Stuart Sutherland and Don Mills

Verilog and
System Verilog

Gotchas

01 Common Coding Errors
and How to Avoid Them

3

=
‘X

L)

~

)

" l
<>

@ Springer

Verilog and SystemVerilog
Gotchas

101 Common Coding Errors and How to
Avoid Them

Stuart Sutherland
Don Mills

Verilog and SystemVerilog
Gotchas

101 Common Coding Errors and How to
Avoid Them

@ Springer

Stuart Sutherland Don Mills

Sutherland HDL, Inc. LCDM Engineering
Tualatin, OR Chandler, AZ
USA USA

Library of Congress Control Number: 2007926706
ISBN 978-0-387-71714-2 e-ISBN 978-0-387-71715-9
Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden. The use in this publication of trade names,
trademarks, service marks and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

987654321

springer.com

Dedication

To my wonderful wife, LeeAnn, and my children, Ammon, Tamara, Hannah, Seth and
Samuel — thank you for your patience during the many long hours and late nights

you tolerated while this book was being written.
Stu Sutherland

Portland, Oregon

To my wife and sweetheart Geri Jean, and my children, Sara, Kirsten, Adam, Alex,
Dillan, Donnelle, Grant and Gina — thanks to each of you for the patience you have
had with me as I have dealt with debugging many of these gotchas on designs over the

years.
Don Mills
Chandler, Arizona

About the Authors

Mr. Stuart Sutherland is a member of the IEEE 1800 working
group that oversees both the Verilog and SystemVerilog
standards. He has been involved with the definition of the
Verilog standard since its inception in 1993, and the
SystemVerilog standard since work began in 2001. In addition,
Stuart is the technical editor of the official IEEE Verilog and
SystemVerilog Language Reference Manuals (LRMs). Stuart is
an independent Verilog consultant, specializing in providing
comprehensive expert training on the Verilog HDL, SystemVerilog and PLIL
Stuart is a co-author of the books “SystemVerilog for Design”, “Verilog-2001: A
Guide to the New Features in the Verilog Hardware Description Language” and
is the author of “The Verilog PLI Handbook”, as well as the popular “Verilog
HDL Quick Reference Guide” and “Verilog PLI Quick Reference Guide”. He has
also authored a number of technical papers on Verilog and SystemVerilog, which
are available at www.sutherland-hdl.com/papers. You can contact Stuart at
stuart@sutherland-hdl.com.

visit the author s web page at www.sutherland-hdl.com

Mr. Don Mills has been involved in ASIC design since 1986.
During that time, he has worked on more than 30 ASIC projects.
Don started using top-down design methodology in 199!
(Synopsys Design Compiler 1.2). Don has developed and
implemented top-down ASIC design flows at several companies.
His specialty is integrating tools and automating the flow. Don
works for Microchip Technology Inc. as an internal
SystemVerilog and Verilog consultant. Don is a member of the
IEEE Verilog and System Verilog committees that are working on language
issues and enhancements. Don has authored and co-authored numerous papers,
such as “SystemVerilog Assertions are for Design Engineers Too!” and “RTL
Coding Styles that Yield Simulation and Synthesis Mismatches”. Copies of these
papers can be found at www.lcdm-eng.com. Mr. Mills can be reached at
mills@lcdm-eng.com or don.mills@microchip.com.

visit the author s web page at www.lcdm-eng.com

Acknowledgments

The authors express their sincere appreciation to the contributions of several
Verilog and System Verilog experts.

Chris Spear of Synopsys, Inc. suggested several of the verification related
gotchas, provided the general descriptions of these gotchas, and ran countless
tests for us.

Shalom Bresticker of Intel also suggested several gotchas.

Jonathan Bromley of Doulos, Ltd., Clifford Cummings of Sunburst Design,
Tom Fitzpatrick of Mentor Graphics, Steve Golson of Trilobyte Systems, Gregg
Lahti of Microchip Technology, Inc. and Chris Spear of Synopsys, Inc. provided
thorough technical reviews of this book, and offered invaluable comments on
how to improve the gotcha descriptions.

Steve Golson of Trilobyte Systems provided a wonderful foreword to this book

Lastly, we acknowledge and express our gratitude to our wives, LeeAnn
Sutherland and Geri Jean Mills, for meticulously reviewing this book for
grammar and punctuation. If any such errata remain in the book, it could only be
due to changes we made after their reviews.

Table of Contents

List of Gotchas XV
Foreword

by Steve Golson 1
Chapter 1:

Introduction,

What IS A GOteha?......cooooieviiiiiieerieiectrrie st sa s et be s asnenen 3
Chapter 2:

Declaration and Literal Number Gotchas.................cccocvviivnniinncieiene 7
Gotcha 11 €Case SENSILIVIEY ..o.ovviiriiricccrree e e s erere e sesens 7
Gotcha 2: Implicit net declarations..........ccovccecercemrinece e 10
Gotcha 3: Default of 1-bit internal netsccevvviiririnennnicereenne 13
Gotcha 4: Single file versus multi-file compilation of $unit declarations................ 15
Gotcha 5: Local variable declarationsccoccvneiinicnceinn e 17
Gotcha 6: Escaped names in hierarchical paths.............ocoeeccrneeiinnnnncninn, 19
Gotcha 7: Hierarchical references to automatic variables........ccccoveiiniirerinernenees 22
Gotcha 8: Hierarchical references to variables in unnamed blocks.........c..ccceeuennnne. 25
Gotcha 9: Hierarchical references to imported package items..........c.ocovceevrecrinnnnn, 27

Gotcha 10:
Gotcha 11:
Gotcha 12:
Gotcha 13:
Gotcha 14:
Gotcha 15:
Gotcha 16:
Gotcha 17:
Gotcha 18:
Gotcha 19:

Importing enumerated types from packages..........c.covrvevininvririnirerennnnns 28
Importing from multiple packages...........cocecvvenvernricrnnernninenn e, 29
Default base of literal iNteZErscoievrnrirrrirerriri e et 30
Signedness of literal INtEEETScoccvviieicciniincre e 32
Signed literal integers zero extend to their specified size..............coeeee 33
Literal integer size mismatch in assignmentsocoveeennivinnecrenns 35
Filling vectors with all 0nes..........cccocovvevvivvriii e 37
Array literals versus concatenationscvcevurrurernriennicrernnconsensenees 38
Port connection TUlEs..........ccovvvriiiiii 39
Back-AriVen POTTS.......cccovvriveeriirieeinninnssesesessnessesesssnssssssss s sssssssnsssss s 43

Table of Contents

Gotcha 20: Passing real (floating point) numbers through ports.............cococecireennn, 46
Chapter 3:

RTL Modeling Gotchascooiuviiiminiiiiicieineeeserereesceiennesis e 49
Gotcha 21: Combinational logic sensitivity lists with function calls..............ccoreeee. 49
Gotcha 22: Arrays in SEnSItiVIEY liStS.....cccooiiriciiiniii e 52
Gotcha 23: Vectors in sequential logic sensitivity lists.........ocvvrvreccrvccsnnneennnn, 54
Gotcha 24: Operations in SENSItIVILY liStS......c.ccveirireririeiennncnnnnmennenerennnnnn: 56
Gotcha 25: Sequential logic blocks with begin...end groups..........coocoeverrverrvsernnns 57
Gotcha 26: Sequential logic blocks With TESELS......c.ovvrerevircrciveeiorirenrn e niens 59
Gotcha 27: Asynchronous set/reset flip-flop for simulation and synthesis................ 60
Gotcha 28: Blocking assignments in sequential procedural blocksc....coovviervvennee, 62
Gotcha 29: Sequential logic that requires blocking assignments............c.cccccevrvrnen. 64
Gotcha 30: Nonblocking assignments in combinational 10gicc.coeerirircriririinnnn. 66
Gotcha 31: Combinational logic assignments in the wrong order...........cccovvvvinnnan. 70
Gotcha 32: Casez/casex masks in case eXPreSSiOnsccverirerivniecrnnrersnnnirsereens 72
Gotcha 33: Incomplete decision StAtEMENtscoovveveercerrniecniermnnenesnecerernns 74
Gotcha 34: Overlapped decision Statements...........c..ocovviieieieirincenenenceeirs e 77
Gotcha 35: Inappropriate use of unique case Statements...........occoveevveenrrerereireeennes 79
Gotcha 36: Resetting 2-state modelsovvirieeinreieniriiieceen e 82
Gotcha 37: Locked state machines modeled with enumerated types......c......o.eceuninen. 84
Gotcha 38: Hidden design problems with 4-state logicC..........coccovierieiincneenireinnn, 86
Gotcha 39: Hidden design problems using 2-state types........c.ocovviveverievererenerennn, 88
Gotcha 40: Hidden problems with out-of-bounds array access........c.coccovuveirenrnnnn. 90
Gotcha 41: Out-of-bounds assignments to enumerated tyPescccvvrerveiririrensienns 92
Gotcha 42: Undetected shared variables in modules.........ccccoeevevervvcrveirecnreccennnnns 94
Gotcha 43: Undetected shared variables in interfaces and packagesccco.coouven.. 96
Chapter 4:

OPeErator GotChAscviiiiiiiiicece ettt 99
Gotcha 44: Assignments in EXPrESSIONSecerrrvrereeerereretsrisstsrevens s snesiens 99
Gotcha 45: Self-determined versus context-determined operators.................co........ 101
Gotcha 46: Operation size and sign extension in assignment statements................. 105
Gotcha 47: Signed arithmetic TIIEs ..o e 108

xii

Table of Contents

Gotcha 48: Bit-select and part-select Operationsc..ccceceverecermincrvonnreecenrenes 111
Gotcha 49: Increment, decrement and assignment operators...........cocvcvvverervevcrnnnenes 112
Gotcha 50: Pre-increment versus post-increment Operations............oueeevveovererernenns 113
Gotcha 51: Modifying a variable multiple times in one statement................ccooveec. 115
Gotcha 52: Operator evaluation Short Circuitingc.coorevevernenercccrernccniinenn 116
Gotcha 53: The not operator (!) versus the invert operator (~)ceecorervernnnne 118
Gotcha 54: Array method Operations.............coeeeveiniiincncrn e 119
Gotcha 55: Array method operations on an array SubSet............ccovvrvencresininecnns 121
Chapter 5:

General Programming Gotchas. ..o 123
Gotcha 56: Verifying asynchronous and synchronous reset at time zero................. 123
Gotcha 57: Nested if...els€ blocksocovieieninccini e 128
Gotcha 58: Evaluation of equality with 4-state Values..........c.cooerriririrriieererennanen: 129
Gotcha 59: Event trigger race conditionsc.covcvrrcieinnnincreernrininens 131
Gotcha 60: Using semaphores for synchronization..........c.ccevveevnnerninencriniennn, 134
Gotcha 61: Using mailboxes for synchronizationcccovvrninineiieceionnnene 137
Gotcha 62: Triggering on clocking blockscocoveciminiicnccree e 139
Gotcha 63; Misplaced semicolons after decision statementsc.cccccoveeccnnnine. 140
Gotcha 64: Misplaced semicolons in for Ioops ..., 142
Gotcha 65: Infinite fOr I00PS ...c.cccoveiriiriricicec e 144
Gotcha 66: Locked simulation due to concurrent for loopsc.coeeevverivccirernnens 145
Gotcha 67: Referencing for loop control variablesocvcvvevvnicinivccnnccncornnean 147
Gotcha 68: Default function retlurn S1Z€oceovvevvriioreernensoeersreeneseseseenes 148
Gotcha 69: Task/function arguments with default valuesc.cc.oceceecnnneccnne 150
Gotcha 70: Continuous assignments with delays cancel glitches.................cccocee. 151
Chapter 6:

Object Oriented and Multi-Threaded Programming Gotchas........................ 153
Gotcha 71: Programming statements in @ class ... 153
Gotcha 72: Using interfaces with object-oriented testbenches..........c.ooovcevriiiinann 155
Gotcha 73: All objects in mailbox come out with the same values.........c..c.coenneee 157
Gotcha 74: Passing handles to methods using input versus ref arguments 158
Gotcha 75: Constructing an array 0f OBJECEScocuvvvrimreriiniiriiese e 159

Xiii

Table of Contents

Gotcha 76: Static tasks and functions are not re-entrantc.cocvvrerernrerererrencenne 160
Gotcha 77: Static versus automatic variable initializationcoveervverecnienns 162
Gotcha 78: Forked programming threads need automatic variablesc....c.ooenu 164
Gotcha 79: Disable fork kills too many threads ..., 166
Gotcha 80: Disabling a statement block stops more than intended............cocovcvvnnes 168
Gotcha 81: Simulation exits prematurely, before tests complete...........ccccccovvnenen, 171
Chapter 7:

Randomization, Coverage and Assertion Gotchas...................cccociinrvnnenne 173
Gotcha 82: Variables declared with rand are not getting randomized 173
Gotcha 83: Undetected randomization failurescoocovccereenemneccvennccneenenennens 175
Gotcha 84: $assertoff could disable randomizationccceerevreiirirnenricneninenne 177
Gotcha 85: Boolean constraints on more than two random variables....................... 179
Gotcha 86: Unwanted negative values in random values.............ccveeivvvnnrecnvnions 181
Gotcha 87: Coverage reports default to groups, not binsccovveeererverervriniineenns 182
Gotcha 88: Coverage is always reported as 0%ccccvnevvenenisnen e 184
Gotcha 89: The coverage report lumps all instances together........c.coveeviereiirnnnns 186
Gotcha 90: Covergroup argument directions are stickyccococeeveeenerieeennn. 187
Gotcha 91: Assertion pass statements execute with a vacuous success 188
Gotcha 92: Concurrent assertions in procedural blOcks..........c.oeovvveveccnvriorenrns 190
Gotcha 93: Mismatch in assert...else Statementsco.ooviveevernrinereserecceernennenns 192
Gotcha 94: Assertions that cannot fail............cccovvvvieiiiniinne e 193
Chapter 8:

Tool Compatibility Gotchasc.ocovvevirivineiereirce s 195
Gotcha 95: Default simulation time units and precisioncccccvceveeververeereninens 195
Gotcha 96: Package chainingcccoovviriririniicceeneeere e 198
Gotcha 97: Random number generator is not consistent across tools 200
Gotcha 98: Loading memories modeled with always_latch/always_ff.................... 202
Gotcha 99: Non-standard language eXtensionscccvverreererinrinerineesininsenenns 204
Gotcha 100:Array literals versus concatenationsoevccvviveeievenrereensrsees s 206
Gotcha 101:Module ports that pass floating point values (real types) 208
Index 209

Xiv

List of Gotchas

Gotcha 1 e 7
The names in my code look correct and worked in my VHDL models, but
Verilog/SystemVerilog gets errors about “undeclared identifiers”.

Gotcha 2: ... 10
A typo in my design connections was not caught by the compiler, and only
showed up as a functional problem in simulation.

Gotcha 3: ... 13
In my netlist, only bit zero of my vector ports get connected.
Gotcha 4: . 15

My models compile OK, and the models from another group compile OK; but
when compiled together, I get errors about multiple declarations.

Gotcha 5: .. 17
[get compilation errors on my local variable declarations, but the declaration
Syntax is correct.

Gotcha 6: 19
I get weird compiler errors when I try to reference a design signal with an
escaped name from my testbench.

Gorcha 7: .. e 22
1 get compilation errors when my testbench tries to print out some signals in my
design, but other signals can be printed without a problem.

Gotcha 8: 25
With Verilog, my testbench could print out local variables in a begin...end block,
but with SystemVerilog I get compilation errors.

Gotcha 9: 27
My design can use imported package items just fine, but my testbench cannot
access the items for verification.

Gotcha 10: 28
1 imported an enumerated type from a package, but I cannot access the labels
defined by the enumerated type.

Gotcha 11: ... 29
1 get errors when I try to wildcard import multiple packages, but I can wildcard
import each package separately without any errors.

List of Gotchas

Gotcha 12: 30
Some branches of my case statement are never selected, even with the correct
input values.

Gotcha 13: 32

My incrementor model sometimes gets incorrect values when I increment using
aliteral 1'b1.

Gotcha 14: ... 33
When I specify a signed, sized literal integer with a negative value, it does not
sign extend.

Gotcha 15: .. 35
When I assign a 4-bit negative value to an 8-bit signed variable, it is not sign
extended.

GOICha 16: . . 37

I can use a literal integer to set all bits to Z on a vector of any size, but when I
use the same syntax to set all bits to 1, I get a decimal I instead.

Gotcha 17: .. e 38
The wrong values are stored when I assign a list of values to a packed array or
structure.

Gotcha 18: .. 39

My design doesn’t work correctly when I connect all the modules together, but
each module works correctly by itself.

Gotcha 19: 43
I declared my port as an input, and software tools let me accidentally use the
port as an output, without any errors or warnings.

Gotcha 20: e 46
I cannot find a way to pass real values from one module to another using either
Verilog or SystemVerilog.

Gotcha 21: 49
My combinational logic seemed to simulate OK, but after synthesis, the gate-
level simulation does not match the RTL simulation.

Gotcha 22: e 52
I need my combinational logic block to be sensitive to all elements of a RAM
array, but the sensitivity list won 't trigger at the correct times.

Gotcha 23: < . 54
My always block is supposed to trigger on any positive edge in a vector, but it
misses most edges.

Xvi

List of Gotchas

Gotcha 24 . . e 56
My sensitivity list should trigger on any edge of a or b, but it misses some
changes.

GOICRa 25 o e 57
The clocked logic in my sequential block gets updated, even when no clock
occurred.

GOICha 26: o e e 59
Some of the outputs of my sequential logic do not get reset.

GOtCha 27 . . 60

When I code an asynchronous set/reset D-type flip-flop following synthesis
coding rules, my simulation results are sometimes wrong.

Gotcha 28: . . 62
My shift register sometimes does a double shift in one clock cycle.
Gotcha 29: . . 64

I'm following the recommendations for using nonblocking assignments in
sequential logic, but 1 still have race conditions in simulation.

Gotcha 30: 66
My RTL simulation locks up and time stops advancing.

Gotcha 31 . . . 70
Simulation of my gate-level combinational logic does not match RTL simulation.

Gotcha 32: ... 72
My casex statement is taking the wrong branch when there is an error in the case
expression.

Gotcha 33: . 74

My full_case, parallel_case decision statement simulated as I expected, but the
chip does not work.

GOotcha 34: . o 77
One of my decision branches never gets executed.
Gotcha 35: .. 79

I am using unique case everywhere to help trap design bugs but my synthesis
results are not what I expected.

Gotcha 36: .. e 82
My design fails to reset the first time in RTL simulation.
Gotcha 37: 84

My state machine model locks up in its start-up state.

xvii

List of Gotchas

Gotcha 38: .« 86
There was a problem deep inside the logic of my design, but it never propagated
to module boundaries.

Gotcha 39: . 88
Some major functional bugs in my design did not show up until after synthesis,
when I ran gate-level simulations.

Gotcha 40: 90
A design bug caused references to nonexistent memory addresses, but there was
no indication of a problem in RTL simulation.

Gotcha 41: 92
My enumerated state machine variables have values that don’t exist in the
enumerated definition.

Gotcha 42: . . 94
My RTL model output changes values when it shouldn't, and to unexpected
values.

Gotcha 43 o 96
Variables in my package keep changing at unexpected times and to unexpected
values.

Gotcha 44: o 99
I need to do an assignment as part of an if condition, but cannot get my code to
compile.

Gotcha 45: i il e 101

In some operations, my data is sign extended and in other operations it is not
sign extended, and in yet other operations it is not extended at all,

Gotcha 46: . .. 105
I declared my outputs as signed types, but my design is still doing unsigned
operations.

Gotcha 47: . 108

My signed adder model worked perfectly until I added a carry-in input, and now
it only does unsigned addition.

Gotcha 48: 111
All my data types are declared as signed, and I am referencing the entire signed
vectors in my operations, yet I still get unsigned results.

Gotcha 49: o e e 112
I'm using the ++ operator for my counter; the counter value is correct, but other
code that reads the counter sees the wrong value.

xviii

List of Gotchas

Gotcha 50: . .. e 113
My while loop is supposed to execute 16 times, but it exits after 15 times, even
though the loop control variable has a value of 16.

Gotcha J1: ... 115
When I have muitiple operations on a variable in a single statement, I get
different results from different simulators.

Gotcha 52: 116
I am calling a function twice in a statement, but sometimes only one of the calls
is executed.

Gotcha 53: ..o 118
My if statement with a not-true condition did not execute when I was expecting
it to.

Gotcha 54: .. 119
I get the wrong result when I sum all the values of an array using the built-in
.sum method,

Gotcha 55: 121
I get the wrong answer when I sum specific array elements in an array.

Gotcha 56: 123
Sometimes my design resets correctly at time zero, and sometimes it fails to
reset,

Gotcha 57 o o 128
My else branch is pairing up with the wrong if statement.

GOtCha 58: . . 129

My testbench completely misses problems on design outputs, even though it is
testing the outputs.

Gotcha 59: .. 131
I'm using the event data type to synchronize processes, but sometimes when I
trigger an event, the sensing process does not activate.

Gotcha 60: 134
My processes are not synchronizing the way I expected using semaphores. Even
when there are waiting processes, some other process gets to run ahead of them.

Gotcha 61: 137
My mailbox works at first, and then starts getting errors during simulation.
Gotcha 62: 139

I cannot get my test program to wait for a clocking block edge.

Xix

List of Gotchas

Gotcha 63: .. 140
Statements in my iff) decision execute, even when the condition is not true.
Gotcha 64: .. . 142

My for loop only executes one time.
GotCha 65 .. 144

My for loop never exits. When the loop variable reaches the exit value, the loop
Just starts over again.

GOICha 66: ... 145
When I run simulation, my for loops lock up or do strange things.
Gotcha 67: ... 147

My Verilog code no longer compiles after I convert my Verilog-style for loops
to a SystemVerilog style.

GOtCha B8: . e e 148
My function only returns the least significant bit of the return value.
Gotcha 69: . . 150

I get a syntax error when I try to assign my task/function input arguments a
default value.

Gotcha 70: 151
Some delayed outputs show up with continuous assignments and others do not.
Gotcha 71 . 153

Some programming code in an initial procedure compiles OK, but when I move
the code to a class definition, I get compilation errors.

Gotcha 72; . . e e 155
I get a compilation error when I try to use a class object to create test values
when the testbench connects to the design using an interface.

Gotcha 73: o 157
My code creates random object values and puts them into a mailbox, but all the
objects coming out of the mailbox have the same value.

GOICha 74 e e 158
My method constructs and initializes an object, but I can never see the object’s
value.

Gotcha 75: . 159
I declared an array of objects, but get a syntax error when I try to construct the
array.

Gotcha 76: . .. e 160

My task works OK sometimes, but gets bogus resulls other times.

XX

List of Gotchas

GOtCha 77 162
The variables in my testbench do not initialize correctly.
Golcha 78: . 164

When I fork off multiple tests, I get incorrect results, but each test runs OK by
itself.

GOtcha 79: 166
When I execute a disable fork statement, sometimes it kills threads that are
outside the scope containing the disable fork statement.

Gotcha 80: ... 168
When I try to disable a statement block in one thread, it stops the block in all
threads.

Gotcha 81: 171
My simulation exits prematurely, before I call 3finish, and while some tests are
still running.

Gotcha 82: .. 173

Some of my class variables are not getting randomized, even though they were
tagged as rand variables.

Gotcha 83: .. . 175
My class variables do not get random values, even though I called the
randomize function.

Gotcha 84: ... 177

I used an assertion to detect randomization failures, and now nothing gets
randomized during reset.

Gotcha 85: ... 179
When [specify constraints on more than two random variables, I don’t get what
I expect.

Gotcha 86: 181
I am getting negative values in my random values, where I only wanted positive
values.

Gotcha 87: 182

I've defined specific coverage bins inside my covergroup to track coverage of
specific values, but the report only shows the coverage of the entire covergroup.

Gotcha 88: ... 184
I defined a covergroup, but the group always has 0% coverage in the cover
report.

Xxi

List of Gotchas

Gotcha 89: 186
I have several instances of a covergroup, but the coverage report lumps them all
together.

Gotcha 90: e 187
Sometimes the call to my covergroup constructor does not compile.

Gotcha 91: ... 188
My assertion pass statement executed, even though I thought the property was
not active.

Gotcha 92: . . . 190

My assertion pass statements are executing, even when the procedural code
does not execute the assertion.

GotCha 93: 192
My assertion fail statement executes when the assertion succeeds instead of
Sails.

GOICha 94 193
I have an assertion property with an open-ended delay in the consequent, and
doesn’t fail when it should.

Gotcha 95: 195
My design outputs do not change at the same time in different simulators.
Gotcha 96: e 198

My packages compile fine on all simulators, but my design that uses the
packages will only compile on some simulators.

Gotcha 97: . o 200
I cannot repeat my constrained random tests on different tools.
GOtcha 98: o 202

When I use SystemVerilog, some simulators will not let me load my memory
models using $readmemb.

Gotcha 99: .« . 204
My SystemVerilog code only works on one vendor’s tools.

Gotcha 100: 206
Some tools require one syntax for array literals. Other tools require a different
syntax.

Gotcha 101: . . 208

Some SystemVerilog tools allow me to declare my input ports as real (floating
point), but other tools do not.

XXii

Foreword
by Steve Golson

Some people collect baseball cards, old car magazines, or maybe rubber duckies.
I collect Verilog books.

It started back in 1989 with a looseleaf copy of “Gateway VERILOG-XL
Reference Manual Version 1.5a” in a three-ring binder. Verilog was a bit simpler
back then—it’s hard to believe we actually designed chips using only one type of
procedural assignment (nonblocking assigns were not part of the language yet).
And we ran our simulations on a VAX, or maybe a fancy Apollo workstation.

Since then I've bought pretty much every Verilog book that came along. I've got a
few synthesis books, and I'll pick up an occasional VHDL reference or maybe a
text on the history of hardware description languages, but mostly it’s Verilog.
Dozens and dozens of books about Verilog.

There’s a funny thing about most of these books though. After I leaf through them
a few times, they sit on the shelf. I admit that it looks pretty impressive once you
have an entire bookcase filled with Verilog books, but the discerning visitor will
notice how fresh and new they all are. Unused. Unread. Useless.

I'm often disappointed to find very little information which is useful for the
practicing engineer. What I'm looking for is a book I can use every day, a book
that will help me get my chip out the door, on time and working.

Stu and Don have written such a book. I've known these guys for many years, and
they have probably forgotten more Verilog than I've ever known. They have
distilled their collective knowledge into this helpful and extremely useful book.
Read it and you won't be disappointed.

If you are an old hand at Verilog try to pick out all the Gotchas that you have
found the hard way. Smile and say to yourself “Oh yeah, I remember getting
caught by that one!”

Those of you who are new to Verilog and SystemVerilog, welcome aboard!
Here’s your chance to learn from two of the leading experts in the field. And if
you ever have a chance to take a training class from either of these gentlemen,
don't hesitate to sign up. | guarantee you won'’t regret it.

2 Verilog and SystemVerilog Gotchas

Oh by the way, my favorite Gotcha is “Gotcha 65: Infinite for loops”. Why? Well,
1 built a chip with that bug in it. Believe me, when a modeling error causes you to
have broken silicon, you never forget why it happened. Back then I didn’t have
this book to help me, but you do! Keep this book close at hand, refer to it often,
and may all your models compile and all your loops terminate.

Steve Golson
Trilobyte Systems
http://www.trilobyte.com

Chapter 1

Introduction,
What Is A Gotcha?

his chapter defines what a “gotcha” is, and why programming languages

allow gotchas. For the curious, the chapter also provides a brief history of the
Verilog and SystemVerilog standards. The topics presented in this chapter
include:

» What are Verilog and SystemVerilog
» The definition of a gotcha
* A brief description of the Verilog and System Verilog standards

What are Verilog and SystemVerilog?

The terms “Verilog” and “SystemVerilog” are sometimes a source of confusion
because the terms are not used consistently in the industry. For the purposes of
this book, “Verilog” and SystemVerilog are used as follows:

Verilog is a Hardware Description Language (HDL). It i1s a specialized
programming language used to model digital hardware designs and, to a limited
extent, to write test programs to exercise these models.

SystemVerilog is a substantial set of extensions to the Verilog HDL. A primary
goal of these extensions is to enable modeling and verifying larger designs with
more compact code. By itself, SystemVerilog is not a complete language; it is just
a set of additions to the base Verilog language.

4 Verilog and SystemVerilog Gotchas

What is a Gotcha?

A programming ‘“gotcha” is a language feature, which, if misused, causes
unexpected—and, in hardware design, potentially disastrous—behavior. The
classic example in the C language is having an assignment within a conditional
expression, such as:

if (day=15) /* GOTCHA! assigns value of 15 to day, then */
do_mid month payroll; /* if day is non-zero, do a payroll */

Most likely, what the programmer intended to code is 1f (a==b) instead of if
(a=b). The results are very different! This classic C programming Gotcha is not
a syntax error; the code is perfectly legal. However, the code probably does not
produce the intended results. If the coding error is not detected before a product is
shipped, a simple bug like this could lead to serious ramifications in a product.

Just like any programming language, Verilog, and the SystemVerilog extensions
to Verilog, have gotchas. There are constructs in Verilog and SystemVerilog that
can be used in ways that are syntactically correct, but yield unexpected or
undesirable results. Some of the primary reasons Verilog and SystemVerilog have
gotchas are:

¢ Inheritance of C and C++ gotchas
Verilog and SystemVerilog leverage the general syntax and semantics of the
C and C++ languages. Verilog and SystemVerilog inherit the strengths of
these powerful programming languages, but they also inherit many of the
gotchas of C and C++. (Which raises the question, can the common C cod-
ing error such as if (day=15) be made in Verilog/SystemVerilog? The
answer can be found in Gotcha 44 on page 99.)

» Loosely typed operations

Verilog and SystemVerilog are Joosely typed languages. As such, operations
can be performed on any data type, and underlying language rules take care
of how operations should be performed. If a design or verification engineer
does not understand these underlying language rules, then unexpected
results can occur.

+ Allowance to model good and bad designs

An underlying philosophy of Verilog and SystemVerilog is that engineers
should be allowed to model and prove both what works correctly in hard-
ware, and what will not work in hardware. In order to legally model hard-
ware that does not work, the language must also permit unintentional
modeling errors when the intent is to model designs that work correctly.

Chapter 1: Introduction, What Is A Gotcha? 5

The Verilog and SystemVerilog standards

Verilog is an international standard Hardware Description Language. The official
standard is IEEE Std 1364-2005 Verilog Language Reference Manual (LRM),
commonly referred to as “Verilog-2005”. The Verilog standard defines a rich set
of programming and modeling constructs specific to representing the behavior of
digital logic. The Verilog Hardware Description Language was first created in
1984. Verilog was designed to meet the needs of engineering in the mid 1980s,
when a typical design was under 50,000 gates and ICs were based on 3 micron
technology. As digital design size and technologies changed, Verilog evolved to
meet new design requirements. Verilog was first standardized by the IEEE in
1995 (IEEE Std 1364-1995). In 2001, The IEEE released the Verilog-2001
standard (IEEE Std 1364-2001) which enhanced Verilog in several ways, such as
synthesizable signed arithmetic on any vector size and re-entrant tasks and
functions. The IEEE updated the Verilog standard in 2005, but no major modeling
enhancements were added in this version. Instead, all enhancements to Verilog
were documented in a separate standard, SystemVerilog.

SystemVerilog is a standard set of extensions to the Verilog-2005 Standard. These
extensions are documented in a separate standard, IEEE Std 1800-2005
SystemVerilog Language Reference Manual, commonly referred to as
“SystemVerilog-2005”. The SystemVerilog extensions enable writing
synthesizable models that are continuously increasing in size and complexity, as
well as verifying these multi-million gate designs. SystemVerilog adds to Verilog
features from the SUPERLOG, VERA C, C++, and VHDL languages, along with
OVA and PSL assertions. SystemVerilog was first developed by Accellera, a
consortium of companies that do electronic design and companies that provide
Electronic Design Automation (EDA) tools. Accellera released a preliminary
version of the extensions to Verilog in 2002, called SystemVerilog 3.0 (3.0 to
show that SystemVerilog was the next generation of Verilog, where Verilog-1995
was the first generation and Verilog 2001 was the second generation). In 2003,
Accellera released SystemVerilog 3.1 and in 2004 SystemVerilog 3.1a. This latter
Accellera standard was then submitted to the IEEE for full standardization.

The original intent was for the IEEE to fold the Accellera SystemVerilog
extensions into the Verilog standard. At the insistence of EDA companies,
however, the IEEE made the decision to temporarily keep the SystemVerilog
extensions in a separate document to make it easier for EDA companies to
implement the extensive set of new features in their Verilog tools.

6 Verilog and SystemVerilog Gotchas

The official standards for Verilog and SystemVerilog are:

» “IEEE 1364-2005 standard for the Verilog Hardware Description Language”,
IEEE, Pascataway, New Jersey, 2002, ISBN 978-1-4020-7089-1.

» “[EEE 1800-2005 standard for the SystemVerilog Hardware Description and
Verification Language”, IEEE, Pascataway, New Jersey, 2001. ISBN 0- 7381-
4811-3.

For more details on the Verilog and SystemVerilog languages, refer to the books:

» “The Verilog Hardware Description Language, S5th edition”, by Donald
Thomas and Philip Moorby. Published by Springer, Boston, MA, 2002, ISBN
978-1-4020-7089-1.

» “Verilog-2001: A Guide to the New Features in the Verilog Hardware
Description Language”, by Stuart Sutherland. Published by Springer, Boston,
MA, 2002, ISBN 978-0-7923-7568-5.

+ “SystemVerilog for Design: A Guide to Using SystemVerilog for Hardware
Design and Modeling, Second Edition”, by Stuart Sutherland, Simon
Davidmann and Peter Flake. Published by Springer, Boston, MA, 2006, ISBN
978-0-387-33399-1.

o “SystemVerilog for Verification: A Guide to Learning the Testbench Language
Features”, by Chris Spear. Published by Springer, Boston, MA, 2006, ISBN
978-0-387-27036-4.

There are many more excellent books on using Verilog and SystemVerilog.

Note that at the time this book was written, the IEEE had begun the process of
merging the base Verilog language into the SystemVerilog Language Reference
Manual, to create a single language and standard. In time, “Verilog” will
disappear, and “System Verilog” will be a single, unified “Hardware Design and
Verification Language”.

Chapter 2

Declaration and Literal Number
Gotchas

Gotcha 1: Case sensitivity

Gotcha: The names in my code look correct and worked in my VHDL models,
but Verilog/SystemVerilog gets errors about “undeclared identifiers”.

Synopsis: Verilog and SystemVerilog are case-sensitive languages, whereas
VHDL is a case-insensitive language.

An identifier in Verilog and SystemVerilog is the user-specified name of some
object, such as the name of a module, wire, variable, or function. Verilog and
SystemVerilog are case-sensitive languages, meaning that lowercase letters and
uppercase letters are perceived as different in identifiers and in keywords.
Keywords are always in all lowercase letters. User-created identifiers can use a
mix of lowercase and uppercase letters, as well as numbers and the special
characters _, $, and \ (the latter is an escape character).

This case sensitivity is often a gotcha to engineers learning Verilog/
SystemVerilog, especially those migrating from a case insensitive language such
as VHDL. Even experienced engineers occasionally get caught making a case
sensitivity error. Generally, this case sensitivity gotcha occurs when what is
intended to be the same identifier is sometimes spelled using lowercase
characters, and at other times using uppercase characters.

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using small
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

8 Verilog and SystemVerilog Gotchas

The following example has three case sensitivity gotchas.

module FSM (...);

enum logic [1:0] {WAIT, LOAD, READY} State, nState;

always_comb begin

case (state) // GOTCHA!
WAIT: nState = LOAD; // GOTCHA!
LOAD: nState = READY;
READY: nState = wait; // GOTCHA!
endcase
end

endmodule: FSM

One gotcha in the preceding example is that the enumerated variable State is
declared using a mix of uppercase and lowercase characters. Later in the code—
possibly hundreds of lines after the declaration—a signal called state is
referenced. These identifiers read the same in English, but, to a Verilog or
SystemVerilog tool, they are very different names. Gotcha!

A second gotcha is that the enumerated label LOAD is in all uppercase letters. But
later in the code an identifier called LOAD is referenced. Visually, these identifiers
may appear to be the same, but to a Verilog/SystemVerilog tool they are very
different names. The difference is that the enumerated label contains an uppercase
letter “0” (pronounced “oh”) in the name, whereas the reference in the code body
contains the number “0” (or “zero”) in the name. Gotcha, again!

The third gotcha in the example above is the enumerated label waIT. While
syntactically correct, this is a poor choice for an identifier name because there is a
Verilog/SystemVerilog keyword wait. Later in the model, the nState variable is
assigned the value of wait. This time, a Verilog/SystemVerilog tool won’t report
an error about an undeclared identifier. It will issue an error about a procedural
wait statement appearing where an expression was expected. Identifier names
with capital letters that are the same name as a keyword in all lowercase letters
can make code harder to read, and can lead to coding errors that are difficult to
see, and can cause obscure syntax error messages. Gotcha, a third time!

In the example above, the misspelled names will all result in compilation errors,
which may be frustrating, but at least do not cause a gotcha that runs but does not
behave as intended. Case sensitivity errors can also result in gotchas that will
compile without an error, and will cause functional problems in the design.
Gotcha 2 on page 10 shows an example of this.

Chapter 2: Declaration and Literal Number Gotchas 9

How to avoid this Gotcha

The way to avoid this case-sensitivity gotcha is to adopt good naming
conventions within a company, and then strictly enforce these conventions. The
naming conventions used in this book are:

* Variable and net names are in lowercase.
+ User-defined type names end with _t.
* Enumerated variable names end with _e.
* Active-low signal names end with _n.
+ Constant names and enumerated labels are in all uppercase (e.g. LOAD).

* Class definition names begin with a capital letter, followed by all lowercase
letters (e.g. class Packet;).

+ Names are chosen that would not conflict with a keyword if the language were
case insensitive (e.g. HOLD instead of WAIT).

A corrected version of the previous example is:

module fsm (...);

enum logic [1:0] {HOLD, LOAD, READY} state_e, nstate_e;

always_comb begin

case (state_e) // OK, names match declarations
HOLD: nstate_e = LOAD; // OK, names match declarations
LOAD: nstate_e = READY;
READY: nstate_e = HOLD; // OK, names match declarations
endcase
end

endmodule: fsm

10 Verilog and SystemVerilog Gotchas

Gotcha 2: Implicit net declarations

Gotcha: A typo in my design connections was not caught by the compiler, and
only showed up as a functional problem in simulation.

Synopsis: Mis-typed identifiers may infer an implicit net instead of a syntax
error.

What does a Verilog/System Verilog tool do when it encounters an undeclared
identifier? The answer to this question depends on the context in which the
undeclared identifier is used.

+ If an undeclared identifier is used on the right- or left-hand side of a procedural
assignment statement, then a compilation error occurs. For example (also see
Gotcha 1 on page 7):

logic [7:0] foo;
initial foo = bar; // ERROR: bar not declared

+ If an undeclared identifier is used on the right-hand side of a continuous
assignment statement, then a compilation error occurs.

logic [7:0] foo;
assign foo = bar; // ERROR: bar not declared

» If an undeclared identifier is used on the left-hand side of a continuous
assignment, then an implicit net declaration is inferred, and no error or
warning is reported.

logic [7:0] foo;
assign bar = foo; // GOTCHA: bar not declared, but no error

+ If an undeclared identifier is used as a connection to an instance of a module,
interface, program, or primitive, then an implicit net is inferred, and no error
or warning is reported.

The last rule above can cause hard-to-find functional errors in a design, as shown
in the following example of a netlist connecting two 1-bit adders together.
module adder (input 1logic a, b, ci,
output logic sum, co);

endmodule
module top;

wire a, b, ci, sl, s2, cl;

adder il (.a(a), .b(b), .ci(el), .sum{sl), .co(cl)); // GOTCHA!

adder i2 (.a(a), .b{b), .ci(e), .sum(s2), .cof{co)); // GOTCHA!
endmodule

Chapter 2: Declaration and Literal Number Gotchas 11

One gotcha in this example is the declaration of c1 (“see-one”), but the reference
to cl (“see-ell”) in the i1 adder instance. Another gotcha is an undeclared
identifier, c, in the 12 adder instance. These typos are not syntax errors. Instead,
they infer implicit nets in the design, causing functional errors that must be
detected and debugged. Gotcha!

Why does Verilog/SystemVerilog allow this gotcha? Because the ability to have
implicit data types automatically inferred can be useful, when used correctly. One
of the benefits of implicit data types is that in a large, multi-million gate design
that has thousands of interconnecting wires, it is not necessary to explicitly
declare every wire.

How to avoid this Gotcha using Verilog

Some language-aware editors, such as Emacs with a Verilog mode', can auto-
complete the connections in a Verilog netlist. This is a simple and practical way to
avoid the gotcha of a typographical error.

Most engineers, including the authors, find that implicit nets is a strength of the
Verilog language, despite the potential gotcha of a typographical error in a netlist
showing up as a functional bug instead of a compilation error. The Verilog
language does provide a mechanism to disable implicit data types. The way it is
done, however, is controversial,, Some engineers feel it can introduce more
gotchas then it might help avoid. This Verilog-based control is not discussed in
this book.

How to avoid this Gotcha using SystemVerilog

SystemVerilog provides two convenient short cuts, dot-name and dot-star, for
connecting nets to instances of modules, programs, and interfaces. These
shortcuts remove the repetition in named port connections.

* The dot-name shortcut explicitly names the port to which a connection is being
made, but infers that a net of the same name is connected.

* The dot-star shortcut automatically infers that ports and signals with the same
name are connected.

The following example illustrates all three connections styles: fully explicit, dot-
name partially inferred, and dot-star fully inferred connections.

1. One popular Verilog mode for Emacs is available at www.verilog.com.

12 Verilog and SystemVerilog Gotchas

module adder (input logic a, b, ci,
output logic sum, co);

endmodule
module top:;
wire a, b, ci, sl, s2, cl;
adder il (.a, .b, .ci, .sum(sl), .co(cl)); // .name connections

adder i2 (.sum(s2), .ci(cl), .*); // .* connections
endmodule

By reducing the number of times a signal name must be typed, the possibility of
typographical errors is also reduced. The dot-name and dot-star shortcuts also
require that all nets be explicitly declared. A typo in the netlist or in the net
declarations will not infer an implicit wire when using the shortcuts. Such typos
will be compilation errors instead of functional problems in simulation.

Programmers who use the Emacs editor can take advantage of a nice feature in
some Verilog/SystemVerilog modes for Emacs which will automatically expand
dot-star inferred port connections to its inferred explicit connections. This feature
requires that the dot-star be the last item in the port connection list, as shown in
the example above.

Chapter 2: Declaration and Literal Number Gotchas 13

Gotcha 3: Default of 1-bit internal nets

Gotcha: In my netlist, only bit zero of my vector ports get connected,

Synopsis: Undeclared internal connections within a netlist infer 1-bit wires,
even if the port to which the net is connected is a vector.

Verilog and SystemVerilog have a convenient shortcut when modeling netlists, in
that it is not necessary to declare all of the interconnecting nets. Undeclared
identifiers used as port connections default to a wire net type (see Gotcha 2 on
page 10). In a netlist with hundreds or thousands of connections, implicit wires
can significantly simplify the Verilog/SystemVerilog source code.

The vector size of implicit nets is determined from local context. If the
undeclared signal is also a port of the module containing the signal, then the
implicit net will be the same size as the containing module’s port. If the
undeclared signal is only used internally in the containing module, then a 1-bit net
is inferred. Verilog and SystemVerilog do not look at the port sizes of what the
signal is connected to in order to determine the implicit net type size.

The following top-level netlist connects signals to a 4-to-1 multiplexer. The data
inputs and outputs of the mux are 8 bits wide. The select input is 2 bits wide.
No data types are declared in the top-level netlist. Therefore, implicit wires will
be inferred for all connections.

module top_level

(output [7:0] out, // 8~bit port, no data type declared
input [7:0) a, b, ¢, d // 8-bit ports, no data type declared
)i
mux4 ml (.y(out), // out infers an 8-bit wire type
.ala), // a, b, ¢, d infer B-bit wires
.b(b),
.c{c),
.d{d),

.sel(select)); // GOTCHA! select infers 1l-bit wire
endmodule

module mux4

(input logic [1:0] sel, // 2-bit input port
input logic [7:0) a, b, ¢, d, // 8-bit input ports
output logic [7:0] y // 8-bit output port

)i

endmodule

14 Verilog and SystemVerilog Gotchas

In the example above, the top-level netlist connects a signal called select to the
sel port of mux4. Within mux4, the sel port is 2 bits wide. When inferring
undeclared nets in the top_level module, however, Verilog and SystemVerilog
only look within the local context of top level. There is nothing within
top_level from which to infer the size of select. Therefore, select defaults
to a 1-bit wire. Gotcha!

Most Verilog/System Verilog tools will generate compilation warning messages
for this gotcha, reporting size mismatches in port connections. Engineers should
not ignore these warnings! Almost without exception, warnings about size
mismatches in port connections indicate unintentional errors in a netlist,

How to avoid this Gotcha

To avoid this gotcha, all internal nets and variables that are more than 1-bit wide
must be explicitly declared. An internal signal is one that is only used within the
module, program or interface, and is not a port of that module, program or
interface through a port.

The SystemVerilog dot-name and dot-star port connection shortcuts can help in
avoiding this gotcha. These shortcuts will not infer undeclared nets. Further, these
shortcuts will not infer connections that do not match in size. Gotcha 2 on page 10
explains the dot-name and dot-star port connection shortcuts.

The following example, which uses dot-star implicit port connections, will cause
a compilation error instead of a functional gotcha.

module top_level

(output logic [7:0] out, // 8-bit port
input logic [7:0) a, b, ¢, d // 8-bit ports
)i

mux4 ml (.y{out), .*); // ERROR: no net declared for sel port

endmodule

module mux4

(input logic [1:0] sel, // 2-bit input port
input logic [7:0} a, b, ¢, d, // 8-bit input ports
output logic [7:0} y // 8-bit output port
)i

Chapter 2: Declaration and Literal Number Gotchas 15

Gotcha 4: Single file versus multi-file compilation of $unit declarations

Gotcha: My models compile OK, and the models from another group compile
OK; but when compiled together, I get errors about multiple declarations.

Synopsis: Separate file compilation has separate Sunit declaration name
spaces. Multi-file compilation has a single Sunit compilation name space.

$unit is a declaration space that is visible to all design units that are compiled
together. The purpose of $unit is to provide a place where design and
verification engineers can place shared definitions and declarations. Any user-
defined type definition, task defintion, function definition, parameter declaration
or variable declaration that is not placed inside a module, interface, test program,
or package is automatically placed in $unit. For all practical purposes, Sunit
can be considered to be a predefined package name that is automatically wildcard
imported into all modeling blocks. All declarations in $unit are visible without
having to specifically reference Sunit. Declarations in Sunit can also be
explicitly referenced using the package scope resolution operator. This can be
necessary if an identifier exists in multiple packages. An example of an explicit
reference to Sunit is:

// following declaration is in $unit
typedef enum logic [1:0] {RESET, HOLD, LOAD, READY} states_t;

module chip (...):

$unit::states_t state e, nstate_e; // OK: definition in $unit

A gotcha with Sunit is that these shared definitions and declarations can be
scattered throughout multiple source code files, and can be at the beginning or
end of a file. At best, this is an unstructured, spaghetti-code modeling style, that
can lead to design and verification code that is difficult to debug, difficult to
maintain, and nearly impossible to reuse. Worse, $unit definitions and
declarations scattered across multiple files can result in name resolution conflicts.
Say, for example, that a design has a $unit definition of an enumerated type
containing the label RESET. By itself, the design may compile just fine. But then,
what happens if an IP model is added to the design that also contains a Sunit
definition of an enumerated type containing a label called RESET? The IP model
also compiles just fine by itself, but when compiled along with the design’s
$unit declarations, there is a name conflict. There are now two definitions in the
same name space trying to reserve the label RESET. Gotcha!

16 Verilog and SystemVerilog Gotchas

How to avoid this Gotcha

Use packages for shared declarations, instead of $unit. Packages serve as
containers for shared definitions and declarations, preventing inadvertent
spaghetti code. Packages also have their own name space, which will not collide
with definitions in other packages. There can still be name collision problems if
two packages are wildcard imported into the same name space. This can be
prevented by using explicit package imports and/or explicit package references,
instead of wildcard imports (see Gotcha 9 on page 27 for examples of wildcard
and explicit imports).

Chapter 2: Declaration and Literal Number Gotchas 17

Gotcha 5: Local variable declarations

Gotcha: I get compilation errors on my local variable declarations, but the
declaration syntax is correct.

Synopsis. Verilog and SystemVerilog allow local variables to be declared
within a statement group, but require all declarations to come before any
procedural code.

Verilog and SystemVerilog allow local variables to be declared within a
begin...end or fork...join statement group. However, just as in C, variables
must be declared before any programming statements. This is different from the
context of a module, interface or program block, where variables can be declared
anywhere, so long as they are declared before they are referenced. This subtle
difference can be a gotcha.

package Transaction;

enéé;ckage

package Extented trans extends Transaction;
enéééckage

initial begin

Transaction tr = new; // declaration with constructor
bit status; // declaration
status = tr.randomize; // procedural statement

Extended_trans etr = new; // GOTCHA! declaration after statement

end

How to avoid this Gotcha

Two modeling styles can be used to fix this local variable gotcha. One style is to
declare all variables at the top of the block, before any procedural statements, For
example:

initial begin // move all declarations to top of the block

Transaction tr = new; // declaration with constructor
Extended_trans etr = new; // OK, declaration before statement
bit status; // declaration
status = tr.randomize; // procedural statement

end

The second style is to create a new begin...end block within the procedure to
localize the scope of a variable, as follows:

18 Verilog and SystemVerilog Gotchas

initial begin

Transaction tr = new; // declaration with constructor
bit status; // declaration

status = tr.randomize; // procedural statement

begin

Extended trans etr = new; // OK, local declaration
end

end

Chapter 2: Declaration and Literal Number Gotchas 19

Gotcha 6: Escaped names in hierarchical paths

Gotcha: I get weird compiler errors when I try to reference a design signal
with an escaped name from my testbench.

Synopsis: Escaped identifiers in a hierarchical path require embedded spaces
in the path.

An identifier in Verilog and SystemVerilog is the name of some object, such as
the name of a module, the name of a wire, the name of a variable, or the name of
a function. The legal characters in an identifier are alphabetic characters,
numbers, underscore, or dollar sign. All other characters, such as +, -, (,), [, and
], are illegal in an identifier name.

Verilog and SystemVerilog allow these illegal characters to be used in a name by
escaping the identifier. A name is escaped by preceding the name with a back
slash (\) and terminating the name with a whitespace character. A whitespace
character is a space, tab, carriage return, line feed, form feed, or an end-of-file.
Some examples of escaped identifiers are:

module \d-flop {(output logic q, \q- ,
input logic \d[0] ,ck, \rst-);

endmodule

Observe in the above example that a whitespace character must be used before
the commas that follow \q~ and \d (0]. The whitespace terminates the escaped
name, so that the comma is a separator between port names. If there were no
whitespace before the comma, then the comma would become part of the escaped

name. A whitespace is also required between the last escaped name, \rst-, and
the closing parenthesis.

Potential gotcha: An escaped name with square brackets, such as \d{0], can be
confusing. It is a name for 1-bit wire. \d [0] is not a bit select of vector called \d.
This difference is illustrated with the following declarations:

logic [7:0] \a ; // 8-bit vector called \a
logic \b[0] ; // 1-bit signal called \a|[0]

buf bl (\b[0] , \a[0]); // GOTCHA: infers a net called \a{0}
buf b2 (\b{0] , \a [0]); // CORRECT: bit select of vector \a

Observe that a whitespace was required after \ a and before the [0} in order to do
a bit select of a vector that has an escaped name. The use of \a[0] in buffer b1l
will not be a syntax error, An implicit net called \a[0) will be declared. Gotcha!
(see Gotcha 2 on page 10 for a description of implicit net gotchas).

20 Verilog and SystemVerilog Gotchas

Another gotcha can occur when an escaped identifier is used as part of a
hierarchical path. For example:

module test (output [7:0] g, input [7:0] d, input ck, rst n);
\d-flop \d-0 (.q(ql0}),.\g~(}, .\d[0](d[0]), // GOTCHA!

.ck(ck), .\rst-(rst_n)); // GOTCHA!
initial begin
$display("d = %b", test.\d-0.\d[0]): // GOTCHA!
end
endmodule

This example will get compilation errors, but the errors will probably not indicate
the real problem. An escaped name must be terminated by a whitespace. In the
code above, \d-flop and \d-0 are correctly followed by a whitespace. The
escaped name \ g~ is not followed by a whitespace, making all text following it
part of the escaped name. A Verilog/SystemVerilog tool will see the name,
“\g~ (), ”, which is not what was intended. Since the parenthesis and comma
were also escaped, the tool will report a compilation error due to those missing
tokens.

The next line also has a gotcha. The escaped name \rst- is not terminated by a
whitespace. The first whitespace comes after the semicolon at the end of the
module instance. Therefore, the name a Verilog/SystemVerilog tool will see is
“\rst-(rst_n));”. The tool will not find a closing parenthesis and semicolon
to end the module instance, and will probably report an obscure error message
about the initial keyword two lines further down in the code.

The $display statement will also get a compilation error that might not be
obvious. The display statement uses a hierarchical path to print the value of
\d[0] inside the flip-flop model. However, the instance name is an escaped
name, which must be terminated by a whitespace. What the tool sees is a single
name of “\d-0.\d[0]".

How to avoid this Gotcha

Escaped names must be terminated by a whitespace, even when part of an explicit
port name or a hierarchical path. The correct code for the example above is:

module test (output [7:0] g, input [7:0] d, input ck, rst_n);

\d-flop \d-0 (.q(ql0]), .\g~ (), .\d[0] (d[0]), // CORRECT
.ck(ck), .\rst- (rst_n}); // CORRECT
initial begin
$display(“d = %b”, test.\d-0 .\d[0]); // CORRECT
end

endmodule

Chapter 2: Declaration and Literal Number Gotchas 21

The whitespace in the middle of a hierarchical path, as in the $display
statement above, might look like it breaks the hierarchical path into two
identifiers, but the terminating whitespace is ignored, which, in effect,
concatenates the two names into one name.

The authors recommend avoiding purposely using escaped names in a design,
especially an escaped name with square brackets in the name, as in the contrived
example above. Unfortunately, life is not that simple. Not all identifiers are user-
defined. Some software tools, especially synthesis tools, often create tool-
generated identifier names in the Verilog or SystemVerilog code. And, as ugly as
these tool-generated identifiers looks to users, these tools often put square
brackets in escaped identifiers.

22 Verilog and SystemVerilog Gotchas

Gotcha 7: Hierarchical references to automatic variables

Gotcha: I get compilation errors when my testbench tries to print out some
signals in my design, but other signals can be printed without a problem.

Synopsis: Automatic variables cannot be referenced using hierarchical paths.
They are also not dumped to VCD files.

Verilog has automatic tasks and functions, which dynamically allocate storage
each time they are called, and automatically free that storage when they exit.
System Verilog adds many more types of automatic storage, including classes for
object-oriented programming, dynamically sized arrays, queues, and strings.
These dynamically allocated types are intended for—and are very important in—
modeling test programs using modern verification methodologies.

The following two examples are nearly identical. Both examples use a task to
calculate a result. The task contains an intermediate variable, s1. The task is
called twice, and the intermediate s1 variable can have different values for each
call.

The only difference between the two models is that math static uses static
storage for the local variable, whereas math auto uses automatic storage.
Automatic storage would avoid possible conflicts between the two task calls,
because each call to the task is allocated a unique copy of the s1 variable.

module math_static (...); // use static storage
task math (...)
logic [15:0] s1; // local variable
endtask

always_comb begin
math(al, bl, cl, ol);
math (a2, b2, c2, o02);

end
endmodule
module automatic math_auto (...); // use automatic storage
task math (...)
logic [15:0] sl1; // local variable
endtask

always _comb begin
math(al, bl, cl, dl, ola, olb);
math (a2, b2, c2, d2, o2a, o2b);
end
endmodule

Chapter 2: Declaration and Literal Number Gotchas 23

The following testbench is used to verify the two modules. As part of the
verification, coverage, and possible debug of the design, the intent in this
testbench is to use a hierarchical path to look at the values of the s1 variable in
each module’s math task.

module top;

test tl (.*); // connect testbench to design
math_static ml (.*);
math auto m2 (.*);

endmodule
program automatic test;

initial begin
// apply stimulus
$display (" math_static sl = %h", top.ml.math.sl // OK
$display (" math_auto sl %h", top.m2.math.sl // GOTCHA!
end
endprogram

Everything in the testbench excerpt looks correct, and accessing internal data in
the design, in order to do verification and debug, is certainly reasonable.
Hierarchical references allow the verification code to evaluate, and possibly
stimulate, logic deep down in the design, without having to pull those internal
signals up to the testbench through multiple layers of extra, verification only,
module ports.

Unfortunately, the testbench above will not compile, due to the hierarchical
references to sl in module instance m2. Gotcha!

The gotcha happens because it is illegal to hierarchically reference automatic
variables. The reason is that hierarchical paths are static in nature, whereas
automatic variables come and go during simulation. This limitation places a
burden on the verification engineer. Before using a hierarchical path to reference
a variable, the verification engineer must first examine the source code, to
determine whether the variable is static or automatic. Gorcha!

A closely related gotcha is that the Verilog and SystemVerilog value changes on
automatic variables are not dumped to a Value Change Dump (VCD) file. VCD
files are used as an input to waveform displays and other design analysis tools.
However, only static nets and variables are dumped to VCD files. When
simulation results are analyzed, important information might be missing. Gotcha,
again!

24 Verilog and SystemVerilog Gotchas

How to avoid this Gotcha

This gotcha cannot be completely avoided, but it can be minimized. A coding
guideline is to only use automatic storage in the testbench, and for tasks and
functions declared in Sunit, packages and interfaces. In this way, test programs
will be able to hierarchically access most design data. It is also helpful to use
naming conventions that make automatic variables obvious in the source code.

There is no workaround for this VCD limitation. Proprietary waveform tools that
do not use VCD files, however, might not have this limitation.

Coding guidelines to help avoid static versus automatic storage gotchas

Programs should be declared as program automatic. This makes the default
storage automatic, which is more like the C and C++ programming languages.
Note, however, that this only changes the default for variables declared within
tasks, functions, and procedural blocks. Variables declared at the program block
level will still be static by default. The following parallel examples illustrate the
effects of declaring a program as automatic.

program test; program automatic test;

int a; //a is static int a; //a is static
task t (int b); //b is static task t (int b); //b is automatic

int ¢; //e is static int c; //c is automatic
endtask endtask

initial begin initial begin

logic d; //d is static logic d; //d is automatic
end end
endprogram endprogram

Packages should be declared as package automatic. Task and function
definitions in a package are often shared between several programs, modules and
interfaces, and therefore should be automatic to avoid problems of sharing
storage between multiple callers. Gotcha 43 on page 96 describes RTL design
problems that can occur when static storage in a package is shared with multiple
callers.

Modules should not be declared as automatic. Tasks, functions and local variables
in a module that are automatic will not be accessible hierarchically, which limits
the ability to debug design problems. If automatic storage is needed in a module,
such as for a recursively called function, the local variable, task or function
should be explicitly declared as automatic. This both documents the exception,
and permits debug access to the rest of the module.

Chapter 2: Declaration and Literal Number Gotchas 25

Gotcha 8: Hierarchical references to variables in unnamed blocks

Gotcha: With Verilog, my testbench could print out local variables in a
begin...end block, but with SystemVerilog I get compilation errors.

Synopsis: Variables declared in an unnamed scope have no hierarchical
paths.

Verilog allows local variables to be declared in named begin...end and
fork...join blocks. These variables can be referenced hierarchically, using the
block name as part of the hierarchical path.

The following example defines a begin...end block called 1oop, with a local
variable called temp. A testbench module hierarchically references temp to print
out its value.

module chip_vlog_style (...);

always @ (posedge clk)

for (i=0; i<=15; i=i+l) begin: loop // named block
integer temp; // local variable
end
endmodule

module test;

chip_vlog_style dut (...);
initial $display (“temp = %0d”, test.dut.loop.temp); // OK

endmodule

An second advantage of local variables is that they can prevent the inadvertent
gotcha of having multiple initial or always procedural blocks write to the
same variable (see Gotcha 66 on page 145).

SystemVerilog simplifies Verilog by allowing local variables to be declared in
unnamed begin...end and fork...join blocks. This simplification comes with a
potential gotcha!

module chip sv_style (...);

always ff @ (posedge clk)

for (int i=0; i<=15; i++) begin // unnamed block
integer temp; // local variable
end

endmodule

26 Verilog and SystemVerilog Gotchas

program automatic test;

chip_sv_style dut (...);

initial $display (“temp = %0d”, test.dut.temp); // GOTCHA!
endmodule

Local variables in unnamed blocks cannot be accessed from the testbench for
verification or debugging. Binding assertions to a design to verify functionality or
coverage involving the local variable is also not allowed. Nor will local variables
in unnamed blocks show up in Value Changed Dump (VCD) files used by many
waveform displays. Gorcha!

The gotcha is that variables declared in an unnamed block cannot be referenced
hierarchically, because there is no named scope to reference in the hierarchical
path. This is the same limitation that exists for automatic variables, as discussed
in Gotcha 7 on page 22.

A similar gotcha exists with £or loop control variables defined as part of the for
loop, which is shown in Gotcha 67 on page 147.

How to avoid this Gotcha

If a local variable needs to be referenced hierarchically, or dumped to a waveform
file, declare local variables in named begin...end or fork...join blocks as
shown in the first example in this gotcha description. Use unnamed blocks if there
1s a reason to protect the local variable from code outside of the block, including
the testbench and VCD waveform files.

Chapter 2: Declaration and Literal Number Gotchas 27

Gotcha 9: Hierarchical references to imported package items

Gotcha: My design can use imported package items just fine, but my testbench
cannot access the items for verification.

Synopsis: Imported identifiers must be referenced using the scope resolution
operators instead of hierarchically.

SystemVerilog packages allow type definitions and other information to be
declared in a shared space. Package definitions can be imported into other design
blocks to give access to those shared definitions. Verification of imported items is
handled differently than verification of data declared locally within a design
block. The following example has a gotcha in the testbench program,

package chip types;
typedef enum logic [1:0] {RESET, HOLD, LOAD, READY} states_t;
endpackage: chip_ types
module chip (...):
impert chip_types::*; // wildcard import definitions in package
endmodule: chip
module top;
chip chip (...); // instance of design that uses the package
test test (...); // instance of test program
endmodule: top

program automatic test (...);

initial begin
$display ("RESET is %b", top.chip.RESET); // GOTCHA! illegal
endprogram: test

In the example above, the test program uses a hierarchical path to access the
value of RESET in the scope in which RESET is imported and used. This results in
an error. Hierarchical paths are used to access signals where they are declared.
The enumerated label RESET in the example above is not declared in module
chip. It is only imported into chip. When package items are imported into a
module, interface, or test program, these items are not locally defined within that
scope. These imported items cannot be referenced hierarchically.

How to avoid this Gotcha

External references to package items are done using the package name followed
by the scope resolution operator (: :) instead of hierarchical paths. For example:

$display ("RESET is %b", chip_types::RESET); // OK

28 Verilog and SystemVerilog Gotchas

Gotcha 10: Importing enumerated types from packages

Gotcha: I imported an enumerated type from a package, but I cannot access
the labels defined by the enumerated type.

Synopsis: Importing an enumerated type definition does not import its
enumerated labels.

Enumerated type definitions defined in a package can be explicitly imported into
a design or verification block. For example:
package chip types;

typedef enum logic [1:0] {RESET, HOLD, LOAD, READY} states_t;
endpackage

module chip (...);
import chip_ types::states_t; // explicit import of states_t type
states_t state_e, nstate_e;
always_ff @ (posedge clock, negedge reset n)

if (!reset_n) state_e <= RESET; // GOTCHA: RESET not imported
else state_e <= nstate_e;

endmodule

The package contains a user-defined enumerated type called states_t, which
has the value labels RESET, HOLD, LOAD and READY. The chip module imports
states_t type from the package. When this example is read in by a software
tool, a compilation error will result, stating that RESET has not been defined. The

reason is that the import of states_t only imports the name states_t. It does
not import the labels that states_t uses. Gotcha!

How to avoid this Gotcha

One way to avoid this gotcha is to explicitly import each enumerated label along
with the enumerated type definition.
import chip_types::states_t; // explicit import of states_t type
import chip_types: :RESET; // and its labels
import chip_types::HOLD;
import chip_types::LOAD;
import chip_types: :READY;

A second way to avoid this gotcha with a wildcard import of the package, which
will make both the enumerated type definition and its enumerated labels visible.

import chip types::*; // wildcard import of package declarations

Wildcard imports have a gotcha if multiple packages are used in a design block,
as discussed in Gotcha 11 on page 29.

Chapter 2: Declaration and Literal Number Gotchas 29

Gotcha 11: Importing from multiple packages

Gotcha: I get errors when I try to wildcard import multiple packages, but I
can wildcard import each package separately without any errors.

Synopsis: Wildcard imports from multiple packages can cause name
collisions.

Large designs, and designs that use IP models, will likely have multiple packages.
For convenience, a package can be wildcard imported into a design, which can
save having to explicitly import each item from each package. However, wildcard
imports of multiple packages can lead to a gotcha, as illustrated in the following
example.

package chip types;
typedef enum logic [1:0] {HOLD, LOAD, READY} states_t;
endpackage

package bus_types;
localparam HOLD = 32;

endpackage

module chip (...);
import chip types::*; // wildcard import of a package
import bus_types::*; // wildcard import of another package

states_t state_e, nstate e;

always_ff @ (posedge clock, negedge reset n)
if (!reset_n) state_e <= HOLD; // GOTCHA: HOLD has multiple
else state_e <= nstate_e; // definitions

The gotcha in the example above is that both packages contain an identifier
named HOLD. Wildcard importing both packages will result in a compilation error
due to the name conflict,

How to avoid this Gotcha

The gotcha with wildcard package imports occurs when there are identifiers
common to more than one package. To avoid this gotcha, explicitly import any
duplicate identifiers from the desired package. Wildcard imports of other
packages will not import identifiers that have been explicitly declared or
explicitly imported in the local scope.

import chip_types::*; // wildcard import of a package

import bus_types::*; // wildcard import of another package
import chip_types: :HOLD; // explicit import of HOLD

30 Verilog and SystemVerilog Gotchas

Gotcha 12; Default base of literal integers

Gotcha: Some branches of my case statement are never selected, even with the
correct input values.

Synopsis: Literal integers have a default base that might not be what is
intended.

Literal integers in Verilog and SystemVerilog can be specified as a simple
decimal integer (e.g. 5) or as a based integer (e.g. ' h5). A based literal integer
is specified using the following syntax:

<size>' s<base><value>

Where:

* <size> is optional. If given, it specifies the total number of bits
represented by the literal integer. If not given, the default size, per the
Verilog/SystemVerilog standard is “at least” 32 bits.

*+ s is optional. If given, it specifies that the literal integer should be treated as
a signed value in operations. If not given, the default is unsigned. (The
signed specifier was added to Verilog as part of the Verilog-2001 standard.)

* <base> is required, and specifies whether the value is in binary, octal,
decimal, or hex.

* <value> is required, and specifies the literal integer value.

A simple literal integer (e.g. 5) defaults to a decimal base. To use a binary, octal,
or hex value, a based-literal integer must be specified (e.g. ’hS or 2'b10). The
base options are represented using b, o, d, or h for binary, octal, decimal and hex,
respectively. The base specifier can be either lowercase or uppercase (i.e. ' h5
and ’ H5 are the same).

The following example of a 4-to-1 multiplexer illustrates a common gotcha when
an engineer forgets that a simple integer number is a decimal value.

logic [1:0] select; // 2-bit vector
always_comb begin
case (select) // intent is for a 4-to-1 MUX behavior
00: y = a;
0l: y = b;
10: vy = c; // GOTCHA! This branch is never selected
11: v = d; // GOTCHA! This branch is never selected
endcase
end

This gotcha fits nicely with the joke that only engineers laugh at: “There are 10
types of people in the world, those that know binary, and those that don't”.

Chapter 2: Declaration and Literal Number Gotchas 31

The previous example may look reasonable, and it is syntactically correct. Since
the default base of a simple integer is decimal, however, the case select values
“10” and “11” are fen and eleven. The 2-bit select signal can only contain the
values 0, 1, 2 and 3. The select values of 2 and 3 will not match any of the case
items, and the branches for the case items of decimal “10” and “11” will never be
executed. This is not a syntax error. The problem shows up in simulation as a
functional failure which can be difficult to detect and debug. Gotcha!

How to avoid this Gotcha using Verilog

With Verilog, the easiest coding style for detecting that there is a design problem
is to add a default branch to the case statement that detects when none of the
expected branches evaluate as true. For example:

case (select) // intent is for a 4-to-1 MUX behavior
00: y = a;
01: y = b;
10: vy = ¢; // GOTCHA! This branch is never selected
11: y = d; // GOTCHA! This branch is never selected

default: $display("select value of %b not decoded", select):;
endcase

How to avoid this Gotcha using SystemVerilog

SystemVerilog adds a unique modifier for case statements. This extension to
Verilog provides an easy way to detect this gotcha.

unique case (select) // intent is for a 4-to-1 MUX behavior

00: vy = a;

01;: y = b;

10: v = ¢; // GOTCHA! This branch is never selected

11: y = d; // GOTCHA! This branch is never selected
endcase

The unique modifier reports an error if two or more case select items are true at
the same time, or if no case select items are true. The example above becomes an
error, rather than a functional bug in the code.

The following example codes the case statement correctly.

unique case (select) // intent is for a 4-to-1 MUX behavior
2'b00: vy = a;

2'b01: y = b;

2'bl0: y = c; // OK, this branch can be selected

2'bll: y = d; // OK, this branch can be selected
endcase

Caution! The unique modifier is not appropriate for every case statement. See
Gotcha 35 on page 79 for additional discussion on using unique case.

32 Verilog and SystemVerilog Gotchas

Gotcha 13: Signedness of literal integers

Gotcha: My incrementor model sometimes gets incorrect values when [
increment using a literal 1°b1.

Synopsis: Unbased literal integers default to signed. Based literal integers
default to unsigned.

Literal integers in Verilog and SystemVerilog can be specified as a simple
decimal integer (e.g. 5) or as a based integer (e.g. 'h5). A simple literal integer
(e.g. 5) defaults to a signed value, and cannot be specified as unsigned. A based
literal integer (e.g. ’ h5) defaults to an unsigned value, unless explicitly specified
as signed (e.g. ‘" sh5). A based literal integer is specified as follows:

<size>’ s<base><value>

* <size> is optional. If given, it specifies the total number of bits represented by
the literal integer. If not given, the default size, per the Verilog/SystemVerilog
standard is “at least” 32 bits,

* s is optional. If given, it specifies that the literal integer should be treated as a
signed value in operations. If not given, the default is unsigned. (The signed
specifier was added to Verilog as part of the Verilog-2001 standard.)

* <base> is required, and specifies whether the value is in binary, octal,
decimal, or hex.

* <value> is required, and specifies the literal integer value.

The signedness of a literal value affects several types of operations. Unexpected
operation results will occur if an engineer forgets—or is not aware of—the
different signedness of a simple literal integer versus a based literal integer.

Are the following two signed counter statements the same?

byte in; // signed 8-bit variables
int outl, out2; // signed 32-bit variables

initial begin
in = -5;
outl = in + 1; // OK: -5+ 1 = -4 (literal 1 is signed)
out2 = in + 1'bl; // GOTCHA: -5 +1'bl = 252 (1'bl is unsigned)

end

How to avoid this Gotcha

To avoid this gotcha, engineers need to know, properly use, and take advantage of
Verilog’s rich set of signed and unsigned literal values. Signed arithmetic is
discussed in more detail in Gotcha 47 on page 108,

Chapter 2: Declaration and Literal Number Gotchas 33

Gotcha 14: Signed literal integers zero extend to their specified size

Gotcha: When I specify a signed, sized literal integer with a negative value, it
does not sign extend,

Synopsis: Too small a size truncates the most-significant bits of a value. Too
large a size left-extends a value with 0, x, or z, but does not sign extend.

Literal integers can be specified as unsized integers (e.g. 'h5) or as sized
integers (e.g. 16’ h5). The syntax for specifying literal integers is:

<size>'s<base><value>

Where:

* <size> is optional. If given, it specifies the total number of bits
represented by the literal integer. If not given, the default size, per the
Verilog/SystemVerilog standard is “at least” 32 bits.

* s is optional. If given, it specifies that the literal integer should be treated as
a signed value in operations. If not given, the default is unsigned. (The
signed specifier was added to Verilog as part of the Verilog-2005 standard.)

* <base> Is required, and specifies whether the value is in binary, octal,
decimal, or hex.

* <value> is required, and specifies the literal integer value.

It is legal to specify a mismatch between the size and the number of bits
represented by the value. Verilog/SystemVerilog has built-in rules for how to
handle a mismatch. If these rules are not understood, engineers might be caught
by a gotcha. The following example specifies a value that appears to be a negative
value, but is zero extended as if an unsigned value.

logic signed [11:0] a;

a = 12'shFF; // GOTCHA! signed value hex FF does not represent -1

// 8-bit FF value extends to 12-bit 000011111111
// WHY?

The Verilog/SystemVerilog rules for a mismatch between the size and the value
are explained in the following paragraphs.

Size smaller than value rule. If the bit size specified is fewer bits than the value,
then the left-most bits of the value are truncated. This can be a gotcha when the
value is signed, because the sign bit will be truncated as well. In the following
example, a negative 15 (8-bit F1 hex) is truncated to 4-bits wide, becoming a
positive 1. Gotcha!

logic signed [7:0] b;
b = -4'sdl5; // GOTCHA! 11110001 (-15) is truncated to 0001 (+1)

34 Verilog and SystemVerilog Gotchas

Size greater than value rule. When the bit size specified is more bits than the

value, the value will be expanded to the size by left-extending. The fill value used

to left extend is based on the most-significant bit of the value, as follows:

» If the most-significant bit of the specified value is a 0 or a 1, then the value is
left extended with zeros.

+ If the most-significant bit is an X, then the value is left extended Xs.
» If the most-significant bit is a Z, then the value is left extended Zs.
This left extension can be useful. For example, it is not necessary to specify the

value of each and every bit of a vector to reset the vector to zero or to set the
vector to high impedance.

64'h0; // fills all 64 bits with 0
64'bZ; // fills all 64 bits with 2

When the bit-size is larger than the value, and the value is signed, the expansion
rules above do not sign-extend a signed value. Even if the number is specified to
be signed, and the most-significant bit is a 1, the value will still be extended by
0’s. For example:

logic signed [11:0] a, b;

initial begin

a = 12'sh3e; // OK, signed 00111100 expands to 000000111100
b = 12's074; // GOTCHA! signed 111100 expands to 000000111100
end

The hex value 3c is an 8-bit value that does not set its most-significant bit. When
the value is expanded to the 12-bit size, the expansion zero-extends, regardless of
whether the literal integer is signed or unsigned. This is as expected.

The octal value 74 is the same bit pattern as a hex 3c, but is a 6-bit value with its
most-significant bit set. The expansion to the 12 bit size still zero-extends, rather
than sign-extends. Gotcha!.

The subtlety in the preceding example is that the sign bit is not the most-
significant bit of the value. It is the most-significant bit of the specified size.
Thus, to specify a negative value in the examples above, the value must explicitly
set bit 12 of the literal integer. Negating a positive value will set its sign bit.

12'shFFB // expands to 111111111011, which is -5 decimal
-12'shS // expands to 111111111011, which is -5 decimal

How to avoid this Gotcha

The way to avoid these gotchas is to be sure that the bit size specified is the same
size as the value, especially when using signed values. Some tools, such as lint
tools (coding style checkers), will detect a size versus value mismatch.

Chapter 2: Declaration and Literal Number Gotchas 35

Gotcha 15: Literal integer size mismatch in assignments

Gotcha: When I assign a 4-bit negative value to an 8-bit signed variable, it is
not sign extended.

Synopsis: A size mismatch in an assignment might zero extend or might sign
extend, depending on the types of expressions on the right-hand side of the
assignment.

When a literal integer is assigned to a variable, two expansion/truncation rules are

applied:

+ First, the value is expanded or truncated to the specified size of the literal
integer, via the rules discussed in Gotcha 14 on page 33.

+ Second, the assignment operator rules are then applied, as discussed in this
gotcha.

Note: This gotcha discusses assignment of literal integers (e.g. a = 5;). Gotcha
46 on page 105 discusses assignment rules and gotchas when there are operators
on the right-hand side of the assignment.

The assignment operation rules for assigning literal integers are:

* When the left-hand side expression of an assignment statement is fewer bits
than the right-hand side literal integer, then the most-significant bits of the
right-hand side value are truncated.

* When the left-hand side expression of an assignment statement is more bits
than the right-hand side literal integer, then:

+ If the right-hand side literal integer is unsigned, it will be left extended with
ZEros.

* If the right-hand side literal integer is signed, it will be left extended using
sign extension.

* Exceptions: If the right-hand side is an unsized high-impedance literal
integer (e.g.: 'bz) or unsized unknown (e.g.: ’bx), the value will left-
extend with Z or X, respectively, regardless of whether signed or unsigned.

These rules might seem, at first glance, to be the same rules discussed in Gotcha
14 on page 33 for when a literal integer size does not match the literal integer
value. There is a subtle, but important, difference in the rules, however. The
difference is that literal integer expansion will never sign-extend, but an
assignment statement might sign-extend.

And now the gotcha. Sign extension of the right-hand side only occurs if the
expression on the right-hand side of the assignment statement is signed. The

36 Verilog and SystemVerilog Gotchas

signedness of the left-hand side expression does not affect whether or not sign
extension will occur.

Consider the following examples:

logic [3:0) a; // unsigned 4-bit variables
logic signed {3:0) b; // signed 4-bit variables
logic [7:0] u; // unsigned 8-bit variables

logic signed [7:0} s; // signed 8-bit variables
u =4'hC; // OK, 1100 (hex C) is zero-extended to 00001100

s = 4'hC; // GOTCHA! 1100 is zero-extended to 00001100,
// even though s is a signed variable

u = 4’'shC; // GOTCHA! 1100 is sign-extended to 11111100,
// even though u is an unsigned variable

s = 4"shC; // OK, 1100 is sign-extended to 11111100

a = 4'hC; // assign 4-bit literal to 4-bit unsigned variable
u = a; // OK, 1100 is zero-extended to 00001100

s = a; // GOTCHA! 1100 is zero-extended to 00001100,
// even though s is a signed variable

b = 4'hC; // assign 4-bit literal to 4-bit signed variable
u = b; // GOTCHA! 1100 is sign-extended to 11111100,
// even though u is an unsigned variable

s = b; // OK, 1100 is sign-extended to 11111100

These simple examples illustrate two types of gotchas:

* Assigning to a signed variable does not cause sign extension. Sign extension
only occurs if the right-hand side expression is signed.

* Assigning to an unsigned variable can have sign extension. Sign extension
occurs if the right-hand side expression is signed.

In other words, it is the right-hand side of an assignment that determines if sign
extension will occur. The signedness of the left-hand side has no bearing on sign
extension.

These same assignment expansion rules apply when operations are performed on
the right-hand side of an assignment. However, whether zero extension or sign
extension will occur also depends on the type of operation. These operation rules
are covered in Gotcha 45 on page 101,

Chapter 2: Declaration and Literal Number Gotchas 37

Gotcha 16: Filling vectors with all ones

Gotcha: I can use a literal integer to set all bits to Z on a vector of any size,
but when I use the same syntax to set all bits to 1, I get a decimal 1 instead.

Synopsis: Verilog does not have a literal integer value that fills all bits of a
vector with ones. SystemVerilog does.

In Verilog, assigning ‘' bx, ' bz, or 0 will fill a vector of any size with all bits set to
X, Z, or zero, respectively. However, assigning ‘b1 is not orthogonal. It does not
fill a vector with all bits set to one.

parameter WIDTH = 64;
reg [WIDTH-1:0] data;

data = ’'b0; // £ills with 64/h0000000000000000
data = 'bz; // fills with 64'hzzzzzzzzzzzzZzZ22Z
data = ’'bx; // fills with 64’ hXXXXXXXXKXXXXXXXX
data = 'bl; // £ills with 64'h0000000000000001 GOTCHA!

Note: Prior to the Verilog-2001 standard, using ' bz or ' bx would only fill up to
32 bits with z or x. Any additional bits to the left of these 32 bits were zero filled.

How to avoid this Gotcha using Verilog

In order to assign a vector of any size with all bits set to one, designers must learn
clever coding tricks involving various Verilog operators, such as:

data = {64{1'bl}}; // replicate operation (must hard code size)
data = -1; // negate operation (must use signed literal)
data = ~0; // invert operation

None of these coding tricks for filling a vector of any size with all bits set to 1 is
obvious, self-documenting code. SystemVerilog has a better way to avoid this
gotcha, as shown below.

How to avoid this Gotcha using SystemVerilog

SystemVerilog provides a simple and consistent syntax for filling any size of
variable with all ones, all zeros, all Xs or all Zs. This is done by just assigning
' <value>, as shown below:

parameter WIDTH = 64;
logic [WIDTH-1:0] data;

data = '1; // £ills with 64" hffffffffffffffff
data = '0; // f£ills with 64/h0000000000000000
data = 'z; // £ills with 64'hzzzzzzzzz2222222

data = "x; // £ills with 64’ hXXXXXXXXXXXXXXXX

38 Verilog and SystemVerilog Gotchas

Gotcha 17: Array literals versus concatenations

Gotcha: The wrong values are stored when I assign a list of values to a
packed array or structure.

Synopsis: Packed arrays and structures can be assigned either a
concatenation or an assignment pattern with a list of values.

The Verilog concatenation operator joins one or more values and signals into a
single vector. Array and structure literals (also known as an assignment patterns)
are lists of one or more individual values. To make the difference between these
constructs obvious to both engineers and software tools, the syntax for an array or
structure literal is an apostrophe and { } surrounding a list of values, which is
different from concatenation, which uses just { }.

logic {1:0]) [31:0) A; // two-dimensional packed array
A = {1'bl, 1'bl}; // GOTCHA? assign concatenation to A
A= '{1'bl, 1'bl}; // GOTCHA? assign list of values to A

The gotcha in this example is that it is not clear whether the intent was to assign a
list of values or to assign a concatenation. Since A is a packed array, both types of
assignments are legal. If a list of values was intended in the example above, but
the apostrophe is inadvertently omitted, it is not a syntax error. The values
assigned to A, however, are very different. As a list of values, the assignment is
equivalent to:

A[l] = 1'bi; // decimal 1
A[{0] = 1'bil; // decimal 1

As a concatenation, the assignment is equivalent to:

All]
A{0)

1'b0 // decimal 0
2'bl11l; // decimal 3

How to avoid this Gotcha

One way to avoid this gotcha is to only use unsized values in a list of values. The
concatenation operator requires sized values, which would make inadvertently
leaving off the apostrophe a syntax error.

logic [1:0} [31:0) A; // two-dimensional packed array
A= {1, 1}; // ERROR, illegal concatenation
A= "{1, 1}; // OK, assign list of values to A

Another way to detect this coding error is with tools that look for assignment size
mismatches, such as a lint tools (coding style checkers).

A closely related gotcha is described in Gotcha 100 on page 206.

Chapter 2: Declaration and Literal Number Gotchas 39

Gotcha 18: Port connection rules

Gotcha: My design doesnt work correctly when I connect all the modules
together, but each module works correctly by itself.

Synopsis: The size of a port and the size of the net or variable connected to it
can be different.

The Verilog standard states that module ports are treated as continuous assign
statements that continuously transfer values into, and out of, modules. This is not
a gotcha, but rather a rule that helps explain some gotchas relating to port
connections.

In Verilog, the receiving side of an input or inout port can only be a net type,
such as wire. The transmitting side of an output port can be either a net or a
variable. When considering ports as continuous assignment statements, it
becomes easier to understand why the receiving sides of ports are required to be
net data types, and why the driver (or source) side of ports could be either nets or
variables. The receiving side of a port is the same as the left-hand side of a
continuous assign statement, and the driver or source side of a port is the same as
the right-hand side of a continuous assign statement. In other words, the left-hand
side/right-hand side rules for continuous assignments apply directly to port
assignments.

With this in mind, consider the four scenarios regarding port size connections
(three of which can be gotchas if not well understood):

* The port size and the size of the signal driving the port are the same size

* The signal driving the port has more bits than the port (a gotcha)

* The signal driving the port has fewer bits than the port (a gotcha)

* An input port is unconnected; there is no signal driving the port (a gotcha)

Applying Verilog/SystemVerilog assignment size rules to ports gives the
following effects for these four scenarios:

1. If the size of the port and the size of the signal driving the port match, then the
value passes through the port with no change.

2. If the signal driving the port (the right-hand side of a continuous assignment)
has more bits than the port’s receiving net (the left-hand side of an assign-
ment), then the upper bits of the driving signal are truncated, including any
sign bit.

40 Verilog and SystemVerilog Gotchas

3. If the signal driving the port (the right-hand side of a continuous assignment)
has fewer bits than the port’s receiving net (the left-hand side of an assign-
ment), then the upper bits are extended, following Verilog’s assignment rules;

+ If the driving signal (right-hand side of an assignment) is unsigned, the
upper bits are zero-extended to the size of the receiving signal.

+ If the driving signal (right-hand side of an assignment) is signed, then the
upper bits will be sign-extended.

4. If an input port is unconnected, the value for the receiving signal of the port
will be the default uninitialized value for its given data type. For the wire net
type, the uninitialized value is Z. For tri0 and tril net types, the uninitial-
ized values are 0 and 1, respectively, with a pull-up strength.

In Verilog/SystemVerilog, an incorrect size declaration is an easy design mistake
to make, especially when the modules that make up a design are written by
several different engineers, (and possibly even come from outside sources). A
simple typo in a netlist, or an incorrect parameter redefinition, can also lead to
port size mismatches. Typographical errors in a netlist can also result in some
ports of a module instance unintentionally left unconnected.

Most often, any mismatch in port connection sizes is a design error. It is not a
syntax error, however. Because it is not an error, understanding the rules of how
Verilog/SystemVerilog handles a mismatch in connection size helps avoid
unexpected simulation or synthesis results (gotchas). Trying to trace back to why
some bits disappeared from a vector, or additional bits suddenly appeared, can be
difficult. And that assumes that verification detected that there is a problem! The
following example illustrates how values are extended or truncated when passed
through a port of a different size than the value.

module top;
wire [3:0] data 4'b1111; // decimal 15
wire [7:0] addr = 8'b11111111; // decimal 255

blockl bl (.data{(data), // 4-bit net connected to 8-bit port
.addr (addr)); // 8-bit net connected to 4-bit port
// third port left unconnected
endmodule: top

module blockl (input [7:0] data,
input (3:0] addr,
input [3:0] byte_en);
initial
#1 $display(" data = %b \n address = %b \n byte_en = %b\n",
data, address, byte en);
endmodule: blockl

Chapter 2: Declaration and Literal Number Gotchas 41

The output from simulating this example is:

data = 00001111 GOTCHA!
address = 1111
byte_en = zzzz

The example above shows how confusing unconnected or partially connected
ports can be. The value of data has mysteriously changed, gaining an extra four
bits. The value of address changed from 255 to 15 (decimal), and byte_en is
high-impedance instead of a valid logic value.

How to avoid this Gotcha using Verilog

Most simulators, synthesis tools and other software tools generate warnings when
there are port connection mismatches, but such warnings are not required by the
Verilog or SystemVerilog standards, and engineers are notorious for ignoring
these warnings. In Verilog, the only way to avoid this type of gotcha is to pay
attention to warning messages.

How to avoid this Gotcha using SystemVerilog

SystemVerilog provides a great solution to this gotcha: implicit port connections
using either dot-name or dot-star module instantiations (see Gotcha 2 on page
10). When using the dot-name or the dot-star module instantiation syntax, the
driver and receiver port signals are required to be the same size. If, for some
reason, a driver/receiver signal pair size mismatch is desired, the port must be
explicitly connected. This makes it very obvious in the code that the mismatch
was intended.
module top;

wire [7:0) data;

wire [7:0] addr:

blockl bl (.data, // implicit port connections

.addr) ;
endmodule: top

module blockl (input [7:0] data,
input [3:0] addr,
input [3:0) byte_en);

endmodule: blockl

In this example, the size of the wire called data has been corrected to be 8-bits
wide, which is the same as the size of the data port in blockl. The dot-name
shortcut will infer that the wire called data is connected to the port called data.
However, there is still a typo in the declaration of the wire called addr. Instead of
a port connection mismatch (a gotcha), a compilation error will occur because the

42 Verilog and SystemVerilog Gotchas

signal at the top level is a different size than the port in blockl. The dot-name
will not infer connections that do not match in size.

The dot-name method will allow unconnected ports, such as the byte_en port in
the example above. Was this port left unconnected on purpose, or is it another
typo in the netlist? To catch all the size mismatches and unconnected ports, using
the dot-star shortcut is the best solution. The dot-star shortcut requires explicitly
listing all unconnected ports and all the signals with different sizes.

module top;
wire [7:0] data;
wire [7:0] addr;

blockl bl (.*, // implicit port connection
.addr(addr[7:4]), // explicitly shows size mismatch
.byte_en()); // explicitly shows unconnected

endmodule: top

module blockl (input [7:0] data,
input [3:0] addr,
input [3:0] byte_en);

endmodule: blockl

Chapter 2: Declaration and Literal Number Gotchas 43

Gotcha 19: Back-driven ports

Gotcha: I declared my port as an input, and software tools let me accidentally
use the port as an output, without any errors or warnings.

Synopsis. Software tools can ignore the declared direction of a module port,
based on how the port is used.

One of the surprising gotchas in Verilog and SystemVerilog is that a module
input port can be used as an output. If a designer mistakenly assigns a value to
a signal declared as an input port, there will not be any warnings or errors.
Instead, Verilog/SystemVerilog simply treats the input port as if it were a
bidirectional inout port. Similarly, a higher level module can drive values back
into a module’s output port. The output port is simply treated as if it were a
bidirectional inout port, and no errors or warnings are generated.

The Verilog/SystemVerilog standard refers to driving a value back onto a port
declared the opposite direction as port coercion. Port coercion can only occur
when net data types (such as wire) are used on both sides of a port. This is
because net types allow multi-driver functionality. Since back-driven ports are
coerced to inout ports, they become multi-driver ports, which require net types.

Port coercion can be useful. A port is really just a transparent connection between
an external and internal signal. Port coercion allows software tools to connect
modules in the way they are used. It also accurately represents physical hardware,
where “ports” don’t exist; the external and internal signals are the same single
net, and there is no connection of one net to another net. However, port coercion
can also allow unexpected design behavior (gotchas), as illustrated in the
following example.

module top

(output wire {7:0] out,
input wire [7:0} in
)

// net data type
// net data type

buffer8 bl (.y(out), .a(in));
endmodule

module buffers8

(output wire [7:0) y,
input wire ([7:0] a
)i

assign a = y;
endmodule

// net data type
// net data type

// GOTCHA! this should have been

44 Verilog and SystemVerilog Gotchas

In this example, there is a coding error in module buffer$. Instead of assigning
the input value to the output (y = a), the model assigns the output to the input
(a = y). Instead of being a syntax error, software tools can coerce the module’s
ports to be inout ports. Gotcha!

How to avoid this Gotcha using Verilog

Port coercion cannot occur if a variable type (e.g. reg or logic) is used as a port.
Verilog allows output ports to be declared as a variable type, but input ports must
be a net type. Prior to the Verilog-2005 standard, the gotcha in the previous
example could not be completely avoided. Designers had be careful not to
inadvertently assign values to input ports. Some tools, such as lint tools (coding
style checkers) may issue a warning when this occurs, which could help detect
that the gotcha is present.

The Verilog-2005 standard adds a uwire (unresolved wire) net data type. The
uwire type only allows a single driver on a net. Thus, when buffer8 is
connected within module top, a compilation error occurs because the buffers
input port (a) has multiple drivers.

module buffer8
(output uwire [7:0] y, // variable data type
input uwire [7:0] a // variable data type
)i
assign a = y; // ERROR! multiple drivers for a;
endmodule

The functional gotcha has become a compilation error because both the input port
and the continuous assignment write to the uwire a.

How to avoid this Gotcha using SystemVerilog

SystemVerilog allows variables to be used on both input and output ports.
(Bidirectional inout ports must still be a net type, as in Verilog). SystemVerilog
also allows continuous assignments to assign to variables. In addition,
SystemVerilog restricts variables to having a single source, which can be a single
port, a single continuous assignment, or any number of procedural assignments
(which are treated as one source).

In SystemVerilog, module buf fer8, can be coded as follows.

module buffer8
(output logic [7:0] y, // variable data type
input logic [7:0] a // variable data type
)i

assign a = y; // ERROR! multiple sources for a;
endmodule

Chapter 2: Declaration and Literal Number Gotchas 45

The functional gotcha has become a compilation error because both the input port
and the continuous assignment write to the variable a.

Coding guidelines

When using SystemVerilog, the authors recommend that all module inputs and
outputs be declared as logic variable types, unless it is intended to have multiple
drivers on the port (e.g. a bidirectional data bus). By using variables, port
coercion cannot occur, and the coding mistake becomes an error that is detected at
compilation time.

46 Verilog and SystemVerilog Gotchas

Gotcha 20: Passing real (floating point) numbers through ports

Gotcha: I cannot find a way to pass real values from one module to another
using either Verilog or SystemVerilog.

Synopsis. Verilog does not allow real numbers to be passed directly through
ports. SystemVerilog does, but requires a special port declaration.

Verilog has a real variable type, which stores a double-precision floating point
value. The following example attempts to pass real values from one module to
another module through module ports and a top-level netlist.

module real out (output real ro, ...); // ERROR: output is real
endmodule
module real in (input real ri, ...); // ERROR: input is real
endmodule
module top;
real real_connect;
real _out rl (.ro(real_connect)); // ERROR: real connected to port
real_in r2 (.ri(real_connect)); // ERROR: real connected to port
endmodule

The gotcha is that it is illegal in Verilog to pass real numbers through ports.

How to avoid this Gotcha using Verilog

In Verilog, the only way to pass floating point values through ports is by using a
pair of built-in system functions to convert real numbers to a format that can be
passed through ports. The numbers are then converted back to real in the
receiving module. These functions are $realtobits and $bitstoreal.

module real_out (output wire [63:0] net_real out); // vector output

real r;
assign net_real out = $realtobits(r); // convert real to vector

endmodule

module real_in (input wire [63:0] net_real_in); // vector input
real r;
always @ (net_real_ in)

r = $bitstoreal (net_real_in): // convert vector to real

endmodule

Chapter 2: Declaration and Literal Number Gotchas 47

module top;
wire [63:0] net_real; // net types used in netlist
real out ro (.net_real out(net_real));
real _in ri (.net_real_in(net_real));

endmodule

How to avoid this Gotcha using SystemVerilog

SystemVerilog allows floating point values to be passed directly through ports
without having to convert the real values to and from bit vectors. However, the
SystemVerilog syntax is not intuitive. An output port of a module can be
declared as a real (double precision) or shortreal (single precision) type, but
input ports must be declared with a keyword pair, var real or
var shortreal.

module real out (output real r); // output is real variable type
endmodule
module real_in (input var real r); // input is real variable type
endmodule
module top;
real r; // variable types can be used in netlist
real out ro (.r);

real in ri (.r);
endmodule

A closely related gotcha involving how tools implement real ports is covered in
Gotcha 101 on page 208.

Chapter 3
RTL Modeling Gotchas

Gotcha 21: Combinational logic sensitivity lists with function calls

Gotcha: My combinational logic seemed to simulate OK, but after synthesis,
the gate-level simulation does not match the RTL simulation.

Synopsis: If combinational logic calls a function, then the combinational
sensitivity list must include signals that the function reads. @* does not infer
sensitivity to values read by functions called from combinational logic.

Synthesizable RTL modeling style requires that Verilog always procedural
blocks have an edge sensitive timing control (the @ token) following the always
keyword. This time control is referred to as the block’s sensitivity list,

always @(a, b) begin // OK, sensitivity list complete
sum = a + b;

end

always @(a, b) begin // OK, sensitivity list complete
prod = mult(a, b); // call function that reads a, b

end

always G(a, b) begin // GOTCHA! sensitivity list not complete
out = sel? sum: prod ; // missing sel

end

function [15:0] mult (input [7:0] m, n);
mult = m * n;
endfunction

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using smail
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

50 Verilog and SystemVerilog Gotchas

When modeling combinational logic, if the sensitivity list is not complete, then
the outputs of the block will not be updated for all possible input changes. This
behavior models a latch in simulation. However, synthesis will assume a
complete sensitivity list and build combinational logic instead of a latch. The
simulation results of the RTL model and the synthesized gate-level model will not
match. Gotcha!

In the simple examples above, it is easy to manually code a complete sensitivity
list, and to see if something is missing. Real designs are not always that simple. A
complex decoder, for example, could read several dozen signals, each and every
one of which must be listed in the sensitivity list. A very common coding gotcha
occurs when a designer, in the process of implementing a design, adds another
statement to the complex decode logic that reads an additional variable, and
forgets to add that additional signal to the sensitivity list. The functional problem
that results can be very difficult to detect and debug. Gotcha!

How to avoid this Gotcha using Verilog

Verilog has an @* wildcard sensitivity list that infers a complete sensitivity list for
both simulation and synthesis—most of the time. The @* wildcard will
automatically be sensitive to any nets or variables that are read in the always
procedural block, including any nets or variables that are passed to a function
input. Using @* will fix the gotcha in the example above (either @* or @ (*) can
be used; they are equivalent).

always @* begin // OK, infers @(a, b)
sum = a + b;
end
always @* begin // OK, infers @(a, b)
prod = mult(a, b); // call function that reads a, b
end
always @* begin // OK, infers @(sel, sum, prod)
out = sel? sum: prod ;
end

function [15:0} mult (input [7:0] m, n);
mult = m * n;
endfunction

However, @* has a subtle gotcha that is not widely known. It only infers
sensitivity to signals directly referenced in the always block. It will not infer
sensitivity to signals that are externally referenced in a function that is called
from the always block. That is, the @* will only be sensitive to the signals passed
into the function or task. The following example illustrates this gotcha:

Chapter 3: RTL Modeling Gotchas 51

always @* begin // GOTCHA! infers Q(a, b)
prod = mult(a, b); // call function that reads a, b, max_rtn
end

function ({15:0} mult (input [7:0] m, n);
mult = m * n;
if (mult > max_rtn) // reference to external variable
mult = max_rtn;
endfunction

In the preceding example, the sensitivity list inferred by @* will not be complete,
and therefore will not correctly represent combinational logic in RTL simulations.
Synthesis will assume a complete sensitivity list, leading to a mismatch in RTL
simulation versus the gate-level simulation. Gotcha!

How to avoid this Gotcha using SystemVerilog

SystemVerilog has two specialized procedural blocks that infer a complete
sensitivity list, always_comb and always_latch (there is also an always_££
procedural block for sequential logic). The always_comb and always_latch
procedural blocks will descend into function calls to infer the sensitivity list.

always_comb begin // OK, infers @(a, b)
sum = a + b;
end
always_comb begin // OK, infers @(a, b, max rtn)
prod = mult(a, b); // call function that reads a, b, max_rtn
end
always_comb begin // OK, infers @(sel, sum, prod)
out = sel? sum: prod ;
end

function [15:0] mult (input [7:0] m, n};
mult = m * n;
if (mult > max_rtn) // reference external variable
mult = max_rtn;
endfunction

Note that always_comb and always_latch do not descend into task calls. If a
synthesizable task-like subroutine is required, a SystemVerilog void function
should be used.

52 Verilog and SystemVerilog Gotchas

Gotcha 22: Arrays in sensitivity lists

Gotcha. I need my combinational logic block to be sensitive to all elements of
a RAM array, but the sensitivity list won t trigger at the correct times.

Synopsis: It is not straightforward to explicitly specify a combinational logic
sensitivity list when the combinational logic reads values from an array.

A subtlety that is not well understood is combinational logic sensitivity when the
combinational block reads a value from an array. For example:

logic [31:0] mem_array [0:1023]; // array of vectors

always @(/* WHAT GOES HERE? */) // want combinational logic
data = mem_arrayladdr];

In order to accurately model true hardware combinational logic behavior, what
should the sensitivity include? Should the logic only be sensitive to changes in
addr, or should it also be sensitive to changes in the contents of mem_array
being selected by addr? If sensitive to changes in the contents of mem_array,
which address of the array?

The answer, in actual hardware, is that data will continually reflect the value that
is currently being selected from the array. If the address changes, data will
reflect that change. If the contents of the array location currently being indexed
change, data will also reflect that change.

The problem, and gotcha, is that this behavior is not so easy to model at the RTL
level, using an explicit sensitivity list. In essence, the sensitivity list only needs to
be sensitive to changes on two things: addr, and the location in mem_array
currently selected by addr. But, an explicit sensitivity list needs to be hard-coded
before simulation is run, which means the value of addr is not known at the time
the model is written. Therefore, the explicit sensitivity list needs to be sensitive to
changes on any and all locations of mem_array, rather than just the current
location.

To be sensitive to the entire array, it would seem reasonable to write:

always @(addr or mem_array) // ERROR! illegal reference to array
data = mem _arrayladdr];

Unfortunately, the example above is a syntax error. Neither Verilog nor
SystemVerilog allow explicitly naming an entire array in a sensitivity list. Only
explicit selects from an array can be listed. For example:

always @(addr, mem_array[0], mem array[l], mem_array([2], ...)
data = mem_array(addr];

Chapter 3: RTL Modeling Gotchas 53

This example will work, but it is not practical to explicitly list every array
location. Even the relatively small one-dimensional array used in this example,
which has 1024 addresses, would be tedious to code.

What about the following example? Will it be sensitive to both addr and the
value of the mem_array location currently selected by addr?

always @(mem array[addr]) // GOTCHA! not sensitive addr
data = mem_array[addr];

The answer is...It almost works. The example above is sensitive to a change in
value of mem_array at the location currently indexed by addr. However, it is not
sensitive to changes on addr. If addr changes, data will not be re-evaluated to
reflect the change. Gotcha!

How to avoid this Gotcha

There are three ways to properly model combinational logic sensitivity when
reading from an array. The best way is to use Verilog’s always @* or
SystemVerilog’s always_comb to infer the sensitivity list. Both constructs will
infer a correct sensitivity list. Using always_comb has an added advantage of
triggering once at simulation time zero, even if nothing in the sensitivity list
changed. This ensures that the outputs of the combinational logic match the
inputs at the beginning of simulation.

always @* // OK, infers @(addr, mem array[addr])
data = mem array(addr];

always_comb // OK, infers @(addr, mem_array[addr])
data = mem_arrayaddr];

The Verilog-1995 solution to this gotcha is to explicitly specify a sensitivity list
that includes the select address and an array select with that address. For example:

always @(addr, mem_array[addr]) // OK, this works correctly
data = mem_arrayladdr];

Another way to avoid this gotcha is to use a continuous assignment instead of a
procedural block to model the combinational logic. This will work correctly, but
has the limitation that continuous assignments cannot directly use programming
statements.

assign data = mem array(addr]; // This works correctly

54 Verilog and SystemVerilog Gotchas

Gotcha 23: Vectors in sequential logic sensitivity lists

Gotcha: My always block is supposed to trigger on any positive edge in a
vector, but it misses most edges.

Synopsis: A sequential logic sensitivity list triggers on changes to the least
significant bit of the vector.

A sensitivity list can trigger on changes to a vector, which, in the right context, is
useful and important.

logic [15:0) address, data;

always @(address, data) // OK: trigger on change to
// any bit of vectors

There is a gotcha if the sensitivity list contains a posedge or negedge edge
qualifier on a vector. In this case, the edge event will only trigger on a change to
the least significant bit of the vector.

always @ (posedge address) // GOTCHA! triggering on
// specific edge of vector

How to avoid this Gotcha

The posedge and negedge event qualifiers serve as filters. Consider the
following example:

always Q@ (posedge clock or negedge reset_n)

The sensitivity list triggers on a rising transition of clock and filters out all
falling transitions on clock. The sensitivity list also triggers whenever reset_n
has a falling transition, but any rising transition of reset_n is filtered out.

When used with 1-bit signals such as a clock or reset, the behavior of the
posedge and negedge event qualifiers accurately represents hardware. Testing
for a positive or negative edge of a vector, however, does not make sense in
hardware. Consider the following:

logic [3:0] data; // 4-bit vector
initial begin
#1 data = 5; // data changed from 4'bxxxx to 4'b0101

#1 data = 3; // data changed from 4'b0101 to 4'b0011
end

Chapter 3: RTL Modeling Gotchas 55

On a 1-bit signal, a change from x to 1 is a positive edge, and from x to 0 is a
negative edge. In the code above, when data changes from 4/bxxxx to
4'b0101, both scenarios occur. Should always @ (posedge data) trigger
because a rising transition occurred, or not trigger because a falling transition
occurred? Or should the block not trigger at all because posedge filtered out the
falling transitions and negedge filtered out the rising transitions? Similarly,
when data changes from 4/b0101 to 4'b0011, both rising and falling
transitions occur on the same signal.

Verilog’s language rule is well-defined for this situation. By only evaluating the
least significant bit of the vector, there is no ambiguity on how simulation will
behave when multiple bits change at the same time. This rule, however, is not
obvious, and if different behavior was intended or expected, then a gotcha has
occurred.

To avoid this gotcha, only single-bit expressions should be used with the
posedge and negedge edge event qualifiers. When transitions on a vector need
to be evaluated, there are some coding tricks that avoid the gotcha of trying to
sample the entire vector. Some examples follow.

To trigger if any bit of vector has a rising transition:

always Q@ (posedge data[0], // rising edge of each bit
posedge data[l],
posedge data[2],
posedge data{3])

To trigger if a specific bit of vector has a rising transition, and ignores transitions
on all other bits:

always @ (posedge data[3)) // rising edge of specific bit only
To trigger if a vector transitions from zero to any non-zero value:
always @(posedge |data) // rising edge of unary OR of all bits

To trigger if a vector transitions from any non-zero value to zero:

always Q@ (negedge |data) // falling edge of unary OR of all bits
Observe that each of these examples is triggering on a 1-bit expression or a list of
1-bit expressions. This concept can be extended to other types of operations, so

long as the final expression monitored by posedge or negedge is a 1-bit
expression.

A related gotcha involving operations in sensitivity lists is Gotcha 24 on page 56.

56 Verilog and SystemVerilog Gotchas

Gotcha 24: Operations in sensitivity lists

Gotcha: My sensitivity list should trigger on any edge of a or b, but it misses
some changes.

Synopsis: Operations in sensitivity lists only trigger on changes to the
operation result.

Occasionally, an engineer might mistakenly use the vertical bar (|) OR operator
instead of the ox keyword as a delimiter in a sensitivity list. The code compiles
without any errors, but does not function as expected. Gotcha!

The @ symbol is typically used to monitor a list of identifiers used as event
triggers for a procedural block sensitivity list. The Verilog standard also allows @
to monitor an event expression.
always @(a or b) // "or" is separator, not operator

sum = a + b;
always @(a | b) // GOTCHA! "|" is operator

sum = a + b;

always @(a && b) // GOTCHA!
sum = a + b;

always @(a == b) // GOTCHA!
sum = a + b;

When an operation is used in a sensitivity list, the @ token will trigger on a change
to the result of the operation. It will not trigger on changes to the operands. In the
always @ (a | b) example above, if a is 1, and b changes, the result of the OR
operation will not change, and the procedural block will not trigger.

Why does Verilog allow this gotcha? Using expressions in the sensitivity list can
be useful for modeling concise verification monitors or high-level bus-functional
models. An example usage might be to trigger on a change to a true/false test,
such as always @ (addressl != address2). The procedural block sensitivity
list will trigger if the expression changes from false to true (0 to 1), or vice versa.

How to avoid this Gotcha

When modeling combinational logic, the best way to avoid this gotcha is to use
the SystemVerilog always_comb procedural block, which automatically infers a
correct sensitivity list. This eliminates any possibility of typos or mistakes in
combinational sensitivity lists. The Verilog @* can also be used, but this has its
own gotcha (see Gotcha 21 on page 49). When modeling sequential logic,
engineers need to be careful to avoid using operations within a sensitivity list.

Chapter 3: RTL Modeling Gotchas 57

Gotcha 25: Sequential logic blocks with begin...end groups

Gotcha: The clocked logic in my sequential block gets updated, even when no
clock occurred.

Synopsis: Resettable sequential procedural blocks with a begin..end block can
contain statements that execute asynchronous to the clock.

A common modeling style is to place a begin...end block around the code in
initial and always procedural blocks, even when the procedural block
contains just one statement. Some companies even mandate this modeling style.
For example:
always @(state_e) begin
nstate_e = HOLD; // first statement in block
case (state_e) // second statement in block
HOLD: if (ready) nstate e = LOAD;
LOAD: if (done) nstate e = HOLD;
endcase
end

This modeling style has a gotcha when modeling resettable sequential logic such
as flip-flops. A synthesis requirement is that a resettable sequential procedural
block should only contain a single if...else statement, though each branch of
the if..else might contain multiple statements. An example of a correct
sequential procedural block is:

alwvays @ (posedge clock or negedge reset n) // good code
if (!reset_n) state_e <= RESET;
else state e <= nstate _e;

The purpose of begin...end is to group multiple statements together so that they
are semantically a single statement. If there is only one statement in the
procedural block, then the begin...end is not required. In a combinational logic
procedural block, specifying begin...end when it is not needed is extra typing,
but does not cause any gotchas.

When modeling resettable sequential logic, however, adding begin...end can
lead to functional gotchas in the model. A resettable sequential block should only
contain a single if..else statement. Adding begin...end allows additional
statements in the block that are functionally incorrect. For example:

always @(posedge clock or negedge reset_n) begin

if (!reset_n) state_e <= RESET; // first statement
else state_e <= nstate e;
fsm out <= decode_func(nstate_e): // GOTCHA! second statement

end

58 Verilog and SystemVerilog Gotchas

This is a gotcha where Verilog/SystemVerilog allows engineers to prove what
won’t work in hardware, If the simulation resuits are not analyzed carefully, it
may appear that £sm_out behaves as a flip-flop that is set on a positive edge of
clock. Gotcha!

In the example above, £sm_out is not part of the if...else decision for the reset
logic. This means:

1. The £sm_out sequential block output does not get reset by the reset logic.

2. When reset goes active, the £sm_out assignment will be executed asynchro-
nously to the clock.

Both 1 and 2 above are not flip-flop behavior. Because of this, synthesis tools will
not allow statements outside of an if...else statement in resettable sequential
procedural blocks. The example above can be simulated and proven to not work
correctly, but it cannot be synthesized.

How to avoid this Gotcha

Some engineers prefer to automatically add begin...end to every procedural
block, even when there is only one statement in the block. This style should be
discouraged! Using begin...end is not appropriate for resettable sequential
procedural blocks, and leads to the gotcha described above.

A better modeling guideline is to mandate that begin...end nof be used in
sequential procedural blocks that have reset logic. The following example will
report a compilation error, instead of allowing the incorrect code to simulate.

always @ (posedge clock or negedge reset n) // no begin

if (!reset_n) state_e <= RESET; // first statement
else state_e <= nstate_e;
fsm_out <= decode_func(nstate_e); // ERROR instead of gotcha!

The only time begin...end should be used in resettable sequential procedural
blocks is within the if...else branches, as follows:

always @ (posedge clock or negedge reset_n) // no begin

if (!reset_n) begin // multiple statements in if branch
ql <= 1'b0;
q2 <= 1'b0;

end

else begin // multiple statements in else branch
ql <= di1;
q2 <= d2;

end

A related potential gotcha is when begin...end is used in the i£...else branches
of a resettable sequential device, as described in Gotcha 26 on page 59.

Chapter 3: RTL Modeling Gotchas 59

Gotcha 26: Sequential logic blocks with resets

Gotcha: Some of the outputs of my sequential logic do not get reset.

Synopsis: Resettable sequential procedural blocks can incorrectly reset only
some of the outputs.

A syntactically legal, but functionally incorrect, flip-flop model is illustrated
below:

always @{posedge clock or negedge reset n)
if (!reset n) begin

ql <= 0;

q2 <= 0;

q3 <= 0; // GOTCHA! g4 is missing from this branch
end
else begin

ql <= ~qg4;

q2 <= ql;

q3 <= g2;

q4 <= q3;
end

The problem with the example above is that g4 is not part of the reset logic, but is
part of the clocked logic. Because g4 is not reset, it is not the same type of flip-
flop as q1, g2 and g3.

In the RTL model above, what will happen to q4 on a reset in simulation? The
answer is that g4 will retain its old value. If a clock occurs while reset is active,
q4 is neither reset nor clocked. This behavior represents a gated or disabled clock
on g4 during reset. Synthesis will most likely create an ugly gate-level
implementation of this disabled clock, which is probably not what the designer
intended. Gotcha!

A closely related gotcha is if the reset branch assigns to some variables that are
not assigned in the clock branch. This will also not behave as correct sequential
logic, and is probably not what the designer intended.

How to avoid this Gotcha

To avoid this gotcha requires careful modeling. Designers need to make sure that
the same variables are assigned values in both branches of the i £...e1se decision.
SystemVerilog cross coverage can be used to verify that all variables are assigned
values when reset occurs and when clock occurs. Software tools such as a lint
checkers (coding style checkers) and synthesis tools might warn that the two
branches do not assign to the same variables.

60 Verilog and SystemVerilog Gotchas

Gotcha 27: Asynchronous set/reset flip-flop for simulation and synthesis

Gotcha: When I code an asynchronous set/reset D-type flip-flop following
synthesis coding rules, my simulation results are sometimes wrong.

Synopsis: The coding style required by synthesis to model an asynchronous
set/reset D-type flip-flop has a simulation race condition. When the race
condition is fixed, the code will not synthesize.

Synthesis tools have very specific coding rules for modeling sequential logic
devices such as flip-flops, so that, when the code is read into the tool, the correct
flip-flop type can be selected. One of the rules for an always block sensitivity
list is that, when one item in the list has an edge qualifier (posedge or negedge),
all items in the sensitivity list must have an edge qualifier. In the case of an
asynchronous set/reset D-type flip-flop, the following sensitivity list is required
by synthesis:

always_ff @ (posedge clk, negedge rst_n, negedge set n)

The modeling within the always block necessitates certain coding styles to ensure
the engineer’s intent is captured. For a set/reset D-type flip-flop, the set/reset
functionality is modeled using an if..else...if...else priority encoding style
to prioritize the set and the reset. The model of a synthesizable set/reset set/reset
D-type flip-flop model is:

always_ff @(posedge clk, negedge rst_n, negedge set n)

if (!rst n) // reset has priority over set
q_out <= 1'b0; // reset assignments

else if (!set_n)
q out <= 1'bl; // set assignments

else
q_out <= data in; // d input assignment

This model synthesizes as intended. However, the model does not work correctly
for all simulation conditions. Consider rst_n going low. While rst_n is low,
set_n goes low. With both rst_n and set_n low at the same time, the flip-flop
will be held in reset, because of the priority coding of reset and set in the model.
Everything is OK so far. Next, rst_n goes high and set_n stays low. Since the
sensitivity list is only sensitive to edges, and is monitoring only the negedge of
rst_n, the release of rst_n will not trigger the sensitivity list. This means that
the flip-flop will be held in reset while only the set signal is active. Gotcha/

This gotcha only exists with synthesizable asynchronous set/reset flip-flops, and
will only be evident until the next clock. The next clock will cause the if...else
decisions to be re-evaluated and transition the flip-flop to its set state.

Chapter 3: RTL Modeling Gotchas 61

The problem is that actual asynchronous set/reset inputs are level sensitive, so
when the reset is removed, the active set takes over and drives the flip-flop to its
set level. In the model, however, synthesis rules require the sensitivity list trigger
on the leading edges of the set/reset inputs, causing the simulation gotcha.

How to avoid this Gotcha

This gotcha is a result of the synthesis-imposed coding style for a set/reset d-type
flip-flop. In order to model accurate simulation behavior, a level-sensitive,
combinational logic block must be added that overrides the synthesizable set/
reset logic in simulation. The override is done using the force and release
statements that are normally reserved for verification tests. This simulation-
specific additional code must be hidden from synthesis by using conditional
compilation.

‘ifndef SYNTHESIS // start non-synthesizable simulation code
always @*
if (rst_n && !set n) force q out = 1'bl;

else release q_out;
‘endif // start synthesizable and simulatable code
always_ff @(posedge clk, negedge rst_n, negedge set n)
if (lrst_n) // reset has priority over set
q_out <= 1/b0; // reset assignments
else if (!set n)
q_out <= 1'bl; // set assignments
else

q_out <= data_in; // d input assignment

62 Verilog and SystemVerilog Gotchas

Gotcha 28: Blocking assignments in sequential procedural blocks

Gotcha: My shift register sometimes does a double shift in one clock cycle.

Synopsis: Blocking assignments in sequential logic is syntactically legal, but
usually the wrong functionality.

Verilog has two types of assignments: Blocking assignments (e.g. a = b) have the
simulation behavior of hardware combinational logic. Nonblocking assignments
(e.g. g <= d) have the behavior of hardware sequential logic with a clock-to-Q
propagation.

The following example illustrates a very common Verilog coding gotcha. The
example uses a blocking assignment where a nonblocking assignment would
normally be used. The use of blocking assignments in a clocked procedural block
is not a syntax error. The example proves that a shift register will not work if a
flip-flop does not have a clock-to-Q delay.

always @ (posedge clock) begin // NOT a shift register

ql = d; // GOTCHA! load d into gl without clock-to-Q delay
q2 = ql; // load gl into g2
end

Why does Verilog allow blocking assignments in sequential procedural blocks if
they result in simulation race conditions? For two reasons. One reason is that if
the sequential logic block uses a temporary variable that is assigned and read
within the block, that assignment needs to be made with a blocking assignment. A
second reason is the underlying philosophy of Verilog that a hardware description
and verification language needs to be able to prove what will work correctly—
and what won’t work correctly—in hardware,

In the example above, if q1 and g2 were positive edge triggered flip-flops, then
this example would represent a shift register, where d is loaded into flip-flop g1
on a positive edge of clock, and then shifted into g2 on the next positive edge of
clock. Using simulation, however, it can be proven that this example does not
behave as a shift register. Verilog’s blocking assignment to g1 “blocks” the
evaluation of the statement that follows it, until the value of g1 has been updated.
This means that the value of d passes directly to g2 on the first clock edge, rather
than being shifted through a flip-flop with a clock-to-Q delay. In other words, the
example has proven that a flip-flop without a clock-to-Q propagation behavior
will not function properly in hardware.

As an aside, the synthesis tool will recognize that g1 behaves like a buffer, rather
than a flip-flop. If the value of q1 is not used outside of the procedural block, then
synthesis will remove g1 from the design, and d will be directly loaded into 2.

Chapter 3: RTL Modeling Gotchas 63

How to avoid this Gotcha

As a general rule, engineers should adopt a modeling style that requires the use of
nonblocking assignments in sequential procedural blocks. Lint tools (coding style
checkers) can help enforce this coding style.

always @ (posedge clock) begin // NOT a shift register
ql <= d; // OK, load d into gl with clock-to-Q delay
q2 <= ql; // OK, load previous gl into g2

end

NOTE: There are exceptions to this rule, where a blocking assignment is needed
within a sequential procedural block. Only by understanding how blocking and
nonblocking assignments work, will engineers know when to correctly make an
exception to the rule. One such exception is shown in Gotcha 29 on page 64.

64 Verilog and SystemVerilog Gotchas

Gotcha 29: Sequential logic that requires blocking assignments

Gotcha: I'm following the recommendations for wusing nonblocking
assignments in sequential logic, but I still have race conditions in simulation.

Synopsis: When modeling clock dividers, the RTL synthesis design guidelines
don't always apply.

RTL modeling guidelines recommend that nonblocking assignments should be
used for modeling sequential assignments. In a zero-delay RTL model these
guidelines help prevent simulation race conditions. A race condition occurs when
a value is read at the same moment in time in which it is changing.

These RTL coding guidelines are intended for modeling data flow and data
manipulation. These RTL guidelines for using nonblocking assignments do not
apply to non-RTL models. When the guidelines are applied to clock generators
such as clock dividers and PLLs, the guidelines may actually cause race
conditions in the generated clocks. The following code illustrates this problem:

always @ (posedge clk)
if (!rstn) clk_dividedZ <= 0;
else clk_divided2 <= ~clk_divided2; // GOTCHA!
// delay update to after delta

always @(posedge clk)
if (!rstn) outl <= 0;
else outl <= inl; // delay update to after delta

always @(posedge clk_divided2)
if (!rstn) out2 <= 0;
else out2 <= outl; // race condition with outl

Nonblocking assignments represent the behavior of a flip-flop clock-to-Q delay,
but with zero time. To do this, a nonblocking assignment breaks the assignment
into two steps: first, evaluate the right-hand side expression, and second, after a
delta, update the left-hand side. During the delta, other statements scheduled for
the current simulation time are executed. This two-step process is critical for
preventing read/write race conditions in zero-delay RTL models.

In the clock divider example above, however, the nonblocking assignments cause
a race condition, instead of preventing it. The basic sequence of events that occur
are:

1. Advance the simulator clock. If a positive edge of clock, then:

* Evaluate ~clk_divided2 and schedule c1k_divided?2 to change after a
zero-delay delta

+ Evaluate inl and schedule out1 to change after a zero-delay delta

Chapter 3: RTL Modeling Gotchas 65

2. After a zero-delay delta, in any order:
+ Update clk_divided2 with its new value. If a positive edge of
clk_divided2 occurred:
» Evaluate out1 and schedule out?2 to change after a second delta.

+ Update outl with its new value.
3. Ifapositive edge of c1k_divided2 occurred:

* Evaluate out1 and schedule out2 to change after a second delta.
4. After the second zero-delay delta:

+ Update out2 with its new value.
5. Advance the simulation time clock.

The race condition in this sequence of events is subtle, but real. It occurs in step 2,
when clk_divided?2 is updated. The update could cause a positive edge, which
then triggers step 3, to sample outl. But, has outl been updated yet?

The answer is maybe, and maybe not. This is the race condition! The value of
outl is being sampled at the same time, and in the same delta, in which the value
is being updated. Simulators are permitted to execute this in a read-then-write or a
write-then-read event order. Gotcha!

How to avoid this Gotcha

To avoid this gotcha, it is necessary to code the clock divider so that outl will
always be evaluated before the delta in which out 1 will change. This can be done
a few ways, but perhaps the easiest is to use a blocking assignment for modeling
the clock divider.

always @ (posedge clk)

if (!rstn) clk_divided2 = 0;
else clk divided2 ~clk_divided2; // OK, immediate update

Blocking assignments update the left-hand side immediately, without a clock-to-
Q delta. Using a blocking assignment will cause an immediate event on
clk_divided2, which, if a positive edge, will immediately trigger the
sensitivity list of the always @ (clk_divided?2) block. Thus, the sampling of
the right-hand side of out1 is guaranteed to occur before the delta in which out1
will change.

This modeling style will synthesize correctly because the clock divider does not
receive any data input from other sources, nor does it source data to other always
blocks.

66 Verilog and SystemVerilog Gotchas

Gotcha 30: Nonblocking assignments in combinational logic

Gotcha: My RTL simulation locks up and time stops advancing.

Synopsis: Nonblocking assignments in a combinational logic block can cause
infinite loops that lock up simulation.

Verilog’s nonblocking assignment is intended to model the behavior of sequential
logic clock-to-Q delay. A nonblocking assignment evaluates its right-hand side
expression immediately, and schedules a change on the left-hand side variable
after a clock-to-Q delta within the current moment in time. Any statements
following the nonblocking assignment statement are “not blocked”, and will be
executed prior to the delta in the current time. This delta between evaluation and
change behaves as a clock-to-Q delay, even in a zero-delay RTL model.

The following example uses nonblocking assignments incorrectly, by placing
them in a combinational logic procedural block. The example can potentially lock
up simulation in the time step in which m or n changes value.

always @(m, n) // combinational sensitivity list (no clock edge)
m<=m+ n; // GOTCHA! schedules change after clock-to-Q delta

The always block triggers when either m or n changes value. The result of m + n
is calculated, and the left-hand side of the nonblocking assignment, m, is
scheduled to be updated after a zero-delay clock-to-Q delta. During this delta, the
nonblocking assignment does not block the execution flow of the procedural
block, and so the block returns to its sensitivity list to wait for the next change on
m or n. After the clock-to-Q delta, the value of m is updated. This change will once
again trigger the sensitivity list, repeating the evaluation and update of m after a
clock-to-Q delta. As long as the result of m + n results in a new value of n,
simulation will be stuck in the current simulation time, continually scheduling
changes to m, and then triggering on the change. Gotcha!

There are actually two gotchas in the preceding example. One is that simulation
locks up as soon as m or n changes value the first time (assuming n is not 0). The
second gotcha is that this is actually a bad design, that would likely cause
instability when implemented in gates. This second gotcha is an example of the
underlying philosophy of Verilog, which is that engineers should be permitted to
model designs that won’t work correctly, in order to analyze the behavior of the
incorrect hardware. In this case, the model represents combinational logic with a
zero-delay feedback path.

This example is not realistic because of the combinational feedback loop with the
output, m, also in the input sensitivity list. The example was contrived to show the
gotcha of nonblocking assignments in combinational logic in a small circuit.

Chapter 3: RTL Modeling Gotchas 67

The following example is based on code from a real design that can also lock up
simulation—and did—due to the use of nonblocking assignments within
combinational logic blocks.

module chip (...)
always @(a or ...) begin // a combinational process
b <= 1'b0; // nonblocking assignment to b

case ({statel)
STATE G: begin
b<=c; // nonblocking assignment to b

end
endcase
end

// many lines of code later...

always @(b or ...) begin // another combinational process
a <= 1'b0; // nonblocking assignment to a

case (state2)
STATE_H: begin

a <= d; // nonblocking assignment to a
end

endcase
end
endmodule: chip

There are three Verilog/SystemVerilog event scheduling rules that are important
to understand in the example above. This book summarizes those rules, and
leaves it to the reader to ponder how this can lead to locking up simulation,

+ Events scheduled from parallel procedural blocks (the two always blocks in
the example above) can be scheduled in any order, which means the parallel
events are allowed to be interleaved.

* Events scheduled between begin...end are executed in the order listed in the
source code, including nonblocking assignments.

* In a zero-delay always procedural block, nonblocking assignments do not
update their left-hand side variables until the procedural block has returned to
its sensitivity list at the beginning of the block.

68 Verilog and SystemVerilog Gotchas

How to avoid these Gotchas using Verilog

The simulation lock-up problem can be fixed by changing the assignment
statement from nonblocking to blocking, blocking the execution of the rest of the
procedural block until the left-hand side variable has its new value. In the
example below, a blocking assignment ensures that m will have a new, stable
value before the procedural block returns to its sensitivity list, and thus will not
re-trigger the procedural block.

always @(m, n) // combinational sensitivity list (no clock edge)
m=m+ n; // OK, immediate update to m with no clock-to-Q delta

This change only fixes the lock-up in simulation. It does not fix the second gotcha
of an RTL model that does not represent good combinational logic design. There
are two ways to fix this design problem, depending on whether the intent is to
model a simple combinational logic adder or an accumulator (an adder that stores
its output, allowing that output to feedback to the adder input).

How to avoid these gotchas using SystemVerilog

SystemVerilog comes to the rescue with specialized always procedural blocks.
The always_comb and always_££ constructs can be used to help avoid this
coding error gotcha. These constructs do more than just document what type of
logic is intended. The always_comb procedural block infers a proper
combinational logic sensitivity list and also enforces some coding rules that help
ensure proper combinational logic is modeled. One of these rules is that only one
source can write to a variable. In the code m <= m + n;, mis being used as both
an input and an output of the adder. If any other part of the design also writes a
value to m (as an input to the adder), it is a syntax error. In the context of a full
design, the following code causes a syntax error, instead of locking up simulation.

always_comb // inferred combinational logic sensitivity list
m <=m + n; // PROBABLE SYNTAX ERROR: no other process can
// wWrite to m

Following is an example error message generated by one simulator when
always_comb is used, and some other source also generates values for the adder
inputs.

Variable "m" driven by invalid combination of procedural drivers.

Variables written on left~hand of "always comb" cannot be
written to by any other processes.

If the intent is to model a simple adder, then a blocking assignment should be
used, and the output of the adder should be assigned to a different variable, to
prevent the combinational logic feedback loop. For example:

Chapter 3: RTL Modeling Gotchas 69

always_comb // inferred combinational logic sensitivity list
y=m+n; // immediate update to y with no clock-to-Q delay

If the intent is to model an accumulator with a registered output, then a clock
needs to be specified in the procedural block sensitivity list. The clock edge
controls when the feedback path can change the adder input. The SystemVerilog
always_££ procedural block helps document that the intent is to have clocked
sequential logic.

always ff @(posedge clk) // sequential sensitivity list with clock
m<=m+ n; // scheduled change to m after clock-to-Q delta

70 Verilog and SystemVerilog Gotchas

Gotcha 31: Combinational logic assignments in the wrong order

Gotcha: Simulation of my gate-level combinational logic does not match RTL
simulation.

Synopsis: Synthesis might optimize away inferred storage in combinational
logic.

Verilog and SystemVerilog require that the left-hand side of procedural
assignments be variable types. In simulation, vartables have storage, and preserve
values between assignments. In hardware, combinational logic devices do not
have storage. If the designer’s intent is to model combinational logic, then the
RTL model should not rely on the storage of the simulation variables. That is,
when the combinational block is entered, all outputs of the combinational logic
must be assigned a value. If a value is not assigned, then the output is relying on
the variable’s storage from a previous assignment.

Generally, a synthesis tool is very good at detecting if a combinational logic
procedural block is relying on simulation storage. When variable storage is used,
the synthesis tool will add latches to the gate-level implementation to preserve
that storage. In the following example, however, synthesis tools do not detect that
the RTL model is using the storage of the variables.

module bad_comb_logic (input wire inl,
output reg outl, out2
)i
always Q@(inl) begin
out2 = outl; // GOTCHA: out2 is first stores last ocutl value
outl = inl; // second, outl is updated to new value of inl
end
endmodule

In simulation, variable out2 is assigned the current value of variable out1,
which is the value of inl stored the previous time the procedural block was
evaluated. After out2 has saved the current value of outl, variable outl is
updated to reflect the new value of input inl. The functionality represented by
this RTL model is:

inl - outl

Stored value of

————» out2

previous inl

Chapter 3: RTL Modeling Gotchas 71

When this example is synthesized, the following gate-level functionality is
created:

inl P outl

- outl

Simulation of the post-synthesis functionality might not match the RTL
simulation functionality. Some synthesis tools will fail to detect that out2 is
reflecting the stored value of out1 (which is the previous value of in1), and do
not implement the RTL functionality. Gotcha!

How to avoid this Gotcha

This coding example is a bad model. The RTL functionality does not match
combinational logic, latched logic, or sequential logic. The problem is that the
model assigns to the two combinational logic outputs in the wrong order, and
therefore creates a dependency on the variable storage. To correct the problem,
the model should be coded as:
always @(inl) begin
outl = inl; // outl is first updated to new value of inl

out2 = outl; // OK, second out2 gets new value of outl
end

72 Verilog and SystemVerilog Gotchas

Gotcha 32: Casez/casex masks in case expressions

Gotcha: My casex statement is taking the wrong branch when there is an
error in the case expression.

Synopsis: Masked bits can be specified on either side of a casez or casex
statement comparison.

Verilog’s casez and casex statements allow bits to be masked out from the case
comparisons. With casez, any bits set to Z or ? are masked out (Z and ? are
equivalent). With casex, any bits set to X, Z or 7 are masked out. These
constructs concisely model many types of hardware, as well as in verification
code. An example of using the wildcard casex statements is:

always_comb begin
casex (instruction) // potential GOTCHA!
4'b0???: opcode = instruction(2:0}; // only test upper bit
4'b1000: opcode = 3'b001;
// decode other valid instructions
default: begin
$display ("ERROR: invalid instruction!");
opcode = 3'bxxx;
end

endcase
end

In the preceding example, the mask bits are set in the first case item, using
4'1077?7. The intent is that, if the left-most bit of instruction is 0, the other bits
do not need to be evaluated. After all possible valid instructions have been
decoded, a default branch is used to trap a design problem, should an invalid
instruction occur.

What case branch will be taken if there is a design problem, and instruction
has the value 4’ bxxxx? The intuitive answer is that the default branch will be
taken, and an invalid instruction will be reported. Gotcha!

The casex and casez statements allow the mask bit to be set on either side of
the comparison. In the preceding example, if instruction has a value of 4’ bxxxx
or 4'bzzzz, all bits are masked from the comparison, which means the first
branch of the case statement will be executed.

How to avoid this Gotcha using Verilog

A partial solution is to use casez instead of casex. In the example above, if a
casez were used, a design problem that causes an instruction of 4’ bxxxx (or
gven just an X in the left-most bit) will not be masked, and an invalid instruction

Chapter 3: RTL Modeling Gotchas 73

will be reported by the default branch. However, a design problem that causes an
instruction of 4’ bzzzz (or just a Z in the left-most bit) will still be masked, and
an invalid instruction will not be trapped.

How to avoid this Gotcha using SystemVerilog

System Verilog offers two solutions to this gotcha. The first solution is a special
one-sided, wildcard comparison operator, ==?, which returns true if its two
operands match in value and false if its two operands do not match. There is also
a '=2? operator, which negates the true/false test result. This wildcard operator
works similar to casex, in that bits can be masked from the comparison using X,
Z, or 7. However, the mask bits can only be set in the left-hand side of the
comparison. In the following example, any X or Z bits in instruction will not
be masked, and the invalid instruction will be trapped.

if (instruction ==? 4'b0???) opcode = instruction{2:0];
else if ... // decode other valid instructions
else begin
$display (“ERROR: invalid instruction!”};
opcode = 3'bxxx;
end

A second solution to the gotcha is the SystemVerilog case () inside statement,
This statement allows mask bits to be used in the case items using X, Z or ?, as
with casex. But, case () inside uses a one-way, asymmetric masking for the
comparison. Any X or Z bits in the case expression are not masked. In the
following example, any X or Z bits in instruction will not be masked, and the
invalid instruction will be trapped:

always comb begin
case (instruction) inside
4'b0???: opcode = instruction[2:0]; // only test upper bit
4'b1000: opcode = 3'b001;
// decode other valid instructions
default: begin
$display (“ERROR: invalid instruction!”);
opcode = 3'bxxx;
end
endcase
end

74 Verilog and SystemVerilog Gotchas

Gotcha 33: Incomplete decision statements

Gotcha: My full_case, parallel case decision statement simulated as I
expected, but the chip does not work.

Synopsis: Incomplete case statements or if...else decision statements can
result in hard-to-detect design errors.

Verilog’s if...else and case statements (including casez and casex) have
some potential gotchas that can result in design problems:

+ It is legal to have incomplete decision statements, where not all possible
selection values have a corresponding decision branch,

+ It is legal to have redundant selection values, where the selection values for
two or more decision branches are true at the same time.

+ Simulation evaluates multi-branch decisions in source code order (priority
decoding), but synthesis might implement the evaluation as parallel decoding.

Verilog/SystemVerilog synthesis tools can use pragmas, which are commands
hidden in comments, to instruct the synthesis tool on how to handle incomplete or
redundant case statements. The synthesis full_case pragma instructs synthesis
to ignore any unspecified decision selection values. The parallel case
pragma instructs synthesis to ignore the possibility of redundant selection values.

The following example illustrates the RTL logic to decode the next state of a
finite state machine. The state variable is 3 bits wide, which can have 8 possible
values. Only three of these values are used by the state machine encoding. The
synthesis full case and parallel case pragmas are used to instruct
synthesis tools that the other § values are not used by the design.

logic [2:0] state, nstate; // 3-bit variables (8 possible values)

always @(state) begin // next state decoder
case (state) //synthesis full case -- GOTCHA!
3’b001: nstate = 3'b010;
3'b010: nstate = 3’b100;
3’b100: nstate = 3'b001;
endcase
end

Note that this example hard codes the state values to make discussion of the
potential gotchas more obvious. The preferred coding style is to define the state
values as local parameter (if using Verilog) or enumerated types (if using
SystemVerilog). The same gotchas can still exist, but won’t be as obvious.

Chapter 3: RTL Modeling Gotchas 75

The example above is an incomplete case statement. There is a decision branch
for only three of the eight possible values of state. The designer has assumed
that since the state encoding is one-hot, the five possible values that were not
specified will never happen. This design assumption has been documented for the
synthesis compiler usinga //synthesis full case pragma.

What happens if a state value of 2°b000 occurs? The synthesis pragma has
instructed synthesis that none of the unspecified values will ever happen.
Therefore the gate-level implementation will most likely not decode the
unspecified values. The logic gates will do something, but the tool, instead of the
designer, has selected what will happen. In RTL simulation, if a selection value
occurs that does not select a branch, then no assignment statements are executed.
The value of the nstate variable in this example is not updated, and just retains
its previous value. Thus RTL simulation will exhibit one behavior if state is
3'b000, and the gate-level implementation will do something different. Gotcha!

A second problem in RTL simulation is that since nstate does not change when
an unspecified selection value occurs, it might not be obvious that an unexpected
state value occurred. The design could appear to be working fine in RTL
simulation, when there is actually a problem in the design. Gotcha, again!

How to avoid this Gotcha in Verilog

With Verilog the only way to avoid this gotcha is to not use the full_case
pragma, and instead explicitly specify what should happen with unexpected
selection values. This can be done using a default branch in the case statement.
In the preceding example, if the default branch assigns a known value to nstate,
the gate-level behavior is well-defined for any unexpected values of state.

case (state)

3'’b001: nstate = 3'b010;
3'b010: nstate = 3'bl00;
3'’bl00: nstate = 3'b001;

default: nstate
endcase

3'b001; // on error, go back to first state

Many Verilog engineers like to use the default branch to assign a value of X.

default: nstate = 3'bxxx; // on error, set nstate to unknown

What will happen in the synthesized gate-level implementation if the default
branch assigns a value of X to nstate? Synthesis treats this assignment the same
as a full_case pragma, meaning the gate-level implementation will do
something, but the designer has given up control of what should happen for
unexpected selection values. The gotcha of a difference between RTL and gate-
level is still there, but the gotcha of not knowing that unexpected state values
occurred in RTL simulation has been avoided.

76 Verilog and SystemVerilog Gotchas

How to avoid this Gotcha in SystemVerilog

SystemVerilog provides the synthesis optimization advantages of the full_case
and parallel case pragmas, and, at the same time, avoids the gotcha of
undetected functional problems in RTL simulation. This is done using two
decision modifiers, unique and priority, that can be specified on either case
statements or if...else...if statements.

For synthesis, unique case is the same as specifying both the full_case and
parallel case pragmas. A priority case is the same as specifying the
full case pragma. The gotcha with the synthesis pragmas is that they only
affect synthesis. They are ignored by simulation. The unique and priority
modifiers are both synthesizable and simulatable, enabling verification that the
instructions to the synthesis compiler are correct.

In simulation, the behavior of unique case is:
* A wamning is issued if the case statement is entered and no branch is taken.

* A waming is issued if the case statement is entered and more than one case
select expression is true. That is, if more than one branch could be taken.

In simulation, the behavior of priority caseis:

* A warning is issued if the case statement is entered and no branch is taken.

For example:

always @ (state) begin // next state decoder
unique case (state)
3’b001: nstate = 3’b010;
3'b010: nstate = 3’b100;
3’b100: nstate = 3'b001;
endcase
end

Using unique case allows the designer to verify that the instructions on how to
synthesize the case statement are correct. The run-time checking can be combined
with SystemVerilog’s constrained random test generation and functional coverage
to prove that unexpected values truly cannot occur, or to warn if they do occur.
Formal verification can also use the unique decision modifier to prove, or
disprove, the designer’s assumptions about the decision statement.

WARNING! All design guidelines for the proper use of full case and
parallel_case still apply with unique case and priority case. That is,
these decision modifiers can be abused, just as the pragmas can be abused.

Additional examples of using unique case and priority case are shown in
Gotcha 34 on page 77 and Gotcha 35 on page 79.

Chapter 3: RTL Modeling Gotchas 77

Gotcha 34: Overlapped decision statements

Gotcha: One of my decision branches never gets executed.

Synopsis: Redundant decision selection values can go undetected in
simulation.

Verilog evaluates a series of 1£...else...if...else decisions in the order in which
the decisions are listed. If a coding error is made, such that two decisions could
both evaluate as true, then only the first branch is executed.

always @* begin

if (sel == 2'b00) y = a;
else if (sel == 2'b0l) y = b;
else if (sel == 2'b01) y = c¢; // GOTCHA! same sel value
else if (sel == 2'bll) y = d;

end

The coding error in this example—probably a cut-and-paste error—is not a
syntax error. The code will compile and simulate, but the third branch will never
execute. Since it is not a syntax error, the coding error can go undetected in
simulation. Gotcha!

A similar cut-and-paste error can be made in case statements. An overlap in case
decisions is not an error. Instead, only the first matching case branch is executed.

always @* begin
case (sel)
2'b00: y = a;

2'b01: y = b;
2'b01: y = ¢; // GOTCHA! same sel value as previous line
2'bll: y = d;

endcase

end

How to avoid this Gotcha using Verilog

Both of the above examples are easy errors to make, and can be difficult to detect
in Verilog simulation. Software tools such as lint tools (coding style checkers)
and synthesis tools will warn about the overlap in decisions in the preceding
examples. However, since it is only a warning message, it may go unnoticed.

How to avoid this Gotcha using SystemVerilog

SystemVerilog adds a unique modifier that can be used with both if...else...if
and case decision statements,

78

Verilog and SystemVerilog Gotchas

always_comb

unique
else
else
else

end

always_comb begin

if
if
if
if

begin

(sel
(sel
(sel
(sel

unique case (sel)
2'b00:
2'b01:
2'b01:
2'bll:

endcase
end

y =

Ko

H

a;
b;
c;
d;

2'b00) y = a;
2'b01) y = b; // will get simulation warning
2'b01) y = ¢; // will get simulation warning
2'bll) y = d;

// will get simulation warning
// will get simulation warning

The unique decision modifier requires that simulators report a warning if two or
more decision selection expressions are true at the same time, The unique
modifier also requires that simulation generate a warning message if no decision
branch is taken. Do not ignore the simulation warnings generated by using
unique—the warnings indicate there is a coding problem!

Additional examples of using unique case are shown in Gotcha 33 on page 74
and Gotcha 35 on page 79.

Chapter 3: RTL Modeling Gotchas 79

Gotcha 35: Inappropriate use of unique case statements

Gotcha: I am using unique case everywhere to help trap design bugs but my
synthesis results are not what I expected.

Synopsis: SystemVerilogs unique case synthesizes the same as a case
statement tagged with full_case and priority_case.

SystemVerilog extends the Verilog language with a unique decision modifier
keyword. This modifier can be specified on either case statements or
if..else..if statements. The unique modifier specifies that a decision
statement should be considered complete, and that there is no overlap in the
decision selection values.

Many coding methodologies today are recommending that unique be specified
for all case statements, just as the synthesis full_case pragma was
recommended for all case statements a few years ago. The reason unique case
is recommended is that it comes with built-in assertions that provide visibility
during RTL simulation, indicating when a case statement did not execute as
expected. Design problems can potentially become visible earlier in the design
cycle.

This coding guideline of using unique case for all case statements is a Gotcha!

The intent in the following example is to have a simple decoder that sets the
rdata flag if address is zero.

module address_decocde (input logic [1:0] address,
output logic rdata);

always_comb begin
rdata = 1'b0; // default value for rdata
unique case (address) // decode address ~- GOTCHA!
2'b00 : rdata = 1'bl;
endcase
end
endmodule

The example may look overly simple, but it comes from a real design, and is a
real gotcha! The simulation results were as expected; when address is 0, rdata
is 1; for any other value of address, rdata is 0. Here’s what a synthesis tool
sees from this model:

vDD

Gotcha!
P rdata

80 Verilog and SystemVerilog Gotchas

By specifying unique case, the designer has informed synthesis that all
unspecified case selection values should be considered a “don’t care”, and can be
ignored. Since the designer has indicated that only the selection values listed are
real, and that no other values can occur, the default assignments for these other
selection values do not have meaning. They are assigning a default output for
conditions that unique case says can never happen. Therefore, synthesis
ignores the default assignments! Gotcha!

How to avoid this Gotcha

To avoid this gotcha do not ignore simulation warnings! The unique case
statement will issue a run-time warning anytime no branch is taken. In the
example above, however, it was easy to look at the code and come to the
conclusion that the warnings were bogus and could be ignored. Yes, there are
times when no case branch would be taken, but the default assignment before the
case statement takes care of those situations. In truth, the simulation warnings
also indicated that the case statement was not evaluating the way synthesis had
been instructed to interpret it. The warnings from unique case should not be
ignored!

The real problem in the example above is not understanding the purpose of the
unique decision qualifier. The purpose of unique is to inform tools that not all
of the possible selection values of a decision are being used, because the values
are not used in the design. In the example above, the decoder actually does
decode every value of address. An address of zero sets rdata, and all other
addresses clear rdata. It is incomrect to use unique case in this design, as
evidenced in the synthesis results.

The correction for the example above is simple. Do not use the unique decision
qualifier.

module address decocde (input logic [1:0] address,

output logic rdata) ;

always_comb begin
rdata = 1'b0; // default value for rdata
case (address) // OK, incomplete case statement

2'b00 : rdata = 1'bl; // decodes exception to default

endcase

end

endmodule

This is not to say unique case should never be used. It is to say that
unique case should be used correctly, just like the synthesis full case
pragma needs to be used wisely and correctly.

Chapter 3: RTL Modeling Gotchas 81

A few years ago, many companies followed a coding guideline that all case
statements should be specified with the synthesis full_case pragma, so that
they would synthesize more optimally. In the past few years, there have been
several conference papers showing why blanket usage of the synthesis
full case pragma can be bad for a design. Experience has proven that
specifying full_case should be the exception, rather than the general rule. The
indiscriminate use of the £ull_case pragma is now strongly discouraged.

SystemVerilog’s unique case does not change this guideline. Synthesis tools
treat unique case as if the case statement has both the full case and
parallel_case pragmas specified. The only difference between the synthesis
pragmas and unique case is that unique case can also be simulated. That is,
however, an important difference, as illustrated in the next paragraph.

When unique case is used correctly, it has significant advantages over the
synthesis full_case pragma. An example of an appropriate place to use
unique case is in a one-hot state machine decoder, where only certain state
values are valid. The other values should never occur. In that situation,
unique case is appropriate. It instructs synthesis that the unused values of the
state variable are “don’t cares”, and need not be implemented in the gate-level
design. At the same time, the unique case instructs simulation to assert that the
unused state values never occur. SystemVerilog’s constrained random test
generation, coupled with SystemVerilog’s functional coverage, can be used to
thoroughly exercise the design to verify that the unused state values truly cannot
occur. Formal verification tools can also use the unique decision modifier to
guide what needs to be formally proven.

Gotcha 33 on page 74 describes the simulation semantics of unique case.
Gotcha 34 on page 77 illustrates another appropriate use unique case.

Note: The SystemVerilog priority case statement has the same gotcha.
Synthesis tools treat priority case the same as if the synthesis full_case
pragma had been specified. Care needs to be taken to only use priority case
where it is appropriate, which is when not all decision selection values are used,
and it is permissible to have an overlap in the selection values for each decision
branch.

82 Verilog and SystemVerilog Gotchas

Gotcha 36: Resetting 2-state models

Gotcha: My design fails to reset the first time in RTL simulation.

Synopsis.: Two-state data types begin with a known value, and might not cause
simulation events the first time a value is assigned.

One of the features of SystemVerilog is 2-state data types, which, in theory, can
be advantageous in simulation. However, 2-state types also have some simulation
gotchas. One of these gotchas is that, at the beginning of simulation (time zero),
the value of each variable is a default uninitialized value, which is X for 4-state
variables and zero for 2-state variables. The uninitialized 2-state value of zero can
lead to a reset gotcha. Consider the following code:

module chip_tb;
logic clk; // 4-state type
bit rst n; // GOTCHA! 2-state type for reset

initial begin // clock oscillator
clk <= 0;
forever #5ns clk = ~clk;
end
initial begin // reset stimulus (active low reset)
rst_n <= 0; // turn on reset at time zero
#3ns rst n = 1; // turn off reset after 3 nanoseconds
end
chip ul(.rst_n, .clk, ...); // instance of design under test

endmodule: chip tb
module chip (input bit rst n, clk, ...); // GOTCHA! 2-state types
enum {HOLD, LOAD, STORE)} state_e, nstate_e; // GOTCHA! 2-state

always_ff @ (posedge clk, negedge rst n) // asynchronous reset
if (!rst_n) state_e <= HOLD;
else state_e <= nstate_e;

endmodule: chip

In the example above, the always_££ flip-flop in module chip is supposed to
reset on a negative edge of rst_n. The testbench sets rst_n to zero at the
beginning of simulation, and holds it low for 3 nanoseconds. However, in the
testbench, rst_n is a 2-state type, which begins simulation with a value of zero.
Setting rst_n to zero does not change its value, and therefore does not cause a

Chapter 3: RTL Modeling Gotchas 83

negative edge on rst_n. Since the testbench does not cause a negative edge on
rst_n, the always_££ sensitivity list for the flip-flop in module chip does not
trigger, and the flip-flop does not reset asynchronously. If rst_n were held low at
least one clock cycle, the flip-flop would reset synchronously when clock
occurred. In this example, though, the test stimulus does not hold rst_n low a
full clock cycle, and therefore the reset is completely missed. Gotcha!

How to avoid this Gotcha

This gotcha can be avoided in a number of ways. One way is to initialize the 2-
state reset signal to the non-reset value with a blocking assignment, and then to
the reset value with a nonblocking assignment. This will trigger the always_££
blocks waiting for a negative edge of reset. Additionally, the nonblocking
assignment will ensure that all the always_££ blocks are active before the
transition to zero occurs.
initial begin
rst n = 1; // initialize to inactive value

rst_n <= 0; // set to active value using nonblocking assign
#3ns rst n = 1;

Note, however, that this solution potentially creates a new gotcha! Changing any
signal at time zero using a blocking assignment can potentially cause a race
condition with any procedural blocks that trigger on that signal. This is because
the order in which procedural blocks become active at time zero is not defined, so
the change in value could occur before other procedural blocks have activated
their sensitivity lists. Since rst_n is an active low reset, there is little or no risk
of a race condition by setting it to a logic 1, the inactive state, at time zero.

A second way to avoid this gotcha is to use in-line variable initialization to assign
rst_n to its inactive value at the same time rst_n is declared. Then, when the
test program assigns rst_n to 0, a change will occur which will trigger the
always_££ sensitivity list.
bit rst_ n =1 // initialize to inactive value
initial begin
rst_n <= 0; // set to active value using nonblocking assign
#3ns rst_n = 1;

A third way to fix this gotcha is to use 4-state types instead of 2-state types for
active-low signals. 4-state variable types will begin simulation with a value of X.
Assigning a 4-state type a value of zero, even at simulation time zero, will cause
an X-to-0 transition, which is a negative edge.

84 Verilog and SystemVerilog Gotchas

Gotcha 37: Locked state machines modeled with enumerated types

Gotcha: My state machine model locks up in its start-up state.

Synopsis: Two-state enumerated variables begin with a known value, and
might not cause simulation events the first time a value is assigned.

By default, enumerated types are 2-state types. Also by default, the value of the
first label in an enumerated list is zero. Functional logic based on 2-state
enumerated data types can have gotchas. Consider the following code:

module controller (output logic read, write,
input 1instr_t instruction,
input logic clock, reset n);

enum {HOLD, LOAD, STORE} state e, nstate_e; // 2-state types
always @{posedge clock, negedge reset_n) // state sequencer
if (!reset_n) state_e <= HOLD;

else state_e <= nstate_e;

always @(state_e) begin // GOTCHA! next state decoder
unique case (state e)

HOLD: nstate_e = LOAD;
LOAD: nstate_e = STORE;
STORE: nstate_e = HOLD;
endcase
end
endmodule

In simulation, this example will lock up in the HOLD state. Applying reset,
whether 2-state or 4-state, will not get the state machine out of this lock up. This
is because state_e and nstate_e are 2-state enumerated variables. 2-state
types begin simulation with a value of zero, which is the value of HOLD in the
enumerated list. When the always_£f£ state sequencer is reset, it will assign
state_e the value of HOLD, which is the same value as the current value of
state_e, and thus does not cause a transition on state_e. Since state_e does
not change, the always @ (state_e) combinational procedural block does not
trigger. Since the combinational block is not entered, nstate_e is not updated to
a new value, and retains its initial value of HOLD. On a positive edge of clock,
state e is assigned the value of nstate_e, but, since the two variables have
the same value of HOLD, state e does not change, Once again, the
always @ (state_e) combinational block is not triggered and nstate_e is not
updated. The simulation is stuck in the start-up state, no matter how many clock
cycles are run, and no matter how many times the state machine is reset. Gotcha!

Chapter 3: RTL Modeling Gotchas 85

How to avoid this Gotcha

The best way to avoid this gotcha is to use the System Verilog always_comb for
the combinational block in this code. Unlike the Verilog always procedural
block, an always_comb procedural block will automatically execute once at time
zero, even if the sensitivity list was not triggered. When the always_comb block
executes, nstate_e will be assigned the correct value of LoAD. Then, after reset
is removed, the state machine will function correctly, and not be locked in a HOLD
state.

A second method to avoid this gotcha is to declare the state e and nstate e
enumerated variables as 4-state types, as follows:

// 4-state types
enum logic [1:0] {HOLD, LOAD, STORE} state_e, nstate_e;

By doing this, state_e and nstate_e will begin simulation with the value of
X. When state_e is assigned HOLD during reset, the always @ (state e) will
trigger, setting nstate_e to LOAD.

A third way to fix this 2-state lock-up gotcha is to explicitly assign values to the
HOLD, LOAD and READY labels that are different from the uninitialized value of the
enumerated variables. For example:

enum bit [2:0] {HOLD = 3'b001,
LOAD = 3'b010,
STORE = 3'bl00} state_ e, nstate_e;

In this example, state_e and nstate_e are 2-state types, which begin
simulation with an uninitialized value of zero. This value does not match any of
the values in the enumerated list. When reset is applied, state_e will be
assigned HOLD. The change on state_e will trigger the always @ (state e)
combinational block, which will update nstate e to LOAD, preventing the lock-
up gotcha.

86 Verilog and SystemVerilog Gotchas

Gotcha 38: Hidden design problems with 4-state logic

Gotcha: There was a problem deep inside the logic of my design, but it never
propagated to module boundaries.

Synopsis: Some programming statements do not propagate logic X values.

In 4-state simulation, a logic value of X can occur. Logic X is not a real hardware
logic value. Nor is it a “don’t care”, the way it used in some data books. Logic X
is the simulator’s way of saying that simulation algorithms cannot predict what
actual hardware would do with a given set of circumstances. While no engineer
likes to see X values in the simulation log files or waveform displays, savvy
engineers have come to know that X is their friend. When an X value does show
up, it is a clear indication of a problem in a design.

But there is a gotcha. A number of Verilog programming statements can swallow
an X value, and generate a seemingly good value. These statements hide design
problems, which can be disastrous. Two of the most common X hiding constructs
are decisions statements and optimistic operators. An example of a decision
statement that will hide design errors is:

always_comb begin
if (sel) y = a; // 2-to-1 MUX
else y = b;

end

In this example, should a design bug cause sel to have a logic X, the else
branch will be taken, and a valid value assigned to y. If the verification code is
primarily verifying the functional results of the design, it will only see known
values on this multiplexer output. The design bug on the sel signal has been
hidden. Gotcha!

How to avoid this Gotcha using Verilog

The ideal would be if each model had internal code to trap errors within the
model. Functional verification of the design could focus on verifying the overall
functionality, and each design block would take care of detecting unexpected
values within that block.

In Verilog, adding self-checking logic within the model can be awkward and
require many extra lines of code. This extra code must be hidden from synthesis
tools, as it is not really part of the hardware. There is also a risk that the extra
code could inadvertently change the intended behavior of the design. Because of
the extra coding and associated risks, design engineers are often hesitant to add
error-monitoring code within RTL models. Consider the following:

Chapter 3: RTL Modeling Gotchas 87

always_comb begin
if (sel)
y = a; // do true statements
else
//synthesis translate_off
if (!'sel) // opposite of if condition)
//synthesis translate_on
y = b; // do the not true statements
//synthesis translate_off
else begin
y = 'bx;
$display("if condition tested either an X or Z");
end
//synthesis translate_on
end

This additional code illustrates the awkwardness of embedding error handling in
RTL models using Verilog. Few, if any design engineers are willing to do this.

How to avoid this Gotcha using SystemVerilog

A better way to avoid this gotcha is to use SystemVerilog Assertions (SVA).
Assertions are more concise, and do not need to be hidden from synthesis tools.
Assertions can be turned on and off as needed. They can also provide verification
coverage information. An assertion for the example above can be written as:

always_comb begin
assert ($isunknown(sel)) else S$error("sel = X");
if (sel) y = a; // 2-to-1 MUX
else y = b;

end

This example uses an immediate assertion, which will execute every time the
always block is entered. False assertion failures could be reported if sel glitches,
but becomes stable before the MUX output is used. To avoid executing the
assertion on glitches, synchronous concurrent assertion can be used.

For more details on X hiding gotchas and using assertions, refer to two papers
from the authors, “Being Assertive With Your X!, and “System Verilog Assertions

are for Design Engineers, 100",

1. Being Assertive With Your X, by Don Mills. Published in the proceedings of
SNUG San Jose, 2004. Also available from the author’s web site, http://
www.lcdm-eng.com/assertiveX.pdf.

2. SystemVerilog Assertions are for Design Engineers, Too, by Don Mills and Stu-
art Sutherland. Published in the proceedings of SNUG San Jose, 2006. Also
available from the author’s web site, http://www.sutherland.com/papers.html.

88 Verilog and SystemVerilog Gotchas

Gotcha 39: Hidden design problems using 2-state types

Gotcha: Some major functional bugs in my design did not show up until after
synthesis, when I ran gate-level simulations.

Synopsis: Design errors might not propagate through 2-state logic.

An important gotcha to be aware of when modeling with 2-state data types,
whether at the RTL level or at the verification level, is the fact that 2-state types
begin simulation with a value of 0 instead of X. It is common for a value of 0 to
also be the reset value of registers within a design. Consider the following
example:

bit [31:0] data_reg; // 2-state variable

always_ff @(posedge clock, negedge reset_n) // data register
if (!reset_n) data_reg <= 0; // reset to zero
else data_reg <= data_in;

The initial value of data_reg is zero. This is also the value to which data_reg
is reset. This means that, if for some reason the design fails to generate a reset, it
will not be obvious by looking at the value of data_reg that there was a failure
in the design logic.

Another way in which 2-state logic can hide design errors is when an operation
returns a logic X, as illustrated below:

module comparator (output bit eq, // 2-state output
input bit a, b); // 2-state inputs
assign eq = (a == b);
endmodule

In the example above, the gotcha is the 2-state inputs. What will happen if there is
a design error, and either the a or b input is left unconnected? With 4-state values,
the unconnected input would float at high-impedance, and the (a == b)
operation will return a logic X—an obvious design failure. With 2-state inputs,
however, there is no high-impedance to represent a floating input. The design
error will result in zero on the input, and an output of one or zero. The design
failure has been hidden, and did not propagate to an obvious incorrect result.
Gotcha!

What if the inputs and outputs in the preceding example were 4-state, but the
output was connected to another design block, perhaps an IP model written by a
third party provider, that was modeled using 2-state types? In this case, the

Chapter 3: RTL Modeling Gotchas 89

comparator module would output a logic X, due to the unconnected input design
failure, but that X would be converted to a zero as it propagates into the 2-state
model, once again hiding the design problem. Gotcha, again!

How to avoid this Gotcha

The best way to avoid this gotcha is to use 4-state types in all design blocks. 4-
state variables begin simulation with a value of X, making it very obvious if reset
did not occur. Should an operation or programming statement produce a logic X,
the use of 4-state types will propagate the design error instead of hiding it. In
addition to using 4-state types, SystemVerilog assertions can be used to verify
that inputs to each design block are valid. SystemVerilog functional coverage can
also be used to verify that reset occurs during simulation.

CAUTION! 4-state types can also hide design problems, but in different ways.
See Gotcha 38 on page 86 for more details.

90 Verilog and SystemVerilog Gotchas

Gotcha 40: Hidden problems with out-of-bounds array access

Gotcha: A design bug caused references to nonexistent memory addresses, but
there was no indication of a problem in RTL simulation.

Synopsis: Out-of-bounds errors might not propagate through 2-state logic.

A type of failure that can be hidden by 2-state types is when an out-of-bounds
address is read from an array. An example where this can occur follows:

module RAM # (parameter SIZE = 1024, A WIDTE = 16, D_WIDTH = 31)
(output logic [D_WIDTH-1:0] data_out,
input logic [D_WIDTH-1:0] data_in,
input logic [A_WIDTH-1:0] addr, // 16 bit bus
input logic read, write});

bit [D_WIDTH-1:0] mem array [0:SIZE-1]; // 2-state array
// GOTCHA! only need 10 bit index

assign data_out = read? mem_arrayfaddr] : 'z; // read from array

endmodule

In this example, the address bus is wider than is required to access all addresses of
mem_array. If a 4-state array is accessed using an address that does not exist, a
logic X is returned. But, when a 2-state array is accessed using an address that
does not exist, a value of zero is returned. Since a value of zero could be a valid
value, the out-of-bounds read error has been hidden. Gotcha!

The example above is an obvious design error, but is also one that could easily be
inadvertently coded. The same error is less obvious when the defaults of the
memory size and address bus parameters are correct, but an error is made when
redefining the parameter values for an instance of the RAM. Gorcha, again!

How to avoid this Gotcha

There are a few ways to avoid this gotcha. One way is to use 4-state types for
arrays. An out-of-bounds reference to a 4-state array will return a logic X,
indicating that a design problem occurred. However, a 4-state array requires twice
the amount of simulation storage as a 2-state array. It can be advantageous to use
2-state arrays to model large memories.

Another way to avoid this gotcha is to use SystemVerilog assertions to verify that
the redefined values of parameters cannot result in an out-of-bounds access. The
assertions only need to execute once at time zero.

Chapter 3: RTL Modeling Gotchas 91

A third way, and a preferred modeling style, can be used when the values of
constants are related, such as the S1ZE, D WIDTH and A_WIDTH constants in the
preceding example. In this case, the value of one constant can be calculated based
on the value of another constant.

module RAM #(parameter A WIDTH = 16,
SIZE = 1<<A_WIDTH,
D_WIDTH = $clog2 (SIZE)

(output logic [D WIDTH-1:0] data_out,
input logic [D_WIDTH-1:0} data_in,
input logic [A WIDTH-1:0] addr,

input logic read, write);

This solution reduces, but does not completely avoid the gotcha of incorrect
parameter sizes. The calculated constant values will be correct, but, since the
constants are a parameter type, they could be overridden using parameter
redefinition and end up with incorrect values.

To completely avoid the gotcha of incorrect parameter sizes, the calculated
constant should be declared as a 1ocalparam. A localparam constant cannot
be redefined, ensuring that the calculated value cannot be overridden. It is not
legal to declare Localparam constants in the module declaration parameter list,
however. To use localparam values in port declarations, the older Verilog-1995
style of module declarations must be used. For example:

module RAM (data_out, data_in, addr, read, write);

parameter A _WIDTH = 16;
localparam SIZE = 1<<A WIDTH,
D WIDTH = $clog2 (SIZE)

output logic [D_WIDTH-1:0] data_out;
input logic [D_WIDTH-1:0] data_in;
input logic [A WIDTH-1:0] addr;

input logic read, write);

(Note: the $clog2 function used in the example above was added in the Verilog-
2005 standard. Prior to 2005, this function had to be written by the designer,
using either a recursive Verilog function or using the Verilog PLI.)

92 Verilog and SystemVerilog Gotchas

Gotcha 41: Out-of-bounds assignments to enumerated types

Gotcha: My enumerated state machine variables have values that don't exist
in the enumerated definition.

Synopsis: Enumerated types are strongly typed, but can still have values other
than those in their enumerated list.

Verilog is a loosely typed language. Any data type can be assigned to a variable of
a different type without an error or warning. Unlike Verilog, the SystemVerilog
enumerated type is, in theory, a strongly typed variable. Part of the definition of
an enumerated type variable is the legal set of values for that variable. For
example:

typedef enum bit [2:0) (HOLD = 3'b001, // 2-state type
LOAD = 3'Db010,
STORE = 3'bl00} states_t;

states_t state_e, nstate_e; // two enumerated variables

A surprising gotcha is that an enumerated type variable can have values that are
outside of the defined set of values.

There are two parts to this gotcha of out-of-bounds enumerated values, which are
.explained in more detail, below.

Part One: Unitialized enumerated variables

As with all static Verilog and SystemVerilog variables, enumerated variables
begin simulation with a default value. For enumerated variables, this default is
the uninitialized value of its base data type. In the preceding example, the base
data type of state_e is a 2-state bit type, which begins simulation with an
uninitialized value of zero. This value is not in the variable’s enumerated list, and
is, therefore, out-of-bounds. Gotcha!

How to avoid this Gotcha

In actuality, this gotcha can be a desirable feature of the language. If the
uninitialized enumerated variable value is out-of-bounds, it is a clear indication
that the design has not been properly reset. This is even more obvious if the base
data type is a 4-state type, which has an uninitialized value of X,

Part Two: Using casting with enumerated variables

System Verilog requires that any procedural assignment to an enumerated variable
be in the enumerated list, or from another variable of the same enumerated type.

Chapter 3: RTL Modeling Gotchas 93

The following examples illustrate legal and illegal assignments to state_e.

nstate_e = LOAD; // legal assignment
nstate e = state_e; // legal assignment
nstate_e = 5; // illegal (not an enum label)
nstate_e = 3'b001; // illegal (not an enum label)

nstate_e = state e + 1; // illegal (not an enum label)

SystemVerilog allows a normally illegal assignment to be made to an enumerated
variable using casting. For example:

nstate_e = states_t’ (state_e + 1); // legal, but GOTCHA!

When a value is cast to an enumerated type, the value is forced into the variable
without any type checking. In the example above, if state_e had the value of
HOLD (3'b001), then state_e + 1 would result in the value of 3/b010. This
can be forced into the nstate_e variable using casting. As it happens, this value
matches the value of LOAD. If, however, state_e had the value of LoAD, then
state_e + 1 would result in the value of 3’5011, When this value is forced
into the enumerated variable nstate_e, it does not match any of the enumerated
labels. The nstate_e variable now has an out-of-bounds value. Gotcha!

How to avoid this Gotcha

There are two ways to avoid this gotcha. Instead of using the static cast operator,
the SystemVerilog dynamic $cast function can be used. Dynamic casting
performs run-time error checking, and will not assign an out-of-bounds value to
an enumerated variable. The general syntax of the $cast function is:

success_flag = $cast(target_variable, expression)

The $cast function converts the expression to the type of the target variable. If
the expression is a legal value for the target variable, $cast returns 1 and makes
the assignment. If the value of the expression is not legal, $cast returns 0 and
leaves the target variable unchanged. The return value of $cast can be tested
with an assertion.

assert(nstate_e, state _e+l); // increment to next label in list
else nstate_e = LOAD;

SystemVerilog enumerated types have several built-in methods which can
manipulate the values of enumerated variables, and, at the same time, ensure the
variable never goes out-of-bounds. For example, the .next() method will
increment an enumerated variable to the next label in the enumerated list, rather
than incrementing by the value of 1. If the enumerated variable is at the last label
in the enumerated list, .next () will wrap around to the first label in the list. An
example of using the .next () method is:

nstate_e = state_e.next(l); // increment to next label in list

94 Verilog and SystemVerilog Gotchas

Gotcha 42: Undetected shared variables in modules

Gotcha: My RTL model output changes values when it shouldn?, and to
unexpected values.

Synopsis: Variables written to by multiple processes create shared resource
conflicts.

Syntactically, Verilog and SystemVerilog variables declared at the module level
can be read or written by any number of initial or always procedural blocks
within the module. Reading a variable from multiple procedural blocks is fine,
and provides a way for parallel processes to pass values between themselves, But,
there is a gotcha when two or more procedural blocks write to the same variable.
The effect is that the same piece of storage is shared by all the procedural blocks.
Since these procedural blocks run concurrently, it is possible, and likely, that the
code within the blocks will collide, and interfere with each other’s functionality.

The following example shows a common—and perhaps not obvious in large
models—Verilog/SystemVerilog gotcha, where the variable result is shared by
two concurrent always procedural blocks.

module chip (output logic [31:0] result, // local variable
input logic [31:0] a, b, c, d);

always @(a or b)
result = a & b; // this process writes to result

// dozens of lines of code later...

always @{(c or d)
result = c | d; // GOTCHA: this process also writes to result
endmodule

How to avoid this Gotcha using Verilog

Verilog does not restrict how variables are used, which provides versatility in
writing test programs and abstract bus functional models. In an RTL model that is
intended to be synthesized, such as the example above, however, this versatility
becomes a gotcha. When using Verilog without the System Verilog extensions, the
only way to avoid this gotcha is to use software tools such as lint tools (coding
style checkers) to check for multiple processes writing to the same variable.

A better way to avoid this gotcha is to use SystemVerilog, which enforces proper
RTL coding rules, as shown in the following explanation.

Chapter 3: RTL Modeling Gotchas 95

How to avoid this Gotcha using SystemVerilog

For RTL models, a simple way to avoid this gotcha is to use SystemVerilog’s
always_comb, always_£f, always_latch, and continuous assign to assign
values to a variable. These processes make it illegal for a variable to be written to
by multiple processes. If the code is for verification or an abstract bus functional
model, the way to avoid this gotcha is to use SystemVerilog’s inter-process
synchronization (event triggers, semaphores or mailboxes) to prevent concurrent
processes from writing to the same variable at the same time.

Gotcha 43 on page 96 and discusses similar problems with shared variables in
interfaces, packages, tasks and functions.

Gotcha 66 on page 145 illustrates another common gotcha with shared variables
used in for loops.

Gotcha 76 on page 160 shows some gotchas with shared variables in verification
code.

96 Verilog and SystemVerilog Gotchas

Gotcha 43: Undetected shared variables in interfaces and packages

Gotcha: Variables in my package keep changing at unexpected times and to
unexpected values.

Synopsis: Interface, package and global variables written to by multiple
design and/or verification blocks create shared resource conflicts.

SystemVerilog compounds the Verilog shared variable gotcha described in
Gotcha 42 on page 94 by providing more places where shared variables can be
declared (or obfuscated). In SystemVerilog, variables can be declared in external
spaces outside of a module. These external declaration spaces are user-defined
packages, Sunit (a type of built-in package), and interfaces. These externally
declared variables can then be referenced by multiple modules, creating a shared
variable.

Multiple initial and always procedural blocks that write to shared variables
will likely interfere with each other. These procedural blocks can be in different
design and verification blocks, which are generally in different files. This can
make it very difficult to find and debug shared variable conflicts. Gotcha!

package sig_defs;
logic [31:0] result, pipe;
endpackage

module blkl (output logic [31:0] d_out,
input logic [31:0] a, b,
input logic clk, rstn);

import sig defs::*;

always @*
result = a & b; // GOTCHA! shared variable

always @(posedge clk or negedge rstn)}

if (!rstn) begin
pipe <=0;
d_out <=0;

end

else begin
pipe <= result; // GOTCHA! shared variables
d_out <= pipe;

end

endmodule

Chapter 3: RTL Modeling Gotchas 97

module blk2 (output logic (31:0] d out,
input logic [31:0]) ¢, d,
input logic clk, rstn);

import sig_defs::*;

always @*
result = a | b; // GOTCHA! shared variable
always @ (posedge clk or negedge rstn)
if ('rstn) begin
pipe <=0;
d out <=0;
end
else begin
pipe <= result; // GOTCHA! shared variables
d _out <= pipe;
end
endmodule

How to avoid this Gotcha

Shared variables are generally not synthesizable, and should not be used in RTL
models. They can easily be avoided by using SystemVerilog’s always_comb,
always ff, always latch, and continuous assign to assign values to
variables. With these processes, it is illegal for a variable to be written to by more
than one process, even when these processes are in different modules, interfaces
or test programs.
module blkl (...);:

import sig_defs::*;

always_comb

result = a & b; // ERROR! multiple processes write to result

endmodule
module blk2 (...);

import sig defs::*;

always_comb
result = a | b; // ERROR! multiple processes write to result

endmodule

Shared variables can be useful in verification code, but care must be taken to
avoid conflicts between processes sharing the same storage. This can be
accomplished through the use of process synchronization, such as event triggers,
semaphores or mailboxes.

Chapter 4
Operator Gotchas

Gotcha 44: Assignments in expressions

Gotcha: I need to do an assignment as part of an if condition, but cannot get
my code to compile.

Synopsis: SystemVerilog allows assignments within expressions, with the
same gotchas as C, but SystemVerilog's syntax is different from C, confusing
programmers familiar with C.

In Verilog, assignments are not allowed within an expression. Therefore, the
common C gotcha of if (a=b) is illegal. Unfortunately, this also means the
useful application of an assignment within an expression is also illegal, such as:
while (data = fscanf(...)

SystemVerilog extends Verilog, and adds the ability to make an assignment
within an expression. Thus, with SystemVerilog, the intentional usage of this
capability, such as to exit a loop on zero, is legal. SystemVerilog requires that the
assignment be enclosed in parentheses to prevent unintentional uses of this
capability, such as if (a=b). Thus:

if (a=b) ... // illegal in SystemVerilog
if ((a=b)) ... // legal in SystemVerilog; probably not useful
while ((a=b)) ... // legal in SystemVerilog, and can be useful

Ironically, in an effort to prevent the common C gotcha of if (a=b), the
SystemVerilog syntax becomes a gotcha. Speaking from the personal experience
of one of the authors, programmers familiar with C will attempt, more than once,

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using small
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

100 Verilog and SystemVerilog Gotchas

to use the C-like syntax, and then wonder why the tool is reporting a syntax error.
Is it an error because, like Verilog, assignments in an expression are not allowed?
Is the error because the tool has not implemented the capability? No, it is an error
because SystemVerilog’s syntax is different from C’s. Gotcha!

How to avoid this Gotcha

The SystemVerilog syntax can help prevent the infamous C gotcha of if (a=b).
The gotcha of a different syntax cannot be avoided, however. Engineers must
learn, and remember, that C and SystemVerilog use a different syntax to make an
assignment within an expression.

Chapter 4: Operator Gotchas 101

Gotcha 45: Self-determined versus context-determined operators

Gotcha: In some operations, my data is sign extended and in other operations
it is not sign extended, and in yet other operations it is not extended at all.

Synopsis: Some Verilog and SystemVerilog operators are context-determined,
other operators are self-determined. The type of operation determines if and
how vectors are expanded.

What should happen if a 4-bit vector is ANDed with a 6-bit vector, and the result
is assigned to an 8-bit vector? Will the results be different if one or both of the
AND operands are signed or unsigned? Does the result change if the vector to
which the operation is assigned is signed or unsigned?

Verilog and SystemVerilog are “loosely typed” languages. Loosely typed does not
mean there are no data type rules. Rather, loosely typed means that the language
has built-in rules for performing operations on various data types, and for
assigning one data type to another data type. The most subtle of these rules is
whether an operator is “self-determined” or “context-determined”. If an engineer
does not understand the difference between these two operation types, he or she
may find the result of the operation to be different from expected. Gotcha!

A context-determined operator looks at the size and data types of the complete
statement before performing its operation. All operands in the statement are
expanded to the largest vector size of any operand before the operations are
performed. Consider the following example:

logic [5:0] a

6'b010101; // 6-bit vector

logic [3:0] b = 4'bl111; // 4-bit vector
logic [7:0] c; // 8'bit vector
c=aé&b; // results in 8-bit 00000101

In this example, the context of the bitwise AND operation includes the vector
sizes of a, b and c. The largest vector size is 8 bits. Therefore, before doing the
operation, the 4-bit vector and the 6-bit vector are expanded to 8-bit vectors.

Why were a and b left extended with zeros? This question is answered in Gotcha
46 on page 105, which discusses zero-extension and sign-extension in Verilog.

A self-determined operator is only affected by the data types of its operands. The
operation is not affected by the context in which it is performed. For example, a
unary AND operation will AND all the bits of its operand together, without
changing the size of the operand.

For example:

102 Verilog and SystemVerilog Gotchas

logic [5:0] a = 6'b101010; // 6-bit vector

logic [3:0] b = 4’b1111; // 4-bit vector
logic [7:0} c; // 8'bit vector
c =a | &b; // results in 8-bit 00101011

In this example, the unary AND of b (&b) is self-determined. The vector sizes of
a and c have no bearing on the unary AND of b. The result of ANDing the bits of
4'b1111 togetherisal1’bl.

If the self-determined operator is part of a compound expression, as in the
example above, then the result of the self-determined operator becomes part of
the context for the rest of the statement.

What if &b had been context-determined? In context, b would first be expanded to
8 bits wide, becoming 00001111, The unary AND of this value is 17 b0, instead
of 1'bl. The result of a | sb would be 00101010, which would be the wrong
answer. But this is not a gotcha, because the unary AND operator is self-
determined, and therefore gets the correct answer.

How to avoid this Gotcha

Verilog generally does the right thing. Verilog’s rules of self-determined and
context-determined operators behave the way hardware behaves (at least most of
the time). The gotcha is in not understanding how Verilog and SystemVerilog
operators are evaluated, and therefore expecting a different result. The only way
to avoid the gotcha is proper education on Verilog and SystemVerilog. Table 4-1,
below, should help. This table lists the Verilog and SystemVerilog operators, and
whether they are self-determined or context-determined.

Table 4-1: Determination of Operand Size and Sign Extension!

Operand
Operator Extension Notes
Determined By
Assignment statements Both sides of assignment affect size
= <= extension.
context . . .
Only right-hand side affects sign
extension”,
Assignment operations Both sides of assignment affect size
$= —= *= /= %= extension.
&= |= "= context Left operand is part of the right-hand side
assignment context (e.g. a += b expands
toa=a +Db).

Chapter 4: Operator Gotchas

103

Table 4-1: Determination of Operand Size and Sign Extension! (continued)

&& ||

Operand
Operator Extension Notes
Determined By
Assignment operations Left operand is context-determined. Right
<<= SS= <<<= operand is self-determined. Left operand
>35> see notes is part of the right-hand side assignment
context. (e.g. a <<= b expands to
a=a<<b)
Conditional First operand (the condition) is self deter-
2. mined.
o see notes)
Second and third operands are context-
determined.
Arithmetic
context
+ - * /%
Arithmetic Power Left operand (base) is context-deter-
* % mined.
see notes .)
Right operand (exponent) is self-deter-
mined.
Increment and Decre-
ment self
++ -
Unary Reduction Result is a self-determined, unsigned, 1-
~ & ~E |~ A A self bit value.
Bitwise
context
~ & I AN AL
Shift Left operand is context-determined.
<< K<< >> >>> see notes Right operand (shift factor) is self-deter-
mined.
Unary Logical Result is a self-determined, unsigned, 1-
| self bit value.
Binary Logical " Result is a self-determined, unsigned, 1-
se

bit value.

Equality

context

Result is a self-determined, unsigned, 1-
bit value.

104 Verilog and SystemVerilog Gotchas

Table 4-1: Determination of Operand Size and Sign Extension' (continued)

Operand
Operator Extension Notes
Determined By

Relational Result is a self-determined, unsigned, 1-
€ <= > >= context bit value.
Concatenation Result is unsigned.

self
{y {{}}
Bit and Part Select Result is unsigned.
[1 () self
(+:] [-:]

! This table only reflects operations where the operands are vectors. There are also rules for
when operands are real (floating point) numbers, unpacked structures, and unpacked arrays,
which are not covered in this book.

2 An assignment in an expression can be on the right-hand side of another assignment (e.g.
d= (a=b+5) + c;). Inthis case, the lefi-hand side expression of the assignment-in-an-
expression is part of the context of the right-hand side of the assignment statement (i.e. a in the
example does not affect the sign context of b + 5, but does affect the sign context of the + ¢
operation).

Additional note: If a context-determined operation is an operand to a self-determined operation,
the context of the context-determined operation is limited to its operands, instead of the full
statement. E.g.,ind = a >> (b + ¢) ;, the context of the ADD operation is only b and c.

Self-determined and context-determined operations affect the gotchas described
in Gotchas 46, 47 and 48, which follow (with some interesting examples).

Chapter 4: Operator Gotchas 105

Gotcha 46: Operation size and sign extension in assignment statements

Gotcha: I declared my outputs as signed types, but my design is still doing
unsigned operations.

Synopsis: In an assignment statement, sign extension context is only
dependent on the right-hand side of the assignment.

Operation sign extension is controlled by the operands of the operator, and
possibly the context in which the operation is performed. A self-determined
operator is only affected by the data types of its operands. A context-determined
operator is affected by the size and data types of all operands in the full
expression. Gotcha 45 on page 101, Table 4-1, lists which operators are self-
determined and which are context-determined.

Before a context-determined operation is evaluated, its operands are first
expanded to the largest vector width in the operation context. There are three
steps in this operand expansion, and these steps use different context rules!

Step 1. Evaluate the size and sign that will result from all self-determined
operations on the right-hand and left-hand sides of the assignment. This
information will be used in the subsequent steps.

Step 2. Determine the largest vector size in the context. The context is the largest
vector on both the right-hand and left-hand sides of assignment statements.

Step 3. Expand all context-determined operands to the largest vector size by left-
extending each operand. The expansion will either zero-extend or sign-extend,
based on the operation context, as follows:

* If any operand or self-determined operation result on the right-hand side of the
assignment is unsigned, then all operands and self-determined operation results
on the right-hand side are treated as unsigned, and the smaller vectors are left
extended with zeros.

* If all operands and self-determined operation results on the right-hand side of
the assignment are signed, then all operands and self-determined operation
results on the right-hand side are left extended using sign extension.

Note the difference in steps 2 and 3! The context for largest vector size is both
sides of an assignment statement, whereas the context for sign extension is just
the right-hand side of the assignment containing the operation.

Verilog’s rules for operand expansion reflect how hardware works. The following
examples illustrate cases where Verilog’s rules work as one would expect (no
gotchas).

106 Verilog and SystemVerilog Gotchas
logic {3:0] ul, u2; // unsigned 4-bit vectors
logic signed [3:0] sl, s2; // signed 4-bit vectors
logic [7:0] u3; // unsigned 8-bit vector
logic signed [7:0] s3; // signed 8-bit vector
logic o; // unsigned 1l-bit vector
u3 = ul + u2; // zero extension {unsigned = unsigned + unsigned)
s3 = sl + s2; // sign extension (signed = signed + signed)
s3 = sl + 1; // sign extension (signed = signed + signed)
s3++; // sign extension (expands to s3 = s3 + 1,
// which is signed = signed + signed)
u3 += 2'bll; // zero extension (expands to u3 = u3 + 2'bll,

s3 += 2'sbll;

//

//
//

which is unsigned = unsigned + unsigned)

sign extension (expands to s3 = s3 + 2'sbll,
which is signed = signed * signed)

A gotcha can occur when an engineer doesn’t understand the operand expansion
rules. The next examples show some operation results that might be different
from expected. These examples use the same declarations as the examples above.

s3

ul + u2;

u3 sl + s2;

s3 = sl + u2;

s3

It

s3 += 2'bll;

u3 += 2'sbll;

//
//
/7

//
//
/7

//
/!
/!
1/

sl + 1'bl;//

//
//
//

/!
/7
//
/7

/7
/7
/7
/7

GOTCHA? zero extension, even though S3 is signed
Rule: left-hand side does not affect sign
extension context of operands on right-hand side

GOTCHA? sign extension, even though U3 is unsigned
Rule: left-hand side does not affect sign
extension context of operands on right-hand side

GOTCHA? zero extension, even though sl and S3
are signed

Rule: unsigned type on right-hand side means the
entire right-hand side context is unsigned

GOTCHA? zero extension, even though sl and S$3
are signed

Rule: unsigned type on right-hand side means the
entire right-hand side context is unsigned

GOTCHA? zero extension, even though s3 is signed
(operation is same as: s3 = s3 +2'bll)

Rule: unsigned type on right-hand side means
entire right-hand side context is unsigned

GOTCHA? zero extension, even though the 2’sbll
is signed (operation is same as: u3 = u3 +2’sbll)
Rule: unsigned type on right-hand side means the
entire right-hand side context is unsigned

Chapter 4: Operator Gotchas 107

A compound expression can contain a mix of self-determined operations and
context-determined operations. In this case, the resultant type of the self-
determined operation is used to determine the types that will be used by the
context-determined operations. The following examples use the same
declarations as the previous examples.

{o,u3}) = ul + u2; // First evaluate the self-determined
// concatenation on the left-hand side.
// This affects the size context of operations
// on the right-hand side (which are expanded
// to 9-bit size of the concatenation result)

ud = ul + |u2; // First do unary OR of 8-bit vector u3
// (self-determined) then zero-extend the 1l-bit
// unary OR result to 8 bits before doing the
// context-determined math operation

s3 = sl + |s2; // GOTCHA? First do unary OR of 4-bit vector s2
// {self-determined), then zero-extend sl and the
// 1-bit unary OR result to 8 bits (even though sl
// is a signed type, the |s2 result is unsigned,
// and therefore the right-hand side context
// is unsigned)

The gotcha of zero extension versus sign extension is, in reality, a useful feature
of the Verilog and SystemVerilog languages. A single operator token, such as +,
can model an adder with or without overflow, depending on the largest vector size
in the context of the operation. The same + operator can model either a signed
adder or an unsigned adder, again depending on the context of the operation.

How to avoid this Gotcha

The gotcha of operand expansion comes from not understanding when vector
expansion will occur, and whether the vector will be zero-extended or sign-
extended. To avoid this gotcha, engineers must know the underlying loosely
typed rules of Verilog and SystemVerilog. Once the rules are understood,
engineers must use the correct sizes and data types for the intended type of
operation. Verilog-2001 provides control over the signedness of an operand with
the $signed() and $unsigned() functions. SystemVerilog gives engineers
more control over the application of these expansion rules through the use of type
casting, size casting, and signedness casting. For example (assuming the same
declarations as in the examples above):

s3 = sl + u2; // GOTCHA? zero extension (u2 is unsigned)

s3

8’ (sl) + signed’ (u2); // OK, cast sl to 8 bits wide (self-
// determined) cast u2 to signed and
// do sign extension

108 Verilog and SystemVerilog Gotchas

Gotcha 47: Signed arithmetic rules

Gotcha: My signed adder model worked perfectly until I added a carry-in
input, and now it only does unsigned addition.

Synopsis: The entire right-hand side context of an assignment must be signed,
in order to have signed arithmetic operations.

Gotcha 13 on page 32 discusses some of the gotchas with literal integer sign
extension rules, and Gotcha 46 on page 105 covers gotchas with sign extension in
operations. This gotcha covers important gotchas when performing arithmetic
operations on signed data.

Verilog and System Verilog overload the math operators so that they can represent
several types of hardware. For example, the + operator can represent:

* An adder of any bit width with no carry-in or carry-out

* An adder of any bit width with no carry-in but with carry-out

* An adder of any bit width with carry-in and with carry-out

* An unsigned adder

+ A signed adder

* A single-precision floating point adder

* A double-precision adder

The type of arithmetic performed is controlled by the types of the operands and
the context of the operation. In order to perform signed operations, all operands
must be signed. Arithmetic operators are context-determined. Not only must the
operands to the arithmetic operator be signed, all other operands on the right-hand
side of an assignment must also be signed.

The example below is a signed adder with no gotchas, that simulates and
synthesizes correctly.

module signed_adder_no_carry_in
(input logic signed [3:0] a, b, // signed 4-bit inputs

output logic signed [3:0} sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum} = a + b; // signed 5-bit adder
endmodule

In the example above, the left-hand side concatenation is a self-determined
expression that defines a 5-bit unsigned vector. The size of the left-hand side
affects the right-hand side ADD operation, but the signedness of the left-hand
side has no bearing on operations. All operands on the right-hand side of the

Chapter 4: Operator Gotchas 109

assignment are signed, which does affect the add operation. In this context, the
ADD operator performs a 5-bit signed operation.

Using an unsigned carry-in. The next example is almost the same, but adds a 1-
bit carry-in input. This example has a gotcha! It does not simulate or synthesize as
a signed adder.

module signed adder with_carry in
{(input 1logic signed [3:0} a, b, // signed 4-bit inputs

input logic ci, // unsigned 1-bit input
output logic signed [3:0] sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum}) = a + b + ci; // GOTCHA! unsigned 5-bit adder
endmodule

In simulation, the only indication that there is a problem is in the value of the
result when either a or b is negative. Synthesis tools will issue a warning message
to the effect that a and b were coerced to unsigned types. The reason for this
coercion is that Verilog’s arithmetic operators are context-determined. Even
though a and b are signed, one of the operands in the compound expression, ci,
is unsigned. Therefore, all operands are converted to unsigned values before any
context determined operation is performed. Gotcha!

Using a signed carry-in. Declaring the 1-bit carry-in input as a signed type
seems like it would solve the problem. This change is illustrated below.

module signed_adder_with carry_in
(input logic signed [3:0} a, b, // signed 4-bit inputs

input logic signed ci, // signed 1l-bit input
output logic signed [3:0] sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum} = a + b + ci; // GOTCHA! ci is subtracted
endmodule

Now all operands on the right-hand side are signed, so a signed operation will be
performed, right? No. Gorcha!

The example above does signed arithmetic, but uses incorrect sign extension—at
least incorrect for the intended functionality. The gotcha again relates to the ADD
operator being context-determined. As such, all operands are first expanded to the
vector size of the largest operand, which is the 5-bit self-determined concatenate
operator on the left-hand side of the assignment. Before the addition operations
are performed, a, b and ci are sign-extended to be 5-bits wide. This is correct for
a and b, but is the wrong thing to do for ci. If c1 has a value of 0, sign-extending
it to 5 bits will be 5’00000, which is still zero. However, if ci is 1, sign-
extending it to 5 bits will be 5/ 11111, which is negative 1, instead of positive 1.
The result of the ADD operationis a + b + -1. Gotcha!

110 Verilog and SystemVerilog Gotchas

Using sign casting. Verilog-2001 introduced the $signed and $unsigned
conversion functions, and SystemVerilog adds sign casting. Sign casting allows
changing the signedness of an operand. The following example uses sign casting
to try to fix the signed adder problem.

module signed_adder with_carry in
(input logic signed [3:0) a, b, // signed 4-bit inputs

input logic ci, // unsigned 1l-bit input
output logic signed [3:0] sum, // signed 4-bit output
output logic co); // unsigned 1-bit output

assign {co,sum} = a + b + signed’ (ci); // GOTCHA! ci is subtracted
endmodule

Casting the sign of the carry-in introduces the same gotcha as declaring carry-in
as signed. When carry-in is set, it is sign-extended to 5 bits, making the carry-in a
negative 1. Gotcha!

How to avoid this Gotcha

The real problem is that a signed 1-bit value cannot represent both a value and a
sign bit. Declaring or casting a 1-bit value to signed creates a value where the
value and the sign bit are the same bit, which does not represent true hardware.

The correct way to avoid this signed arithmetic gotcha is to cast the 1-bit carry-in
input to a 2-bit signed expression, as follows:

assign {co,sum} = a + b + signed’ ({1'b0,ci}); // signed 5-bit
// adder

The signed’ ({1'b0,ci}) operation creates a 2-bit signed operand, with the
sign bit always zero. When the 2-bit signed value is sign-extended to the size of
the largest vector in the expression context, the sign extension will zero-extend,
maintaining the positive value of the carry-in bit.

Chapter 4: Operator Gotchas 11

Gotcha 48: Bit-select and part-select operations

Gotcha: All my data types are declared as signed, and I am referencing the
entire signed vectors in my operations, yet I still get unsigned results.

Synopsis. The result of a part-select operation is always unsigned, even when
the entire vector is selected.

Selecting a bit of a vector, or a part of a vector, is an operation. The bit-select and
part-select operators always return an unsigned value, even if the vector itself is
signed. This change in signedness can be unexpected, and is another source for
signed arithmetic gotchas.

parameter MSB = 31;

logic signed [MSB:0) a, b; // signed vectors

logic signed [MSB:0] suml, sum2; // signed vectors

logic signed [7:0]1 sum3; // 8-bit signed vector
assign suml = a + b; // OK, signed adder

]

assign sum2 a[MSB:0] + b[MSB:0]; // GOTCHA! unsigned adder

{a[MSB] ,a[6:0}} + {b{MSB],b[6:0]}; // GOTCHA!
// unsigned adder

assign sum3

The two gotchas above occur because the result of a part-select operation is
always unsigned, and bit-select and part-select operations are self-determined,
and therefore evaluated before the context-determined ADD operation. The
context for the ADD operation is unsigned.

How to avoid this Gotcha

Since the assignment to sum? is selecting the full vectors of a and b, one easy
way to avoid this gotcha is to just not do a part-select, as in the assignment to
suml. However, code is often generated by software tools, which may
automatically use part-selects, even when the full vector is being selected. Part
selects are also commonly used in heavily-parameterized models, where vector
sizes can be redefined. For the sum3 example above, there is no choice but to do a
part-select, since only part of the a and b vectors are being used. When a part-
select of a signed vector must be used, the correct modeling style is to cast the
result of the part-select to a signed value. Either the Verilog-2001 $signed
function or SystemVerilog sign casting can be used. For example:

it

$signed(a[MSB:0]) + $signed(b[MSB:0]);
signed’ ({a[MSB],a[6:0]}) + signed’ ({b[MSB],b[6:0]});

assign sum2

assign sum3

112 Verilog and SystemVerilog Gotchas

Gotcha 49: Increment, decrement and assignment operators

Gotcha: I'm using the ++ operator for my counter, the counter value is
correct, but other code that reads the counter sees the wrong value.

Synopsis: Increment, decrement, and assignment operations are blocking
assignments.

SystemVerilog provides the C-like ++ and -- increment/decrement operators, and
the C-like assignment operators such as +=, -=, *= and /=, These are intuitive
and useful in C programming, and that usage carries over to modeling verification
testbenches in System Verilog. But there is a gotcha when using these operators in
RTL models of hardware. All of these operators behave as blocking assignments
when updating their target variable. In RTL models, blocking assignments are
only appropriate for representing combinational logic. If these operators are used
to model sequential logic, then a simulation race condition is likely to occur. The
following example illustrates such a race condition.

always_ff @(posedge clock, negedge reset n)
if (reset_n) fifo_write ptr = 0;
else if (!fifo full) fifo_write_ptr++;

always_ff @(posedge clock)
if (fifo_write_ptr == 15) fifo_full <= 1; // GOTCHA!
else fifo_full <= 0;

The first procedural block in this example modifies the value of
fifo write_ptr on a clock edge. In parallel, and possibly in a very different
location in the source code, the second procedural block is reading the value of
fifo write_ptr on the same clock edge. Because the ++ operator performs a
blocking assignment update to fifo _write ptr, the update can occur before or
after the second block has sampled the value. Both event orders are legal. It is
very likely that two different simulators will function differently for this example.
Gotcha!

How to avoid this Gotcha

The SystemVerilog increment/decrement operators and the assignment operators
should not be used in sequential logic blocks. These operators should only be
used in combinational logic blocks, as a for loop increment, and in contexts
where the increment/decrement operand is not being read by a concurrent
process. The correct way to model the fifo incrementer is:
always_ff @(posedge clock, negedge reset n)

if (reset n) fifo_write ptr = 0;

else if (!fifo_full) fifo_write_ptr <= fifo_write ptr + 1;

Chapter 4: Operator Gotchas 113

Gotcha 50: Pre-increment versus post-increment operations

Gotcha: My while loop is supposed to execute 16 times, but it exits after 15
times, even though the loop control variable has a value of 16.

Synopsis: Pre-increment versus post-increment can affect the result of some
expressions.

Pop Quiz: The following two lines of code do the same thing, right?

sum = i++;

sum = i+1;
Answer: No! (Gotcha!)

Like the C language, the SystemVerilog ++ increment operator, or -- decrement
operator, can be placed before a variable name (e.g. ++1) or after a variable name
(e.g. i++). These two usages are referred to as a pre-increment or a post-
increment, respectively. The result of the operation is the same. The variable is
incremented by 1. In many contexts, pre-increment and post-increment can be
used interchangeably. In a £or loop step assignment, for example, either pre- or
post-increment can be used, with the same results.

for (int i=0; 1<=255; ++i) ... ;

for (int i=0; 1i<255; i++) ... ;

The two examples are functionally the same in the for loop examples above
because ++1i and i++ are used as stand-alone statements. No other expression is
reading the value of i in the same statement in which it is incremented. The
statement which follows (the 1<=255 test in the examples above) will see the
new value of i, regardless of whether it is a pre-increment or a post-increment.

The gotcha, which comes straight from the C language, is when the value of the
variable is used within the same statement in which it is being incremented. If the
increment operator is before the variable name, the variable is incremented before
the value is used in that same statement (pre-increment). If the increment operator
is placed after the variable, then the value of the variable is used first in the same
statement, and then incremented (post-increment).

i =10;
o= it // assign i to j, then increment i; j gets 10
J o= ++i; // increment i, then assign result to j; j gets 11

Either of the examples above could be correct, depending on what the design or
verification engineer intends to do. If, however, the engineer is expecting one
functionality but uses the wrong operator, then Gotcha!

114 Verilog and SystemVerilog Gotchas

The effects of pre- and post-increment are less obvious in some contexts. For
example:

i = 16;

while (i--) ... ; // test i, then decrement; loop will
// execute 16 times

while (--i) ... ; // decrement i, then test; loop will

// execute 15 times

Either of the examples above could be correct, depending on what one wants to
do. If, however, an engineer is expecting a loop to run a certain number of times,
and the wrong operator is used, then Gotcha!

How to avoid this Gotcha

The way to avoid this gotcha is to fully understand how pre- and post-increment/
decrement work. Both types of operations are useful, but need to be used with
prudence.

Chapter 4: Operator Gotchas 115

Gotcha 51: Modifying a variable multiple times in one statement

Gotcha: When I have multiple operations on a variable in a single statement,
1 get different results from different simulators.

Synopsis: The evaluation order is undefined when a compound expression
modifies the same variable multiple times on the right-hand side of an
assignment statement.

SystemVerilog has assignment operators (such as += and -=), and increment/
decrement operators (++ and --). These operators both read and modify the value
of their operand. Two examples are:

j o= ++i; // OK, increment i, then assign result to j

]

3 (i += 1); // OK, increment i, then assign result to j

Both of these examples modify a variable on the right-hand side of the
assignment statement before making the assignment. There is a gotcha, however,
if the same variable is modified multiple times in the same expression. For
example:

i = 10;
j = --i+ ++i; // GOTCHA! multiple operations on same variable

In this example, the value of i is both read and modified multiple times on the
right-hand side of the assignment statement. The gotcha is that the System Verilog
standard does not guarantee the order of evaluation and execution of these
multiple read/writes to the same variable in the same expression. After execution,
the value of j in this example could be 19, 20 or 21 (and perhaps even other
values), depending upon the relative ordering of the increment operation and the
decrement operation.

How to avoid this Gotcha

This gotcha can be avoided by not using operators which make multiple reads and
writes to a variable within the same statement. Synthesis tools do not permit these
types of operations, because of the indeterminate results. The correct way to
model the example above depends on what order the designer intended the
operations on i to occur. One possibility is:

always comb begin
temp = --i; // pre-decrement i, save result in temp
j = templ + i++; // add templ and i, then increment i
end

116 Verilog and SystemVerilog Gotchas

Gotcha 52: Operator evaluation short circuiting

Gotcha: I am calling a function twice in a statement, but sometimes only one
of the calls is executed.

Synopsis: Simulation might not evaluate all operands in some circumstances.

Software simulation does not always evaluate statements in the same way as
hardware. Consider the following example:

always @ (posedge clock)
if (mem_en &§& write) mem[addr] <= data_in; // OK, no side effects

In this example, the logical AND operator (&&) checks if both mem_en and
write are true. In hardware, this operation is an AND gate. The two inputs are
continuously evaluated, and affect the output of the AND gate. In simulation,
however, the logical operation is performed from left-to-right. If mem_en is false,
then the result of the logical AND operation is known, without having to evaluate
write. Exiting an operation when the answer is known, but before all operands
have been evaluated, is referred to as operation short circuiting. The Verilog/
SystemVerilog standards explicitly allow, but do not require, tools to short circuit
logical AND, logical OR and the ?: conditional operations. The standards are not
clear as to whether other operators can short circuit. It is neither expressly
permitted nor expressly prohibited.

Does short circuiting matter? Not in the preceding example. The simulation
results of the logical AND operation will match the behavior of actual hardware.

Now consider a slightly different example:

always @ (posedge clock)
if (£(il,0l) && £(i2,02))} // GOTCHA! possible side effects
mem[addr} <= data_in;

function f(input [7:0] d_in, output [7:0] d_out);
d_out = d_ in + 1;

if (d_out == 255) return 0;
else return 1;
endfunction

The function above modifies the value passed into it and passes that result back as
a function output argument. In addition, the function returns a status flag. The
function is called twice, on the right-side and the left-side of the & & operator.

In hardware, the logical AND operator can be implemented as an AND gate, and
the function replicated as combinational logic to each input of the gate. As
combinational logic, both o1 and o2 are continuously updated to reflect their
input values.

Chapter 4: Operator Gotchas 117

In software, however, the logical AND operation is evaluated from left-to-right. If
the return of the first function call is 0, the result of the AND operation is known
without having to evaluate the second operand. A simulator or other tool is
permitted to short circuit the operation. If this occurs, the function is not called
the second time, and o2 is not updated to reflect the value of 12, Gorcha!

How to avoid this Gotcha

The only way to avoid this gotcha is to avoid operands with side effects. A side
effect occurs when the operand modifies a value when the operand is evaluated. If
the operands do not have side effects, then the behavior of short circuiting are the
same, and simulation will correctly match hardware behavior.

To avoid the short circuiting gotcha in the example above, it must be re-coded to
ensure that both calls to the function always execute. One way to do this is:

always @(posedge clock) begin

templ = f£(il,o0l); // ol will be updated every time
temp2 = £(i2,02); // 02 will be updated every time
if (templ &5 temp2) // OK! no side effects

mem(addr] <= data_in;
end

118 Verilog and SystemVerilog Gotchas

Gotcha 53: The not operator (!) versus the invert operator (~)

Gotcha: My if statement with a not-true condition did not execute when I was
expecting it fo.

Synopsis.: The logical NOT operator and the bitwise invert operator perform
different operations and can be used incorrectly.

Engineers new to Verilog, and even a few veterans, sometimes misuse the Verilog
logical NOT operator (') and the bitwise invert operator (~). In some
operations, the results of these operations happen to be the same, but, in other
operations, they yield very different results. Consider the following example;

logic a; // 1-bit 4-state variable
logic {1:0) b; // 2-bit 4-state variable

initial begin

a=1;

b =1;

if (ta) ... // evaluates as FALSE

if (~a) ... // evaluates as FALSE

if ('b) ... // evaluates as FALSE

if (~b) ... // evaluates as TRUE -- GOTCHA!
end

The gotcha is that the logical NOT operator (!) performs a true/false test first
and then inverts the 1-bit test result. On the other hand, the bitwise invert operator
(~) just inverts the value of each bit of a vector. If the bitwise invert operation is
used in the context of a true/false test, the bit inversion occurs first, and the true/
false evaluation is performed second, possibly on a multi-bit value.

Inverting the bits of a vector, and then testing to see whether it is true or false is
not the same as testing whether the vector is true or false, and then inverting the
result of that test. Gotcha!

How to avoid this Gotcha
The bitwise invert operator should never be used to negate logical true/false tests.
Logical test negation should use the logical NOT operator.

if (!'b) ... // OK, logical operator used for true/false test

Conversely, the logical NOT operator should never be used to invert a value. The
result of logical NOT and bitwise inversion is the same for 1-bit values, but very
different for vectors. Even when inverting a 1-bit signal, such as a clock, gotchas
will be avoided by using the invert operator for invert operations.

always #5 clk = ~clk; // OK, invert operator used to invert clock

Chapter 4: Operator Gotchas 119

Gotcha 54: Array method operations

Gotcha: I get the wrong result when I sum all the values of an array using the
built-in .sum method.

Synopsis: Some of the SystemVerilog array methods are context-determined.

SystemVerilog adds several built-in functions for working with arrays, called
array methods. The gotcha illustrated here uses the .sum array method, but
similar gotchas exist with several of the array methods.

The . sum method returns the total of adding all the values in all elements of the
array. In the following example, the fifties array holds four 8-bit vectors,
which are initialized with several integer values. The values in the array are
summed using the . sum method, and printed using a $display statement.

logic [7:0] fifties [0:3] = /{50,100,150,200}; // 8-bit array
Sdisplay("fifties.sum is %0d", fifties.sum); // GOTCHA!

This example sums up 50 + 100 + 150 + 200 and returns the clearly
incorrect total of 244. Gotcha!

The reason for this result is that the .sum method, and several other array
methods, are context-determined. With context-determined operations, the vector
size of the operation is based on the context in which the operation is used.
Gotcha 45 on page 101 explains the rules for context-determined operations.

In this example, each member of the array is 8-bits wide. There are no other
values involved in the .sum operation, so the context of the operation is 8-bit
values. As the values of the array are summed, the most-significant bits of any
result that overflows the 8-bit size are truncated. That is, in context, the array is
summed with an 8-bit adder with no carry.

How to avoid this Gotcha

This gotcha can be avoided by using the array method in a context with a vector
size that can hold the maximum value the method could return. Two of many
ways the operation context can be changed are shown below.

One simple way to change the size context is to add a literal value of 0 to the
method return. The following example adds a 16-bit literal 0 to the . sum return.
This makes the context of the operation 16 bits, which is sufficient to hold the
maximum value. This example will return the correct sum of 500.

$display("fifties.sum is %0d", (fifties.sum + 16'd0)); // OK

120 Verilog and SystemVerilog Gotchas

A second way to change the context vector size is to assign the method return to a
larger vector. The size context for operations is based on both the right-hand and
left-hand sides of assignment statements. The following example also returns the
correct sum of 500.

int total; // 32-bit integer variable

total = fifties.sum
$display("total is %0d", total); // OK

Chapter 4: Operator Gotchas 121

Gotcha 55: Array method operations on an array subset

Gotcha: 1 get the wrong answer when I sum specific array elements in an
array.

Synopsis: Using sum with(), returns a sum of the with() expressions, not a sum
of a subset of array element values.

SystemVerilog provides a number of array methods to search and manipulate data
within arrays. These methods operate only on unpacked arrays, and include array
searching, array ordering and array reduction.

The .sum method, an array reduction method, returns the sum of the values
stored in all elements of an array. An optional with () clause can be used to filter
out some array values. But, when using . sum with (), there is a subtle gotcha.

In the following example, the intent is to sum up all values in the array that are
greater than 7.

program automatic test;
initial begin
int count, al] = '{9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
count = a.sum with (item > 7); // GOTCHA: expect 17, get 2
$display("\"a.sum with(item > 7)\" returns %0d", count);
end
endprogram

When the optional with() clause is used, the . sum method adds up the return
values of the expression inside the with () clause, instead of summing the values
of the array elements. In the example above, the (item > 7) is a true/false
expression, which is represented with the values 1°bl or 1'b0. If the array
contains the values {9,8,7,3,2,1}, then the true/false test for each array
element returns the set of values {1'b1,1/b1,1’b0,1’b0,1'b0,1’b0}. The
sum of these true/false values is 2. Gotcha!

Other array methods that have a with() clause can have a similar gotcha.

How to avoid this Gotcha

The true/false result of the relational expression can be used to select just the
element values where the test is true. Two simple ways to do this are:

count = a.sum with((item > 7) ? item : 0);

count = a.sum with((item > 7) * item);

Chapter 5

General Programming Gotchas

Gotcha 56: Verifying asynchronous and synchronous reset at time zero

Gotcha: Sometimes my design resets correctly at time zero, and sometimes it
fails to reset.

Synopsis: Initial procedural blocks can activate in any order relative to
always procedural blocks.

A common verification gotcha is not understanding the event scheduling of
initial and always procedural blocks. Because of the name “initial”, some
engineers assume that initial blocks are executed before always blocks. Other
engineers believe just the opposite is true, that initial blocks are guaranteed to
execute after all always blocks are active.

In which order should the initial and always blocks be started? If the verification
goal is to test resetting the design at time zero, the answer to this question is not
straightforward. It depends if the design is modeled with asynchronous resets or
synchronous resets.

The following example illustrates a testbench where the goal is to reset the design
at time zero, and the design uses asynchronous resets.

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using small
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

124 Verilog and SystemVerilog Gotchas

module chip {input logic clock, input logic reset_n, ...);

always_ff @(posedge clock, negedge reset n) // asynchronous rest
if (!reset n) q <= 0;
else q <= d;
endmodule

module test (input logic clock, output logic reset n, ...);
initial begin
reset_n = 0; // GOTCHA! activating reset at time zero
#10 reset n = 1;

end
endmodule

module top;
logic clock, reset n, ...;
test test (.*); // connect testbench to design
chip dut (.*);

initial begin

clock = 0y // OK! first rising clock edge at time 5
forever #5 clock = ~clock;
end
endmodule

In this example, if a simulator activates the always_££ procedural block first, it
will encounter the @ timing control in the sensitivity list and suspend execution,
while waiting for a negative edge of reset n. Then, when the initial
procedural block in module test activates and changes reset n to 0, the
always_f£f block will sense the change and the flip-flop will reset.

But, the activation order of procedural blocks is not guaranteed. The Verilog and
SystemVerilog standards state that initial and always procedural blocks
become active at time zero, in any order. The initial block in the module
test, above, could activate and assign reset_n to 0 before the always ff
block activates. In this case, the flip-flop misses the change at time zero on
reset_n, and fails to reset asynchronously at time zero. Gotcha!

Instead of depending on activation order, specific programming constructs must
be used to control when verification events occur. There are ways to avoid this
gotcha, and ensure that the always_££ block activates first, before reset n
changes to 0 at time zero. Before looking at the solution, however, let’s consider
what is needed to reset the design at time zero, if the design uses synchronous
reset flip-flops, as shown in the following example:

Chapter 5: General Programming Gotchas 125

module chip (input logic clock, input logic reset n, ...);

always ff @(posedge clock) // synchronous rest
if (!reset_n) q <= 0;
else q <= d;
endmodule
module test (input logic clock, output logic reset_n, ...);

initial begin
reset_n = 0; // GOTCHA! activating reset at time zero
#10 reset_n = 1;

end
endmodule

module top;
logic clock, reset n, ...;
test test (.*); // connect testbench to design
chip dut (.*);
initial begin
clock = 1; // GOTCHA! first rising clock edge at time
zZero
forever #5 clock = ~clock;
end
endmodule

There are only two changes between this example and the first example. The
always_£f has been changed to model synchronous resets, and the clock

generator in module top has been changed to generate a positive edge of clock at
time zero, in order to reset the design at time zero.

The first example with asynchronous resets required the always_££ block to
activate before reset was initialized. Thus, there was a race condition between the
design and the activation of reset. With synchronous resets, the needed behavior
is that both the always_££ and the initial block that activates reset must
occur before the initialization of clock at time zero. Since the activation of the
three procedural blocks could be in any order, there is a three-way race condition.
Gotcha!

How to avoid this Gotcha using Verilog

This gotcha is avoided by proper education and understanding of the Verilog
event scheduling of concurrent statements. It is also necessary to understand the
type of hardware being verified, as different types of hardware require different
event ordering.

The simplest way to avoid this gotcha, and one that is highly recommended, is to
avoid clocking and resetting a design at time zero. If clock and reset occur any

126 Verilog and SystemVerilog Gotchas

time after time zero, all procedural blocks will be active, and the order of events
is far less critical.

If resetting the design at time zero is needed, the correct mix of blocking and
nonblocking assignments must be used. When executed, blocking assignments
immediately update the variable on the left-hand side. Nonblocking assignments
update variables after a delta in the current simulation time. At simulation time
zero, all procedural blocks are guaranteed to be active before this delta.

If the design uses asynchronous resets, both clock and reset should be initialized
using nonblocking assignments.
module test (input logic clock, output logic reset_n, ...);
initial begin
reset_n <= 0; // OK, reset activated after delta
#10 reset n = 1;

end
endmodule

module top;

initial begin

clock <= 1; // OK, first rising clock after delta
forever #5 clock = ~clock;
end
endmodule

With asynchronous resets, it does not matter what order clock and reset occur, so
long as the value changes occur after the time zero delta. Both are listed in the
sequential logic sensitivity list, so, no matter what order clock and reset occur, if
the sequential logic procedure has been activated, it will reset at time zero.

If the design uses synchronous resets, the order in which the activation of clock
and reset occur is important. The reset signal needs to have its active value before
the first edge of clock occurs. To guarantee this order of events, only the clock
should be initialized using nonblocking assignment. The reset should be assigned
with a blocking assignment, so that it is updated to its value before the delta
delay.

module test (input logic clock, output logic reset_n, ...);

initial begin
reset_ n = 0; // OK, reset activated before delta

#10 reset n = 1;

end
endmodule

Chapter 5: General Programming Gotchas 127

module top;

initial begin

clock <= 1; // OK, first rising clock after delta
forever #5 clock = ~clock;
end
endmodule

The scheduling of nonblocking assignments guarantees that all procedural blocks,
whether initial or always, have been activated, in any order, before the
assignment takes place.

How to avoid this Gotcha using SystemVerilog

With SystemVerilog, the testbench can be, and should be, modeled using a
program instead of a module.

program automatic test (input logic clock, output logic reset_n);
initial begin
reset_n <= 0; // OK, reset activated as verification event

#10 reset_n <= 1;

end
endmodule

module top;

initial begin

clock <= 1; // OK, first rising clock after delta
forever #5 clock = ~clock;
end
endmodule

A program block has special event scheduling semantics that help avoid most
types of test-to-design race conditions. In brief, value changes generated from a
program block are scheduled to take place after both blocking and nonblocking
assignments that are in modules and interfaces. This scheduling eliminates the
gotcha with scheduling asynchronous resets at simulation time zero in the correct
order. Note, however, that the program block does not solve the gotcha described
above for scheduling synchronous resets at time zero.

See Gotcha 7 on page 22 for coding guidelines with program blocks.

128 Verilog and SystemVerilog Gotchas

Gotcha 57: Nested if...else blocks

Gotcha: My else branch is pairing up with the wrong if statement.

Synopsis: An else construct pairs with the nearest if statement that does not
have an else; begin...end can override this default pairing.

The else branch of a Verilog/SystemVerilog if..else statement is optional.
This can lead to confusion when if...else statements are nested within other
if..else statements, and some of the optional else statements are not
specified. Which else goes to which i£? The following example is a gotcha...

if (a >= 5)
if (a <= 10)
S$display (" 'a' is between $ and 10");
else
$display (" 'a' is less than 5"); // GOTCHA! pairs with wrong if

The indentation of the code above implies that the else statement goes with the
first if statement, but that is not how Verilog/SystemVerilog works. The
language rules state that an else statement is automatically associated with the
nearest previous if statement that does not have an else. Indentation does not
change the language pairing rules.

Therefore, the example above, with correct indentation and $display statements,
is actually:

if (a >= 5)

if (a <= 10)
$display (" 'a' is between 5 and 10");
else
$display (" 'a' is greater than 10"); // CORRECT!

How to avoid this Gotcha

The automatic if..else association can be overridden using begin...end to
explicitly show which statements belong within an if branch. The first example,
above, can be correctly coded as follows:

if (a >= 5) begin

if (a <= 10)
$display (" 'a' is between 5 and 10");
end
else
$display (" 'a' is less than 5"); // CORRECT!

A language-aware text editor can also help avoid this gotcha. The editor tool can
properly indent nested if...else statements, lining up the else statement with
its corresponding if statement.

Chapter 5: General Programming Gotchas 129

Gotcha 58: Evaluation of equality with 4-state values

Gotcha: My testbench completely misses problems on design outputs, even
though it is testing the outputs.

Synopsis: The equality operators have three answers, true, false and
unknown, but if...else decision statements only have two branches.

A common task in verification is to compare data from the design to expected
results. Verilog has an equivalence operator ==, that appears to be similar to the C
language operator. They are not the same! Verilog also has a not-equivalent
operator, !=, that uses the same token as C, but works differently.

The following excerpt from a testbench might seem reasonable in most
programming languages, but with 4-state logic, the code does not work as
intended.

always @(posedge test_clock)
if (data != expected) // GOTCHA!
$display("Error on data: saw %h, expected %h", data, expected);

In this example, if data always has known values, then the verification code will
work as intended. But, if data has any bits that are X or Z, the i £ branch will not
be taken. Most likely, an X or Z value on any bit of data is a design error, but the
verification code misses the problem. Gotcha!

The gotcha comes from not understanding how the equality/inequality operators
handle 4-state values. In brief, the rules are:

+ If the two operands are numerically equivalent, the operation result is true.
* If the two operands are numerically different, the operation result is false.
+ If the either operand is not a known number, the operation result is unknown.

The true, false, and unknown results are represented with the 1-bit values, 1/ b1,
1b0, and 1 bx, respectively.

The if...else decision only has two branches. If the expression tested is true, the
if branch is executed. If the expression is evaluates as either false or unknown,
the else branch is taken. The verification example above traps errors using the
if branch of the decision, and does nothing on the else branch. Should there be
a problem with the design that results in a logic z or x on any bit of the output, the
not-equal (!=) operator will return unknown, which will not take the i £ branch
of the verification code. The design error will go undetected.

130 Verilog and SystemVerilog Gotchas

How to avoid this Gotcha

This gotcha can only be avoided by understanding how 4-state values are
evaluated as true or false. Both design and verification engineers need to know
that, in order for a 4-state equivalence test to be true or false, no bits in the
expression can have a Z or X value.

The verification example above can be corrected by using special verification
operators in Verilog, the identity operators (=== and !==), instead of the usual
programming equality operators (== and !=). For example:

always @(posedge test_clock)
if (data !== expected) // OK, will detect bits with X or 2
$display("Error on data: saw %h, expected %h", data, expected);

The identity operators perform a bit-by-bit comparison of its two operands. The
values of each bit are compared for all four logic values. If both bits have
identical values, the comparison of those bits evaluates as true. If all bits are
identical, the operation returns true. If any bits are different in any way, the
operation evaluates as false. The not-identical operator, !==, negates the true/
false results,

Chapter 5: General Programming Gotchas 131

Gotcha 59: Event trigger race conditions

Gotcha: I'm using the event data type to synchronize processes, but
sometimes when I trigger an event, the sensing process does not activate.

Synopsis: An event that is triggered in the same time step in which a process
begins looking for the event may not be sensed.

Verilog provides a basic inter-process synchronization mechanism via the event
data type, the -> event trigger operator, and the @ event timing control. Many
engineers don’t know that the feature even exists in the language, and are
unaware of how to use it. An engineer who had been using Verilog for a number
of years recently attended a Verilog training class with his team. When the section
on event data types was presented, the engineer asked if this was something new
with SystemVerilog. The answer was no, that it has been in the Verilog language
since its beginning in 1984. To this, the veteran Verilog engineer replied, “Why
hasn’t anyone told me about this before?”

There is gotcha, however, in that there can easily be simulation race conditions
with Verilog’s event triggering. The following code demonstrates this potential
race condition.

module event examplel;
event get_data, send data: // handshaking flags
initial -> get_data; // GOTCHA! trigger at time zero

always @ (get_data) begin // wait for a get_data event
. // code to get data
. // when done, trigger send_data
-> send_data; // sync with send_data process
end

always @(send_data) begin // wait for a send data event
. // code to send data
. // when done, trigger get_data
-> get_data; // sync with get data process
end
endmodule

The two always blocks above model simple behavioral handshaking. The event
data type is used to signal the completion of one block and enabling the other. The
initial block is used to start the handshaking sequence.

The gotcha lies in the fact that, at simulation time zero, each of the procedural
blocks must be activated. If the initial block activates and executes before the
always @ (get_data) block activates, then the sequence will never start.

132 Verilog and SystemVerilog Gotchas

How to avoid this Gotcha using Verilog

In Verilog, the only way to solve this issue is to delay the trigger in the initial
block from occurring until all the procedure blocks have been activated. This is
done by preceding the statement with an explicit zero delay, as shown in the code
below.

initial #0 -> get_data; // OK! delayed trigger

always @(get_data) begin // wait for a get data event
.. // code to get data

Using the #0 delay will hold off triggering the get data event until all the
procedure blocks have been activated. This ensures that the always
@ (get_data) block will sense the start of a handshake sequence at time zero.

The Verilog #0 construct can be abused, however, and cause other hard-to-debug
race conditions. Some Verilog trainers have recommended never using #0,
because of its inherent dangers.

How to avoid this Gotcha using SystemVerilog

SystemVerilog comes to the rescue, with two solutions that will remove the event
trigger race condition without using #0.

SystemVerilog solution 1:

SystemVerilog defines a nonblocking event trigger, ->>, that will schedule the
event to trigger after a zero delay delta, in the same way as nonblocking
assignments. For the example in this section, this eliminates the race condition at
time zero, and eliminates the need for a #0 delay. Triggering the get data after
the nonblocking delta allows for the always procedure blocks to become active
before the event is triggered.

initial ->> get_data; // OK! trigger after delta

always @(get_data) begin // wait for a get_data event
. // code to get data

SystemVerilog solution 2:

SystemVerilog provides a second approach that will provide a solution to many
more situations than the simple example shown in this book. This second solution
uses a trigger persistence property that makes the trigger visible through the
entire time step, and not just in the instantaneous moment that the event was
triggered.

Chapter 5: General Programming Gotchas 133

module event example2 (...);
event get_data, send_data; // handshaking flags
initial -> get_data; // OK, trigger get_data at time zero

always begin
wait(get_data.triggered) // wait for a get_data event
// do code to get data
// when done, trigger send_data
-> send_data; // sync with send_data process
end

always begin
wait (send_data.triggered) // wait for a send_data event
// do code to send data
// when done, trigger get data
-> get_data; // sync with get_data process
end
endmodule

The wait (get_data.triggered) returns true in the time step in which
get_data is triggered. It does not matter if, within the current simulation time,
the trigger event occurs before or after the wait statement is activated. So, in the
above example, if the initial block activates and executes before the first
always block, the trigger persistence will still be visible when the first always
block becomes active and executes the wait (get_data.triggered)
statement.

134 Verilog and SystemVerilog Gotchas

Gotcha 60: Using semaphores for synchronization

Gotcha: My processes are not synchronizing the way I expected using
semaphores. Even when there are waiting processes, some other process gets
to run ahead of them.

Synopsis: Semaphore keys can be added to a bucket without having first
obtained those keys. Keys can be obtained without waiting for prior requests
to be serviced.

The Verilog event data types provide a means to synchronize procedural blocks.
But, this method of procedural handshaking and communication is too limiting
for modem, object-oriented verification methodologies. SystemVerilog provides
two additional inter-process synchronization mechanisms that provide more
flexibility and versatility than simple event triggering provides. These
mechanisms are semaphores and mailboxes. Both of these new synchronization
methods have subtle behaviors that must be considered. This section describes the
gotchas involving semaphores. Gotcha 61 on page 137 describes the gotchas
involving mailboxes.

Semaphores are like a bucket that can hold a number of keys or tokens. Methods
are available to put any number of keys into the bucket and to get any number of
keys out of the bucket.

The put () method is straight forward. The number specified as an argument to
put () is the number of keys placed in the bucket. Any number of keys can be
placed into the bucket, regardless of how many were retrieved from the bucket. A
process can even add keys to the bucket without having retrieved any keys at ail,
(A potential gotcha not addressed in this book is that incorrect code could keep
adding more keys to the bucket than were retrieved from the bucket.)

The get () method is used to retrieve keys from the bucket. Any number of keys
can be requested. If the number of keys requested is not available, the calling
process is blocked from continuing execution until the requested number of keys
becomes available.

The get () method has a subtle, non-intuitive gotcha. If more than one key is
requested, and that number of keys is not available, the request is put into a FIFO
(First In, First Out), and will wait until the requested number of keys becomes
available. If more than one process requests keys that are not available, the
requests are added to the FIFO in the order received. When keys become
available, the requests in the queue are serviced in the order in which the requests
were received.

Chapter 5: General Programming Gotchas 135

The gotcha is that, each time get () is called, an attempt is made to retrieve the
requested keys, without first putting the request into the FIFO. If the requested
number of keys is available, the get() is serviced, even if other requests are
waiting in the FIFQ. The following example demonstrates this gotcha.

module semad_example (... };

semaphore s_test = new; // create a semaphore bucket

initial begin: Blockl // At simulation time zero...
s_test.put(5); // bucket has 5 keys added to it
s_test.get(3); // bucket has 2 keys left
s_test.get(4); // get(4) cannot be serviced

// because the bucket only has 2
// keys; the request is put in
// the request FIFO
$display (“Blockl completed at time %0d”, $time);
end: Blockl

initial begin: Block2 #10 // At simulation time 10...
s_test.get(2); // GOTCHA! Even though get (4)
// came first, and is waiting
// in the FIFO, get(2) will be
// serviced first
s_test.get(l); // this request will be put on
/7 the FIFO, because the bucket
!/ is empty; it will not be
// serviced until the get(4)
// is serviced
$display(“Block2 completed at time %0d4”, $time);
end: Block2

initial begin: Block3 #20 // At simulation time 20...

s_test.put(3); // nothing is run from the FIFO,
// since get(4)is first in the
// FIFO

#10 // At simulation time 30...

s_test.put(2); // get(4) and get(l) can now be
// serviced, in the order in
// which they were placed in
// the FIFO

$display(“Block3 completed at time %0d”, Stime);

end: Block3
endmodule

When a get () method is called, and there are enough keys in the bucket to fill
the request, it retrieves the requested keys immediately, even if there are previous
get () requests waiting in the FIFO for keys. In the example above, the Block1
process starts at simulation time zero. It executes until get (4) is called. At that
time, there are only 2 keys available. Since the request could not be filled, it is put

136 Verilog and SystemVerilog Gotchas

in the request FIFO. The execution of Blockl is then suspended until 4 keys are
retrieved.

Next, a separate process, Block2 requests 2 keys at simulation time 10. The
get (2) executes and retrieves the 2 remaining keys from the bucket
immediately, even though there is the get (4) in the request FIFO waiting to be
serviced. The process then executes a get (1). This request cannot be serviced,
because the bucket is now empty, and therefore is put on the request FIFO.

At simulation time 30, the B1ock3 process puts three keys back in the semaphore
bucket. The get (4) request sitting in the FIFO still cannot be serviced, because
there are not enough keys available. There is also a get (1) request in the queue,
but is not serviced because that request was received after the get (4) request.
Once placed on the FIFO, the get () requests are serviced in the order which they
were received. The get (4) must be serviced first, then the get (1).

How to avoid this Gotcha

The gotcha is having a get () request serviced immediately, even when there are
other get () requests waiting in the request FIFO. This gotcha can be avoided if
the get () requests are restricted to getting just one key at a time. In this way, any
requests in the FIFO will never be waiting for more than one key. As soon as a
key becomes available, the first request in the FIFO will be serviced. A new
get () request will not be serviced ahead of the FIFO.

If a process needs more than one key, instead of calling get () once for the
multiple keys, the process should call get (1) multiple times. A repeat loop is a
convenient way to request multiple keys, one at a time. For example:

repeat (3) s_test.get(1); // request 3 keys, one at a time

When the process is done, it can return multiple keys with a single put (). It is
not necessary to put the keys back one at a time.

Chapter 5: General Programming Gotchas 137

Gotcha 61: Using mailboxes for synchronization

Gotcha: My mailbox works at first, and then starts getting errors during
simulation.

Synopsis: Run-time errors occur if an attempt is made to read the wrong data
type from a mailbox.

Mailboxes provide a mechanism for both inter-process synchronization and the
passage of information between processes. By default, mailboxes are typeless,
which means that messages of any data type can be put into the mailbox. The
gotcha is that, when messages are retrieved from the mailbox with the get ()
method, the receiving variable must be the same data type as the value placed in
the mailbox. If the receiving variable is a different type, then a run time error will
be generated.

module mbox_examplel (...);
logic [15:0] a, b;
int i, j, s;
struct packed {int u, v, w;} d_in, d out;

mailbox mboxl = new; // typeless mailbox
initial begin
mboxl.put(a); // OK: can put message of any data type

mboxl.put(i); // OK: can put message of any data type
mboxl.put(d in); // OK: can put message of any data type

mboxl.get (b) ; // OK: data type of b matches data type of
// first message in mboxl
mboxl.get(b) ; // ERROR: b is wrong type for next message
// in mboxl
end
endmodule

How to avoid this Gotcha

There are three ways of avoiding this gotcha. First is the brute force method of
managing the data types manually. The manual approach could be error prone. It
places a burden on the verification engineers to track what type of data was put in
the mailbox, and in what order, so that the correct types are retrieved from the
mailbox.

The second approach is to use the try get () method, instead of the get ()
method. The try get () method retrieves the message via an argument passed
to try_get (), and returns a status flag. One of three status flags is returned:

138 Verilog and SystemVerilog Gotchas

* Returns 0 if there is no message in the mailbox to retrieve.

* Returns 1 if the message and the receiving variable are type-compatible, and
the message is retrieved.

» Returns a negative value if the message and the receiving variable are type-
incompatible, in which case the message is not retrieved.

The return value of try get () can be processed by conditional statements, to
determine the next verification action. The following example illustrates using a
typeless mailbox and the try get () method.

module mbox examplel (...)
logic [15:0] a, b;
int i, j, s;
struct packed {int u, v, w;} d_in, d out;

mailbox mboxl = new; // typeless mailbox

initial begin
mboxl.put(a); // OK: can put message of any data type
mboxl.put(i); // OK: can put message of any data type
mboxl.put(d in); // OK: can put message of any data type

s = mboxl.try get(d out); // must check status to see if OK
case (s8)
1: Sdisplay("try get() succeeded");
0: Sdisplay("try get() failed, no message in mailbox");
default: $display("try get() failed due to type error");
endcase
end
endmodule

The third approach to avoiding a mailbox run-time error gotcha is to use typed
mailboxes. These mailboxes have a fixed storage type. The tool compiler will
give a compilation error if the code attempts to place any messages with
incompatible data types into the mailbox. The get () method can be safely used,
because it is known beforehand what data type will be in the mailbox. An
example of declaring a typed mailbox is.

typedef struct {int a, b} data_packet_t;
mailbox #(data_packet_t) mbox2 = new; // typed mailbox
With this typed mailbox example, only messages of data type data packet t

can be put into mbox2. If an argument to the put () method is any other type, a
compilation error will occur.

Chapter 5: General Programming Gotchas 139

Gotcha 62: Triggering on clocking blocks

Gotcha: I cannot get my test program to wait for a clocking block edge.

Synopsis: When a test waits for a clocking block edge to occur, the posedge or
negedge keyword should not be used.

Test code that uses the @ event control to delay until a clocking block clock
occurs should not specify posedge or negedge of the clocking block name, The
following example causes a compilation error:

program automatic test (input logic clk,
input logic grant,
output logic request
)i
clocking cb @(posedge clk):;
output request;
input grant;
endclocking
initial begin
@ (posedge cb) // GOTCHA: cannot select edge of clocking block
$display("At %0d: clocking block triggered", S$time);

end
endprogram

How to avoid this Gotcha

When test code needs to delay for a clocking block clock using the @ event
control, only the clocking block name should be used. This is because clocking
block definitions already specify which edge of the clock is being used. For
example:
initial begin
@ (cb) // OK: delay until clocking block event occurs
$display ("At %0d: clocking block triggered", S$time);

end
endprogram

Using a clocking block name for an event control can make test code more robust
and easier to maintain, especially when the clocking block is defined in an
interface. The test program does not need to know if the interface uses a positive
edge, negative edge, or both edges (double data rate) of the clock. All the test
program needs to reference is the clocking block name.

140 Verilog and SystemVerilog Gotchas

Gotcha 63: Misplaced semicolons after decision statements

Gotcha: Statements in my if{) decision execute, even when the condition is not
true.

Synopsis: A semicolon after the closing parenthesis of a decision statement is
legal, and causes the statements that should be within the iff) to be outside the

i.

A semicolon (;) by itself is a complete programming statement, representing a
null-operation statement. A misplaced semicolon after if is legal. However, the
misplaced semicolon can cause the statement or begin...end group after the
misplaced semicolon to execute at times that were not intended.

module foo;

reg a;
initial begin
a=1;
if (a); // semicolon is wrong, but NOT syntax error
$display("'a' is true"™); // GOTCHA! also prints when 'a’
// is false
end
endmodule

In the example above, there is no syntax error. The semicolon is a legal statement,
and is the only statement associated with the if condition. The $display
statement, though nicely indented, is not part of the i £ statement, The $display
message prints every time, regardless of whether the variable a is true or false.
Gotcha!

The next example illustrates how a misplaced semicolon can lead to a syntax
error on a subsequent line of code.

module bar;

reqg a;
initial begin
a = 1;
if (a); // semicolon is NOT an error
$display("'a' is true");
else // SYNTAX ERROR! 'else' does not

// follow 'if'
Sdisplay("'a' is false");
end
endmodule

The else line in the example above appears to be paired with the if statement.
However, the only statement in the if branch is the misplaced semicolon, which

Chapter 5: General Programming Gotchas 141

is a null statement. Therefore, the $display statement that follows is not part of
the if statement, which means the else statement is not paired with the if
statement. The compiler will report an error on the line with else, which is
actually two lines after the real problem. Gotcha!

How to avoid this Gotcha

This is an example of a gotcha that is inherited from the C language, from which
Verilog and SystemVerilog have their syntax and semantic roots. The same
coding mistakes illustrated above can be made in C. The way to prevent this
coding gotcha is to know Verilog syntax, and to correctly use semicolons.

A language-aware text editor, such as Emacs with a Verilog mode, can help to
avoid this gotcha. A good language-aware editor for Verilog can add auto
indentation. The examples above would have obvious indentation errors with
such an editor. The first example, above, might be indented as follows:
initial begin
a = 1;
if (a);
$display("”'a' is true"); // statement is not auto-indented
end

142 Verilog and SystemVerilog Gotchas

Gotcha 64: Misplaced semicolons in for loops

Gotcha: My for loop only executes one time.

Synopsis: A semicolon at the end of a for loop declaration effectively makes
the loop always execute just one time.

A semicolon (;) by itself is a complete programming statement, representing a
null-operation A misplaced semicolon after for is syntactically legal. However,
the misplaced semicolon has the effect of making the loop appear to execute only
one time.

module foo;

integer i;
initial begin
for (i=0; i<=15; i=i+l); // semicolon is NOT an error
begin
$display("Loop pass executing"); // GOTCHA! only executes
// once
end
end
endmodule

In the example above, there is no syntax error. The semicolon is a legal statement,
and is the only statement within the for loop. The begin...end group with the
$display statement is not part of the for loop. The loop will execute 16 times,
executing a null statement. After the loop has completed, the group of statements
that appear to be inside the loop—but which are not—will execute one time.
Gotcha!

This gotcha can also occur with while, repeat, forever and foreach loops.

Looping multiple times executing a null statement is not necessarily a coding
error. A common verification coding style is to use a null statement in a repeat
loop, in order to advance multiple clock cycles. For example:
initial begin
reset n <= 0;
repeat (8) @(posedge clock) ; // loop 8 clock cycles doing no-op
reset_n = 1;
end

How to avoid this Gotcha

This gotcha is inherited from the C programming language, where the same
coding error is syntactically legal. A language-aware editor with auto-indenting
can help to avoid this gotcha. A good Verilog editor will show the indentation to
be wrong for this code, which will indicate a misplaced semicolon.

Chapter 5: General Programming Gotchas 143

There is another gotcha with the for loop example above. Even though a null
statement in a for loop is legal code, some tools make it a syntax error. The
intent in making this an error is to help engineers avoid a common C
programming gotcha. Unfortunately, it also means that if the engineer actually
wanted an empty for loop, these tools do not allow what should be legal code.
The workaround, if an empty loop is actually intended, is to replace the null
statement with an empty begin...end statement group.

144 Verilog and SystemVerilog Gotchas

Gotcha 65: Infinite for loops

Gotcha: My for loop never exits. When the loop variable reaches the exit
value, the loop just starts over again.

Synopsis: Declaring too small a for loop control variable can result in loops
that never exits.

A for loop executes its statements until the loop control expression evaluates as
false. As in most programming languages, it is possible to write a for loop where
the contro] expression is always true, creating an infinite loop that never exits.
This general programming gotcha is more likely to occur in Verilog, because
Verilog allows engineers to define small vector sizes.

The intent in the following example is to loop 16 times, with the loop control

variable having a value from 0 to 15,

reg [3:0] 1i; // 4-bit loop control variable

for (i=0; i<=15; i=i+l) // GOTCHA! i<=15 is always true
begin /* loop body */ end

In this example, the loop will run until i is incremented to a value greater than 15.
But, as a 4-bit variable, when i has a value of 15 and is incremented, the result is
0, which is less than or equal to 15. The loop control test will be true, and the loop
will continue to execute, starting over with i equal to 0.

How to avoid this Gotcha

A simple way to avoid this gotcha is to increase the size of the loop control
variable so that it can hold a larger value. Typically, either integer (a Verilog
type) or int (a SystemVerilog type) should be used as loop control variables,
both of which are 32-bit signed variables.

With SystemVerilog, the loop control variable can be declared as part of the for
loop. This puts the loop control variable declaration and usage of the variable in
the same line of code, making type or size of the variable more obvious.

reg [3:0) result; // 4-bit design or test variable
for (int i=0; i<=15; i=i+1) // OK, i can have a value greater
// than 15
@ (posedge clk) result = i; // OK, but mismatch in assignment
// sizes

The difference in size of the loop control variable and the value to which it is
assigned can result in a warning. The assignment is still correct. The lower 4 bits
of i are assigned to result, and the remaining bits are truncated. To prevent the
warning message, explicitly select the lower bits of i, as in result = 1{3:0]..

Chapter 5: General Programming Gotchas 145

Gotcha 66: Locked simulation due to concurrent for loops

Gotcha: When I run simulation, my for loops lock up or do strange things.

Synopsis.: Parallel for loops that use the same control variable can interfere
with each other.

Verilog has two programming constructs that can invoke parallel execution
threads within the same scope: multiple combinational always procedural blocks
that trigger at the same time, and fork...join statement groups. Paralle] threads
running in the same name space can interfere with each other if they share any of
the same storage variables. The following example illustrates a simple testbench
that forks off two tests to run in parallel. Each test contains a for loop that uses a
variable called i as the loop control. One loop increments i, and the other loop
decrements i.

program automatic test;
logic [7:0] a, b, ¢, sum, dif;
int i; // GOTCHA! shared loop variable
adder_subtractor dut (.*);
initial begin
fork
begin: add_test
for (i = 0; i < 10; i++) begin // increment i
a = 1i;
b =1+ 10;
#10 S$display("At %0d, in scope %m: i=%0d sum=%0d",
Stime, i, sum);
end
end

begin: dif test
for (i = 8; i > 2; i--) begin // decrement i
c = 1i;
#10 $display("At %0d, in scope %m: i=%0d dif=%0d",
Stime, i, dif);
end
end
join
$display("\nTests finished at time %0d\n", $time);
$finish;
end
endmodule

The intent of this example is that, after both loops complete, $finish is called
and simulation exits. One loop should execute 10 times, and the other 6 times.
Instead of completing, however, simulation locks up, and never exits. The reason

146 Verilog and SystemVerilog Gotchas

is that each loop is changing the same control variable, preventing either loop
from ever reaching a value that will cause the loop to exit. Gotcha!

How to avoid this Gotcha

The way to correct this problem is to use different variables for each loop. The
simplest way to do this is to use the SystemVerilog feature of declaring a local
variable as part of each for loop.

initial begin
fork
begin: add_test
for (int i = 0; i < 10; i++) begin // i is local variable

end
end

begin: dif test
for (int i = 8; i > 2; i--) begin // i is local variable

end
end
join

Chapter 5: General Programming Gotchas 147

Gotcha 67: Referencing for loop control variables

Gotcha: My Verilog code no longer compiles after I convert my Verilog-style
Jor loops to a SystemVerilog style.

Synopsis: Loop control variables declared as part of a for loop declaration
cannot be referenced outside of the loop.

Verilog requires that loop control variables be declared before the variable is used
in a for loop. Since the variable is declared outside the £or loop, it is a static
variable that can also be used outside the for loop.

reg [31:0] a, b, c;
integer a[0:31], b{0:31), c{0:31]; // arrays of 32 elements
integer i; // static loop control variable
initial begin

for (i=0; i<=31; i=i+l) begin

cli] = ali] + bli); // OK to reference i inside of loop
end
$display("i is %0d™, 1i); // OK to reference i outside of loop
end

SystemVerilog allows declaring for loop control variables within the declaration
of the loop. These are automatic variables that are local to the loop. The variable
is dynamically created when the loop starts, and disappears when the loop exits,
Because the variable is automatic, it is illegal to reference the variable outside of
the scope in which it exists. The following code causes a syntax error:
reqg [31:0] a, b, c;
initial begin

for (int i=0; i<=31; i=i+l) begin // i is automatic variable

cli] = ali] + bli]; // OK, i is used inside the loop
end
$display("i is %0d", 1i); // GOTCHA! i is used outside of loop

end

How to avoid this Gotcha

Technically speaking, this is not a gotcha, because it is a syntax error, rather than
an unexpected run-time behavior. However, there are times when it is useful to
reference loop control variables outside of the loop. In those situations, the loop
variable should be declared outside of the loop, using the Verilog coding style
shown in the first example above.

148 Verilog and SystemVerilog Gotchas

Gotcha 68: Default function return size

Gotcha: My function only returns the least significant bit of the return value.

Synopsis: Verilog functions have a default return type of 1-bit logic, if no
return type is specified.

The function listed below adds two integer values together and returns the result.
However, this example will add 3 and 4, and return a result of 1 instead of 7.

module test;

int result; // 32-bit variables

function sum (int a, b); // no return size specified
return {(a + b);

endfunction

initial begin
result = sum(3,4); // GOTCHA! 32-bit result is always 0 or 1
$display("sum(3,4) return = %h (hex)", result);
end
endmodule: test

This test case will print:

sum(3,4) return = 00000001 (hex)

Non-void functions return a sized, typed value. If the type or size is not specified,
the default return type is logic and the default return size is scalar (1-bit). If
within the function, a multi-bit vector is specified as the return from an unsized,
typed function, then all of the upper bits of the vector are truncated without error
or warning, and only the least significant bit of the vector is actually returned.
Gotcha!

If a function return value is assigned to a variable, then the Verilog/SystemVerilog
assignment rules come into play. These rules are discussed in Gotcha 46 on page
105. In brief, if the 1-bit function return is assigned to a variable that is more than
one bit wide, the return value will be zero-extended to the variable size, again
with no error or warning. This zero extension can hide the first gotcha of the
function return value having been truncated. Gotcha, again!

How to avoid this Gotcha

To avoid this gotcha, an explicit return size or type needs to be specified. A good
coding guideline would be to always specify the function return type, even when
a 1-bit return is desired. Some example function declarations with a return type
and/or return size specified are:

Chapter 5: General Programming Gotchas 149

function int suml (int a, b); // return int type (32-bit)
function [15:0] suml (int a, b); // return 16-bit logic type
function legic suml (int a, b):; // return l-bit logic type

function bit [31:0]) suml (int a, b); // return 32-bit bit type

function real suml (int a, b); // return real type

Since this gotcha of not specifying a function return type and size is legal code, it
is not easy to detect this gotcha without debugging simulation results. Lint tools
(coding style checkers) might be able to check that functions always have a return
type defined. If the function return is being assigned to a variable, lint checkers
can also check for assignment size mismatches. Most synthesis tools will
generate a warning message when there is an assignment mismatch. In the gotcha
example above, a warning such as this might help make it more obvious that the
function return is a different size than what was expected.

An additional way this gotcha might be detected is by using a language-aware
text editor. The editor! used for testing the example above changed the color of
the function identifier when the function had a return type and size specified. As a
designer becomes familiar with such editors, gotchas (or bugs) such as this can be
identified while writing the code.

1. The editor used was Emacs with the Verilog mode from www.verilog.com

150 Verilog and SystemVerilog Gotchas

Gotcha 69: Task/function arguments with default values

Gotcha: I get a syntax error when I try to assign my task/function input
arguments a default value.

Synopsis: Task/function argument directions are inherited from the previous
argument, and only input and inout arguments can have a default value.

The formal arguments of a task or function can be input, output, inout, or
ref. In SystemVerilog, task/function arguments default to input if no direction
has been specified. However, the direction is sticky, so that, once it has been
specified, it affects all subsequent arguments until a new direction is specified.

SystemVerilog allows input and inout arguments of a task or function to be
specified with a default value. When the task or function is called, a value does
not need to be passed to formal arguments that have a default value.

The following function header gets a compilation error because the second
argument, start, has a default value specified.
function automatic int array sum(ref int a[], int start=0);
for (int i=start; i<a.size(); i++)
array_sum += a[i]);
endfunction

Only input and inout arguments can have a default value. The problem with
this code is that the start argument does not have a direction explicitly
specified. If no directions at all had been specified, start would default to an
input argument, which can have a default value. In this example, however, the
first formal argument of the function, a[], has been defined with a direction of
ref. This direction is sticky. It also apples to start. Assigning a default value to
a ref argument is illegal.

How to avoid this Gotcha

To avoid a direction gotcha, specify a direction for all task/function arguments.

function int array_sum(ref int a[], input int start=0);

The example shown in this section only causes a compilation error because
start has a default assignment, which is illegal for ref arguments. Sticky
argument directions can cause other subtle programming gotchas that are not
compilation errors.

Chapter 5: General Programming Gotchas 151

Gotcha 70: Continuous assignments with delays cancel glitches

Gotcha: Some delayed outputs show up with continuous assignments and
others do not.

Synopsis: Continuous assignments with delays will cancel input glitches.

Continuous assignment statements are continuously running processes that
transfer an expression from the right-hand side to a net or variable on the left-
hand side. Designers frequently use continuous assignments to model
combinational logic behavior. In a synthesizable RTL model, continuous
assignments are typically written to use zero delay. When the right-hand
expression changes, the left-hand net or variable is immediately updated. In a
testbench or bus-functional model, it is sometimes desirable to add a propagation
delay between the right-hand expression change and when the left-hand side net
or variable is updated.

The intent in the following example is to generate two delayed version of a clock .

module clock_gen;
timeunit 1ns; timeprecision 1lns;

logic clock(C, clock3, clocké6;

initial begin

clock0 <= 0;
forever #5 clock0 = ~clock0;
end
assign #3 clock3 = clock0 ; // OK, clock3 works as expacted

assign #6 clock6é = clock0 ; // GOTCHA! clocké flat lines

initial begin
$timeformat (-9, 0, "ns", 7);
Smonitor ("%t: clock0 = %b clock3 = %b clock6 = %b",
Stime, clock0, clock3, clocké6);
#30 S$finish;
end
endmodule: clock gen

The output of the example above is:

Ons: clock0 = 0 clock3 = x clocké = x
3ns: clock0 = 0 clock3 = 0 clocké = x
5ns: clock0 = 1 clock3 = 0 clock6 = x
8ns: clock0 = 1 clock3 = 1 clock6 = x
10ns: clock0 = 0 clock3 =1 clocké = x
13ns: clock0 = 0 clock3 = 0 clocké = x
15ns: clock0 = 1 clock3 = 0 clocké = x
18ns: clock0 = 1 clock3 =1 clockb = x

152 Verilog and SystemVerilog Gotchas

The outputs show that ciock0 toggles every 5 nanoseconds, as expected. The
delayed clock3 changes 3 nanoseconds after clock0 just as it should. The
delayed clocké, which is functionally generated in exactly the same manner as
clock3, but with a 6 nanosecond delay, never changes value. Gotcha!

How to avoid this Gotcha

The reason clock3 changes, but clocké does not, is that continuous assign
statements use an inertial delay mechanism to propagate value changes. This
means that if two or more changes are scheduled on the left-hand side net or
variable (in essence, the output) of the continuous assignment, then only the Jast
scheduled change actually occurs. In other words, each scheduled change cancels
any earlier scheduled changes that have not yet occurred.

The 3 nanosecond delay for clock3 is less than the 5 nanosecond half-cycle of
clock0, and so all changes on clock0 propagate through to clock3. But, the 6
nanosecond delay for clocké is greater than the 5 nanosecond half-cycle of
clock0, so all changes on clock0 do not propagate through to clocksé.

To avoid this gotcha, clocké needs to be modeled using a transport delay
mechanism, instead of inertial delay mechanism. The simplest way to do this is to
use an always procedural block with a nonblocking intra-assignment delay, as
follows:

always @(clock0)
clock6 <= #6 clock0; // OK, 6ns intra-assignment delay

Primitive delays and net delays also use inertial delay propagation, and will have
the same gotcha as continuous assignments. Verilog’s specify block pin-to-pin
path delay construct can be defined to use either inertial delay or transport delay.
This construct would be overly complex for the intended logic of this example,
however.

For more details on how to model inertial and transport delays using Verilog

procedural blocks, refer to a paper from one of the authors, “Understanding

Verilog Blocking and Nonblocking Assignments™!.

1. Understanding Verilog Blocking and Nonblocking Assignments, by Stuart Suth-
erland. Published in the proceedings of International Cadence Users Group,
San Jose, 1996. Also available at from the author’s web site, http://www.suth-
erland.com/papers.html

Chapter 6
Object Oriented and Multi-
Threaded Programming Gotchas

Gotcha 71: Programming statements in a class

Gotcha: Some programming code in an initial procedure compiles OK, but
when I move the code to a class definition, I get compilation errors.

Synopsis. Class definitions can only have properties (variables) and methods
(tasks and functions). They cannot have procedural programming statements.

The Bar class definition below constructs a Foo object, and attempts to initialize
the variable i within Foo:

class Foo;
int data; // property
function int get (...); // method
endfunction
task put (...);
endtask

endclass

class Bar;
Foo f = new; // create object f

f.data = 3; // GOTCHA! illegal assignment statement
endclass

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using small
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

154 Verilog and SystemVerilog Gotchas

This example causes a compilation error, because any executable code in a class
must be in a task or function. A class is a definition, and cannot contain
assignment statements, programming statements, initial blocks or always
blocks. The assignment f.data = 3; in the example above is an executable
statement that is not in a task or function, and therefore not allowed.

How to avoid this Gotcha

The fix for this gotcha depends on when class Bar needs to assign a value to the
data in a Foo object. If the assignment only needs to occur once when a Foo
object is constructed, a simple fix is to initialize data, using Foo’s constructor
function, as follows:

class Foo;

int data;
function new (int d);
this.data = d; // assign to data at time of construction
endfunction
endclass

class Bar;
Foo £ = new(3); // pass initial value to new method of Foo
endclass

If Bar needs to assign to the data variable at any time, the fix is to add a method
in Bar that contains the assignment statement. All programming statements
within a class definition must be within tasks or functions:

class Foo;
int data;

endclass
class Bar;
Foo f = new;

function change_data(d); // assign to data after construction
f.data = d;
endfunction
endclass

Guideline: It is legal to call a constructor as part of the declaration of a class
handle variable within another class (e.g. Foo f = new; in the example above).
However, this is discouraged, as the object will be constructed before any code in
the enclosing class has been executed. This can cause problems if there is a need
to create or initialize objects in a specific order. It is usually preferable to call
such constructors in the constructor of the enclosing class, where there is more
control over the initialization.

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 155

Gotcha 72: Using interfaces with object-oriented testbenches

Gotcha: I get a compilation error when I try to use a class object to create test
values when the testbench connects to the design using an interface.

Synopsis: Static structural components, such as interfaces, cannot be directly
driven from dynamic code.

In the following example, the Driver class, which is a dynamic object, needs to
drive data into the arb_ifc interface, which is a static design object. Since a
dynamic object cannot directly drive static objects such as a module or an
interface port, this code is illegal.

interface arb_ifc(input logic clk);

endinterface

program automatic test (arb_ifc.TEST arb);

class Driver;
arb_ifc arb; // GTOCHA! class cannot instantiate interface

function new(arb_ifc arb); // GOTCHA! task/func arg cannot
// be an interface
this.arb = arb;
endfunction
endclass
initial begin
Driver d;
d = new(arb);
end
endprogram

How to avoid this Gotcha

An interface is a structural component that represents hardware. It can contain
signals, code, and assertions. Structural components cannot be passed around for
use by dynamic code. Instead, a pointer to the interface is used in the dynamic
class object. A pointer to an interface is called a virtual interface. The purpose of
a virtual interface is to allow dynamic objects to have a handle to a statically
instantiated object, and to move data between a dynamic class object and a static
object.

The correct way to model the example above is to make the arb_i fc instance in
the driver class virtual.

156 Verilog and SystemVerilog Gotchas

class driver;
virtual arb_ifc arb; // pointer to interface

function new(virtual arb_ifc arb); // pointer to interface
this.arb = arb;
endfunction
endclass

Virtual interfaces are the bridge or link between the class-based testbench and the
Device Under Test (DUT).

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 157

Gotcha 73: All objects in mailbox come out with the same values

Gotcha: My code creates random object values and puts them into a mailbox,
but all the objects coming out of the mailbox have the same value.

Synopsis. The class constructor creates a handle to an object. In order to have
multiple objects, the class constructor must be called multiple times.

Mailboxes are used to synchronize activity between parallel processes, and to
pass information between the processes during the synchronization.

The intent in the following example is to put 10 random object values into a
mailbox:

class My class;
rand int data;
rand logic [47:0) address;

endclass

My _class h = new; // Gotcha! construct one My class object
repeat (10) begin
h.randomize () ; // randomize properties in the object
mbx.put (h); // store handle to object in a mailbox
end

The thread that retrieves the objects from the mailbox will find that all the objects
contain the same values, the ones generated by the last call to randomize. Gotcha!

The gotcha happens because the code only constructs one object, and then
randomizes it over and over. The mailbox is full of handles, but they all refer to a
single object,

How to avoid this Gotcha

In order to randomize multiple objects, they must first be constructed. In the
example above, the call to the constructor should be inside the loop:

my class h;
repeat(10) begin

h = new; // construct a My class object
h.randomize () ; // randomize properties in the object
mbx.put (h); // store handle to object in a mailbox

end

158 Verilog and SystemVerilog Gotchas

Gotcha 74: Passing handles to methods using input versus ref arguments

Gotcha: My method constructs and initializes an object, but I can never see
the object 5 value.

Synopsis: Method input arguments create local copies of variables that are
not visible in the calling scope.

The default direction of method (task and function) arguments is input. Inputs
create local variables for use within the method. When a method is called, the
values of the actual arguments are copied into the local storage. Any changes to
this local storage that are made within the method are not passed back to the
calling scope.

The intent of the following function is to construct two objects and assign the
object handles to the handle variables passed into the function.

function void build_env(Consumer c, Producer p); // GOTCHA!
c = new(); // construct object and store handle in c
p = new(); // construct object and store handle in p
. // set up rest of environment
endfunction

initial begin
Consumer c;
Producer p;
build env(c, p); // construct and set up objects

c.randomize; // ERROR: c does not contain an object handle
end

The code that calls the build env function will not be able to see the
constructed objects because the function argument directions are not specified,
and therefore default to input. Within the function, c and p are local variables.
The new handles that are stored in the local ¢ and p variables are not passed back
to the code that called the build_env function.

How to avoid this Gotcha

In a method that constructs objects, declare the handle arguments as ref. A ref
argument is a reference to storage in the calling scope of the method. In the
declaration below, when the method constructs an object and stores the handles ¢
and p, the code that calls build_env will see the new handles, because
build_env is changing the storage in the calling scope.

function void build_env(ref Consumer c, ref Producer p);

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 159

Gotcha 75: Constructing an array of objects

Gotcha: I declared an array of objects, but get a syntax error when I try to
construct the array.

Synopsis: An “array of objects” is actually an array of object handles. Each
handle must be constructed separately.

It is often useful to declare an array of object handles, in order to store handles to
multiple objects. Such an array is often called an “array of objects”. In reality, it is
an array of handles, not an array of actual objects.

The following example attempts to create an array to hold 8 objects, but the code
does not work.
class Transaction;
endclass
initial begin
Transaction trans{8]; // An array of 8 Transaction objects

trans = new; // ERROR: cannot call new on object array
trans = new[8]; // ERROR: cannot call new on array element
end

This example will get compilation errors. Both calls to the constructor for trans
are syntactically incorrect. The reason is that trans is the name of an array, not
the name of a handle variable.

How to avoid this Gotcha

Each object in the array of handle variables must be constructed individually, and
its handle assigned to an element of the array. The correct way to code the
example above is:
initial begin
Transaction trans[8]; // An array of 8 Transaction objects
foreach (transf[i])

trans{i] = new(); // Construct object and store handle in array
end

160 Verilog and SystemVerilog Gotchas

Gotcha 76: Static tasks and functions are not re-entrant

Gotcha: My task works OK sometimes, but gets bogus results other times.

Synopsis: Invoking a static task or function while a previous call is still
executing may cause unexpected results.

In Verilog and SystemVerilog, tasks and functions are static by default, which is
different from C, where functions are automatic by default. This difference is
important! In static tasks and functions, any local storage, including input
arguments, are shared by every call to the task or function. In an automatic task or
function, new storage is created for each call, which is unique to just that call. A
default of static tasks and functions generally works well when modeling
hardware, because storage within hardware is static. A testbench, on the other
hand, is more of a software program rather than hardware.

Verilog/SystemVerilog’s default static storage can cause unexpected behavior if a
verification engineer is expecting C-like programming behavior. Static storage is
particularly evident in tasks that are used for verification. Tasks can take
simulation time to execute. Therefore, it is possible for a task to be invoked while
a previous call to the task is still executing, as is illustrated below.

In the following example, a task called watchdog is called when the test issues
an interrupt request. The task delays for some number of clock cycles, and then
prints out a time out error if the interrupt is not acknowledged. The interrupt
number and number of cycles to count are passed in as input arguments. The test
code calls this task twice, in parallel, for two different interrupt requests.

program test (input logic clock,
input logic [1:0] ack,
output logic [1:0] irq);
initial begin: irs_test
$display("Forking off two interrupt requests..."):
fork
watchdog (0, 20); // must receive ack[0] within 20 cycles
watchdog (1, 50); // must receive ack{l] within 50 cycles
begin
irq(0] = 1'bl;
irg{l) = 1'bl;
wait (ack)
Sdisplay("Received ack at %0d, disabling watchdog", S$time);
disable watchdog; // got ack; kill both watchdog tasks

end
join_any
$display("\At %0d, test completed or timed out", $time);
$finish; // abort simulation

end: irs_test

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 161

task watchdog (input int irq_num, // GOTCHA! static storage
input int max_cycles // GOTCHA! static storage
)i
$display ("At %0d: Watchdog started for IRQ[%0d] for %0d cycles",
$time, irg num, max cycles);
repeat (max_cycles) @(posedge clock) ; // delay until max cycles
// reached
$display("Error at %0d: IRQ([(%0d] no after %0d cycles",
Stime, irg_num, max_cycles);
endtask: watchdog
endprogram: test

This example will run, but not as desired. The second call to the watchdog task
will overwrite the irq_num and max_count values being used by the first call.
The first call is still running, but now has incorrect values. Gotcha!

How to avoid this Gotcha using Verilog

In Verilog, all storage in a task or function can be made automatic by adding the
keyword automatic to the task or function declaration.

task automatic watchdog (... // automatic storage

An automatic task or function is also referred to as a re-entrant task or function.
The task or function can be invoked (or entered) while previous calls are still
executing. Each call creates new storage that is local to just that call. The example
above illustrated a re-entrant task. Another example is recursive function calls,
which must also be declared as automatic, so that the function can be re-entered
without affecting the storage of already active calls to the same function.

How to avoid this Gotcha using SystemVerilog

SystemVerilog allows the automatic keyword to be specified as part of the
declaration of a module, interface, or program. The gotcha above can be fixed by
changing the program declaration to:

program automatic test (...);

task watchdog (... // OK, automatic storage

By adding the automatic keyword to the program declaration, all tasks and
functions within the program will be automatic by default. This makes the default
behavior like C, where all functions automatic by default. Note that tasks and
functions declared in class definitions are automatic by default, unless explicitly
declared as static.

See Gotcha 7 on page 22 for coding guidelines on declaring programs, packages
and interfaces as automatic.

162 Verilog and SystemVerilog Gotchas

Gotcha 77: Static versus automatic variable initialization

Gotcha: The variables in my testbench do not initialize correctly.

Synopsis: By default, variables in tasks and functions contained in interfaces,
packages, and statement groups are static, unlike C and C++. Static variables
only initialize one time.

Many verification engineers have a strong programming background, and may
expect verification programs to use automatic storage. That is, the variables will
be stored on a stack and initialized when the block is entered.

In the following example, a local variable called addr is declared within an if
decision. This local address variable is initialized to the value of the address
bus that is in an interface port called bus.

interface bus_ifc;
logic [31:0] address;

endinterface

program monitor (bus_ifc.MONITOR bus);
initial begin
@ (posedge bus.cb.grant);
if (bus.cb.command == READ) begin
logic [31:0] addr = bus.cb.address; // GOTCHA! addr will be X
$display ("Bus addr = %$h", addr);

end
end
endprogram

In this example, no matter what the current value of address in the interface is
when the if statement executes, the local addr variable will always have a value
of X. Gotcha!

The intent of the function in the next example is to print the largest value of the
array.

program sums;
function void maxx(ref int al[]);
int max = a[0}; // local variable
foreach (a[i])
if (a[i] > max) max = afil;
$display("Max value is %0d", max); // GOTCHA!
endfunction

endprogram

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 163

In this example, only the first call produces the right result. Later calls print either
the largest value or the result from the previous call. Gotcha!

The problem in both of these examples is that tasks, functions, and begin...end
blocks use static storage by default. Static variables are allocated and initialized
once, at compilation time. In the first example above, addr is initialized to the
value of address, but, at the time the static storage is created, address has a
value of X. When the if statement is executed during simulation, the static addr
variable is not re-initialized, and hence always has its original initial value of X.
Gotcha!

In the second example above, the local variable max is statically allocated and
initialized to the value of a[0] one time when the storage is created. Every
subsequent call to the function does not re-initialize max. Since max is not re-
initialized, it contains the value of the previous call to the function. When the
array is searched, if a larger value is found, max will be correctly updated to this
new largest value. If a larger value is not found, however, the value of max will
not be the largest current value in the array. It will be the largest value found the
previous time the function was called. Gorcha!, again

How to avoid this Gotcha

To avoid this gotcha, variables that need to be re-initialized each time the
procedural block, task or function is entered need to be automatic variables.
Three ways to do this are:

+ Explicitly declare specific variable as automatic.

» Tasks and functions can be declared as automatic, making all variables
within the task or function automatic by default.

* Program, module, interface and package definitions can be declared as
automatic, making all variables within declared within tasks, functions,
within procedural blocks automatic by default

For the two examples above, the static storage gotcha can easily be avoided by
declaring the programs as automatic.

program automatic monitor;

program automatic sums;

See Gotcha 7 on page 22 for coding guidelines on declaring programs, packages
and interfaces as automatic.

164 Verilog and SystemVerilog Gotchas

Gotcha 78: Forked programming threads need automatic variables

Gotcha: When [fork off multiple tests, I get incorrect results, but each test
runs OK by itself.

Synopsis: Concurrent threads can have conflicts with shared variables, such
as indices.

When a test program spawns multiple concurrent test threads, it is important that
each thread have its own storage. Otherwise, one thread could interfere with the
storage being used by another thread.

The following example spawns three concurrent threads using a for loop that
contains a fork...join_none block. The join_none is important; it is what
allows three concurrent threads to be spawned. If join had been used, each
thread would run to completion before the next thread could start. It is a common
verification requirement to spawn concurrent threads, as in this example, rather
than sequential threads.

Each concurrent thread in this example uses the loop control variable as a
thread id number. the thread_id is used to index into an array of data.

program automatic test (input logic clock);
int d_array[3} = ’{10,11,12};
initial begin
for (int thread id=0; thread id<3; thread_id++)

fork
$write(" thread_id=%0d ", thread_id); // GOTCHA!
$display("d_array([thread id]=%04d",

d_array(thread_id]): // GOTCHA!
join_none // don’t wait for each fork to complete
#10 $finish;
end
endprogram

The expected results from this example are

thread_id=0 d_array{thread_id]=10
thread_id=1 d_array[thread_id]=11l
thread id=2 d_array(thread id]=12

When simulation runs, however, the messages printed are not as expected.

thread_id=3 d_arraylthread id]=0
thread_id=3 d_arraylthread_id]}=0
thread_id=3 d_arrayl[thread_id]=0

Gotcha!

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 165

The gotcha in this example that thread_id variable is declared outside of the
fork...join_none block, which means that every forked thread shares the same
thread_id variable, instead of having a unique variable for each thread. Since
the threads are invoked from within a fork...join_none, all three threads are
scheduled to start concurrently. The threads do not actually start running,
however, until the for loop completes. When the for loop completes,
thread_idis 3, and that is the value used by each thread. Gorcha!

Where did the value of 0 for what is read out of d_array come from? The d_array
is storing int values, which are 2-state data types. When an out-of-bounds access
occurs with 2-state arrays, a value of 0 is returned. This can hide functional
errors, which is a gotcha described in Gotcha 40 on page 90. Had this example
only been printing, or just using, the value read from d_array and not printing the
index value, the code problem would have been very obscure. Gotcha, again!

How to avoid this Gotcha

When storage is required within a concurrent thread, each thread needs to define
its own local storage. This is done by defining automatic variables within each
thread. The following example works correctly.

program test (input logic clock);
int d_array(3] = ’{10,11,12});
initial begin
for (int i=0; i<3; i++)
fork
automatic int thread id = i; // local var for each thread
$write("thread id=%0d ", thread id);:
$display("d_array[thread_id]=%0d",
d_array|[thread_id]); // OK
join_none // don’t wait for each fork to complete
#10 $finish;
end
endprogram

What if thread_id had not been declared as automatic? The default lifetime of
local variables is static. A static thread_id would have been initialized once at
the very beginning of simulation, and not re-initialized for each pass of the for
loop. This common coding error is described in Gotcha 77 on page 162. To avoid
that gotcha, the default lifetime of local variables in test programs should be
changed to automatic, as follows:

program automatic test (input logic clock): // default storage
// is automatic

See Gotcha 7 on page 22 for coding guidelines on declaring programs, packages
and interfaces as automatic,

166 Verilog and SystemVerilog Gotchas

Gotcha 79: Disable fork kills too many threads

Gotcha: When I execute a disable fork statement, sometimes it kills threads
that are outside the scope containing the disable fork statement.

Synopsis: The disable fork statement kills all threads started from the current
thread.

The disable fork statement stops all active threads that were spawned from
the current thread. The problem is that this may accidentally stop threads outside
the scope of the code that contains the disable.

The following example calls the do_action task, and then calls the
start_a_thread task twice, to spawn two threads with delays of 10 and 30. It
then waits a short time and does a disable fork, which stops the two threads.
However, this also unintentionally stops the start_a_thread thread that was
started from the do_action task. Gotcha!

program automatic test;

task start_a_thread (int delay):
fork
begin
$display ("@%0d start_a_thread(%0d) - started",
$time, delay);
(delay);
$display ("@%0d start_a thread(%0d) - complete",
$time, delay);
end
join_none
endtask

initial begin
do_action();
start_a_thread(10);
start a_thread(30):

#15 disable fork; // GOTCHA!
#100; // wait for all threads to complete
end

task do_action;
start a_thread(20);
endtask

endprogram

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 167

The simulation results from this test are:

@0 start_a_thread(20) - started
@0 start a_thread(10) - started
@0 start_a_thread(30) - started
@10 start_a_thread(10) - complete

Note that, in this output, thread 20 never completes, even though it was not
explicitly disabled. This is the Gotcha!

How to avoid this Gotcha

Always put a fork...join block around code that uses a disable fork to
create a firewall. This creates a thread and limits the scope of the disable fork
statement.

The example below changes the initial block by adding a fork...join to
insulate the thread started from do action() from the effect of the
disable fork.

initial begin
do_action();
fork // isolate following statements as a separate thread
begin
start_a_thread(10);
start_a_ thread(30);

#15 disable fork; OK, only affects the fork...join
end
join
#100; // wait for all threads to complete

end

The simulation results from this modified test are:

@0 start_a_thread(20) - started
@0 start_a_thread(10) - started
@0 start_a_thread(30) - started
@10 start_a_thread(10) - complete
@20 start_a_thread(20) - complete

Observe that thread 20 now completes execution,

168 Verilog and SystemVerilog Gotchas

Gotcha 80: Disabling a statement block stops more than intended

Gotcha: When I try to disable a statement block in one thread, it stops the
block in all threads.

Synopsis: A disable block_name statement stops the execution of all blocks
with that name in all threads.

In the following example, the task start test spawns a thread containing a
block named terminator. The task is called three times inside a module that is
instantiated three times in the top module. Thus, there are nine terminator
blocks running concurrently as nine separate threads.

The intent of this code is that the terminator block disables itself if the block is
in the second call of the second instance.

module test (input int instance_id);
initial begin
#1;
start_test(l, instance_id); // three calls to task, with
start_test(2, instance_id); // different thread numbers
start_test(3, instance_id);
end

task automatic start test (int thread, int inst);
fork : monitor
begin
$display ("@%0d: %m inst: %0d, thread: %0d, before disable",
Stime, inst, thread):;

#10;
if ((thread==2) && (inst==2))

disable monitor; // GOTCHA! affects multiple threads
#1;

$display ("@%0d: %m inst: %0d, thread: %0d, after disable",
$time, inst, thread):;
end
join_none // don‘t wait for thread to complete
endtask: start_test
endmodule: test

module top;
test tl (.instance id(1)); // three instances of test module
test t2 (.instance id(2)):
test t3 (.instance_id(3));

endmodule: top

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 169

The simulation output for this code is:

@ 1: top.tl.start_test.monitor inst: 1, thread: 3, before disable
@ 1: top.tl.start_test.monitor inst: 1, thread: 2, before disable
@ 1: top.tl.start_test.monitor inst: 1, thread: 1, before disable
@ 1: top.t2.start test.monitor inst: 2, thread: 3, before disable
@ 1: top.t2.start_test.monitor inst: 2, thread: 2, before disable
@ 1: top.t2.start test.monitor inst: 2, thread: 1, before disable
@ 1: top.t3.start_test.monitor inst: 3, thread: 3, before disable
@ 1: top.t3.start_test.monitor inst: 3, thread: 2, before disable
@ 1: top.t3.start_test.monitor inst: 3, thread: 1, before disable
€12: top.tl.start_test.monitor inst: 1, thread: 3, after disable
@12: top.tl.start_test.monitor inst: 1, thread: 2, after disable
@12: top.tl.start test.monitor inst: 1, thread: 1, after disable
@12: top.t3.start_test.monitor inst: 3, thread: 3, after disable
@12: top.t3.start test.monitor inst: 3, thread: 2, after disable
@12: top.t3.start_test.monitor inst: 3, thread: 1, after disable

This output shows that the monitor block stops all threads in instance 2, not just
thread 2 of instance 2, Gotcha!

This gotcha happens because the label monitor is the name of the block, not the
name of a specific thread. Disabling the block name stops all active threads of the
block name for the module instance containing the block.

How to avoid this gotcha

The disable statement takes a static hierarchical name as its argument, which
can be a relative hierarchical name, as in the example above, or a full hierarchical
name. What is needed to avoid this gotcha and cancel just one thread is to
reference a specific call to the start test task. However, the start_test
task above, is an automatic task. Automatic task calls do not have a static
hierarchical name. Therefore, specific instances of that task cannot be referenced
to disable a specific thread.

In order to run all nine threads concurrently and yet have the ability to disable a
single thread, the concurrency must occur at the module instance level, and the
task must be static. This is shown in the code below:

module test (input int instance_id, input int thread_id);
initial begin
#1;
start_test(thread_id, instance_id); // one call to task
end

170

Verilog and SystemVerilog Gotchas

task start_test (int thread, int inst); // static task

begin : monitor // named block (not forked threads)
$display("@%0d: %m inst: %0d, thread: %0d, before disable",
$time, inst, thread):;

$#10;
if ((thread==2) && (inst==2))

disable monitor; // OK, only affects this thread
$#1;

$display ("@%0d: %m inst: %0d, thread: %0d, after disable",
$time, inst, thread);
end: monitor

endtask: start_test
endmodule: test

module top;

test tl (.instance_id(l), .thread_id(1l)}; // nine instances of
test t2 (.instance_id(l), .thread_id(2)); // test module

test t3 (.instance_id(l), .thread_id(3));

test t4 (.instance id(2), .thread_id(1));

test t5 (.instance_id(2), .thread_id(2));

test t6é (.instance_id(2), .thread id(3));

test t7 (.instance_id(3), .thread_id(1l));

test t8 (.instance_id(3), .thread id{(2));

test t9 (.instance_id(3), .thread_id(3));

endmodule: top

The simulation output below shows all nine threads starting at time 1, and then
shows that only instance 2 thread 2 is removed after the disable. The remaining
threads for instance 2 are not disabled, and continue running.

D@ 6 @ @

()
[y

@12:
@12:
@12:
@12:
Q12:
@12:
@12:
R12:

e e e

top.tl.start_test.monitor inst: 1, thread: 1, before disable
top.t2.start_test.monitor inst: 1, thread: 2, before disable
top.t3.start test.monitor inst: 1, thread: 3, before disable
top.t4.start test.monitor inst: 2, thread: 1, before disable
top.tS.start_test.monitor inst: 2, thread: 2, before disable
top.t6.start_test.monitor inst: 2, thread: 3, before disable
top.t7.start_test.monitor inst: 3, thread: 1, before disable
top.t8.start_test.monitor inst: 3, thread: 2, before disable
top.t9.start_test.monitor inst: 3, thread: 3, before disable
top.tl.start _test.monitor inst: 1, thread: 1, after disable
top.t2.start_test.monitor inst: 1, thread: 2, after disable
top.t3.start_test.monitor inst: 1, thread: 3, after disable
top.t4.start_test.monitor inst: 2, thread: 1, after disable
top.t6é.start_test.monitor inst: 2, thread: 3, after disable
top.t7.start_test.monitor inst: 3, thread: 1, after disable
top.t8.start_test.monitor inst: 3, thread: 2, after disable
top.t9.start_test.monitor inst: 3, thread: 3, after disable

Chapter 6: Object Oriented and Multi-Threaded Programming Gotchas 171

Gotcha 81: Simulation exits prematurely, before tests complete

Gotcha: My simulation exits prematurely, before I call $finish, and while
some tests are still running.

Synopsis: When all program blocks complete, $finish is implicitly called, even
if there is simulation activity still running.

Code that models hardware design needs to run continuously, such as an always
block that triggers on every clock cycle. Verification code, on the other hand,
needs to finish execution after testing is complete. In Verilog, modules that are
used for testing must explicitly state when testing is finished, using the $finish
system task.

System Verilog adds a construct to encapsulate verification code, cailed a program
block. Instead of using Verilog modules, program blocks are declared between
the keywords program...endprogram.

program automatic test // verification program
(output logic [63:0] test_data,

output logic reset n,

input logic [63:0] results,

input logic test _clk

)i
initial begin
reset_n <= 0;
@ (posedge test_clk) reset n = 1;
fork
testl task (...);
test2 task (...);
join
end // NOTE: not necessary to call $finish
endprogram

Unlike modules, program blocks do not need to run continuously. When the end
of a program block is reached, simulation will automatically finish, without the
need to automatically call $£inish. If verification code is divided into multiple
program blocks, simulation automatically exits when the end of all program
blocks has been reached.

In general, it makes sense to have simulation automatically finish when testing is
complete. In fact, having an implicit automatic finish solves a common gotcha in
Verilog of forgetting to explicitly call $£inish at the end of test code. However,
there are some gotchas with this automatic termination. One gotcha occurs if
some test code is in program blocks, and other test code is in Verilog modules
(perhaps some legacy test code that was written in Verilog). Simulation will
automatically exit when the program blocks complete, even if other verification

172 Verilog and SystemVerilog Gotchas

code that is not in program blocks is still running. Another possible gotcha can
occur when the program block spawns parallel test threads, but does not wait for
those threads to complete. When the program block reaches its end, simulation
will automatically finish, even if the spawned threads are still running. Using
fork...join_any and fork...join_none, a test program can spawn off threads,
and not wait for some or all of the threads to complete.

program automatic test (...);
initial begin

fork
testl task (...);
test2 task (...);
join_none
end // GOTCHA! simulation might exit before tasks finish
endprogram

How to avoid this Gotcha: The gotcha of an unexpected, automatic exit from
simulation can be avoided by suspending execution of the test program until all
tests have completed. If some tests are running in a Verilog module, the program
block can contain a wait statement or some other delay that waits or suspends
the test program until the test module has reached its end. The test module can set
a flag, trigger and event, or use System Verilog semaphores to indicate that it has
completed. If the test program forks off verification threads, it can suspend until
all threads have completed, using await fork statement. For example:

program automatic test (...);
initial begin
fork
testl_task {(...);
test2_task (...);
join_none
wait fork; // waits for all spawned processes to complete
end // OK, can’t get here until tasks finish

endprogram

Chapter 7

Randomization, Coverage and

Assertion Gotchas

Gotcha 82: Variables declared with rand are not getting randomized

Gotcha: Some of my class variables are not getting randomized, even though
they were tagged as rand variables.

Synopsis: Properties must have a rand or randc tag, in order to be
randomized. This includes handles to other objects.

In order for object variable values to be randomized, each variable in the object
must be declared with a rand or randec tag. Random values are generated when
the object’s . randomize method is called.

The following example has a Payload class, which has a property called data
that is tagged to be randomized. A Header class contains an addr property
which is tagged to be randomized, and a handle to a Payload object. When a
Header object is randomized, however, only addr gets a random value. The
payload data is not randomized, even though it has a rand tag.

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using small
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

174 Verilog and SystemVerilog Gotchas

program automatic test;
class Payload;
rand int data(8); // data is tagged to be randomized
endclass

class Header;

rand int addr; // addr is tagged to be randomized
Payload p; // handle to Payload object -- GOTCHA!

function new;
this.p = new;
endfunction
endclass

initial begin
Header h = new;
assert (h.randomize()); // randomize address and payload data
$display(h.addr); // addr shows random value
foreach (h.p.data[i])
$display(h.p.datal[i]); // GOTCHA! data was not randomized
end
endprogram

The .randomize method only randomizes properties in the scope of the object
being randomized if the property is declared with a rand or randc tag. If the
property is a handle to another object, the tag must be specified for both the
handle and the properties in the child object. In the example above,
Header::addr has been tagged with rand, so it gets updated with random
values. The payload object, Header : : p, however, is missing the rand modifier,
so none of its variables are randomized, even though Payload::data has the
rand tag.

How to avoid this Gotcha

All object variables that are to have random values generated, including handles,
must have the rand modifier.
class Header;
rand int addr; // addr is tagged to be randomized
rand Payload p; // OK, Payload is tagged to be randomized

endclass

Chapter 7: Randomization, Coverage and Assertion Gotchas 175

Gotcha 83: Undetected randomization failures

Gotcha: My class variables do not get random values, even though I called
the randomize function.

Synopsis: The .randomize method returns an error status, and does not
randomize variables if a constraint cannot be met.

It is possible to write constraints that cannot be solved under all conditions. If a
constraint cannot be met, then the variables are not randomized. The
.randomize method returns a 1 when the constraint solver succeeds in
randomizing the class variables, and a 0 if it does not succeed.

The following example erroneously specifies a constraint, such that a must be
less than b, and b must be less than a. These randomization failures could go
undetected.

program automatic test;
class Bad;
rand bit {7:0) a, b;
constraint ab {a < b;
b < a;} // this constraint cannot be solved
endclass
initial begin
Bad b = new;
void’ (b.randomize()); // GOTCHA! return from method ignored

end
endprogram

If the success flag is not checked, the only symptom when a constraint cannot be
solved is that one or more class variables were not randomized. The failure to
randomize some class variables could go undetected. Gorcha!

How to avoid this Gotcha

Use SystemVerilog assertions to check the return status of .randomize. The
method will return:

* 1 if successful in generating the random values
* 0if unsuccessful in generating random values that met the constraints
In the example below, an assertion is used to test the return value if the

.randomize succeeded. The assertion fail statement defines an assertion failure
as fatal, which will abort simulation or formal verification.

176 Verilog and SystemVerilog Gotchas

program automatic test;
class Bad;
rand bit [7:0] a, b;
constraint ab {a < b;
b < a;} // this constraint cannot be solved
endclass
initial begin
Bad b = new;
assert (b.randomize()) else $fatal; // OK, checking if
// randomize fails
end
endprogram

Chapter 7: Randomization, Coverage and Assertion Gotchas 1m

Gotcha 84: $assertoff could disable randomization

Gotcha: I used an assertion to detect randomization failures, and now nothing
gets randomized during reset.

Synopsis: The 3assertoff assertion control will disable any statements
executed within the assertion.

When the . randomize method is called, it returns a value indicating the pass or
fail of the randomization. A common approach to monitor the return value from
the .randomization method is to use an immediate assert, as shown in the code
below.

program test;

Bustrans tr;

initial begin
tr = new;
Sassertoff () ; // GOTCHA! disable all assertions during reset
rst n <= 0;

assert (tr.randomize) else $display("randomization failed");

$#10 rst_n <= 0;
$Sasserton();

end
endprogram

The intent of the example above is to turn off assertions during reset, to prevent
false assertion failure messages. During reset, the object tr is randomized. But,
the properties of tr will not get randomized, during reset because the assert
statement calling tr.randomize is disabled. Gortcha!

How to avoid this gotcha

There are a few ways to get around this gotcha. One is to use an if..else,
instead of an assert statement, to check the return of the . randomize method.
Using this approach, however, means the . randomize call will not be included
in any assertion monitoring or assertion reports provided by the simulator at the
end of simulation.

A second way to avoid this gotcha is to not call $assertoff on the scope
containing the calls to randomization. The $assertoff task can be passed
hierarchical scope names, such as the name of the top-level of the design or a
specific module containing the assertions t be turned off.

178 Verilog and SystemVerilog Gotchas

A third approach is to add a label to the assertion statement containing the call to
.randomize, and then turn that assertion back on immediately following the
$assertoff. For example:

program test;

Bustrans tr;
initial begin
tr = new;
$assertoff ()., // disable all assertions during reset
$asserton(tr_rand); // OK, tr randomization turned back on
rst_n <= 0;
tr_rand: assert (tr.randomize)
else $display("randomization failed");

#10 rst_n <= 0;
Sasserton(});

end
endprogram

A fourth way to avoid this gotcha is to apply the . randomize call before or after
the reset is applied.

program test;

Bustrans tr;
initial begin
tr = new;

tr_rand: assert (tr.randomize)
else $display("randomization failed");
$assertoff () ; // OK, tr randomization already executed
rst_n <= 0;
#10 rst_n <= 0;
$aséerton();

end
endprogram

With this solution, if the call to the . randomize method is in a different process
than the call to $assertoff, it may be necessary to use some form of process
synchronization, to ensure that the randomization occurs before assertions are
turned off.

Chapter 7: Randomization, Coverage and Assertion Gotchas 179

Gotcha 85: Boolean constraints on more than two random variables

Gotcha: When I specify constraints on more than two random variables, |
don't get what I expect.

Synopsis: In a series of two Boolean relational operators, the second
operation is compared to the true/false result of the previous operation.

The intent of the constraint in the class below is to randomize 1o, med and hi,
such that 1o is less than med and med is less than hi, by using the expression
(lc < med < hi;).

class badl;

rand bit [7:0] lo, med, hi;

constraint increasing { lo < med < hi; } // GOTCHA!
endclass

A sample output from running the code above looks like this:

lo = 20, med = 224, hi = 164
lo = 114, med = 39, hi = 189
lo = 186, med 148, hi = 16l
lo = 214, med 223, hi = 201

#

This constraint does not cause the solver to fail, but the randomized values are not
as expected. In line one, above, med is greater than hi. In lines two and three, 1o
is greater than med. In line four, both 1o and med are greater than hi.

The reason that the constraint does not work is that the Boolean less-than
expressions are evaluated from left to right. This means that the operation is not
comparing med to hi. It is comparing the true/false result of (1o < med) to hi.
The constraint above is evaluated as:

constraint increasing { (lo < med) < hi; }

The constraint is actually only constraining hi, such that hi has a value greater
than 0 or 1 (depending on the result of the test (1o < med). The variables 1o
and med are randomized, but are not constrained. Gorcha!

The following example illustrates a similar problem. This constraint is intended
to create values a, b and c, such that the three properties have the same value.

class bad?2;
rand bit [7:0] a, b, c;
constraint equal {a == == c; }
endclass

180 Verilog and SystemVerilog Gotchas

A sample output from running the code above gave the following output:

a= 25 b =173, ¢ = 0
a= 65 b=151, ¢c= 0
a=190, b= 33, ¢c= 0
a= 65 b= 32, c= 0

A different simulator gives this output:

a= 61, b= 1, c= 0

a 9, b= 9, c= 1

a =115 b =222, c= 0

a=212, b =212, ¢c= 1

The constraint is equivalent to; (a == b) == c¢. Random values are chosen for

a and b, and then those values are tested to see if they are equal. Variable c is then
constrained to be equal to the true/false result of (a == b), which is 0 or 1.
Gotcha!

How to avoid these Gotchas

Constraints involving compound Boolean operations should be broken down to
separate statements. The above constraints should be modeled as:

constraint increasing {
lo < med; // lo is constrained to be less than med
med < hi; // med is constrained to be less than hi

}

constraint equal {
a == b; // a is constrained to be equal to b
b == c; // b is constrained to be equal to c

Chapter 7: Randomization, Coverage and Assertion Gotchas 181

Gotcha 86: Unwanted negative values in random values

Gotcha: I am getting negative values in my random values, where I only
wanted positive values.

Synopsis: Unconstrained randomization considers all possible 2-state values
within a given data type.

In the following class, both i and b are signed variables which can store negative
values.

class Negs;

rand int data;

rand byte address; // GOTCHA! address can be negative
endclass

The int and byte types are signed types. Therefore, the . randomize method
will generate both positive and negative values for these variables. If either of
these variables is used in a context where a positive number is required, the
outcome could be unexpected or erroneous, such as generating a negative value
for an address bus.

How to avoid this Gotcha

When the randomized test variables are to be passed to hardware as stimulus, it is
generally best to use unsigned types such as bit or logic. This ensures that
randomized values will always be positive values.

There are times when signed types need to be used, but only positive numbers are
desired. For example, it may be preferred to use the C-like int, byte, shortint
and longint types when the variables are to be passed to C functions using the
System Verilog Direct Programming Interface (DPI). When signed types need to
be used, but only non-negative values are desired, randomization can be
constrained to non-negative numbers. For example:

class Negs;
rand int data;
rand byte address; // OK, address constrained to non-negative
constraint pos
{ data >= 0;
address >= 0;}
endclass

182 Verilog and SystemVerilog Gotchas

Gotcha 87: Coverage reports default to groups, not bins

Gotcha: I've defined specific coverage bins inside my covergroup to track
coverage of specific values, but the report only shows the coverage of the
entire covergroup.

Synopsis: The get_coverage() and get_inst_coverage() methods do not break
down coverage to individual bins.

SystemVerilog provides powerful functional coverage for design verification. As
part of functional coverage, verification engineers define covergroups. A
covergroup encapsulates one or more definitions of coverpoints and cross
coverage. A coverpoint is used to divide the covergroup into one or more bins,
where each bin includes specific expressions within the design, and specific
ranges of values for those expressions. Cross coverage specifies coverage of
combinations of cover bins. An example covergroup definition is:

enum {sl,s2,s3,s4,s5) state_e, nstate_e;

covergroup cSM @ (posedge clk);
coverpoint state e {

bins statel = (sl);

bins state2 = (s2);

bins state3 = (s53);

bins stated = (s4);

bins stateS5 = (s5);

bins stl_3 5 = (slé>s3=>55);
bins st5 1 = (85=>sl);

}
endgroup

These covergroup bins count the number of times each state of a state machine
was entered, as well as the number of times certain state transition sequences
occurred,

SystemVerilog also provides built-in methods for reporting coverage. It seems
intuitive for coverage reports to list coverage by the individual bins within a
covergroup. However, this is not the default for how coverage is reported.
Gotcha!

When the SystemVerilog get_inst_coverage () method is called to compute
coverage for an instance of a covergroup, the coverage value returned is based on
all the coverpoints and crosspoints of the instance of that covergroup.

When the SystemVerilog get_coverage () method is called, the computed
coverage is based on data from all the instances of the given covergroup.

Chapter 7: Randomization, Coverage and Assertion Gotchas 183

The gotcha with coverage reporting is that coverage is based on crosspoints or
coverpoints. There are no built in methods to report details of individual bins of a
crosspoint. If the coverage is not 100%, the designer has no way to tell which bins
are empty.

How to avoid this Gotcha

If the coverage details for each bin are needed, then each covergroup should have
just one coverpoint, and that coverpoint should have just one bin. Then, when the
coverage is reported for that cover group, it represents the coverage for the
coverpoint bin.

184 Verilog and SystemVerilog Gotchas

Gotcha 88: Coverage is always reported as 0%

Gotcha: I defined a covergroup, but the group always has 0% coverage in the
cover report.

Synopsis. Covergroups are specialized classes and must be constructed before
they can be used.

The following example defines a covergroup as part of a class definition. The
intent is to provide coverage of the properties within the class. When the class
object is constructed, however, the covergroup does not keep track of the
information intended.

program automatic test;
event cg_sample;

covergroup CG_xyz @(cg_sample); // covergroup definition
coverpoint x;
coverpoint y;
coverpoint z;

endgroup

class Abc;
rand bit [7:0] a, b, c¢;
covergroup CG_abc @(cg_sample); // covergroup definition
coverpoint a;
coverpoint b;
coverpoint c;
endgroup
endclass

initial begin

Abc al = new; // instance of Abc object
. // generate stimulus
$get_coverage() ; // GOTCHA! reports 0 coverage
end
endprogram

The reason no coverage is reported is that a covergroup is a special type of class
definition. In order to generate coverage reports, the covergroup object must first
be constructed using the covergroup’s new method, in the same way as when
constructing a class object. The example above never constructs a CG_xyz
coverage object. The example constructs an instance of the Abc object, but
constructing the class object does not construct an instance of the cG_abc
covergroup within the class. Hence, no coverage information is collected for
either the CG_xyz or CG_abc cover groups. No errors or warnings are reported
for this coding error. The only indication that there is a problem is an erroneous or
incomplete coverage report. Gortcha!

Chapter 7: Randomization, Coverage and Assertion Gotchas 185

How to avoid this Gotcha

An instance of a covergroup must always be constructed in order to collect
coverage information about that group. When the group is defined in a class, as in
the example above, the covergroup instance should be constructed as part of the
class constructor. In that way, each time a class object is constructed, the
covergroup instance for that object will automatically be constructed.

program automatic test;
event cg_sample;

covergroup CG_xyz @(cg_sample); // covergroup definition
coverpoint x;
coverpoint y;
coverpoint z;

endgroup

class Abc;
rand bit [7:0]) a, b, c;
covergroup CG_abc @(cg_sample); // covergroup definition
coverpoint a;
coverpoint b;
coverpoint c;
endgroup

function new;
CG_abc = new; // instance of covergroup
endfunction
endclass

initial begin

Abc al = new; // instance of Abc object
CG_xyz = new; // instance of covergroup
// generate stimulus
$get_coverage() ; // OK, reports coverage
end
endprogram

Another reason why coverage could be reported as 0% is that the cover group was
never triggered. This could be because its trigger never fired, or the . sample
method for the covergroup instance was never called.

186 Verilog and SystemVerilog Gotchas

Gotcha 89: The coverage report lumps all instances together

Gotcha: I have several instances of a covergroup, but the coverage report
lumps them all together.

Synopsis: By default, the coverage report combines all the instances of a
covergroup together.

The intent in the example below is to measure the coverage on each of two pixel
X1y pairs.
covergroup pixelProximity(ref bit signed [12:0] pixell,
ref bit signed {12:0)] pixel2)
@ {newPixel);
cpl: coverpoint (pixel2 - pixell) {

bins 1t = {[1:8]}; // pixell's coord less than pixel2
bins eq = {0}; // did the pixels coincide?
bins gt = {[-4096:-1]}; // pixell's coord greater than

// pixel2

}

endgroup
pixelProximity px, py;
initial begin
bit signed [12:0) x1, yl, x2, y2:

px = new(xl, yl}; // construct first covergroup

py = new(x2, y2); // construct second covergroup
// generate stimulus

$get_coverage() ; // GOTCHA! report lumps

// px and py together
end

In this example, two covergroup objects are constructed, px and py. Instead of
seeing separate coverage for each covergroup, however, the coverage report
combines the counts for both groups into a single coverage total. Gotcha!

How to avoid this Gotcha

The covergroup needs to set the .per_instance coverage option, as shown
below:

covergroup pixelProximity(ref bit signed [12:0) pixell,
ref bit signed [12:0] pixel2)
@ (newPixel);
option.per_instance = 1; // report for each covergroup instance
cpl: coverpoint (pixel2 - pixell) {

}
endgroup

Chapter 7; Randomization, Coverage and Assertion Gotchas 187

Gotcha 90: Covergroup argument directions are sticky

Gotcha: Sometimes the call to my covergroup constructor does not compile.
Synopsis: A covergroup ref argument cannot be passed a constant value.

A generic covergroup has arguments that pass in values and variables. The default
direction is input, for passing in fixed values, and re€£, for passing in variables
for coverpoints. The direction is sticky, and remains in effect until a new direction
is specified.

In the following example, the call to the covergroup constructor passes in the
variable va, and the constants 0 for 1ow and 50 and high. The code looks like it
should do what is expected, but instead gets a compilation error.

covergroup cg (ref int ra, int low, int high)
@ (posedge clk);
coverpoint ra // sample variable passed by reference

{bins good = { [low : high] };
bins bad[] = default;
)
endgroup

initial begin
int va, vb;
int min=0, max=50;
cg ¢l = new(va, min, max); // OK
cg c2 new(vb, 0, 50); // GOTCHA! cannot pass constants
// to ref args

end

In the covergroup definition above, ra is a ref argument. This direction is sticky,
and affects all arguments that follow, until a different direction is specified. Since
no direction is given for 1ow and high, they also default to ref arguments. The
call to the constructor fails, because the actual values passed to ref arguments
must be variables. It is not allowed to pass a constant into a ref argument. The
sticky direction behavior of covergroup arguments is similar to task/function
arguments, as described in Gotcha 69 on page 150.

How to avoid this Gotcha

It is best to specify the direction for each covergroup argument, especially when
ref arguments are used. This documents the code intent, and prevents the gotcha
of an argument inheriting the direction of a previous argument. For example:

covergroup cg (ref int ra, input int low, input int high)

endgroup

188 Verilog and SystemVerilog Gotchas

Gotcha 91: Assertion pass statements execute with a vacuous success

Gotcha: My assertion pass statement executed, even though I thought the
property was not active.

Synopsis: A vacuous success will execute the assertion pass statement.

The assert property construct can be followed by optional pass and fail
statements.

assert property (p_req ack) S$display("passed");
else S$Sdisplay("failed");

The optional pass statement is executed if the property succeeds, and the fail
statement is executed if the assertion fails. The pass/fail statements can be any
executable statement. Multiple statements can be executed by grouping them
between begin and end.

Most property specifications contain an implication operator, represented by
either |-> or |=>, which qualifies when the assertion should be run. The
sequence expression before the implication operator is called the antecedent. The
sequence expression after the operator is called the consequent. A property
specification that uses an implication operator has three possible results: success,
Jailure, and vacuous success. If the implication antecedent is true, the consequent
is evaluated, and the property will pass or fail, based on the results of testing the
consequent. If the implication antecedent is false, the consequent is a “don’t
care”, and the property returns a vacuous success.

The intent of the following assertion is to increment a counter on each successful
assertion. The assertion checks to see if a req is followed by ack 1 clock cycle
later.

assert property (p_req ack) req ack_count++; else $error; // GOTCHA

property p_req_ack;
@ (posedge clk) req |-> ##1 ack; // if req, check for ack
// on next cycle
endproperty

The gotcha is that the assert property statement does not distinguish between
a real success and a vacuous success. Either one will cause the pass statement to
be executed. As a result, this example counts both how many times req was
followed by ack (successes) and how many clock cycles in which there was no
req (vacuous successes). Gotcha!

Chapter 7: Randomization, Coverage and Assertion Gotchas 189

How to avoid this Gotcha

This gotcha can be avoided by executing the desired statement(s) from within the
assertion property, instead of as a pass statement. SystemVerilog assertions can
have executable statements associated with the evaluation of an expression. The
following example places the code to increment the counter in a function, which
is then called when the property (not the assertion) successfully sees regq
followed by ack.

assert property (p_req_ack) else $error; // OK. no pass statement

property p_req_ack;
@ (posedge clk) Srose(req) |-> ##1 ($rose(ack), inc_cnt);
endproperty

function void inc_cnt;
req_ack_count++; // OK, not executed on vacuous success
endfunction

This gotcha has been addressed in the next version of the System Verilog standard,
planned for ratification 2008. The IEEE 1800 SystemVerilog standards
committee has proposed new system tasks to control the execution of assertion
pass statements: $assertvacuousoff and $assertvacuouson These system
tasks will allow a designer to disable or enable the assertion pass statements on
Vacuous successes.

Specific to the previous example, there is another solution. SystemVerilog
coverage can be used to count how many times req was successfully followed by
ack, instead of the assertion pass statement.

190 Verilog and SystemVerilog Gotchas

Gotcha 92: Concurrent assertions in procedural blocks

Gotcha: My assertion pass statements are executing, even when the
procedural code does not execute the assertion.

Synopsis: Concurrent assertions in procedural code actually fire every clock
cycle, not just when the procedural code executes.

A concurrent assertion can be placed inside an initial or always block, and
the assertion guarded by procedural code, such as an i£ statement.

always_ff @(posedge clk) begin
if (state_e == FETCH)

assert property (p_req_ack) // GOTCHA!
$display("passed") // pass statement
else $display("failed"): // fail statement

end

property p_req_ack;
@ (posedge clk)
req |-> ##1 ack; // a req should get an ack 1 cycle later
endproperty

The intent of this assertion is that req followed by ack is only checked when
state_e is FETCH, and that each req should be followed one clock cycle later
by an ack.

In the simulation results, below, simulation was run for 9 clock cycles, four with
the state_e variable equal to INIT, and four with the variable equal to FETCH.
The table shows the value of state e and req on one clock cycle, and the value
of ack on the next clock cycle.

lst cycle 2nd cycle output message and notes

state e req ack

INIT 0 0 passed // vacuous success -- GOTCHA!
INIT 1 0 passed // vacuous success -- GOTCHA!
INIT 1 1 passed // vacuous success -- GOTCHA!
FETCH 0 0 passed // vacuous success

FETCH 1 0 failed // true failure

FETCH 1 1 passed // true success

Chapter 7: Randomization, Coverage and Assertion Gotchas 191

This example illustrates two gotchas. The first gotcha is shown on line one of the
output. The assertion ran, even when state e was not equal to FETCH. The
reason the assertion ran, even when the if condition was false, is that concurrent
assertions in procedural code are still concurrent assertions. As such, the
assertions run as concurrent threads, in parallel with the procedural block.
Because the assertion is a concurrent assertion, it executes on every positive edge
of c1k, even when the i £ condition is false. Gotcha!

The second gotcha in this example is shown on line 2 of the output. There is a
req on the first cycle, but it is not followed by an ack on the next cycle. This
should be an assertion failure, but the assertion reported a success. Gotcha, again!

This second gotcha occurs because the procedural i£ statement is treated as an
implication operation in the assertion property. When the if condition is false,
the property is a vacuous success, regardless of the values of req and ack.

How to avoid these Gotchas

In reality, there are no gotchas to avoid. The assertion in the previous example
worked exactly as it should. A vacuous success occurs when the antecedent of an
implication operator is false. While it is not obvious in the example above, there
are actually two implications: the if (state e == FETCH) in the procedural
code, and the req |-> in the assertion property. If either implication is false, a
vacuous success will occur, which is exactly what happened in this example.

What can be misleading is that the pass statement is executed on a vacuous
success (see Gotcha 91 on page 188). The message printed from the pass
statement can make it appear that the assertion passed when it should not have.

To avoid being mislead by the assertion pass statement, do not use pass
statements with concurrent assertions that are guarded by a conditional statement
in procedural code . The $assertvacuousoff referenced in Gotcha 91 on page
188 can also resolve the pass statement being executed on a vacuous success.

192 Verilog and SystemVerilog Gotchas

Gotcha 93: Mismatch in assert...else statements

Gotcha: My assertion fail statement executes when the assertion succeeds
instead of fails.

Synopsis: An “if” without an “else” in an assert pass statement causes the
assert “else” (fail) statement to be paired with the “if” in the pass statement.

The assert and assert property constructs can be followed by optional pass
and fail statements,

assert property (p_req ack) $display("passed");
else S$display("failed");

The optional pass statement is executed if the property succeeds, and the optional
fail statement is executed if the assertion fails.

The pass statement can be any executable statement, including a conditional if
or if...else statement. The following example has a gotcha:

assert property (p_req_ack)
if {(cnt_en) req_ack _count++; // assertion pass statement
else $fatal; // GOTCHA! this is not the
// assertion fail statement

Assertions follow the same syntax as nested if...else statements, in that the
else is associated with the nearest i£. In the example above, the else statement
is associated with the if condition in the assertion pass statement. Syntactically,
there is no assertion fail statement in this example. This is not a syntax error,
since the fail statement is optional. Instead, the else branch executes whenever
the assertion succeeds or vacuously succeeds, and the pass statement if
condition is false. Gotcha!

How to avoid this Gotcha

This gotcha is similar to the nested if...else gotcha described in Gotcha 57 on
page 128, and is avoided in the same way. Either an else must be paired with the
if, or the if condition must be encapsulated within a begin...end statement
group, as shown below.

assert property (p_req_ack)
begin
if (cnt_en) req_ack_count++; // OK, assertion pass statement
end
else S$fatal; // OK, assertion fail statement

Chapter 7: Randomization, Coverage and Assertion Gotchas 193

Gotcha 94: Assertions that cannot fail

Gotcha: I have an assertion property with an open-ended delay in the
consequent, and doesn 't fail when it should.

Synopsis: Once the consequent of a property comes to an open-ended delay,
the consequent will wait forever for the remaining conditions to return true.

The behavior of assertion sequences with an open-ended range is not intuitive,
and can lead to unexpected assertion results.

The intent of the following assertion property is that a req should eventually be
followed by an ack, which should be followed one cycle later by done,

property p_req_ack2;

@ {posedge clk)

$rose(req) |-> ##{1:$]) Srose(ack) ##1 $rose(done); // GOTCHA!
endproperty

In the example above, the assertion antecedent will wait for a rise on req. Until
req rises, the assertion will be a vacuous success on each clock cycle, After req
goes high, the consequent will wait forever for ack to go high. Once ack goes
high, done should transition high on the next clock. If it does, the property
passes. If done does not follow ack, the assertion does not fail! Instead, the
consequent will just continue to wait for a rise on ack, followed by done going
high one clock later. Gotcha!

The next property model is similar to the previous example, except that the open-
ended range is between the evaluations of ack and done.

property p_req_ackZ2;

@ (posedge clk)

$rose(req) |-> ##[1:5] Srose(ack) ##[1:$] $rose(done); // GOTCHA!
endproperty

In this example, if the rise on ack does not occur within five clocks of the rise of
req, the consequence will fail. If ack does go high within the five clocks of req,
the consequent will then wait forever for done to go high. This property can fail
up to the point of starting the open-ended range. Once the open-ended range is
started, the consequence cannot fail. It will wait forever for a passing condition of
the remaining sequence. Gotcha!

The property shown next also illustrates that, once an open-ended range is
reached, the consequent will not fail, but will wait until a passing sequence
follows the open-ended delay.

194 Verilog and SystemVerilog Gotchas

property p_req_ack2;
@ {posedge clk)
$rose(req) |-> ##[1:5] $rose(ack)
##[1:5) Srose(done) ##1 $fell(bus_en); // GOTCHA!

endproperty

In this example, the property can fail if req is not followed by ack. But, once the
open-ended range is reached, the property will wait forever for a rise on done,
followed one clock later by bus_en having gone low. If done, goes high and
bus_en does not go low within the next clock cycle, the consequent will just
continue waiting until the passing sequence occurs. Gotcha!

How to avoid this gotcha

The cause of the gotchas in the preceding examples is having an open-ended
range in the consequent that tests for more than one condition after the range. One
solution is to break up the consequent into separate sequences and properties. The
first property below checks for req, followed eventually by a rise on ack. The
second property checks for ack, followed one cycle later by done.

property p_req_ack;
@ (posedge clk) S$rose(req) |-> ##[1:$] $rose(ack); // OK
endproperty

property p_ack_done;
@ (posedge clk) S$rose(ack) |-> ##1 $rose(done); // OK
endproperty

Another solution is to use a go-to repetition operator ([->n)). This sequence
operator will provide the same “wait forever” for ack, but will fail if ack is not
followed by done, instead of continuing to wait for an ack followed by done.

property p req ack2;

@ (posedge clk)

$rose(req) |-> ##1 ($rose(ack)[->1]) ##1 $rose(done); // OK
endproperty

Chapter 8
Tool Compatibility Gotchas

Gotcha 95: Default simulation time units and precision

Gotcha: My design outputs do not change at the same time in different
simulators.

Synopsis: Simulators have different defaults for delay time units (the
‘timescale directive).

Time in Verilog is a 64-bit unsigned integer. Delays are specified by using a hash
mark (#) followed by a number. A delay does not have any indication of what
unit of time is being represented.

#2 sum = a + b; // delayed execution of a programming statement

and #3 (y, a, b); // 2-input AND gate with propagation delay

In Verilog, the time unit represented by delays is specified as a characteristic of a
module, using a ‘timescale compiler directive. The directive contains two
parts, the module’s time units and the module’s time precision. Each are specified
in increments of 1, 10 or 100, in units ranging from seconds down to
femtoseconds. The time precision allows a module to represent non-whole
delays. The precision is relative to the time unit. Within simulation, all delays are
scaled to the smallest precision used by the design.

An example of using ‘timescale is:

Note: the code examples in this chapter are contrived in order to illustrate each gotcha using small
examples. In real design and verification code, these gotchas might not be as obvious or easy to debug.

196 Verilog and SystemVerilog Gotchas

‘timescale 1lns/100ps // 1 nanosecond units, 100 ps precision
module A (...);

#2.3 ... // delay represents 2.3 nanoseconds
endmodule
module B (...);

#5.5 ... // GOTCHA! delay represents 5.5 what?
endmodule
‘timescale lps/lps // 1 picosecond units, 1 ps precision
module C (...);

#7 ... // delay represents 7 picoseconds
endmodule

There are two common gotchas with Verilog ‘timescale directive: file order
dependencies and no standard default.

The ‘timescale directive is not bound to modules or files. Once specified, the
directive affects all modules and files that follow the directive, until a new
‘timescale is encountered by the compiler. This means that, if some design
and/or test files contain time scale directives, and other files do not, then
changing the order in which files are compiled will change how much time a
delay represents in the files that do not have a time scale directive. This can cause
radically different simulation results, even with the same simulator. Gotcha!/

If a file is read in when no ‘timescale has been specified at all, then a compiler
might, or might not, apply a default time unit. This, too, can cause radically
different simulation results when simulating the same design on different
simulators. Gotcha!

Some Verilog/SystemVerilog tools require that all files be compiled together.
Timescale directives in one file can impact other files, as noted in the paragraphs
above. Other Verilog/SystemVerilog tools support separate file compilation. In
this case, a timescale directive in one file will not affect other files, but files with
no directive depend on the tool’s default timescale.

How to avoid this Gotcha using Verilog

To avoid this gotcha when using just Verilog, company-imposed or self-imposed
coding rules must be strictly adhered to. There are three different coding styles
for where to specify the *timescale directive:

* One style is to not use ‘timescale directives anywhere, and instead use the
default time units of the software tool. This avoids the gotcha, but depends on
being able to control the code of all models that make up a design. This may
not be possible if models are obtained from multiple sources, such as IP
models or ASIC cell library models. Commercial Verilog models are likely to
contain ‘timescale directives.

Chapter 8: Tool Compatibility Gotchas 197

» Another style is to make sure a ‘timescale directive is specified at the
beginning of each and every module, in each and every design or testbench
file. This eliminates both file order dependencies in multi-file compilation, and
dependencies on the tool’s default timescale in single-file compilation.

* A third style is to only specify ‘timescale in one file, and then include that
file at the beginning of every other file. This approach also eliminates both file
order dependencies in multi-file compilation, and dependencies on the tool’s
default timescale in single-file compilation.

How to avoid this Gotcha using SystemVerilog

SystemVerilog has two very important enhancements that help avoid the gotchas
inherent with the ‘timescale directive. First, the time unit and time precision
specifications are keywords that can be specified within a module, and made local
to just the module. The keywords are timeunit and timeprecision. These
keywords can also be specified within interfaces, programs and packages.

By making the time unit and precision part of the module definition, file order
dependency problems and multi-file versus single-file compilation issues are
eliminated.

The second SystemVerilog enhancement is allowing an explicit time unit to be
specified with a delay value. This both documents the intended time unit, and
eliminates dependency on what order ‘timescale directives are encountered by
the compiler.

The following example shows both of these enhancements:

module B (...};
timeunit 1ns;
timeprecision lps;

#5.5 ... // delay represents 5.5 nanoseconds

#lms ... // delay represents 1 millisecond
endmodule

198 Verilog and SystemVerilog Gotchas

Gotcha 96: Package chaining

Gotcha: My packages compile fine on all simulators, but my design that uses
the packages will only compile on some simulators.

Synopsis: When one package imports a second package, and a design or
testbench imports the first package, some simulators make declarations from
both packages available, and some do not.

SystemVerilog packages provide a declarations space for definitions that are to be
shared. A module, interface, or program can import specific package items, or use
a wildcard import to make all items in a package visible. A package can also
import items from other packages, as illustrated below.

package foo;
typedef int unsigned uint_t;

function int func_a (int a);
return ~a;
endfunction
endpackage

package bar;
import foo::*; // wildcard import package foo

function int func_b (uint_t b);
return ~func_a(b};

endfunction
endpackage
module test;
import bar::*; // wildcard import bar
uint_t c; // GOTCHA! reference definition

// that is in package foo
endmodule
In this example, the test module does a wildcard import of package bar, and
then references the uint_t definition. This definition is not defined in package

bar. But, package bar imported this definition from package foo. This is
referred to as package chaining.

Some software tools permit package chaining, and some simulators do not.
Gotcha!

The gotcha in the example above is a result of an ambiguity in the SystemVerilog-
2005 standard. The standard does not say whether package chaining is, or is not,
allowed.

Chapter 8: Tool Compatibility Gotchas 199

How to avoid this Gotcha

To ensure that design and verification code will work on all software tools,
package chaining should not be used. Instead, a design or verification block
should explicitly import each package that contains definitions used in the
module. Either specific object imports or wildcard imports can be used, so long as
each package that is used is explicitly referenced.

module test;

import foo::¥; // wildcard import bar
import bar::*; // wildcard import bar
uint_t c¢; // OK, reference definition

// that is in package foo

ené&édule

The IEEE System Verilog standard working group has addressed this ambiguity in
the standard, and has proposed a change for the next version of the SystemVerilog
standard. The change is to make implicit package chaining illegal, and to provide
a mechanism for explicit package chaining. When tools implement this proposed
change, the example illustrated at the beginning of this section, which uses
implicit package chaining, will be illegal. However, package bar can enable

chaining by importing definitions from package foo, and then exporting some or
all of those definitions, thus making them visible to blocks that import bar.

200 Verilog and SystemVerilog Gotchas

Gotcha 97: Random number generator is not consistent across tools

Gotcha: I cannot repeat my constrained random tests on different tools.

Synopsis: The random number generator (RNG) used for constrained random
generation in SystemVerilog is not defined in the IEEE specification.

The IEEE 1800-2005 SystemVerilog specification outlines and specifies the
requirements for the constrained random number generator (RNG). However, the
standard does not specify the algorithm to be used for random number generation
or for solving constraints.

The following example shows a gotcha that is a result of not having a standard
RNG and constraint solver. A test using the constraint shown below was run on
simulators from two different tool vendors. This same test was also run on two
different revisions of the same simulator from one of the two vendors.

class bad_constraint;
rand bit [7:0] a, b, c;
constraint equal { a == b == ¢c; }
endclass

Random values generated by vendor 1:

a= 25 b=173, ¢ =0
a= 65 b =151, ¢ =0
a=190, b= 33, ¢c=0
a= 65 b= 32, ¢c=20
Random values generated by vendor 2:
a= 61, b= 1, ¢=0
a = 9, b = 9, ¢c=1
a =115 b =222, ¢ = 0
a =212, b =212, c =1

Random values generated by vendor 2, with a different version of the same tool:

a = 9, b = 9, c¢c =1
a =212, b = 212, ¢ =1
a= 17, b= 17, ¢ =1
a =150, b = 184, ¢ =0

The random values generated by each tool are not repeatable between tools, or
even between different versions of the same tool. This means the constrained
random tests run with tools from one vendor will not match results when the same
test is run on another vendor’s tool. Additionally, as shown in the test results
above, there is no guarantee that tests from one revision to the next revision
within the same tool vendor will give the same results. Gotcha!

Chapter 8: Tool Compatibility Gotchas 201

How to avoid this gotcha

A standardized RNG and constraint solver would ensure that constrained random
test generation would be consistent between different tools. At the time this book
was written, however, the IEEE SystemVerilog standard working group had no
plans for standardizing these important algorithms.

The next best solution is for the verification team to keep track of tools and
revisions used for simulation. The team needs to make sure that results are
checked as tools are upgraded from revision to revision, to ensure the test results
are consistent. Additionally, if a verification team has access to simulators from
multiple tool vendors, the team must keep track of which test results belong with
which tool and revision.

Note: the constraint definition shown above has another gotcha, which is
discussed in Gotcha 85 on page 179):

202 Verilog and SystemVerilog Gotchas

Gotcha 98: Loading memories modeled with always_latch/always_ff

Gotcha: When I use SystemVerilog, some simulators will not let me load my
memory models using Sreadmemb.

Synopsis: The Sreadmemb() and $readmembh() system tasks cannot be used to
load a RAM model that uses always_latch or always_ff.

Typically, a bus-functional model of a RAM is either synchronous (clock based)
or asynchronous (enable based). Synchronous RAMs behave at the abstract level
like flip-flops. Asynchronous RAMs behave at the abstract level like latches.
However, there is a gotcha if these devices are modeled using SystemVerilog’s
always_£f or always_latch procedural blocks.

module RAM

(inout wire [63:0] data,

input logic [7:0] address,

input logic write_enable, read enable
)i

logic [63:0] mem {0:255];

always_latch // asynchronous write (latch behavior)
if (write_enable) mem[address) <= data; // write to RAM

assign data = read_enable? mem[address] : 64'bz;
endmodule

module test;
wire [63:0] data;
logic [7:0] address;
logic write_enable, read_enable;

RAM raml (.*); // instance or RAM model

initial begin
$readmemh ("ram data.dat”, raml.mem); // GOTCHA!

In this example, the RAM model is correct—at least functionally. The problem is
that the always latch procedural block enforces a synthesis rule that multiple
procedural blocks cannot write to the same variable. The testbench is attempting
to load the RAM model using the Verilog $readmemh task, which is a common
way to load Verilog memory models. This is a second procedural block writing to
the RAM storage (mem), which is illegal. One simulator generates the following
error;

Chapter 8: Tool Compatibility Gotchas 203

Error-[ICPD]} Invalid combination of procedural drivers

Variable "mem" is driven by an invalid combination of procedural
drivers. Variables written on left-hand of "always_latch" cannot
be written to by any other processes, including other
"always_latch" processes.

Some simulators, however, execute the example above without any errors or
warnings. These products do not treat the $readmemh and $readmemb
commands as an assignment,

How to avoid this Gotcha

The fix for this coding problem is to use Verilog’s general purpose always
procedural block for this abstract RAM model. SystemVerilog’s always_latch
and always_ff procedural blocks are intended to model synthesizable RTL
models. These constructs are not intended for abstract models that do not need to
adhere to synthesis coding rules.

The asynchronous, latch-like RAM model in the previous example should be
coded as:

module RAM

always @* // asynchronous write (latch behavior)
if (write_enable) mem{address] <= data; // write to RAM

204 Verilog and SystemVerilog Gotchas

Gotcha 99: Non-standard language extensions

Gotcha: My SystemVerilog code only works on one vendor s tools.

Synopsis: Some tools add proprietary extensions to the IEEE Verilog and
SystemVerilog standards.

Some Verilog/SystemVerilog tool vendors extend the IEEE standard by adding
special, vendor-specific features to their product. These extensions can be useful
for that vendor’s tools. However, using these extensions also means the Verilog or
System Verilog code will not work with tools from other vendors.

One SystemVerilog tool company allows an optional keyword hard to be used
with the solve..before constraint operator. Without this additional keyword,
that company’s tools do not enforce the constraint solution order that is specified
by solve..before. An example of using this vendor-specific keyword is:

constraint ab {
solve a before b hard; // 'hard' enforces solve before
if (a inside {32, 64, 128, 256})
a == ;
else
a > b;
}

The keyword hard is not a SystemVerilog keyword, and is not in the IEEE 1800-
2005 SystemVerilog standard. If hard is used with any tool other than that
vendor’s tool, a syntax error will result. Gotcha!

Another SystemVerilog tool vendor allows the keyword pair pure virtual to be
used in the declaration of class methods. This keyword pair is not permitted in the
official IEEE 1800-2005 SystemVerilog standard. Testbenches written with this
keyword pair might not compile in other tools. This vendor also supplies
verification libraries that contain this keyword. These libraries might not work
with tools from other vendors.

How to avoid this Gotcha

Using non-standard keywords or syntax might be necessary to get the desired
results in a specific product. However, specifying this keyword will prevent the
same verification code from working with other software tools. To avoid this
gotcha, conditional compilation can be used to control whether or not the vendor-
specific construct is compiled. For example:

Chapter 8: Tool Compatibility Gotchas 205

constraint ab {

‘ifdef VENDOR A
solve a before b hard; // add proprietary 'hard' specification
‘else
solve a before b;
‘endif
if (a inside {32, 64, 128, 256})
a == H
else
a > b;
}

In the example above, the macro name VENDOR_A must be set before the code is
compiled. It can be specified in the source code, or on the tool’s command line.

It should be noted that the pure virtual keyword pair is illegal in the
SystemVerilog-2005 standard, but a proposal has been approved by the IEEE
SystemVerilog standard group to add this to the next version of the IEEE
standard. At the time this book was written, there was no proposal to add the
hard keyword.

The two non-standard extensions shown above illustrate this type of gotcha. They
are not the only non-standard extensions that exist in Verilog and SystemVerilog
tools.

206 Verilog and SystemVerilog Gotchas

Gotcha 100: Array literals versus concatenations

Gotcha: Some tools require one syntax for array literals. Other tools require a
different syntax.

Synopsis: Array literals and structure literals are enclosed between the tokens
*{ and }, but an early draft of the SystemVerilog standard used the tokens {
and '}, without the apostrophe.

The Verilog concatenation operator joins one or more values and signals into a
single vector. SystemVerilog array and structure literals (also known as an
assignment patterns) are lists of one or more individual values. To make the
difference between these constructs obvious to both engineers and software tools,
the syntax for an array or structure literal (* { }) is different from the syntax for
a Verilog concatenation({ }). The difference is that the array or structure literal
list of separate values is preceded by an apostrophe

logic [7:0] data; // 8-bit vector

data = {4'hF, bus}; // concatenate values into a vector
int data [4]: // array of 4 integers

data = ‘{0, 1, 2, 3}; // list of separate values

typedef struct {

int a, b;

logic [3:0] opcode;
} instruction_word;

instruction word = ' {7, 5, 3}; // list of separate values

The similarity of these two constructs can be a gotcha. It is easy to forget to add
the apostrophe before the array or structure literal, turning the list of values into a
concatenation. In most contexts, this mistake will be a syntax error, and will not
lead to a functional gotcha. There is one exception, though, which is described in
Gotcha 17 on page 38.

Another gotcha is that an unofficial preliminary draft of the SystemVerilog

standard, known as SystemVerilog 3.1a', used the tokens { } for both
concatenations and array/structure literals.

t. SystemVerilog 3.1a Language Reference Manual: Accellera’s Extensions to
Verilog, Copyright 2004 by Accellera Organization, Inc., Napa, CA, http://
www.eda.org/sv/SystemVerilog 3.1a.pdf.

Chapter 8: Tool Compatibility Gotchas 207

At the time this book was written, some software tools required the preliminary
SystemVerilog 3.1a syntax, some tools required the official IEEE 1800 syntax,
and some tools allowed either syntax. Gotcha!

How to avoid this Gotcha

The gotcha of some tools requiring a non-standard syntax cannot be avoided. A
workaround is to use conditional compilation around statements containing array
or structure literals, to allow the model to be compiled with either the preliminary
SystemVerilog 3.1a syntax or the official IEEE 1800 syntax. For example:

int data [4]; // array of 4 integers
initial begin
‘ifdef VENDOR A
data = {0, 1, 2, 3}; // IEEE 1800 list of values
‘else

data = (0, 1, 2, 3}; // old SV 3.l1la list of values
‘endif

end

208 Verilog and SystemVerilog Gotchas

Gotcha 101: Module ports that pass floating point values (real types)

Gotcha: Some SystemVerilog tools allow me to declare my input ports as real
(floating point), but other tools do not.

Synopsis: Module output ports that pass floating point values are declared as
real, but module input ports that pass floating point values are declared as
var real.

System Verilog allows floating point values to be passed through ports. However,
the official IEEE syntax is not infuitive. An output port of a module can be
declared as a real (double precision) or shortreal (single precision) type, but
input ports must be declared with the keyword pair var real or
var shortreal. For example:

module fp adder (output real result,

input var real a, b
)i

ené%édule

An unofficial preliminary draft of the proposed System Verilog standard, known
as SystemVerilog 3.1a!, did not require the var keyword be used on input
floating point ports. At the time this book was written, some SystemVerilog tools
require the official IEEE syntax, as shown above, and get an error if the var
keyword is omitted. Other tools, however, require the preliminary SystemVerilog

3.1a syntax, and get an error if the var keyword is used. Designers are forced to
write two versions of any models that have floating point input ports. Gotcha!

How to avoid this Gotcha

This gotcha cannot be avoided. The only workaround is to use conditional
compilation around the module port declarations, to allow the same model to be
compiled with either the unofficial SystemVerilog 3.1a declaration style or with
the official IEEE 1800 declaration style.

1. SystemVerilog 3.1a Language Reference Manual: Accellera’s Extensions to
Verilog, Copyright 2004 by Accellera Organization, Inc., Napa, CA, http:/
www.eda.org/sv/SystemVerilog_3.1a.pdf.

Index

Symbols
'notoperator.ccoouiiiia.n 118
!=inequality operator 129
!== not-identity operator.. 130
=7 wildcard comparison 73
Sassertoff. 177
$assertvacuousoff 191
$Sbitstoreall 46
$cast ... 93
$clog2 ... 91
$finish.............. ..o 171
$readmemb(). 202
$readmemh()....................... 202
Srealtobitsl 46
$signed L 110
Sunit declarations 15,24
Sunsignedl 110
++ increment operator. 112,113,115
+= assignment operator. 112
+= assignment operators.............. 115
.* See dot-star port connection
.name, See dot-name port connection
.per_instance coverage option. 186
randomize method 173,175, 177, 181
samplemethod. 185
sumarraymethod. 119
.sum with() array method 121
:: scope resolution operator. 27
;nulloperation 140
<= See nonblocking assignment......... 62
= See blocking assignment 62
== equality operator 129
=== jdentity operator 130
==7 wildcard comparison.............. 73
-> blocking event trigger.......... 131,132
->>, nonblocking event trigger......... 132
@eventcontrol. 131, 139
e 49, 50, 53
{ } concatenation operator 38, 206

oroperator......................... 56
|=> implication operator 188
|-> implication operator. 188
~invertoperator 118
‘timescale 195
*{ } assignment pattern operator. 38,206
O 37
5 G 37
K 37
T 37
Numerics
10typesofpeople.................... 30
1364-2005...... ..., 5,6
1800-2005........... ...l 5,6
1-bit functionreturn 148
A

acknowledgments.................... ix
always. i 123
always comb 51, 53, 85, 95, 97
always ff.................... 95,97, 202
always latch.............. 51,95, 97, 202
antecedent, 188
array literals 38,206
array method operations 119, 121
array of objects, 159
assert.else 192
assertion pass statement 188

assertions. . 26,79, 87, 89,90, 155, 175, 177,
188, 189, 190, 192, 193

assign 44,53,95,97, 151
assignment operators. 112
assignment patterns. 38,206
assignmentrules 35
assignments in expressions............. 99
asynchronousreset 60, 123
asynchronous set. 60

automatic functions. 22,160, 161, 169

210 Verilog and SystemVerilog Gotchas
automatic package. 24 D
automatic programs. 24,163 decimalinteger...................... 30
automatic tasks 22, 160, 161, 169 decrement operator.................. 12
automatic variables. 22,147,162,164 dedicationcoovvurinennnn.. \
default direction of task argument 158
B disable..........oviiiiiiiiiin 168
back-drivenports 43 disablefork............... 166
begin...end, where nottouse 57,58 DonMills vii
binaryintegeri. 30 dot-name port connection. 11, 14,41
bit-select operation 111 dot-star port connection 11, 14, 41
blocking assignment dynamic variables, See automatic variables
++and --operators 112
assignment operators. 112 E
COTTECt USAZEo vvenen e, 68 Emacs.................. 11, 12, 141, 149
definitionof. 62 enumeratedtypes 28, 84,92
inclock dividers 65 equality with 4-state values. 129
to reset 2-state models. 83 escaped identifiers................. 19,20
to reset at time zero. 126 escapednames.................... 19, 20
boolean constraints 179 eventdatatype 131,134
exit simulation. 171
c explicit package import............. 28,29
CASE ... vvviireeernnneenn 31,76,77,79
case sensitivity, 7 F
casestatement.oune... 30 FIFO ..ot 134
case()inside T3 filling vectorsvuret i 37
CaSEX vt e 72 flip-flop..... 20, 60, 62, 64, 82, 83, 124, 202
CASEZ . ..ottt 72 floating point, See real types
casting............iiiii i 92 forloop............... 142, 144, 145, 147
casting, sign 110 foreachloop 142
ChrisSpearouh. 1X,6 foreverloop............oovvviiun.ns 142
clockdividers 64 fork..join...................... 145, 167
clockingblocks..................... 139 fork..join_any...................... 172
clock-to-Qdelay............... 62,64,66 fork...join_none................. 164, 172
coding guidelines 24,45 full caseciviiininn.. 74,79
combinational logic 49, 52, 56, 57, 61, 62,66, function return size 148
67, 68,70, 71, 112, 116, 151 functional coverage. 182
combinational nonblocking assign 66
compilation......................... 41 G
Compilation error 8: 10’ 11’ 14) 17: 201 22) 251 get() method 134, 137
28,29,44, 58,138,139, 150, 153, get coverage()method............... 182
154, 155, 159, 187 get_inst_coverage() method 182
compilation warning. 14 Golson, Stevecooii.. ix, 1
concatenation operator 38,206 gotcha
concatenations. 206 LVEISUS ~. o v v oo e e oo 118
concurrent for loops 145 $assertoff disables randomization. 177
concurrent threads. 164 $unit compilation 15
conditional compilation ...61, 204, 207, 208 e 49
comsequent ... 188 [bitimplicitnets 13
CONStIUCtOTcoovvvvunnn. 157, 158 all data in mailbox has same value 157
context-determined operators . . 101, 105, 108 array literalscooiiii... 38
continuous assignment . . . 44, 53, 95, 97, 151 array literals versus concatenations . . . 206
coveragereports 182, 184, 186 array of objects 159

covergroup argument direction. 187

Index 211
assert..elsemismatch 192 real typesonports.............. 46, 208
assertion pass statement 188 referencing loop variable 147
assertions in procedural code 190 resetattimezero.................. 123
assertions that cannot fail 193 resetting 2-state models 82
assignments in expressions. 99 semaphores that don’t wait. 134
automatic variables................. 22 semicolons afterfor() 142
back-drivenport 43 semicolons afterif. 140
begin...end in sequential logic 57 sensitivity lists. 52,56
boolean constraints 179 sequential logic................. 54, 64
case sensitivity e 7 sequential logic blocking assignment . . . 62
casezand CaseX................ ... 72 sequential logicresets. 59
clockdividers 64 sequential logic set/reset. 60
combinational assignment order. 70 shared variables. 94,96, 164
combinational nonblocking assign 66 signextension................. 33,105
concurrent forloops 145 signed arithmetic. 108
context-determined operators 101 sizeextension 105
continuous assignment with delay 151 size mismatch in assignment. 35
coverageis0% 184 statementsinaclass 153
coverage report lumped together 186 task defaults with default values. 150
coverage reportsonbins. 182 triggering on clocking blocks 139
disablefork 166 undetected randomization failure 175
disabling statement blocks 168 unique case misuse 79
enumerated types 28 unnamed blocks 25
equality with 4-state values.......... 129 using interfaces and classes 155
escapednames. 19 variable initialization 162
event triggerraces. 131 variables don’t get randomized. 173
fillingvectors 37 variables in forked threads 164
functionreturnsize................ 148 ZEro extension.u ..., 33
functions in combinational logic. 49 gotcha, definitionof 3
hidden problems, 2-state logic . . 88, 90,92 gotcha, reasonsfor 4
hidden problems, 4-state logic 86 gotcha, summary of gotchas in book XV
implicitnets. 10
incomplete decisions. 74 H
increment operator 112" handle........ 154, 155, 157, 158,159, 173
infinite forloop................... 144 hard, non-standard keyword 204
input versus ref arguments 158 hexinteger.......................... 30
literal integers 30, 32,33,35 hidden problems, 2-state logic 88, 90, 92
local variables..................... 17 hidden problems, 4-state logic 86
locked state machines............... 84 hierarchical paths 19, 20, 22, 23, 25, 27
mailboxes can store any data type137
nested if...elseblocks 128 |
non re-entrant tasks. 160 identifiers
non-standard random generator 200 casesensitive....................... 7
operation short circuiting 116 definition of . .o 7
out-of-bounds array access........... 90 escaped 19
out-of-bounds enumerated types. 92 fegalcharacters.................... 19
overlapped decisions. 77 IEEE SystemVerilog standard. 5
package chaining. 198 [EEE Verilog standard 5
packages 27,28,29 jfielse. . ..ot 128
part-select operation 11 if else, in sequential logic 57
portconmechionsl 39 implication operator 188
premature simulation exit........... 171 implicitnets. 13
random negative values 181 import, explicit 28,29

212 Verilog and SystemVerilog Gotchas
import, package. 28,198 O
import, wildcard 28,29,198 object handles, See handle 159
imported package items 27 octalinteger..............oovivnin... 30
incomplete decisions. 74 open-ended range in assertions. 193
increment operator 112 operation short circuiting 116
inertialdelay 152 or, in sensitivity lists. 56
initial. ... 123 out-of-bounds array access............. 90
inside. i 73 out-of-bounds enumerated types. 92
interfaces. 24,96, 155
P
J package automatic. 24
joinany oo 172 package, wildcard import 28,129,198
join_mone 164,172 packages............ 16, 24, 27, 28, 29, 96
packages, chaining 198
L parallel case........................ 74
language-aware editor. 11, 128, 141, 142, 149 parameter 91
left extension, of literal value........... 34 part-selectoperation................. m
lint checkers . . 34, 38, 44, 59, 63, 77,94, 149 portcoercion........................ 43
literal integer, size mismatch 33,35 portconnectionrules.................. 39
literal integers 30,32,33,35 posedge...........coiiiiiiiiit, 54
local variables.................... 17,25 post-increment I3
localparam. 91 pragmas, synthesis 74,79
locked simulation 66,145 pre-increment 113
locked state machines................. 84 premature simulationexit............. 171
loosely typed.............. 4,92,101,107 oprioritycase................c.0iin.nn 76
LRM, SystemVerilog 5 process synchronization
LRM, Verilog 5 using eventtypes. 131
using mailboxes 137, 157
M using semaphores 134
mailboxes 137,157 program automatic 24,163
memory models. 202 purevirtual ...l 204
method arguments. 158 puwtQmethod....................... 134
Mills,Don...............coviinnn. vii
mismatch, literal value size.......... 33,35 R
multi-file compilation. 15 race conditions 60,62, 64, 83,112, 125, 127,
multiple operations in one statement 115 131
rand. ... 173
N randc. ... 173
naming conventions 9,24 random number generator............. 200
negativevalues 181 randomization failure 175
Negedge. ... vv i 54 randomize......................... 173
nonblocking assignment realtypes.................... 46, 47, 208
COMTECtUSAZE . ..\ oo vrereennenns 63 realtypesonports................ 46, 208
definitionof. 62 redundant decision selection............ 77
exceptiontousing. 64 re-entranttasks 160
incorrectusage 66 ref covergroup argument. 187
intra-assignment delay 152 ref task/function argument 150, 158
to model transport delay 152 reference for loop variable 147
toresetattimezero................ 126 repeatloop......................... 142
nonblocking event trigger. 132 resetattimezero.................... 123
non-standard language extensions 204 resetting 2-statemodels 82

(e T ix

Index 213
RNG ... 200 Accellera3.lstandard. 5
rules, assignment statements. 35 Accellera 3.1a standard. 5, 206, 208
booksonoiial 6
3 definitionof. 3,5
scope resolution operator 27 IEEE1800standard 6
self-determined operators......... 101,105 SystemVerilog Assertions87, 89,90, 175, 177,
SEMAPhOTESo vvvvve e 134 188, 189, 190, 192, 193
semicolons, after for(). 142
semicolons, afterif 140 T
sensitivity lists task and function arguments........... 150
ATAYS M. ..ot 52 timeprecision...................... 195
combinational logic. 49 timeunits................... ..., 195
functioncalls. 49 timeprecision....................... 197
operations in...................... 56 timeunit........................... 197
VECIOTS M. ..o v vt 54 transportdelay...................... 152
separate file compilation. 15 truncation
sequential logic assignments. 35
begin-end groups. 57 functionreturn. 148
blocking assignmentsin............. 62 literal integers 33
FESEHING. vt 59, 60 Operationsceeihui... 119
sensitivity list, vectorsin 54 port connections 39, 144
shared declarations 15 try getQmethod.................... 137
shared variables. 94,96, 164 typed mailboxes 138
shiftregister 62
shortreal types. 47,208 U
signcasting................oiiui. 110 undeclared identifiers 7,10, 13
sign extension. 33, 35,36,40, 102,105 uniquecase................ 31,76,77,79
signed arithmeticrules 108 unnamedblocks 25, 26
signed literal integers 32 unsigned literal integers 32
signed types.o 181 unsignedtypes...................... 181
signedness....... 32,36,107,108, 110, 111 uwire..............cooviniinnn.... 44
simulation lockup. 66
single file compilation 15 v
SiZE eXtensionl 105 vacuous success 188, 191
solve.before. 204 Value Change Dump file, See VCD
Spear, Chris....................... I 47,208
state machine lockup 84 varrealcc0iiii.ll. 47,208
statements, inaclass................. 153 variable initialization 162
static functions 160 Variables, on ports 44
statictasks. oo 160 vCD, 22,26
static variables. 162 WERAo 5
SteveGolson...................... ix,1 Verilog
structure literals. 38,206 BOOKS ON « oo 6
Stuart Sutherland. vii, 6 definitionof. 3,5
sumarray method 119 [EEE 1364 standard 6
sum with() array method. 121 LRM .o 5
SUPERLOGc.ooiiiee, S5 OVHDL. ... oo 1,57
Sutherland, Stuart Vi, 6 virtual interface. 155
synchronization. 131, 134, 137, 157
synchronousreset 123w
synthesis full_case pragmas 79 wait. ..o 133, 172
SystemVerilog waitfork 172

Accellera3.Ostandard. 5

Verilog and SystemVerilog Gotchas

214
whileloop............coiiii 142
whitespace. oo it 19,20
wildcard comparison operator 73
wildcard package import........ 28,29,198
WITE. .ot 13,39, 43
Z

zeroextension.............. 33, 35, 36, 40

	Title Page

	Copyright Page

	Dedication
	About the Authors
	Acknowledgments
	Table of Contents

	List of Gotchas

	Foreword by Steve Golson

	Chapter 1 Introduction, What Is A Gotcha?

	What are Verilog and System Verilog?

	What is a Gotcha?
	The Verilog and System Verilog standards

	Chapter 2 Declaration and Literal Number Gotchas

	Gotcha 1: Case sensitivity
	Gotcha 2: Implicit net declarations
	Gotcba 3: Default of 1-bit internal nets

	Gotcha 4: Single file versus multi-file compilation of $unit declarations
	Gotcha 5: Local variable declarations
	Gotcha 6: Escaped names in hierarchical paths
	Gotcha 7: Hierarchical references to automatic variables
	Gotcha 8: Hierarchical references to variables in unnamed blocks
	Gotcha 9: Hierarchical references to imported package items
	Gotcha 10: Importing enumerated types from packages
	Gotcha 11: Importing from multiple packages
	Gotcha 12: Default base of literal integers
	Gotcha 13: Signedness of literal integers
	Gotcha 14: Signed literal integers zero extend to their specified size
	Gotcha 15: Literal integersize mismatch in assignments
	Gotcha 16: Filling vectors with all ones
	Gotcha 17: Array literals versus concatenations
	Gotcha 18: Port connection rules
	Gotcha 19: Back-driven ports
	Gotcha 20: Passing real (floating point) numbers through ports

	Chapter 3 RTL Modeling Gotchas

	Gotcha 21: Combinational logic sensitivity lists with function calls
	Gotcha 22: Arrays in sensitivity lists
	Gotcha 23: Vectors in sequential logic sensitivity lists
	Gotcha 24: Operations in sensitivity lists
	Gotcha 25: Sequential logic blocks with begin...end groups
	Gotcha 26: Sequential logic blocks with resets
	Gotcha 27: Asynchronous set/reset flip-flop for simulation and synthesis
	Gotcha 28: Blocking assignments in sequential procedural blocks
	Gotcha 29: Sequential logic that requires blocking assignments
	Gotcha 30: Nonblocking assignments in combinational logic

	Gotcha 31: Combinational logic assignments in the wrong order
	Gotcha 32: Casez/casex masks in case expressions
	Gotcha 33: Incomplete decision statements
	Gotcha 34: Overlapped decision statements
	Gotcha 35: Inappropriate use of unique case statements
	Gotcha 36: Resetting 2-state models
	Gotcha 37: Locked state machines modeled with enumerated types
	Gotcha 38: Hidden design problems with 4-state logic
	Gotcha 39: Hidden design problems using 2-state types
	Gotcha 40: Hidden problems with out-or-bounds array access
	Gotcha 41: Out-or-bounds assignments to enumerated types
	Gotcha 42: Undetected shared variables in modules
	Gotcha 43: Undetected shared variables in interfaces and packages

	Chapter 4 Operator Gotchas

	Gotcha 44: Assignments in expressions

	Gotcha 45: Self-determined versus context-determined operators

	Gotcha 46: Operation size and sign extension in assignment statements
	Gotcha 47: Signed arithmetic rules
	Gotcha 48: Bit-select and part-select operations
	Gotcha 49: Increment, decrement and assignment operators
	Gotcha 50: Pre-increment versus post-increment operations
	Gotcha 51: Modifying a variable multiple times in onestatement

	Gotcha 52: Operator evaluation short circuiting
	Gotcha 53: The not operator (!) versus the invert operator (~)

	Gotcha 54: Array method operations
	Gotcha 55: Array method operations on an array subset

	Chapter 5 General Programming Gotchas

	Gotcha 56: Verifying asynchronous and synchronous reset at time zero
	Gotcha 57: Nested if ...else blocks

	Gotcha 58: Evaluation of equality with 4-state values
	Gotcha 59: Event trigger race conditions
	Gotcha 60: Using semaphores for synchronization
	Gotcha 61: Using mailboxes for synchronization
	Gotcha 62: Triggering on clocking blocks
	Gotcha 63: Misplaced semicolons after decision statements
	Gotcha 64: Misplaced semicolons in for loops
	Gotcha 65: Infinite for loops
	Gotcha 66: Locked simulation due to concurrent for loops
	Gotcha 67: Referencing for loop control variables
	Gotcha 68: Default function return size
	Gotcha 69: Task/function arguments with default values
	Gotcha 70: Continuous assignments with delays cancel glitches

	Chapter 6 Object Oriented and Multi-Threaded Programming Gotchas

	Gotcha 71: Programming statements in a class
	Gotcha 72: Using interfaces with object-oriented testbenches
	Gotcha 73: All objects in mailbox come out with the same values
	Gotcha 74: Passing handles to methods using input versus ref arguments
	Gotcha 75: Constructing an array of objects
	Gotcha 76: Static tasks and functions are not re-entrant
	Gotcha 77: Static versus automatic variable initialization
	Gotcha 78: Forked programming threads need automatic variables
	Gotcha 79: Disable fork kills too many threads
	Gotcha 80: Disabling a statement block stops more than intended
	Gotcha 81: Simulation exits prematurely, before tests complete

	Chapter 7 Randomization, Coverage and Assertion Gotchas

	Gotcha 82: Variables declared with rand are not getting randomized

	Gotcha 83: Undetected randomization failures

	Gotcha 84: $assertoff could disable randomization
	Gotcha 85: Boolean constraints on more than two random variables
	Gotcha 86: Unwanted negative values in random values

	Gotcha 87: Coverage reports default to groups, not bins
	Gotcha 88: Coverage is always reported as 0%

	Gotcha 89: The coverage report lumps all instances together
	Gotcha 90: Covergroup argument directions are sticky
	Gotcha 91: Assertion pass statements execute with a vacuous success
	Gotcha 92: Concurrent assertions in procedural blocks
	Gotcha 93: Mismatch in assert...else statements
	Gotcha 94: Assertions that cannot fail

	Chapter 8 Tool Compatibility Gotchas

	Gotcha 95: Default simulation time units and precision
	Gotcha 96: Package chaining
	Gotcha 97: Random number generator is not consistent across tools

	Gotcha 98: Loading memories modeled with aIways_latch/always_ff
	Gotcha 99: Non-standard language extensions
	Gotcha 100: Array literals versus concatenations
	Gotcha 101: Module ports that pass floating point values (real types)

	Index

