//////////////////////////////////////////////////////////////////////////////// // // Filename: txuartlite.v // {{{ // Project: wbuart32, a full featured UART with simulator // // Purpose: Transmit outputs over a single UART line. This particular UART // implementation has been extremely simplified: it does not handle // generating break conditions, nor does it handle anything other than the // 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol. // // To interface with this module, connect it to your system clock, and // pass it the byte of data you wish to transmit. Strobe the i_wr line // high for one cycle, and your data will be off. Wait until the 'o_busy' // line is low before strobing the i_wr line again--this implementation // has NO BUFFER, so strobing i_wr while the core is busy will just // get ignored. The output will be placed on the o_txuart output line. // // (I often set both data and strobe on the same clock, and then just leave // them set until the busy line is low. Then I move on to the next piece // of data.) // // Creator: Dan Gisselquist, Ph.D. // Gisselquist Technology, LLC // //////////////////////////////////////////////////////////////////////////////// // }}} // Copyright (C) 2015-2024, Gisselquist Technology, LLC // {{{ // This program is free software (firmware): you can redistribute it and/or // modify it under the terms of the GNU General Public License as published // by the Free Software Foundation, either version 3 of the License, or (at // your option) any later version. // // This program is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // for more details. // // You should have received a copy of the GNU General Public License along // with this program. (It's in the $(ROOT)/doc directory. Run make with no // target there if the PDF file isn't present.) If not, see // for a copy. // }}} // License: GPL, v3, as defined and found on www.gnu.org, // {{{ // http://www.gnu.org/licenses/gpl.html // //////////////////////////////////////////////////////////////////////////////// // `default_nettype none // }}} module txuartlite #( // {{{ // TIMING_BITS -- the number of bits required to represent // the number of clocks per baud. 24 should be sufficient for // most baud rates, but you can trim it down to save logic if // you would like. TB is just an abbreviation for TIMING_BITS. parameter [4:0] TIMING_BITS = 5'd8, localparam TB = TIMING_BITS, // CLOCKS_PER_BAUD -- the number of system clocks per baud // interval. parameter [(TB-1):0] CLOCKS_PER_BAUD = 234 // 24'd868 // }}} ) ( // {{{ input wire i_clk, i_reset, input wire i_wr, input wire [7:0] i_data, // And the UART input line itself output reg o_uart_tx, // A line to tell others when we are ready to accept data. If // (i_wr)&&(!o_busy) is ever true, then the core has accepted // a byte for transmission. output wire o_busy // }}} ); // Register/net declarations // {{{ localparam [3:0] TXUL_BIT_ZERO = 4'h0, // TXUL_BIT_ONE = 4'h1, // TXUL_BIT_TWO = 4'h2, // TXUL_BIT_THREE = 4'h3, // TXUL_BIT_FOUR = 4'h4, // TXUL_BIT_FIVE = 4'h5, // TXUL_BIT_SIX = 4'h6, // TXUL_BIT_SEVEN = 4'h7, TXUL_STOP = 4'h8, TXUL_IDLE = 4'hf; reg [(TB-1):0] baud_counter; reg [3:0] state; reg [7:0] lcl_data; reg r_busy, zero_baud_counter; // }}} // Big state machine controlling: r_busy, state // {{{ // initial r_busy = 1'b1; initial state = TXUL_IDLE; always @(posedge i_clk) if (i_reset) begin r_busy <= 1'b1; state <= TXUL_IDLE; end else if (!zero_baud_counter) // r_busy needs to be set coming into here r_busy <= 1'b1; else if (state > TXUL_STOP) // STATE_IDLE begin state <= TXUL_IDLE; r_busy <= 1'b0; if ((i_wr)&&(!r_busy)) begin // Immediately start us off with a start bit r_busy <= 1'b1; state <= TXUL_BIT_ZERO; end end else begin // One clock tick in each of these states ... r_busy <= 1'b1; if (state <=TXUL_STOP) // start bit, 8-d bits, stop-b state <= state + 1'b1; else state <= TXUL_IDLE; end // }}} // o_busy // {{{ // // This is a wire, designed to be true is we are ever busy above. // originally, this was going to be true if we were ever not in the // idle state. The logic has since become more complex, hence we have // a register dedicated to this and just copy out that registers value. assign o_busy = (r_busy); // }}} // lcl_data // {{{ // // This is our working copy of the i_data register which we use // when transmitting. It is only of interest during transmit, and is // allowed to be whatever at any other time. Hence, if r_busy isn't // true, we can always set it. On the one clock where r_busy isn't // true and i_wr is, we set it and r_busy is true thereafter. // Then, on any zero_baud_counter (i.e. change between baud intervals) // we simple logically shift the register right to grab the next bit. initial lcl_data = 8'hff; always @(posedge i_clk) if (i_reset) lcl_data <= 8'hff; else if (i_wr && !r_busy) lcl_data <= i_data; else if (zero_baud_counter) lcl_data <= { 1'b1, lcl_data[7:1] }; // }}} // o_uart_tx // {{{ // // This is the final result/output desired of this core. It's all // centered about o_uart_tx. This is what finally needs to follow // the UART protocol. // initial o_uart_tx = 1'b1; always @(posedge i_clk) if (i_reset) o_uart_tx <= 1'b1; else if (i_wr && !r_busy) o_uart_tx <= 1'b0; // Set the start bit on writes else if (zero_baud_counter) // Set the data bit. o_uart_tx <= lcl_data[0]; // }}} // Baud counter // {{{ // All of the above logic is driven by the baud counter. Bits must last // CLOCKS_PER_BAUD in length, and this baud counter is what we use to // make certain of that. // // The basic logic is this: at the beginning of a bit interval, start // the baud counter and set it to count CLOCKS_PER_BAUD. When it gets // to zero, restart it. // // However, comparing a 28'bit number to zero can be rather complex-- // especially if we wish to do anything else on that same clock. For // that reason, we create "zero_baud_counter". zero_baud_counter is // nothing more than a flag that is true anytime baud_counter is zero. // It's true when the logic (above) needs to step to the next bit. // Simple enough? // // I wish we could stop there, but there are some other (ugly) // conditions to deal with that offer exceptions to this basic logic. // // 1. When the user has commanded a BREAK across the line, we need to // wait several baud intervals following the break before we start // transmitting, to give any receiver a chance to recognize that we are // out of the break condition, and to know that the next bit will be // a stop bit. // // 2. A reset is similar to a break condition--on both we wait several // baud intervals before allowing a start bit. // // 3. In the idle state, we stop our counter--so that upon a request // to transmit when idle we can start transmitting immediately, rather // than waiting for the end of the next (fictitious and arbitrary) baud // interval. // // When (i_wr)&&(!r_busy)&&(state == TXUL_IDLE) then we're not only in // the idle state, but we also just accepted a command to start writing // the next word. At this point, the baud counter needs to be reset // to the number of CLOCKS_PER_BAUD, and zero_baud_counter set to zero. // // The logic is a bit twisted here, in that it will only check for the // above condition when zero_baud_counter is false--so as to make // certain the STOP bit is complete. initial zero_baud_counter = 1'b1; initial baud_counter = 0; always @(posedge i_clk) if (i_reset) begin zero_baud_counter <= 1'b1; baud_counter <= 0; end else begin zero_baud_counter <= (baud_counter == 1); if (state == TXUL_IDLE) begin baud_counter <= 0; zero_baud_counter <= 1'b1; if ((i_wr)&&(!r_busy)) begin baud_counter <= CLOCKS_PER_BAUD - 1'b1; zero_baud_counter <= 1'b0; end end else if (!zero_baud_counter) baud_counter <= baud_counter - 1'b1; else if (state > TXUL_STOP) begin baud_counter <= 0; zero_baud_counter <= 1'b1; end else if (state == TXUL_STOP) // Need to complete this state one clock early, so // we can release busy one clock before the stop bit // is complete, so we can start on the next byte // exactly 10*CLOCKS_PER_BAUD clocks after we started // the last one baud_counter <= CLOCKS_PER_BAUD - 2; else // All other states baud_counter <= CLOCKS_PER_BAUD - 1'b1; end // }}} //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // // FORMAL METHODS // {{{ //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// `ifdef FORMAL // Declarations `ifdef TXUARTLITE `define ASSUME assume `else `define ASSUME assert `endif reg f_past_valid, f_last_clk; reg [(TB-1):0] f_baud_count; reg [9:0] f_txbits; reg [3:0] f_bitcount; reg [7:0] f_request_tx_data; wire [3:0] subcount; // Setup // {{{ initial f_past_valid = 1'b0; always @(posedge i_clk) f_past_valid <= 1'b1; initial `ASSUME(!i_wr); always @(posedge i_clk) if ((f_past_valid)&&($past(i_wr))&&($past(o_busy))) begin `ASSUME(i_wr == $past(i_wr)); `ASSUME(i_data == $past(i_data)); end // }}} // Check the baud counter // {{{ always @(posedge i_clk) assert(zero_baud_counter == (baud_counter == 0)); always @(posedge i_clk) if (f_past_valid && !$past(i_reset) && $past(baud_counter != 0) && $past(state != TXUL_IDLE)) assert(baud_counter == $past(baud_counter - 1'b1)); always @(posedge i_clk) if (f_past_valid && !$past(i_reset) && !$past(zero_baud_counter) && $past(state != TXUL_IDLE)) assert($stable(o_uart_tx)); initial f_baud_count = 1'b0; always @(posedge i_clk) if (zero_baud_counter) f_baud_count <= 0; else f_baud_count <= f_baud_count + 1'b1; always @(posedge i_clk) assert(f_baud_count < CLOCKS_PER_BAUD); always @(posedge i_clk) if (baud_counter != 0) assert(o_busy); // }}} // {{{ initial f_txbits = 0; always @(posedge i_clk) if (zero_baud_counter) f_txbits <= { o_uart_tx, f_txbits[9:1] }; always @(posedge i_clk) if (f_past_valid && !$past(i_reset)&& !$past(zero_baud_counter) && !$past(state==TXUL_IDLE)) assert(state == $past(state)); initial f_bitcount = 0; always @(posedge i_clk) if ((!f_past_valid)||(!$past(f_past_valid))) f_bitcount <= 0; else if ((state == TXUL_IDLE)&&(zero_baud_counter)) f_bitcount <= 0; else if (zero_baud_counter) f_bitcount <= f_bitcount + 1'b1; always @(posedge i_clk) assert(f_bitcount <= 4'ha); always @(*) if (!o_busy) assert(zero_baud_counter); always @(posedge i_clk) if ((i_wr)&&(!o_busy)) f_request_tx_data <= i_data; assign subcount = 10-f_bitcount; always @(posedge i_clk) if (f_bitcount > 0) assert(!f_txbits[subcount]); always @(posedge i_clk) if (f_bitcount == 4'ha) begin assert(f_txbits[8:1] == f_request_tx_data); assert( f_txbits[9]); end always @(posedge i_clk) assert((state <= TXUL_STOP + 1'b1)||(state == TXUL_IDLE)); always @(posedge i_clk) if ((f_past_valid)&&($past(f_past_valid))&&($past(o_busy))) cover(!o_busy); // }}} `endif // FORMAL `ifdef VERIFIC_SVA reg [7:0] fsv_data; // // Grab a copy of the data any time we are sent a new byte to transmit // We'll use this in a moment to compare the item transmitted against // what is supposed to be transmitted // always @(posedge i_clk) if ((i_wr)&&(!o_busy)) fsv_data <= i_data; // // One baud interval // {{{ // // 1. The UART output is constant at DAT // 2. The internal state remains constant at ST // 3. CKS = the number of clocks per bit. // // Everything stays constant during the CKS clocks with the exception // of (zero_baud_counter), which is *only* raised on the last clock // interval sequence BAUD_INTERVAL(CKS, DAT, SR, ST); ((o_uart_tx == DAT)&&(state == ST) &&(lcl_data == SR) &&(!zero_baud_counter))[*(CKS-1)] ##1 (o_uart_tx == DAT)&&(state == ST) &&(lcl_data == SR) &&(zero_baud_counter); endsequence // }}} // // One byte transmitted // {{{ // // DATA = the byte that is sent // CKS = the number of clocks per bit // sequence SEND(CKS, DATA); BAUD_INTERVAL(CKS, 1'b0, DATA, 4'h0) ##1 BAUD_INTERVAL(CKS, DATA[0], {{(1){1'b1}},DATA[7:1]}, 4'h1) ##1 BAUD_INTERVAL(CKS, DATA[1], {{(2){1'b1}},DATA[7:2]}, 4'h2) ##1 BAUD_INTERVAL(CKS, DATA[2], {{(3){1'b1}},DATA[7:3]}, 4'h3) ##1 BAUD_INTERVAL(CKS, DATA[3], {{(4){1'b1}},DATA[7:4]}, 4'h4) ##1 BAUD_INTERVAL(CKS, DATA[4], {{(5){1'b1}},DATA[7:5]}, 4'h5) ##1 BAUD_INTERVAL(CKS, DATA[5], {{(6){1'b1}},DATA[7:6]}, 4'h6) ##1 BAUD_INTERVAL(CKS, DATA[6], {{(7){1'b1}},DATA[7:7]}, 4'h7) ##1 BAUD_INTERVAL(CKS, DATA[7], 8'hff, 4'h8) ##1 BAUD_INTERVAL(CKS-1, 1'b1, 8'hff, 4'h9); endsequence // }}} // // Transmit one byte // {{{ // Once the byte is transmitted, make certain we return to // idle // assert property ( @(posedge i_clk) (i_wr)&&(!o_busy) |=> ((o_busy) throughout SEND(CLOCKS_PER_BAUD,fsv_data)) ##1 (!o_busy)&&(o_uart_tx)&&(zero_baud_counter)); // }}} // {{{ assume property ( @(posedge i_clk) (i_wr)&&(o_busy) |=> (i_wr)&&($stable(i_data))); // // Make certain that o_busy is true any time zero_baud_counter is // non-zero // always @(*) assert((o_busy)||(zero_baud_counter) ); // If and only if zero_baud_counter is true, baud_counter must be zero // Insist on that relationship here. always @(*) assert(zero_baud_counter == (baud_counter == 0)); // To make certain baud_counter stays below CLOCKS_PER_BAUD always @(*) assert(baud_counter < CLOCKS_PER_BAUD); // // Insist that we are only ever in a valid state always @(*) assert((state <= TXUL_STOP+1'b1)||(state == TXUL_IDLE)); // }}} `endif // Verific SVA // }}} endmodule