 0; + initial ck_tx_clock = 0; + always @(posedge gbl_clk) + if (!f_past_valid || i_reset) + { ck_tx_clock, q_tx_clock } <= 0; + else + { ck_tx_clock, q_tx_clock } <= { q_tx_clock, f_tx_clock }; + always @(posedge gbl_clk) + if (!f_past_valid || i_reset) + { ck_tx_count, q_tx_count } <= 0; + else + { ck_tx_count, q_tx_count } <= { q_tx_count, f_tx_count }; + + + reg [TB+4+F_CKRES-1:0] f_ck_tx_time, f_rx_time; + always @(*) + f_ck_tx_time = { ck_tx_count, !ck_tx_clock[F_CKRES-1], + ck_tx_clock[F_CKRES-2:0] }; + always @(*) + f_rx_time = { f_rx_count, !f_rx_clock[1], f_rx_clock[0], + {(F_CKRES-2){1'b0}} }; + + reg [TB+4+F_CKRES-1:0] f_signed_difference; + always @(*) + f_signed_difference = f_ck_tx_time - f_rx_time; + + always @(*) + if (f_signed_difference[TB+4+F_CKRES-1]) + f_sub_baud_difference = -f_signed_difference; + else + f_sub_baud_difference = f_signed_difference; + + always @(posedge gbl_clk) + if (state == RXUL_WAIT) + assert((!f_tx_busy)||(f_tx_reg[9:1] == 0)); + + always @(posedge gbl_clk) + if (f_past_valid && !$past(i_reset)) + begin + if (state == RXUL_IDLE) + begin + assert((!f_tx_busy)||(f_tx_reg[9])||(f_tx_reg[9:1]==0)); + if (ck_uart) + assert((f_tx_reg[9:1]==0)||(f_tx_count < (3 + CLOCKS_PER_BAUD/2))); + end else if (state == 0) + begin + assert(f_sub_baud_difference + <= 2 * ((CLOCKS_PER_BAUD< 6)) + // assert(i_uart_rx == ck_uart); + + // Make sure the data register matches + always @(posedge i_clk) + case(state) + 4'h0: assert(!data_reg[7]); + 4'h1: assert((data_reg[7] == $past(f_tx_data[0]))&&(!data_reg[6])); + 4'h2: assert(data_reg[7:6] == $past(f_tx_data[1:0])); + 4'h3: assert(data_reg[7:5] == $past(f_tx_data[2:0])); + 4'h4: assert(data_reg[7:4] == $past(f_tx_data[3:0])); + 4'h5: assert(data_reg[7:3] == $past(f_tx_data[4:0])); + 4'h6: assert(data_reg[7:2] == $past(f_tx_data[5:0])); + 4'h7: assert(data_reg[7:1] == $past(f_tx_data[6:0])); + 4'h8: assert(data_reg[7:0] == $past(f_tx_data[7:0])); + endcase + // }}} + //////////////////////////////////////////////////////////////////////// + // + // Cover properties + // {{{ + //////////////////////////////////////////////////////////////////////// + // + always @(posedge i_clk) + cover(o_wr); // Step 626, takes about 20mins + + always @(posedge i_clk) + if (!i_reset && f_past_valid && !$past(i_reset)) + begin + cover(!ck_uart); + cover((f_past_valid)&&($rose(ck_uart))); // 82 + cover((zero_baud_counter)&&(state == RXUL_BIT_ZERO)); // 110 + cover((zero_baud_counter)&&(state == RXUL_BIT_ONE)); // 174 + cover((zero_baud_counter)&&(state == RXUL_BIT_TWO)); // 238 + cover((zero_baud_counter)&&(state == RXUL_BIT_THREE));// 302 + cover((zero_baud_counter)&&(state == RXUL_BIT_FOUR)); // 366 + cover((zero_baud_counter)&&(state == RXUL_BIT_FIVE)); // 430 + cover((zero_baud_counter)&&(state == RXUL_BIT_SIX)); // 494 + cover((zero_baud_counter)&&(state == RXUL_BIT_SEVEN));// 558 + cover((zero_baud_counter)&&(state == RXUL_STOP)); // 622 + cover((zero_baud_counter)&&(state == RXUL_WAIT)); // 626 + end +`endif + // }}} + //////////////////////////////////////////////////////////////////////// + // + // Properties to test via Verilator *and* formal + // {{{ + //////////////////////////////////////////////////////////////////////// + // +`ifdef FORMAL_VERILATOR + // FORMAL properties which can be tested via Verilator as well as + // Yosys FORMAL + always @(*) + assert((state == 4'hf)||(state <= RXUL_WAIT)); + always @(*) + assert(zero_baud_counter == (baud_counter == 0)? 1'b1:1'b0); + always @(*) + assert(baud_counter <= CLOCKS_PER_BAUD-1'b1); + // }}} +`endif +// }}} +endmodule diff --git a/Semaine_4/UART/scripts/build.bat b/Semaine_4/UART/scripts/build.bat index 57bb5a3..ae02e91 100644 --- a/Semaine_4/UART/scripts/build.bat +++ b/Semaine_4/UART/scripts/build.bat @@ -19,7 +19,7 @@ if not exist runs ( ) echo === Étape 1 : Synthèse avec Yosys === -yosys -p "read_verilog -sv src/verilog/%TOP%1.v IP/verilog/other_rx.v IP/verilog/other_tx.v src/verilog/uart_rx.v src/verilog/uart_tx.v; synth_gowin -top %TOP% -json %JSON_FILE%" +yosys -p "read_verilog -sv src/verilog/%TOP%.v IP/verilog/other_rx.v IP/verilog/rxuartlite.v IP/verilog/other_tx.v src/verilog/uart_rx.v src/verilog/uart_tx.v; synth_gowin -top %TOP% -json %JSON_FILE%" if errorlevel 1 goto error echo === Étape 2 : Placement & Routage avec nextpnr-himbaechel === diff --git a/Semaine_4/UART/src/verilog/top_uart_loopback.v b/Semaine_4/UART/src/verilog/top_uart_loopback.v index 5139547..1721907 100644 --- a/Semaine_4/UART/src/verilog/top_uart_loopback.v +++ b/Semaine_4/UART/src/verilog/top_uart_loopback.v @@ -17,23 +17,22 @@ module top_uart_loopback ( end // === UART RX === - other_uart_rx uart_rx_inst ( - .clk(clk), - .rst_n(1'b1), - .rx_pin(rx), - .rx_data_valid(rx_received), - .rx_data_ready(1'b1), - .rx_data(rx_data) + rxuartlite uart_rx_inst ( + .i_clk(clk), + .i_reset(1'b0), + .i_uart_rx(rx), + .o_wr(rx_received), + .o_data(rx_data) ); // === UART TX === - other_uart_tx uart_tx_inst ( + uart_tx uart_tx_inst ( .clk(clk), - .rst_n(1'b1), - .tx_data(tx_data), - .tx_data_valid(tx_enable), - .tx_data_ready(tx_ready), - .tx_pin(tx) + .rst_p(1'b0), + .data(data_const), + .tx_enable(tx_enable), + .tx_ready(tx_ready), + .tx(tx) ); // === FSM avec délai ===