


About the Authors
Cem Ünsalan, Ph.D., established the DSP Laboratory at Yeditepe University in
Istanbul, Turkey, and is a microprocessor and digital signal processing professor there.
He is the coauthor of Programmable Microcontrollers with Applications: MSP430
LaunchPad with CCS and Grace.

Bora Tar, Ph.D., is a postdoctoral researcher at The Ohio State University. His main
research interests include analog and mixed-signal integrated-circuit design and energy
harvesting and sensor networking applications.







Copyright © 2017 by McGraw-Hill Education. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database
or retrieval system, without the prior written permission of the publisher.
ISBN: 978-1-25-983791-3
MHID: 1-25-983791-2.
The material in this eBook also appears in the print version of this title: ISBN: 978-1-
25-983790-6, MHID: 1-25-983790-4.
eBook conversion by codeMantra
Version 1.0
All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have
been printed with initial caps.
McGraw-Hill Education eBooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact a
representative, please visit the Contact Us page at www.mhprofessional.com.
Information contained in this work has been obtained by McGraw-Hill Education from
sources believed to be reliable. However, neither McGraw-Hill Education nor its
authors guarantee the accuracy or completeness of any information published herein,
and neither McGraw-Hill Education nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information. This work is published
with the understanding that McGraw-Hill Education and its authors are supplying
information but are not attempting to render engineering or other professional services.
If such services are required, the assistance of an appropriate professional should be
sought.
TERMS OF USE
This is a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell,
publish or sublicense the work or any part of it without McGraw-Hill Education’s prior
consent. You may use the work for your own noncommercial and personal use; any
other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.
THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE

http://www.mhprofessional.com


ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION
THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-
Hill Education and its licensors do not warrant or guarantee that the functions
contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be
liable to you or anyone else for any inaccuracy, error or omission, regardless of cause,
in the work or for any damages resulting therefrom. McGraw-Hill Education has no
responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or
cause whatsoever whether such claim or cause arises in contract, tort or otherwise.



Contents

Preface
Acknowledgments

1   Introduction
1.1 Hardware Description Languages
1.2 FPGA Boards and Software Tools
1.3 Topics to Be Covered in the Book

2   Field-Programmable Gate Arrays
2.1 A Brief Introduction to Digital Electronics

2.1.1 Bit Values as Voltage Levels
2.1.2 Transistor as a Switch
2.1.3 Logic Gates from Switches

2.2 FPGA Building Blocks
2.2.1 Layout of the Xilinx Artix-7 XC7A35T FPGA
2.2.2 Input/Output Blocks
2.2.3 Configurable Logic Blocks
2.2.4 Interconnect Resources
2.2.5 Block RAM
2.2.6 DSP Slices
2.2.7 Clock Management
2.2.8 The XADC Block
2.2.9 High-Speed Serial I/O Transceivers
2.2.10 Peripheral Component Interconnect Express Interface

2.3 FPGA-Based Digital System Design Philosophy
2.3.1 How to Think While Using FPGAs
2.3.2 Advantages and Disadvantages of FPGAs

2.4 Usage Areas of FPGAs
2.5 Summary



2.6 Exercises

3   Basys3 and Arty FPGA Boards
3.1 The Basys3 Board

3.1.1 Powering the Board
3.1.2 Input/Output
3.1.3 Configuring the FPGA
3.1.4 Advanced Connectors
3.1.5 External Memory
3.1.6 Oscillator/Clock

3.2 The Arty Board
3.2.1 Powering the Board
3.2.2 Input/Output
3.2.3 Configuring the FPGA
3.2.4 Advanced Connectors
3.2.5 External Memory
3.2.6 Oscillator/Clock

3.3 Summary
3.4 Exercises

4   The Vivado Design Suite
4.1 Installation and the Welcome Screen
4.2 Creating a New Project

4.2.1 Adding a Verilog File
4.2.2 Adding a VHDL File

4.3 Synthesizing the Project
4.4 Simulating the Project

4.4.1 Adding a Verilog Testbench File
4.4.2 Adding a VHDL Testbench File

4.5 Implementing the Synthesized Project
4.6 Programming the FPGA

4.6.1 Adding the Basys3 Board Constraint File to the Project
4.6.2 Programming the FPGA on the Basys3 Board
4.6.3 Adding the Arty Board Constraint File to the Project
4.6.4 Programming the FPGA on the Arty Board

4.7 Vivado Design Suite IP Management
4.7.1 Existing IP Blocks in Vivado
4.7.2 Generating a Custom IP

4.8 Application on the Vivado Design Suite
4.9 Summary

4.10 Exercises



5   Introduction to Verilog and VHDL
5.1 Verilog Fundamentals

5.1.1 Module Representation
5.1.2 Timing and Delays in Modeling
5.1.3 Hierarchical Module Representation

5.2 Testbench Formation in Verilog
5.2.1 Structure of a Verilog Testbench File
5.2.2 Displaying Test Results

5.3 VHDL Fundamentals
5.3.1 Entity and Architecture Representations
5.3.2 Dataflow Modeling
5.3.3 Behavioral Modeling
5.3.4 Timing and Delays in Modeling
5.3.5 Hierarchical Structural Representation

5.4 Testbench Formation in VHDL
5.4.1 Structure of a VHDL Testbench File
5.4.2 Displaying Test Results

5.5 Adding an Existing IP to the Project
5.5.1 Adding an Existing IP in Verilog
5.5.2 Adding an Existing IP in VHDL

5.6 Summary
5.7 Exercises

6   Data Types and Operators
6.1 Number Representations

6.1.1 Binary Numbers
6.1.2 Octal Numbers
6.1.3 Hexadecimal Numbers

6.2 Negative Numbers
6.2.1 Signed Bit Representation
6.2.2 One’s Complement Representation
6.2.3 Two’s Complement Representation

6.3 Fixed- and Floating-Point Representations
6.3.1 Fixed-Point Representation
6.3.2 Floating-Point Representation

6.4 ASCII Code
6.5 Arithmetic Operations on Binary Numbers

6.5.1 Addition
6.5.2 Subtraction
6.5.3 Multiplication
6.5.4 Division



6.6 Data Types in Verilog
6.6.1 Net and Variable Data Types
6.6.2 Data Values
6.6.3 Naming a Net or Variable
6.6.4 Defining Constants and Parameters
6.6.5 Defining Vectors

6.7 Operators in Verilog
6.7.1 Arithmetic Operators
6.7.2 Concatenation and Replication Operators

6.8 Data Types in VHDL
6.8.1 Signal and Variable Data Types
6.8.2 Data Values
6.8.3 Naming a Signal or Variable
6.8.4 Defining Constants
6.8.5 Defining Arrays

6.9 Operators in VHDL
6.9.1 Arithmetic Operators
6.9.2 Concatenation Operator

6.10 Application on Data Types and Operators
6.11 FPGA Building Blocks Used in Data Types and Operators

6.11.1 Implementation Details of Vector Operations
6.11.2 Implementation Details of Arithmetic Operations

6.12 Summary
6.13 Exercises

7   Combinational Circuits
7.1 Basic Definitions

7.1.1 Binary Variable
7.1.2 Logic Function
7.1.3 Truth Table

7.2 Logic Gates
7.2.1 The NOT Gate
7.2.2 The OR Gate
7.2.3 The AND Gate
7.2.4 The XOR Gate

7.3 Combinational Circuit Analysis
7.3.1 Logic Function Formation between Input and Output
7.3.2 Boolean Algebra
7.3.3 Gate-Level Minimization

7.4 Combinational Circuit Implementation
7.4.1 Truth Table-Based Implementation



7.4.2 Implementing One-Input Combinational Circuits
7.4.3 Implementing Two-Input Combinational Circuits
7.4.4 Implementing Three-Input Combinational Circuits

7.5 Combinational Circuit Design
7.5.1 Analyzing the Problem to Be Solved
7.5.2 Selecting a Solution Method
7.5.3 Implementing the Solution

7.6 Sample Designs
7.6.1 Home Alarm System
7.6.2 Digital Safe System
7.6.3 Car Park Occupied Slot Counting System

7.7 Applications on Combinational Circuits
7.7.1 Implementing the Home Alarm System
7.7.2 Implementing the Digital Safe System
7.7.3 Implementing the Car Park Occupied Slot Counting System

7.8 FPGA Building Blocks Used in Combinational Circuits
7.9 Summary

7.10 Exercises

8   Combinational Circuit Blocks
8.1 Adders

8.1.1 Half Adder
8.1.2 Full Adder
8.1.3 Adders in Verilog
8.1.4 Adders in VHD

8.2 Comparators
8.2.1 Comparators in Verilog
8.2.2 Comparators in VHDL

8.3 Decoders
8.3.1 Decoders in Verilog
8.3.2 Decoders in VHDL

8.4 Encoders
8.4.1 Encoders in Verilog
8.4.2 Encoders in VHDL

8.5 Multiplexers
8.5.1 Multiplexers in Verilog
8.5.2 Multiplexers in VHDL

8.6 Parity Generators and Checkers
8.6.1 Parity Generators
8.6.2 Parity Checkers
8.6.3 Parity Generators and Checkers in Verilog



8.6.4 Parity Generators and Checkers in VHDL
8.7 Applications on Combinational Circuit Blocks

8.7.1 Improving the Calculator
8.7.2 Improving the Home Alarm System
8.7.3 Improving the Car Park Occupied Slot Counting System

8.8 FPGA Building Blocks Used in Combinational Circuit Blocks
8.9 Summary

8.10 Exercises

9   Data Storage Elements
9.1 Latches

9.1.1 SR Latch
9.1.2 D Latch
9.1.3 Latches in Verilog
9.1.4 Latches in VHDL

9.2 Flip-Flops
9.2.1 D Flip-Flop
9.2.2 JK Flip-Flop
9.2.3 T Flip-Flop
9.2.4 Flip-Flops in Verilog
9.2.5 Flip-Flops in VHDL

9.3 Register
9.4 Memory
9.5 Read-Only Memory

9.5.1 ROM in Verilog
9.5.2 ROM in VHDL
9.5.3 ROM Formation Using IP Blocks

9.6 Random Access Memory
9.7 Application on Data Storage Elements
9.8 FPGA Building Blocks Used in Data Storage Elements
9.9 Summary

9.10 Exercises

10   Sequential Circuits
10.1 Sequential Circuit Analysis

10.1.1 Definition of State
10.1.2 State and Output Equations
10.1.3 State Table
10.1.4 State Diagram
10.1.5 State Representation in Verilog
10.1.6 State Representation in VHDL



10.2 Timing in Sequential Circuits
10.2.1 Synchronous Operation
10.2.2 Asynchronous Operation

10.3 Shift Register as a Sequential Circuit
10.3.1 Shift Registers in Verilog
10.3.2 Shift Registers in VHDL
10.3.3 Multiplication and Division Using Shift Registers

10.4 Counter as a Sequential Circuit
10.4.1 Synchronous Counter
10.4.2 Asynchronous Counter
10.4.3 Counters in Verilog
10.4.4 Counters in VHDL
10.4.5 Frequency Division Using Counters

10.5 Sequential Circuit Design
10.6 Applications on Sequential Circuits

10.6.1 Improving the Home Alarm System
10.6.2 Improving the Digital Safe System
10.6.3 Improving the Car Park Occupied Slot Counting System
10.6.4 Vending Machine
10.6.5 Digital Clock

10.7 FPGA Building Blocks Used in Sequential Circuits
10.8 Summary
10.9 Exercises

11   Embedding a Soft-Core Microcontroller
11.1 Building Blocks of a Generic Microcontroller

11.1.1 Central Processing Unit
11.1.2 Arithmetic Logic Unit
11.1.3 Memory
11.1.4 Oscillator/Clock
11.1.5 General Purpose Input/Output
11.1.6 Other Blocks

11.2 Xilinx PicoBlaze Microcontroller
11.2.1 Functional Blocks of PicoBlaze
11.2.2 PicoBlaze in Verilog
11.2.3 PicoBlaze in VHDL
11.2.4 PicoBlaze Application on the Basys3 Board

11.3 Xilinx MicroBlaze Microcontroller
11.3.1 MicroBlaze as an IP Block in Vivado
11.3.2 MicroBlaze MCS Application on the Basys3 Board

11.4 Soft-Core Microcontroller Applications



11.5 FPGA Building Blocks Used in Soft-Core Microcontrollers
11.6 Summary
11.7 Exercises

12   Digital Interfacing
12.1 Universal Asynchronous Receiver/Transmitter

12.1.1 Working Principles of UART
12.1.2 UART in Verilog
12.1.3 UART in VHDL
12.1.4 UART Applications

12.2 Serial Peripheral Interface
12.2.1 Working Principles of SPI
12.2.2 SPI in Verilog
12.2.3 SPI in VHDL
12.2.4 SPI Application

12.3 Inter-Integrated Circuit
12.3.1 Working Principles of I2C
12.3.2 I2C in Verilog
12.3.3 I2C in VHDL
12.3.4 I2C Application

12.4 Video Graphics Array
12.4.1 Working Principles of VGA
12.4.2 VGA in Verilog
12.4.3 VGA in VHDL
12.4.4 VGA Application

12.5 Universal Serial Bus
12.5.1 USB-Receiving Module in Verilog
12.5.2 USB-Receiving Module in VHDL
12.5.3 USB Keyboard Application

12.6 Ethernet
12.7 FPGA Building Blocks Used in Digital Interfacing
12.8 Summary
12.9 Exercises

13   Advanced Applications
13.1 Integrated Logic Analyzer IP Core Usage
13.2 The XADC Block Usage
13.3 Adding Two Floating-Point Numbers
13.4 Calculator
13.5 Home Alarm System
13.6 Digital Safe System



13.7 Car Park Occupied Slot Counting System
13.8 Vending Machine
13.9 Digital Clock

13.10 Moving Wave via LEDs
13.11 Translator
13.12 Air Freshener Dispenser
13.13 Obstacle-Avoiding Tank
13.14 Intelligent Washing Machine
13.15 Non-Touch Paper Towel Dispenser
13.16 Traffic Lights
13.17 Car Parking Sensor System
13.18 Body Weight Scale
13.19 Intelligent Billboard
13.20 Elevator Cabin Control System
13.21 Digital Table Tennis Game
13.22 Customer Counter
13.23 Frequency Meter
13.24 Pedometer

14   What Is Next?
14.1 Vivado High-Level Synthesis Platform
14.2 Developing a Project in Vivado HLS to Generate IP
14.3 Using the Generated IP in Vivado
14.4 Summary
14.5 Exercises

References
Index



T
Preface

he world around us has become digital. Personal devices we use, houses we
live in, and cars we drive contain digital systems to simplify life for us.
Moreover, all these systems have started communicating with each other.
Since digital systems have become one of the most important tools of our
daily lives, besides engineers hobbyists have also started learning and using

them.
There are four ways to realize a digital system. The first one is using discrete

logicgates. This approach has become obsolete due to implementation issues. The
secon dway is using a microcontroller, which has very desirable properties such as
ease of programming and price. However, a microcontroller is static in terms of its
configuration. The third one is using an application-specific integrated circuit (ASIC).
For mass production, using ASICs is the solution. However, producing and testing an
ASIC chip needs time, which limits its modification after it is designed. The fourth
way is using a field-programmable gate array (FPGA). An FPGA can be configured
easily such that it can be tailored for a specific application.

Managing an FPGA and getting the best out of it are slightly harder than for a
microcontroller. However, if done appropriately the benefit will be enormous.
Therefore, this book aims to guide the reader to mastering FPGAs through digital
system design. While doing this, the main focus will be on implementation. Hence, the
reader will grasp theoretical digital design concepts via implementing real-life
applications. For this purpose, we pick two recent boards: Basys3 and Arty. Both
boards have a Xilinx Artix-7 FPGA on them. Baysy3 has most of the required
peripherals onboard. Hence, it is an excellent candidate for being used in digital design
education. Arty has Arduino-compatible pins. Since Arduino is widely accepted as a
microcontroller platform by hobbyists, it has a wide range of peripheral devices as
shields. Arty allows us to benefit from these. Moreover, the hobbyist can switch from
Arduino to Arty when a custom-made digital design is required. Throughout the book,
we will provide practical application examples mostly on the Basys3 board due to its
available resources onboard. However, these applications can be modified to work on
the Arty board as well. Besides, we will use simulation for almost all applications.
Hence, buying Basy3 or Arty is not a must to follow the book.



There are two popular hardware description languages (HDLs) used to implement a
digital system on an FPGA. These are Verilog and VHDL. Each HDL has its
advantages and disadvantages. Throughout the book, we will cover both HDLs in
parallel. This will allow readers to choose the HDL he or she likes. Note that this is not
a book on advanced Verilog or VHDL. We will focus only on important and necessary
topics. This way, we expect the beginner or hobbyist to benefit from the book.

Before diving into the fascinating world of digital systems, we would like to remind
the reader of one or two things. We did not intend to write a standard textbook for a
digital design course. Therefore, we did not cover theoretical concepts in depth.
Instead, we tried to explain all these concepts using real-life applications. This way,
we hope the reader will grasp digital design concepts better. Moreover, we do not
believe digital design is just a mandatory engineering course to be attended. It is a
talent every engineering student should gain for the job market. Besides, it is fun to
play with, as done by most hobbyists. So, let’s enjoy digital design with the FPGA
while mastering it.

Cem Ünsalan
Bora Tar
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CHAPTER 1
Introduction

he world around us has become digital. Hence, digital systems have become
the dominant part of our lives. Although most of us enjoy benefits offered by
digital systems, it is the duty of a candidate engineer to learn how to design
and analyze them. Besides, digital design concepts have become topics of
interest to a hobbyist and the maker community due to their power in

implementing systems. Therefore, we aim to introduce digital system design
techniques throughout this book.

Although there are several ways to implement a digital system, we will focus only
on implementation by field-programmable gate arrays (FPGAs) in this book. FPGA
can be taken as a generic platform such that a digital system can be implemented on it.
Recently, the price of a standard FPGA chip has become affordable. Moreover,
evaluation boards using such chips became widespread. Hence, a hobbyist or an
engineering student can implement his or her design on such a platform. The only
requirement left is how to do it. This book aims to fill this gap. Therefore, we will
guide the reader through the complex paths of FPGA usage for digital design. In doing
this, we aim for an introductory approach to form a background that may open up
ways to understand more advanced FPGA topics.

1.1 Hardware Description Languages
There are two popular hardware description languages (HDLs) to implement a digital
system design on an FPGA. These are Verilog and VHDL. In literature, it is clearly
emphasized that learning one HDL simplifies learning the other. Moreover, it is
indicated that learning both HDLs is important to become an expert in this discipline.
How-ever, most books on digital design pick either Verilog or VHDL alone and
explain the concepts using it. There is only a small group of books introducing both
HDLs together. We prefer this strategy in this book. However, we suggest the reader to



master one HDL first (possibly Verilog). Then, he or she can revisit the book to
understand the second HDL (possibly VHDL). This way, the same digital system
design concepts will be revisited twice. Hence, we expect repetition to make
perfection.

We should warn the reader at this step. This is not a comprehensive book on
Verilog or VHDL. Such a target is beyond our reach. However, we aim to introduce
digital system design techniques using HDLs. Therefore, we cover HDL concepts
falling in this area. In doing this, we provide practical applications. Afterward, the
reader can consult comprehensive books to master his or her knowledge on advanced
HDL topics.

1.2 FPGA Boards and Software Tools
Throughout the book, we will approach digital design concepts from a practical point
of view. Hence, we need appropriate hardware and software platforms. Fortunately,
there are several FPGA boards under different brands with various properties. In this
book, we pick two such boards: Basys3 and Arty. Both boards have a Xilinx Artix-7
FPGA on them. Basys3 has most digital peripherals on it. Therefore, it is suitable for
education purposes. On the other hand, Arty has Arduino compatible pins such that
Arduino shields can be used with it. Therefore, it is suitable for hobbyists and the
maker community. Throughout the book, we will provide practical application
examples mostly on the Basys3 board due to its available resources onboard. However,
these applications can be modified to work on the Arty board as well. Note that Basys3
and Arty boards have differences that are explored in detail in Chap. 3. In applications
where such differences matter, it is advisable to use the suitable board.

We will use simulation tools while explaining digital system design concepts.
There-fore, this book can also be of use without any FPGA board at hand. In the same
line, most concepts to be explained throughout the book do not depend on a specific
FPGA platform. Hence, a different FPGA platform can also be used to implement
them. However, there are some concepts that require a specific FPGA platform. For
these, minor modifications should be made by the reader for implementation. Bearing
this in mind, we should also mention the software to be used throughout the book. We
will use the Vivado design suite to implement the designed digital system on the
Xilinx Artix-7 FPGA. This design suite is supported by Xilinx. As of the writing of
this book, Vivado was available from Xilinx’s website free of charge.

1.3 Topics to Be Covered in the Book
An FPGA is itself a digital electronic system. Therefore, first we have to introduce the
basic digital electronics background. The second chapter of the book handles this.
However, digital system concepts will be explained briefly in this chapter. They will
be analyzed in detail in the following chapters. The third chapter of the book explores
properties of Basys3 and Arty boards. Here, the aim is getting familiar with physical
hardware to be used throughout the book. Related to this, the fourth chapter introduces



the Vivado design suite. Hence, the reader gets familiar with digital design
implementation issues. The first four chapters can be taken as preparatory steps for
digital system implementation. Starting from the fifth chapter, HDL concepts will be
the main focus of interest. Therefore, Chap. 5 introduces Verilog and VHDL. Then,
the sixth chapter deals with data types and operators on these. The reader should
remember these concepts since they will be extremely useful in the following chapters.
Chapters 5 and 6 can also be taken as preparatory steps for digital system
implementation on FPGA via HDL. Based on these, the seventh chapter focuses on
combinational circuits. Here, HDL will be used to implement basic combinational
circuits. The eighth chapter extends these concepts further such that more complex
digital systems can be constructed via HDL. The ninth chapter is on data storage
elements that are extensively used in constructing sequential circuits. As a follow-up,
the tenth chapter introduces sequential circuits. Here, standard sequential digital
systems such as counters and registers are evaluated. Therefore, Chaps. 7 to 10 can be
taken as the building blocks of a generic digital system such as a microcontroller. The
eleventh chapter introduces methods to embed a soft-core microcontroller on FPGA.
Chapter 12 focuses on digital interfacing tools. Here, HDL implementation details of
recent digital communication and interfacing methods are summarized. In all these
chapters, we provide relevant real-life applications. However, some applications may
cover more than one topic. Therefore, Chap. 13 provides such advanced applications
using FPGA. Finally, Chap. 14 provides the path to be followed to learn more
advanced topics on FPGA.

Sample Verilog and VHDL descriptions in this book and related testbench files are
available for the reader on a companion website,
www.mhprofessional.com/1259837904. For some real-life applications, we could not
include VHDL descriptions in the book due to page limitations. However, these are
available on the companion website, and we kindly ask the reader to download them.
Course slides for the reader and instructor and the solution manual for the instructor
are also available on this website.

http://www.mhprofessional.com/1259837904


T

CHAPTER 2
Field-Programmable Gate

Arrays

he aim of this book is explaining field-programmable gate array (FPGA)
usage for digital system implementation. Naturally, the first step in doing this
is explaining what an FPGA is. An FPGA is itself a digital system composed
of basic building blocks. Therefore, some digital logic background is
necessary to understand the FPGA architecture. To do so, we adopt the

following strategy in this book. We start with the basics of digital electronics in this
chapter. Then, we explain the architecture of an FPGA using abstract building blocks.
As we overview the FPGA architecture in this chapter, we focus on the digital system
design and implementation philosophy using the FPGA next. Finally, we summarize
the usage areas of the FPGA to motivate the reader.

2.1 A Brief Introduction to Digital Electronics
There are two main approaches in explaining digital systems. The first one starts with
digital electronic representation and ends up with it. Here, all concepts are explained in
transistor level. Although this approach is reasonable, it is not suitable for us since the
reader does not need such a detailed explanation to use an FPGA. The second
approach is not mentioning any hardware representation and explaining all concepts
using binary representation and Boolean algebra. This approach is more refined and
allows a more theoretical background. Unfortunately, it does not invoke physical
device properties for implementation. Hence, all concepts will be in abstract level. We
believe that a third approach, mixing digital device representation with abstract
formalism, may be more helpful to the reader. Therefore, we briefly introduce digital
electronics in this chapter. In the following chapters, we will not represent digital



devices this way. However, we expect the reader to recall physical representations
mentioned in this chapter.

2.1.1 Bit Values as Voltage Levels
All digital devices are based on binary representation. In other words, everything in a
digital device is represented in terms of two logic levels as zero and one. At first, this
may seem unreasonable. How is it possible to represent data processing in all complex
digital devices (including computers, tablets, smart phones, etc.) in terms of zeros and
ones? Well, this is the case. Throughout the book, we will try to convince the reader
that all complex digital systems are composed of basic building blocks working on
binary logic levels. Moreover, we will show that most parts of these devices can be
implemented on an FPGA.

Next comes the second question. How is a binary digit (or a bit, in short)
represented in a digital device? The answer to this question leads to understanding
digital logic concepts in the physical level. In its basic sense, we have two voltage
levels to represent a binary digit (either as zero or one). Let’s call these ground (zero)
and supply voltage (VCC). These correspond to binary logic levels zero and one,
respectively. Therefore, whenever we talk about a bit value as zero or one, we actually
mean a voltage level as either ground or supply voltage.

2.1.2 Transistor as a Switch
A digital circuit can be constructed by transistors. A transistor is an active circuit
element used either as an amplifier or a digital switch. The latter property is extremely
important, since all binary logic operations can be performed this way. Instead of
dealing with physical properties of a transistor, we can simplify its characteristics as
follows.

Assume that there is a digital switch controlled by voltage Vin. When there is no
voltage applied to the switch, it acts as an open circuit. In other words, the switch does
not pass current on it as in Fig. 2.1a. Based on this setup, we can say that when Vin =
0, output voltage of the circuit will be Vout = 0. When the voltage VCC is applied to
the switch, it acts as a short circuit. Therefore, the switch passes current on it as in Fig.
2.1b. Based on this setup, we can say that when Vin = VCC output voltage of the
circuit will be Vout = VCC. These two characteristics will lead to logic gates. Note that
R represents the resistor in Fig. 2.1 to limit current in the circuit.



FIGURE 2.1 Abstract representation of a transistor working as a switch.

2.1.3 Logic Gates from Switches
As mentioned in the previous section, by applying a suitable voltage level to the
switch, the current (hence output voltage) can be controlled. This leads to the
development of digital logic gates. Before exploring logic gates, let’s start with the
buffer.

2.1.3.1 The Buffer
The buffer can be taken as a logic gate which feeds its input to output without
changing it. Therefore, it does not perform any logical operation. However, the buffer
is extremely important in input/output ports of digital devices to minimize voltage
loading effects between different elements. In other words, the buffer acts as a
protective shield. We will see this usage extensively in the input/output ports of an
FPGA implementation in the following chapters. We can represent the buffer in
symbolic form as in Fig. 2.2. In this figure, in=out.

FIGURE 2.2 The buffer symbol.

2.1.3.2 The NOT Gate
The NOT gate can be constructed by a switch with two input pins as in Fig. 2.3. In this
setup, when input is equal to supply voltage (Vin = VCC) the switch connects ground to
output. Hence, output voltage will be zero (Vout = 0). When input voltage equals to
ground (Vin = 0), the switch connects supply voltage to output. Hence, Vout = VCC.

FIGURE 2.3 The NOT gate formed by a switch.

Now, let’s represent VCC as logic level one and ground as logic level zero.
Furthermore, let’s call Vin as in and Vout as out. Based on these simplifications, we
can summarize working principle of the NOT gate as follows:



As can be seen in Eq. (2.1), the NOT gate is a simple inverter in terms of binary logic.
When a logic level zero is applied to its input, output will be logic level one. When a
logic level one is applied to input of the NOT gate, output will be zero.

We can represent the NOT gate in symbolic form as in Fig. 2.4. In this figure, in
and out values are the ones in Eq. (2.1). Hence, the relation between them is satisfied
with this equation.

FIGURE 2.4 The NOT gate symbol.

2.1.3.3 The OR Gate
The OR is the next logic gate to be considered. This gate can be constructed by two
switches connected in parallel as in Fig. 2.5. In this setup, when either the first or the
second input is equal to supply voltage (Vin1 = VCC or Vin2 = VCC), output equals to
supply voltage as well (Vout = VCC). For all other cases, output voltage equals to
ground (Vout = 0).

FIGURE 2.5 The OR gate formed by two parallel switches.

As in NOT gate, we can simplify working principle of the OR gate. Let’s call Vin1
as in1, Vin2 as in2, and Vout as out. Based on these simplifications, we can summarize
working principle of the OR gate as follows:

As can be seen in Eq. (2.2), the OR gate gives logic level one when any of the parallel
switches has input logic level one. Otherwise, output of the gate will be logic level
zero.

We can represent the OR gate in symbolic form as in Fig. 2.6. In this figure, in1,
in2, and out values are the ones in Eq. (2.2). Hence, the relation between them is
satisfied with this equation.



FIGURE 2.6 The OR gate symbol.

2.1.3.4 The AND Gate
The AND is the final logic gate to be considered in this chapter. This gate can be
constructed by two switches connected in series as in Fig. 2.7. In this setup, when both
inputs are equal to supply voltage (Vin1 = VCC and Vin2 = VCC), then output equals to
supply voltage as well (Vout = VCC). For all other cases, output voltage will be equal to
ground (Vout = 0).

FIGURE 2.7 The AND gate formed by two series switches.

As in OR gate, we can simplify working principle of the AND gate. Let’s call Vin1
as in1, Vin2 as in2, and Vout as out. Based on these simplifications, we can summarize
working principle of the AND gate as follows:

As can be seen in Eq. (2.3), the AND gate gives logic level one when both serial
switches have input logic level one. Otherwise, the output of the gate will be logic
level zero.

We can represent the AND gate in symbolic form as in Fig. 2.8. In this figure, in1,
in2, and out values are the ones in Eq. (2.3). Hence, the relation between them is
satisfied with this equation.

FIGURE 2.8 The AND gate symbol.

We have introduced only basics of digital logic gates in this section. The aim is to
use these in explaining the FPGA architecture. We will analyze logic gates further in
Chap. 7.



2.2 FPGA Building Blocks
The architecture of the FPGA should be known by the reader to appreciate its working
principles. Although the reader will not directly interact with the architecture, this
knowledge will lead to better usage of the FPGA. Besides, design principles to be
applied in implementing a digital system on the FPGA will make sense. Therefore, we
will introduce basic building blocks of the FPGA (Xilinx Artix-7 XC7A35T) available
on the Basys3 and Arty boards in this section. These building blocks will be
represented in abstract form. Since we do not want to go into detail of digital
electronics, we believe this level is sufficient. We will start with layout of the Xilinx
Artix-7 XC7A35T FPGA next.

2.2.1 Layout of the Xilinx Artix-7 XC7A35T FPGA
Basys3 and Arty boards have their FPGA from the Xilinx Artix-7 XC7A35T family.
To be more specific, the FPGA on the Basys3 board is XC7A35TCPG236-1.
Similarly, the FPGA on the Arty board is XC7A35TICSG324-1L. These two FPGAs
share similar properties. Therefore, we will call them by their family name Xilinx
Artix-7 XC7A35T from this point on. If there is a difference in the FPGA, then we
specify it by the board name.

The Xilinx Artix-7 XC7A35T FPGA is basically composed of nine different
components. These are input/output blocks, configurable logic blocks (CLBs),
interconnect resources, block RAM, DSP slices, clock management block, XADC
block, high-speed serial I/O transceivers, and PCIe interface. Layout of these blocks is
as in Fig. 2.9. Most of these blocks can also be observed via Vivado design suite to be
introduced in Chap. 4. Therefore, the reader will have chance to observe which of
them are used in his or her digital system design. Mentioned blocks (or their variants)
are almost standard in an FPGA. However, some of these may be missing or other
extra blocks may be available in different FPGA families. The reader should keep this
in mind while using another FPGA family.



FIGURE 2.9 Basic building blocks of the Artix-7 XC7A35T FPGA.

2.2.2 Input/Output Blocks
A digital device interacts with the outside world through its input and output pins. This
is also the case for the FPGA. Hence, data from the outside world is acquired through
input pins. Output is fed to the outside world using output pins. Moreover, these input
and output pins are located in input/output blocks within the FPGA.

The Artix-7 XC7A35T FPGA has input/output pins which can operate on standard
voltage levels from 1.2 to 3.3 V. The FPGA on the Basys3 board has 106 such
input/output pins. In a similar manner, the FPGA on the Arty board has 210 such pins.
These input/output pins can be used as input, output, and both. In the first case, data
will be taken from outside world through the pin. In the second case, voltage levels
will be fed to outside world through the pin. In the third case, the same pin can be used
for both input and output purposes.

Input/output pins are grouped into banks. Two pins in these banks are grouped as
positive (P) and negative (N) pairs. These can be used in two modes as single-ended
and differential. In the single-ended mode, input will be recognized as logic level zero



when input voltage is near ground. It will be recognized as logic level one when input
voltage is near VCC. In the differential mode, input will be recognized as logic level
zero when the voltage at pin P is lower than the voltage at pin N. When the voltage at
pin P is higher than the voltage at pin N, then input will be taken as logic level one.

Input/output pins can also be used in reference mode. Here, input will be taken as
logic level zero when input voltage is below reference voltage. When input voltage is
above reference voltage, it will be taken as logic level one.

Single-ended pins can also be used as output. When output is at logic level one, the
corresponding voltage value at the pin will be VCC. When output is at logic level zero,
the corresponding voltage value at the pin will be ground.

Note that we are bound by input/output pins available on the Basys3 and Arty
boards. Therefore, please see Chap. 3 for the actual pin layout on these boards. For
more information on input/output blocks and their properties, please see [1].

2.2.3 Configurable Logic Blocks
Configurable logic blocks are the basic elements used to implement a digital system on
an FPGA [2]. At the heart of CLBs lies look-up tables (LUTs), flip-flops, and
multiplexers. We will try to explain working principles of these devices in generic
form. Therefore, they may not correspond to actual implementation on an FPGA. Let’s
start with the multiplexer.

2.2.3.1 Multiplexer
A multiplexer is, in fact, a selector with N select bits (pins), 2N input pins, and one
output pin. One input pin at a time is connected to output. Hence, the value at that pin
will be seen at output. Via select pins, we decide on which input pin will be connected
to output.

We can form a two input multiplexer by digital logic gates in Sec. 2.1.3. Here, the
aim is to show basic layout of a multiplexer. We provide circuit diagram of the formed
multiplexer in Fig. 2.10. Since there are two inputs in this device, it is called a two-to-
one multiplexer.

FIGURE 2.10 Circuit diagram of two-to-one multiplexer built from basic logic gates.

We can summarize working principles of the two-to-one multiplexer as follows:



The select pin (labeled as sel in Fig. 2.10) decides which input will be connected to
output.

The two-to-one multiplexer is the simplest device of its kind. Let’s consider a 32-
to-1 multiplexer. This device has five select pins to map 25 = 32 input pins. Assume
that select pins have value 10001. Then, 17th input will be connected to output.
Therefore, whatever the value of that pin is, it will be seen at output. We will explore
working principles of multiplexers in detail in Chap. 8.

2.2.3.2 Flip-Flop
Flip-flop is the basic memory element in FPGA. It can store one bit of data. Although
a flip-flop can be constructed by digital logic gates in Sec. 2.1.3, the layout will be
slightly complex. Therefore, we postpone this operation till Chap. 9. As for now, it is
important to remember that a flip-flop holds one bit of data which is fed to it. This data
will be stored in the flip-flop till it is changed by the user. Let’s represent the flip-flop
in abstract form as in Fig. 2.11. In this figure, bit value to be stored in the flip-flop is
set by in pin. The stored value in the flip-flop is obtained from out pin. Note that the
flip-flop can only save one bit as either logic level zero or one.

FIGURE 2.11 Abstract form of a flip-flop.

2.2.3.3 Look-Up Table
There is no detail on the actual implementation of a LUT in the Artix-7 XC7A35T
FPGA. Therefore, we will try to explain it using known digital devices. A LUT can be
thought of as a collection of flip-flops connected to input pins of a multiplexer. Select
pins of the multiplexer will be taken as address bits of the flip-flop to be reached. This
architecture can be used to implement any combinational logic function which has
total number of variables as select pins. We will see how this can be done in Chap. 7.
The important point here is that as the entry of flip-flops change, implemented logic
function will also change. This will lead to reconfigurability of the FPGA.



FIGURE 2.12 Abstract form of an N input LUT.

A LUT will be called N input if it has 2N entries. Therefore, it needs N select bits as
explained previously. We provide such an abstract LUT composed of flip-flops and a
multiplexer in Fig. 2.12. In the Artix-7 FPGA, two such five-input LUTs are
decoupled. Each couple can be used either to implement two five-input combinational
logic functions with the same input and different outputs or one six-input
combinational logic function. Two such six-input LUTs can be combined by another
multiplexer to form a seven-input LUT. Two such seven-input LUTs (hence four six-
input LUTs) can be combined by another multiplexer to form an eight-input LUT.
Hence, a combinational logic function with eight inputs can be formed by it.

2.2.3.4 Slices
LUTs, flip-flops, and multiplexers are grouped as slices in the CLB. Each slice has
four six-input LUTs, eight flip-flops, multiplexers, and other support circuitry. There
are two slice types as SLICEM and SLICEL. Both can be used to implement
combinational logic functions. SLICEM can also be used as a distributed memory
element. The Xilinx Artix-7 XC7A35T FPGA has a total of 5200 slices of which 3600
are SLICEL and 1600 are SLICEM. We will explore the usage of distributed memory
in a digital system in detail in Chap. 9. Each SLICEM can also be used as a 32-bit shift
register. We will explain working principles of this digital device in Chap. 10.

2.2.4 Interconnect Resources
What we mean by interconnect resources is a collection of wires and programmable
switches. These are responsible for connecting CLBs and other building blocks within
the FPGA. Interconnect is also called routing channels.

CLBs in the Artix-7 FPGA are placed in a grid structure which simplifies planning
of interconnection usage. Note that it is not necessary to know interconnect features to
use an FPGA at the beginner or intermediate level. The Vivado design suite to be
introduced in Chap. 4 is responsible for efficient use of these resources.



2.2.5 Block RAM
Different from distributed memory elements composed of SLICEM blocks within
CLBs, the Artix-7 FPGA also has block RAM modules. These can be used to store
data. Moreover, they can form buffers, large LUTs, or shift registers. Usage of these
block RAMs will become mandatory when soft-core microcontrollers are considered
in Chap. 11.

A block RAM in the Artix-7 XC7A35T FPGA can be used to store one block of 36-
kbit or two blocks of 18-kbit data. There are 50 such blocks within the FPGA.
Therefore, the total block RAM capacity for the FPGA is 50 × 36 = 1800 kbits. We
will explore the usage of block RAM in a digital system in detail in Chap. 9.

Each 36-kbit block RAM can have 64-bit data width. Moreover, extra eight bits can
be used for single-bit error correction or double-bit error detection during data read
process. We will explain how error detection can be done in Chap. 8.

2.2.6 DSP Slices
There are dedicated blocks for arithmetic and logic operations in recent FPGAs. These
are called digital signal processing (DSP) slices. In the Artix-7 FPGA, these slices are
specifically called DSP48E1. There are a total of 90 such slices in the Artix-7
XC7A35T FPGA.

Each DSP slice can perform several arithmetic and logic operations. For our
purposes, following operations are the most important ones: multiplying two binary
numbers of length 25 and 18 bits; adding, subtracting, and accumulating two 48-bit
numbers; applying logic operations on two 48-bit numbers. These operations would
require complex algorithms for implementation unless a DSP slice was not available.
Therefore, DSP slices will be very effective in implementation. Related to this, we will
see how DSP slices can be used in arithmetic operations in Chap. 6. Vivado design
suite will be responsible to add these slices to our design whenever needed. For more
information on DSP48E1, please see [3].

2.2.7 Clock Management
Clock is basically a periodic square signal such that it stays at logic level zero and one
for certain time intervals. Most digital systems need a clock signal to operate in
synchronous manner. In such a setting, logic operations are done in the rising edge
(from logic zero to one transition) or falling edge (from logic one to zero transition) of
the clock signal. Hence, period of the clock signal indicates operation speed in the
digital system. We will see clock-based operations in Chap. 10.

The Artix-7 FPGA does not have internal clock-generating circuitry. Therefore, the
user should feed a clock signal to the FPGA. Some input/output pins are capable of
receiving such clock signals. As the clock signal is fed to the FPGA, it can be
processed by the clock management tile (CMT) and distributed through the FPGA.
Basys3 and Arty boards have external clock sources to feed the FPGA. We will see
their properties in Chap. 3.



The Artix-7 FPGA is divided into regions for clocking purposes. Each region
includes most or all FPGA building blocks. There are six such clock regions in the
Artix-7 XC7A35T FPGA. The user can observe these clock regions through the
Vivado design suite. More-over, Vivado is responsible to manage clock signals in the
FPGA. For more information on clock management, please see [4].

2.2.8 The XADC Block
An analog signal can be processed by a digital system after being sampled and
quantized. Module performing these operations is called the analog-to-digital
converter (ADC). Since recent advances in digital systems require processing analog
signals, the Artix-7 FPGA has a dedicated block called XADC.

The Artix-7 XC7A35T FPGA has one XADC block which consists of two ADC
modules. Each module can acquire one million samples per second (MSPS). Each
sample can be represented by 12 bits. Hence, a sample can be represented by a binary
number in the range 0 to 212 − 1. The two ADC modules in the XADC block can
process two different analog signals simultaneously.

Since we are using Basys3 and Arty boards, we are limited by analog input pins
provided by them. Please see Chap. 3 related to this issue. Moreover, for more
information on the XADC block and how it can be used in practical applications,
please see [5–7].

2.2.9 High-Speed Serial I/O Transceivers
High-speed serial I/O transceivers (HSSIOs) are specialized circuitry to transfer and
receive serial data. These transceivers are necessary to transfer data at speeds around
gigabits per second (Gb/s). The FPGA on the Basys3 board has two such transceiver
blocks which can transfer data up to speed of 3.75 Gb/s. Unfortunately, the FPGA on
the Arty board does not have such a block. For more information on transceiver
blocks, please see [8].

2.2.10 Peripheral Component Interconnect Express Interface
Peripheral component interconnect express (PCIe) is a high-speed serial connection
bus standard. The Artix-7 XC7A35T FPGA has one integrated block for PCIe
interfacing. For more information on PCIe interfacing, please see [9].

2.3 FPGA-Based Digital System Design Philosophy
A digital system may be implemented by using different design strategies and
resources. This section deals with digital system design philosophy using FPGAs. In
other words, the aim of this section is emphasizing the usage of FPGAs in an effective
manner.

2.3.1 How to Think While Using FPGAs



The first important point to remember while using an FPGA for digital system design
is that the user is free to choose the design methodology. In other words, the same
digital system can be implemented in more than one way. Therefore, it is the
designer’s responsibility to pick the optimal or best design style for his or her needs.

The second important point to remember while using FPGAs is that in the
beginning there is no predefined block to do the job. The designer has a powerful and
unconstrained resource (within limits) to construct required design blocks. Therefore, a
strong digital logic knowledge is required to design efficient and optimized FPGA
designs. Vendors are also providing intellectual property (IP) blocks to simplify the
FPGA usage. These are valuable sources used extensively in practical applications. We
will introduce how to use them in Chap. 4.

The third important point to remember while using FPGAs is in terms of their
programming. There are hardware description languages (HDLs) for this purpose. We
will introduce two popular HDLs in Chap. 5. Although we can use the phrase
“programming an FPGA” in some parts of the book, the user should always bear in
mind that we are implementing a specific digital system. Therefore, a C like sequential
code will not be prepared in HDL. On the contrary, design philosophy should be based
on block-based digital system implementation. These blocks should be implemented in
parallel whenever possible to get the best performance from an FPGA.

The fourth important point to remember while using an FPGA is its
reconfigurability. Since an FPGA can be reconfigured after initial design has been
done, this property can be used whenever needed. Therefore, the user can benefit from
the reconfigurability property of the FPGA to improve and modify the design even
after it has been finalized and embedded on the device.

2.3.2 Advantages and Disadvantages of FPGAs
We can categorize digital system design and implementation resources into four
groups as discrete element, application-specific integrated circuit (ASIC), the FPGA,
and micro-controller based. The standard question arises. When should we use an
FPGA instead of other design options? Or, what are the advantages and disadvantages
of using the FPGA over other design options? Let’s try to answer this question by
comparing the FPGA with other design options.

A digital system can be implemented using discrete elements. This has been the
design strategy for a long time. The advantage here is that the designer only uses
needed logic gates or discrete elements. Moreover, using these does not require any
expertise besides basic logic knowledge. On the other hand, using discrete elements in
logic design is not feasible in most cases. First, physical space needed to implement
them may be limited. Second, wire connections between discrete elements may
become prohibitive in implementation. Third, the design will be static once
implemented. The FPGA provides a neat solution to these problems. Size of an FPGA
chip is fixed independent of logic elements inside it. Moreover, interconnection of
these elements is implicit in the FPGA. Therefore, wiring of logic elements is not an
issue. The most important advantage of the FPGA comes when design needs to be



reconfigured. Here, using the FPGA simplifies life for the designer. The design can be
reconfigured by altering the corresponding HDL section. The only issue here is the
need of expertise in HDL.

ASICs provide a good alternative to discrete implementation. They overcome the
space and wiring problems. When mass-produced, an ASIC chip becomes cheaper.
More-over, the ASIC chip will be specific to the design. Therefore, it will only use the
required number of digital logic elements. Note that an FPGA chip can also be taken
as ASIC. In this section, we specifically call a digital circuit as ASIC which is
designed for a specific purpose. Therefore, once designed the topology will be fixed.
This is the drawback of ASIC design. The biggest problem in using ASIC is its
fabrication time. FPGAs provide a clear advantage here. In fact, most ASIC designs
are prototyped and verified on the FPGA before mass production for this purpose.

A microcontroller can be used instead of FPGA in most cases. They share similar
characteristics such as reconfigurability, compactness, and cheapness. The first
difference between them is that the microcontroller has a unique set of commands
(instruction set) to perform an action. Therefore, the user should adjust his or her
design accordingly. This is not an issue to an FPGA user. As we have mentioned
previously, the FPGA can be taken as a free design environment within limits.
Therefore, an FPGA is more flexible compared to the microcontroller. However, we
should admit that programming a microcontroller is fairly easy compared to managing
an FPGA. The second difference between the microcontroller and FPGA is power
consumption in which the FPGA has a clear advantage. The third difference between
the microcontroller and FPGA is in the inherent parallel implementation capacity of
the FPGA. A microcontroller is a sequential device such that commands are performed
step by step. However, the FPGA can be reconfigured as a parallel device. Hence,
desired operations can be performed faster in orders of magnitude in the FPGA. Note
that a microcontroller can be implemented using an FPGA. We will introduce this
concept in Chap. 11.

2.4 Usage Areas of FPGAs
FPGAs can be used in almost all areas where digital systems are needed. To motivate
the reader and show why learning digital design using the FPGA is important, we list
possible usage areas as follows: aerospace, automotive, broadcast, consumer
electronics, defense, high-performance computing, industrial applications, medical
applications, and wireless and wired communications. These are not the only usage
areas of FPGAs. New applications may emerge in time.

2.5 Summary
An FPGA is a good alternative to implement a digital system. However, the reader
should understand what an FPGA is before using it in his or her design. This chapter
introduced key FPGA concepts for this purpose. Therefore, we started with digital
electronics and explored how basic digital logic gates can be constructed from these.



Then, we evaluated basic building blocks of an FPGA. Here, we focused on CLB since
it is the basic building block used in digital system implementation on an FPGA.
Finally, we considered the design philosophy to be followed while using an FPGA. We
believe these topics will be of great use in understanding concepts to be introduced in
the following chapters. Therefore, we suggest the reader to grasp them fully before
leaving this chapter.

2.6 Exercises
2.1   Besides the OR and AND logic gates, there are also NOR (NOT-OR) and NAND

(NOT-AND) gates. Use basic logic gate structures in Figs. 2.3, 2.5, and 2.7 to
construct them.

2.2   There is also an XOR gate used in some applications. Construct this gate using
OR and AND logic gates.

2.3   The FPGA is not the only device for digital system implementation. Make
research for similar devices developed in the past.

2.4   The Artix-7 FPGA is the family we consider in this book. However, Xilinx has
other FPGA families as well. Pick two such families and compare their
properties with the Artix-7 FPGA.

2.5   Xilinx is not the only FPGA producer in the market. Make research on other
producers.
a. Comment on market share of the FPGA developers.
b. Compare general properties of developed FPGAs by different producers, if

possible.
2.6   What is the main difference between a microcontroller and an FPGA?
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CHAPTER 3
Basys3 and Arty FPGA Boards

hroughout the book, we will use two different field-programmable gate array
(FPGA) boards: Basys3 and Arty. Both boards have the Xilinx Artix-7 FPGA
on them. Although these boards have similar characteristics, Basys3 is more
suitable for education purposes since it has several input/output connections.
On the other hand, Arty is primarily developed for soft-core microcontrollers

to be introduced in Chap. 11. Moreover, it has Arduino compatible pins. Hence,
shields available for Arduino can be used with Arty.

In this chapter, we will briefly explore the properties of Basys3 and Arty boards.
We will also analyze peripheral devices and connectors on each board besides the
FPGA. While doing this, we will not go into the details of the connection diagrams and
pin correspondence between a device (or connector) and an FPGA. Since this
correspondence will be done by the Vivado design suite (to be introduced in Chap. 4),
it is not necessary to add extra complexity at this level. Note that we have introduced
general properties of FPGAs on the Basys3 and Arty boards in Chap. 2. Explanations
in this chapter will be closely related to information given there.

3.1 The Basys3 Board
The first board to be considered in this chapter is Basys3 developed by Digilent Inc.
[10]. As mentioned previously, this board is suitable for education purposes since it
has several input/output connections. Let’s start with the board layout in Fig. 3.1. In
this figure, each important block is labeled by a number. Explanation of each label is
given in Table 3.1. Since the SPI flash, power supply regulator, and the
oscillator/clock circuitry are not visible in Fig. 3.1, they are labeled B1, B2, and B3 in
the table.



FIGURE 3.1 The Basys3 board layout.



TABLE 3.1 Explanation of Labels in Fig. 3.1

Besides the Artix-7 FPGA (label 17), blocks in Table 3.1 can be categorized into
six groups. These are powering the board, input/output, configuring the FPGA,
advanced connectors, external memory, and oscillator/clock. Next, we explain each
category in detail.

3.1.1 Powering the Board
The Basys3 board can be powered either from the USB port (label 13) or from an
external power supply which should be connected to the external power connector
(label 14). If an external power supply is used, it should be able to deliver a DC
voltage between 4.5 and 5.5 V with at least 1-A current. The power source select
jumper (label 16) can be used to select the power source to be fed to the board. Input
voltage (either from the USB or external source) is regulated by power supply



regulators (label B2). The power switch (label 15) turns on and off the board. The
power LED (label 1) indicates that the board is turned on and operating normally.
Connection diagram between all these elements can be found in [10].

3.1.2 Input/Output
There are several digital input/output connections on the Basys3 board. These can be
summarized as peripheral module (Pmod) connectors, four-digit seven-segment
display, 16 slide switches, 16 LEDs, and five push buttons. Let’s explain these in
detail.

There are three Pmod connectors (label 2) for digital input/output. Pin layout of a
Pmod connector is as in Fig. 3.2. As can be seen in this figure, there are 2 × 10 female
pins in the connector. Among these, 2 × 1 pins are for ground and 2 × 1 pins are for
VCC supply voltage. The FPGA receives and transmits digital data through the
remaining Pmod pins. There is also an analog signal Pmod connector (label 3) on the
Basys3 board. Pins in this connector are connected to analog input pins of the FPGA.
The XADC block in the FPGA (introduced in Sec. 2.2.8) receives analog signals
through these pins. Pin assignments between four Pmod connector pins and the Artix-7
FPGA on the Basys3 board can be found in [10].

FIGURE 3.2 The Basys3 board Pmod connector pin layout.

There is a four-digit seven-segment display (label 4) on the Basys3 board. Each
digit in this display is composed of seven segments arranged in a squarish 8 form.
These segments are connected in common anode form [10]. Hence, when a logic level
zero is applied to a segment, it turns on. Pin connection between seven-segment
display and the FPGA can be found in [10].

There are 16 slide switches (label 5) on the Basys3 board. These are connected to
the FPGA through series resistors. These switches can be used as input to the FPGA.
Depending on the state of a switch, it can either generate constant input of logic level
zero or one to the FPGA. Pin connection between these switches and the FPGA can be
found in [10].

There are 16 LEDs (label 6) on the Basys3 board. These are connected to the FPGA
through resistors. These LEDs can be used as output from the FPGA. When a logic
level one is applied to an LED, it turns on. When a logic level zero is applied to an
LED, it turns off. Pin connection between these 16 LEDs and the FPGA can be found
in [10].

There are five push buttons (label 7) on the Basys3 board. These can be used as



input to the FPGA. Push buttons are arranged in active high setup such that when
pressed they provide logic level one. At rest, they provide logic level zero. Pin
connection between these push buttons and the FPGA can be found in [10].

To remind again, we will use the Vivado design suite to interact with all these
input/output connections in the following chapters. Therefore, it is not mandatory to
learn which FPGA pin is connected to which Basys3 block. We expect this abstraction
to simplify design steps.

3.1.3 Configuring the FPGA
The FPGA should be configured (programmed) to operate. The configuration file will
be generated by Vivado design suite to be explained in Chap. 4. The generated file can
be fed to the FPGA in three ways. The first method is using the shared UART/JTAG
USB port (label 13). We will use this method while configuring the FPGA through
Vivado. The second method is using the SPI flash (label 18). To do so, the
configuration file should have been stored in flash beforehand. The third method is
storing the configuration file in a USB stick and using it through the USB host
connector (label 11). By the help of an auxiliary function microcontroller,
programming can be done. On Basys3, there is a PIC24FJ128 microcontroller (label
19) for this purpose [11]. The programming mode jumper (label 10) can be used to set
the FPGA programming method. More information on the second and third methods
can be found in [10]. When the FPGA is successfully configured by any of the
mentioned three methods, the programming done LED (label 8) turns on. Note that the
“programming done” signal is fed by the FPGA. The FPGA configuration reset button
(label 9) can be used to reset the FPGA configuration.

3.1.4 Advanced Connectors
There are advanced connectors on the Basys3 board. These are the USB host
connector, VGA connector, and shared UART/JTAG USB port. Let’s briefly explain
them.

The USB host connector (label 11) can be used to transfer the configuration file to
the FPGA. The connector also has USB human interface device (HID) capability.
These two properties can be performed through the PIC24FJ128 microcontroller (label
19) connected to the connector. We will use the USB HID capability to connect
keyboard and mouse to the Basys3 board in Chap. 12. More information on the usage
of the USB host connector and PIC microcontroller can be found in [10].

There is a VGA connector (label 12) on the Basys3 board. This connector allows
12-bit data transfer (four bits for red, four bits for blue, four bits for green pins) to a
VGA display device. More information on VGA can be found in [10]. We will use the
VGA connector to display an image on a monitor in Chap. 12.

The shared UART/JTAG USB port (label 13) is mainly used to configure
(program) the FPGA via Vivado. We will explore how to do this in Chap. 4. The
shared UART/JTAG USB port also has a USB-UART bridge (label 18) connected to it
[12]. Therefore, it can also be used as a UART medium to communicate the FPGA



with PC or another device. We will explore how to use this property in Chap. 12. More
information on the usage of shared UART/JTAG USB port and USB-UART bridge
can be found in [10].

3.1.5 External Memory
The Basys3 board has a 32-Mbit non-volatile serial flash (label B1) as external
memory developed by Spansion [13]. This device is connected to Artix-7 FPGA
through a dedicated SPI bus. Pin connections between the FPGA and SPI flash can be
found in [10]. The FPGA configuration files can be saved in this flash memory.
Moreover, the FPGA can be set to read these files automatically at start up. The Artix-
7 FPGA configuration file needs over 16 Mbits of memory space. Therefore, the
remaining memory space (approximately 16 Mbits) will be available to the user.

3.1.6 Oscillator/Clock
The Basys3 board has an onboard oscillator/clock circuitry (label B3) working at 100
MHz. The clock signal generated by the oscillator is fed to the Artix-7 FPGA through
its pins. Therefore, this onboard oscillator allows user to generate a required clock
(within limits) in the design.

3.2 The Arty Board
The second board to be considered in this chapter is Arty. This evaluation kit is jointly
developed by Digilent Inc and Avnet [14]. As mentioned previously, this board is
more suitable for soft-core microcontrollers to be introduced in Chap. 11. Let’s start
with the board layout given in Fig. 3.3. In this figure, each important block is labeled
by a number. Explanation of each label is given in Table 3.2. Since the oscillator/clock
circuitry is not visible in Fig. 3.3, it is labeled as B1 in the table.



TABLE 3.2 Explanation of Labels in Fig. 3.3



FIGURE 3.3 The Arty board layout.

Besides the Artix-7 FPGA (label 18), blocks in Table 3.2 can be categorized into
six groups. These are powering the board, input/output, configuring the FPGA,
advanced connectors, external memory, and oscillator/clock. Next, we explain each
category in detail.

3.2.1 Powering the Board
The Arty board can be powered in three ways as using the shared UART/JTAG USB
port (label 2), external power jack, and Arduino/chipKIT connectors (label 10).
Throughout the book, we will assume that the shared UART/JTAG USB port is used
for powering the board. For external power usage, please see [14]. The power source
select jumper (label 4) can be used to select the power source to be fed to the board.
Input voltage (either from the USB or external source) is regulated by the power
supply regulator (label 20). The power LED (label 6) indicates that the board is turned
on and operating normally. Connection diagram between all these elements can be
found in [14].

3.2.2 Input/Output



There are several digital input/output connections on the Arty board. These can be
summarized as four Pmod connectors, Arduino/chipKIT shield connector, four tricolor
LEDs, four LEDs, four slide switches, four push buttons, and chipKIT processor reset
button and jumper. Let’s explain these in detail.

There are four Pmod connectors (label 15) for digital input/output. Pin layout of a
Pmod connector is the same as in Fig. 3.2. In other words, Pmod connectors used in
Arty are the same as in Basys3. However, Pmod connectors in the Arty board are
grouped into two categories as standard (labeled as JA and JD on the board) and high
speed (labeled as JB and JC on the board). Standard Pmod connectors are connected to
the FPGA via series resistors which prevent accidental short circuit. High-speed
connectors do not have such resistors. Hence, they should be used with care. More
information on Pmod connectors can be found in [14].

Different from Basys3, Arty has Arduino/chipKIT shield connectors (label 10).
These allow user to connect available Arduino and chipKIT shields. More information
on Arduino/chipKIT shield connectors can be found in [14].

There are four tricolor LEDs (labeled as LD0–LD3 on the board) and four standard
LEDs (labeled as LD4–LD7 on the board). All of these LEDs are indicated by label 4
in Fig. 3.3. Four standard LEDs operate as the ones on Basys3 board. Each tricolor
LED is composed of three LEDs with red, green, and blue colors. Each internal LED
can be turned on as if using the standard LED. However, Digilent suggests using pulse
width modulation (PWM) signals to use tricolor LEDs. More information on standard
and tricolor LEDs on the Arty board can be found in [14].

There are four slide switches (label 8) and four push buttons (label 9) on the Arty
board. They have the same characteristics as in the Basys3 board. Therefore, we direct
the reader to previous section. More information on slide switches and push buttons on
the Arty board can be found in [14].

The chipKIT processor reset jumper (label 12) and button (label 14) are available to
be used in soft-core microcontroller designs. Specifically, they can be used to reset the
designed microcontroller. Hence, these can be of use while designing a soft-core
microcontroller in Chap. 11.

To remind again, we will use the Vivado design suite to interact with all these
input/output connections in the following chapters. Therefore, it is not mandatory to
learn which FPGA pin is connected to which Arty block. We expect this abstraction to
simplify design steps.

3.2.3 Configuring the FPGA
Configuring the FPGA on the Arty board is similar to Basys3. Therefore, we only
explain the labels in Fig. 3.3 related to the FPGA configuration. The programming
mode jumper (label 13) can be used to set the FPGA programming method. When the
FPGA is successfully configured, the “programming done” LED (label 1) turns on.
Note that the “programming done” signal is fed by the FPGA. The FPGA
configuration reset button (label 16) can be used to reset the FPGA configuration.
More information on these can be found in [14].



3.2.4 Advanced Connectors
There are advanced connectors on the Arty board. These are the shared UART/JTAG
USB port, ethernet connector, and Arduino/chipKIT compatible SPI header. Let’s
briefly explain them.

The shared UART/JTAG USB port (label 2) is mainly used to configure (program)
the FPGA. We will explore how to do this in Chap. 4. The shared UART/JTAG USB
port also has a USB-UART bridge (label 21) connected to it [12]. Therefore, it can
also be used as a UART medium to communicate the FPGA with PC or another
device. We will explore how to use this property in Chap. 12. More information on the
usage of shared UART/JTAG USB port and USB-UART bridge can be found in [14].

The Arty board has an ethernet connector (label 3) and transceiver chip (label 22)
by Texas Instruments [15]. The transceiver chip is also called physical layer (PHY).
Through the connector and transceiver, ethernet communication can be done. We will
explore how to do this in Chap. 12. More information on the ethernet connector and
transceiver chip can be found in [14].

Arty also has an Arduino/chipKIT compatible SPI header (label 11). This header
can be used in connection with Arduino/chipKIT compatible shields. More
information on the SPI header can be found in [14].

3.2.5 External Memory
Arty has two different external memory blocks. The first one is a 128-Mbit non-
volatile serial flash memory (label 17) developed by Micron [16]. This device is
connected to the Artix-7 FPGA through a dedicated SPI bus. Pin connections between
the FPGA and SPI flash can be found in [14]. The FPGA configuration files can be
saved in this flash memory. Moreover, the FPGA can be set to read these files
automatically at start-up. The Artix-7 FPGA configuration file needs over 16 Mbits of
memory space. Therefore, remaining memory space (approximately 14 MB) will be
available to the user.

The second memory block on the Arty board is a 256-MB DDR3L SDRAM (label
19) developed by Micron [17]. More information on the DDR3 SDRAM and its
connection to the Artix-7 FPGA can be found in [14].

3.2.6 Oscillator/Clock
The Arty board has an onboard oscillator/clock circuitry (label B1) working at 100
MHz. Clock signal generated by the oscillator is fed to the Artix-7 FPGA through its
pins. Therefore, this onboard oscillator allows user to generate a required clock (within
limits) in the design.

3.3 Summary
Topics introduced in this chapter are specific to the FPGA boards to be used
throughout the book. Therefore, they will be needed when a real-life application is



developed. We did not provide detailed connection diagrams in this chapter. Instead,
we directed the reader to related references. However, the reader should bear in mind
that connection between the FPGA and peripherals on the Basys3 and Arty boards will
be done via the Vivado design suite. Therefore, it is not mandatory to memorize them.
Finally, the reader can consult information in this chapter while exploring the
following chapters of the book.

3.4 Exercises
3.1   We have two boards Basys3 and Arty. Compare properties of peripherals on

these boards.
3.2   When should we choose the Basys3 board? Why?
3.3   When should we choose the Arty board? Why?



V

CHAPTER 4
The Vivado Design Suite

ivado design suite is the software environment we will be using throughout
the book. Therefore, we will explain its properties starting from installation
step. Then, we will explain how to create a new project containing either
the Verilog or VHDL description of a simple digital system. Afterward, we
will introduce tools necessary to synthesize and implement the HDL
description. While doing this, we will emphasize how the FPGA building

blocks introduced in Sec. 2.2 can be observed in Vivado. This way, we aim to show
the reader to analyze his or her HDL design in detail. Then, we will explain how to
program the FPGA on the Basys3 and Arty boards through Vivado. Finally, we will
introduce IP management methods in Vivado.

4.1 Installation and the Welcome Screen
The Vivado design suite has several editions with different properties. For our
purposes, the free HL WebPACK edition is sufficient. Installing this edition is
straightforward. However, the reader should first create a Xilinx account for this
purpose. Then, Vivado can be installed following the commands on the screen. Here,
we assume that the reader uses Vivado on a PC with the Microsoft Windows operating
system. Please consult the user guide for using Vivado design suite on other operating
systems.

As of the writing of this book, the Vivado design suite available at Xilinx’s Web
page was version 2016.3. Therefore, we will use it throughout the book. After
installation, Vivado starts as in Fig. 4.1. This screen tells us that we are ready to go.



FIGURE 4.1 Vivado welcome screen.

4.2 Creating a New Project
Let’s create our first HDL project in Vivado. We can start by clicking on ‘Create New
Project’ on the start page of Vivado as in Fig. 4.1. Skip the first welcome popup
window by clicking Next. Now, you should see a page where you can set the name and
location of your new project as in Fig. 4.2.



FIGURE 4.2 Create a new project window.

Let’s call our project as first_project. This project will be created under directory
.../Xilinx_Projects. Click Next and select “RTL Project” in the upcoming
window. Afterward, “Add Sources” window will pop-up as in Fig. 4.3. At this point,
we will not add any sources to the project. However, we should select the “Target
language” as either Verilog or VHDL at the bottom of this window. In a similar
manner, we should also set the “Simulation language” as Verilog, VHDL, or Mixed
here.



FIGURE 4.3 Add sources window.

We can skip the following two optional selection windows (Add Existing IP and
Add Constraints) as for now. The next window will be on selecting the FPGA (called
the default part) as in Fig. 4.4. The Artix-7 FPGA on the Basys3 board has full name
“XC7A35TCPG236-1”. The Artix-7 FPGA on the Arty board has full name
“XC7A35TICS G324-1L”. Depending on the application, one of these FPGAs can be
picked. Note that the selection window in Fig. 4.4 also summarizes the FPGA
properties introduced in Sec. 2.2. Click Next and the project for dedicated device will
be created.



FIGURE 4.4 FPGA selection window.

FIGURE 4.5 Vivado project main window.

Once the project is created, you should see the main window as in Fig. 4.5. On the



left-hand side of this window, there is Flow Navigator panel. Through it, the user can
control all processes related to the project. On the top of the window, the user can see
source files and their properties.

We can add a source file to the project by clicking on Flow Navigator → Project
Manager → Add Sources. Then, we should select “Add or create design sources” from
the popup menu as in Fig. 4.6a. As we click Next, a new popup window should appear
with the name “Add or Create Design Sources” as in Fig. 4.6b. Here, the user should
click on the Create File button. A small window should appear as in Fig. 4.6c. Select
the file type as Verilog (or VHDL), name the file as first_system. Choose the location
as <Local to Project>. Upcoming window asks for ports within the project. Do not
define any ports for now. Simply click OK to create your file. The generated file
should be available under Sources → Design Sources directory which can be found in
Vivado’s Project Manager window.

FIGURE 4.6 Adding a source file to the project.

4.2.1 Adding a Verilog File
Let’s pick Verilog as the working HDL at this point. Following the above steps, the
source file first_system.v should be visible in the Sources window. Open this file by
double-clicking on it. Copy the Verilog description in Listing 4.1 to the opened file.



We will explain Verilog commands in this description in the following chapters. Here,
we will only use it to explain working principles of Vivado.

Listing 4.1 Verilog Description to be Used in Explaining Vivado

4.2.2 Adding a VHDL File
We can also pick VHDL as the working HDL. For this case, the source file
first_system.vhd should have been created. As in the previous section, open this file by
double-clicking on it. Copy the VHDL description in Listing 4.2 to the opened file.
Again, we will explain VHDL commands in this description in the following chapters.

Listing 4.2 VHDL Description to be Used in Explaining Vivado



4.3 Synthesizing the Project
The first step in realizing a digital system on the FPGA is synthesizing it. This means
representing digital system’s HDL description via the FPGA elements introduced in
Sec. 2.2. In other words, this step transforms the system description from code to
physical device. Note that Vivado is responsible for this operation. Therefore,
synthesis steps are hidden to the user.

We can synthesize the HDL description added to the project by clicking on Flow
Navigator → Synthesis → Run Synthesis. During this process, we can monitor events
from the Log tab. Let’s pick the description in Listing 4.1 in this section. Once the
synthesis is finalized, a popup window will appear as in Fig. 4.7. Here, the user will
have two choices. The first option is “Run Implementation.” We will postpone it till
the next section. Instead, we will select the “Open Synthesized Design” option.

FIGURE 4.7 Synthesis completion window.

As the “Open Synthesized Design” option is selected, Vivado subwindows will be
as in Fig. 4.8. In these, the reader can observe almost all design specifications in terms
of reports under Flow Navigator → Synthesis → Synthesized Design. The designed
device can also be seen in the Design window. Here, placement of the synthesized
design on the FPGA is provided. Unfortunately, it is not easy to see the layout of the
used FPGA blocks in this window.



FIGURE 4.8 Vivado after synthesizing the project.

Although all generated project reports are important after synthesization, we will
focus on the utilization report. This report will be as in Fig. 4.9 for the synthesized
design. As can be seen in this figure, one slice and four input/output pins are used
during synthesizing the HDL. The report also indicates that the LUT in the slice is
used as a logic element.

FIGURE 4.9 Utilization report after synthesizing the project.

The reader can observe the synthesized design by selecting Flow Navigator →



Synthesis → Schematic. The result will be as in Fig. 4.10. As can be seen in this
figure, the Verilog description in Listing 4.1 is realized by two LUTs (in the same
slice) after synthesis.

FIGURE 4.10 Schematic view of the design.

FIGURE 4.11 RTL schematic view of the design.

Schematic view of the design can be observed via selecting Flow Navigator → RTL
Analysis → Elaborated Design → Schematic. The result will be as in Fig. 4.11. As can
be seen in this figure, the schematic view is given in terms of basic logic gates. To be
more specific, Verilog description of the first system in Listing 4.1 has two input ports
as in1 and in2. The system has two output ports as out1 and out2. Basic logic gates
AND, OR, NOT, and XOR are used to construct the system. Hence, schematic view
under the RTL analysis option summarizes the overall system fairly well. This may be
of great use in analyzing combinational and sequential digital systems to be introduced
in the following chapters.

4.4 Simulating the Project



Synthesizing the project results in the generated digital system from its HDL
description. To decide whether this system works as desired, we should test it. This
can be done by feeding input to the system and observing the corresponding output.
This is called simulating the system. The second step in realizing the project on the
FPGA is simulating it.

We have to create a testbench file to simulate the designed digital system.
Therefore, we should create and add a new file to the project. To do so, click on Flow
Navigator → Project Manager → Add Sources. Then, select “Add or create simulation
sources” from the popup menu as in Fig. 4.6a. As we click Next, a new popup window
should appear with the name “Add or Create Simulation Sources.” Here, the user
should click on the Create File button. A small window should appear as in Fig. 4.6c.
Select the file type as Verilog (or VHDL), name the file as first_system_tb. Choose the
location as <Local to Project>. The upcoming window asks for ports within the
project. Do not define any ports for now. Simply click OK to create your file. The
generated file should be available under Sources → Simulation Sources → Sim_1
directory which can be observed in Vivado’s Project Manager window.

Vivado only creates an empty testbench file. The user should add all input, output,
and call function declarations to test the digital system under consideration.
Unfortunately, the testbench file is composed of HDL commands to be introduced in
Chap. 5. Therefore, we will provide sample testbench files for Verilog and VHDL
descriptions next.

4.4.1 Adding a Verilog Testbench File
We will first generate the Verilog testbench file for the description in Listing 4.1. To
do so, we will benefit from the file in Listing 4.3. As a brief explanation, this testbench
file generates input patterns changing at every 100 ns. These are fed to the digital
system under test and corresponding output is obtained. We will analyze the structure
of this testbench file in detail in Sec. 5.2.

Listing 4.3 Testbench File for the Given Verilog Description





FIGURE 4.12 Setting simulation properties.

Just copy and paste all the lines in Listing 4.3 to the testbench file generated under
Vivado. Make sure that the third line in the description reads as module
first_system_tb;. In a similar manner, the module name under Unit Under Test
(UUT) section should be read as first_system in this file. Now, the designed digital
system is ready for simulation. Before that, we should set the runtime for simulation.
To do so, click on Flow Navigator → Simulation → Simulation Settings → Simulation
and change the xsim.simulate.runtime* to 490 ns as in Fig. 4.12. This runtime is
suitable to view all input and output values for this simulation. For other simulations,
the runtime should be set accordingly.

To start the simulation, click on Flow Navigator → Simulation → Run Simulation
→ Run Behavioral Simulation. When the simulation ends, Vivado opens a waveform
window in the workspace named “Untitled1.” The reader can use zoom tools on the
left-hand side and fit waveforms in the window to check all input and output
combinations in time. The simulation result should appear as in Fig. 4.13 once it fits
into the window. Note that the default background color was set as black for this
window. We had to change it to white for ease of observation. The user can check the
simulation results to observe whether the designed system acts as desired.

Behavioral simulation is not the only option in observing results. Vivado also offers
post-synthesis functional, post-synthesis timing, post-implementation functional, and
post-implementation timing simulations. The reader can pick the most suitable one for



his or her needs. We will only use behavioral simulation throughout the book.

FIGURE 4.13 Simulation results in terms of input and output waveforms in time.

FIGURE 4.14 Final simulation results in the Objects window.

The final simulation result (in the latest simulation time) can also be observed in
Vivado’s Objects window. We provide the final simulation result for the present
example in Fig. 4.14. This window will be extremely helpful in Chap. 6.

4.4.2 Adding a VHDL Testbench File
We will next generate the testbench file for the VHDL description in Listing 4.2. As in
previous section, we will benefit from the previously prepared file in Listing 4.4. We
will analyze the structure of this testbench file in detail in Sec. 5.4. Just copy and paste
all the lines in Listing 4.4 to the testbench file generated under Vivado as for now.
Afterward, follow the steps given in previous section for simulation. After simulation
ends, the same waveforms should be obtained as in Fig. 4.13.

4.5 Implementing the Synthesized Project
The third step in realizing the digital system on the FPGA is implementing it. Here, the
synthesized HDL design is prepared to be implemented to target the FPGA platform.



Besides, optimization and minimization tools are used on the synthesized design to
decrease the FPGA resource usage. Physical properties of the FPGA (such as
temperature in the device) are also taken into account at this step. We will talk about
minimization tools in Sec. 7.3.3. However, the actual optimization and minimization
tools working under Vivado are hidden to the user. Therefore, we are bound by Vivado
in these operations.

Listing 4.4 Testbench File for the Given VHDL Description



To implement the design, click on Flow Navigator → Implementation → Run
Implementation. When the implementation ends, Vivado opens a window as in Fig.
4.15. As in the synthesis step, the reader can check all related reports from the Flow
Navigator → Implementation → Implemented Design section.

Although all generated project reports are important in the Flow Navigator →
Implementation → Implemented Design section, we will focus on the utilization report



as in the synthesis step. This report will be as in Fig. 4.16. As can be seen in this
figure, the utilization report after implementation is more detailed compared to the one
obtained after synthesis step. Here, the reader can observe that one SLICEL is used in
implementation.

FIGURE 4.15 Vivado after implementing the project.

FIGURE 4.16 Utilization report after implementing the project.

4.6 Programming the FPGA
The fourth and final step in realizing the digital system on the FPGA is programming
it to the target device. This can be done by clicking Flow Navigator → Program and
Debug → Generate Bitstream. This way, Vivado translates the implemented design to
the format (in terms of a bitstream) such that it can be fed to the FPGA. The FPGA on



the Basys3 or Arty board can be programmed this way as explained in Chap. 3.
However, the project should be altered beforehand such that input and output ports can
be assigned to appropriate devices on the target board. Therefore, let’s focus on this
issue first.

4.6.1 Adding the Basys3 Board Constraint File to the Project
If we want to realize the implemented digital system on the Basys3 board, we should
assign its peripheral devices as input and output ports first. As briefly explained in Sec.
3.1, the hardware–software interface between the Basys3 board and the implemented
design can be set up by a constraint file.

The constraint file Basys3_Master.xdc for the Basys3 board can be obtained from
[18]. There, the user should download the “Master Xilinx Design Constraint (XDC)”
file under “Docs & Designs” tab. As the downloaded zip file is extracted, the Basys3_
Master.xdc should be recovered. This file has pin information about clock, switches,
LEDs, seven-segment display, buttons, Pmod headers, VGA connector, USB-RS232
interface, USB HID, and quad SPI flash on the Basys3 board.

To use the constraint file Basys3_Master.xdc, move it to your project directory.
Click on Add Sources under Project Manager and select “add or create constraint”
from the menu. Click Next. Then, click on Add Files in the opened window. Browse
and locate the constraint file added to the project folder. As this file is added to the
project, it can be seen in the Sources window under the Constraints → constrs_1
folder. Double-click on the Basys3_Master.xdc file to edit it. As can be seen, all the
lines are commented out by the # sign in the beginning. We will use switches sw[0] and
sw[1] as inputs in1 and in2 in Listing 4.1. In the same description, we will use LEDs
led[0] and led[1] as outputs out1 and out2. Therefore, uncomment these parts in the
constraint file and save it.

Since input and output ports are assigned to the Basys3 switches and LEDs, we
should also apply these changes to the description in Listing 4.1. The new description
file can be obtained by replacing in1 and in2 with sw[0] and sw[1], respectively. Also,
out1 and out2 should be replaced by led[0] and led[1]. The modified description file will
be as in Listing 4.5. Apply these changes to the source file first_system.v in the project.

4.6.2 Programming the FPGA on the Basys3 Board
Now, we have all the necessary files to realize the Verilog description in Listing 4.5 on
the FPGA of Basys3 board. To do so, synthesize and implement the HDL description
as explained in previous sections. As implementation is complete, click on Flow
Navigator → Program and Debug → Generate Bitstream. Select Open Hardware
Manager from the popup window as in Fig. 4.17 when the bitstream is generated.

Listing 4.5 Verilog Description of the First System with Switches and LEDs as Input
and Output



FIGURE 4.17 Generate bitstream completion window.



FIGURE 4.18 The Hardware Manager window after Basys3 board is automatically detected.

Hardware Manager window launches in the middle of the screen. By the way, this
window can also be opened by clicking on Flow Navigator → Program and Debug →
Hardware Manager. The title of the window appears as Hardware Manager -
unconnected. Beneath the title you will see a warning as No hardware target is open.
Open target. Click on Open target → Auto Connect after you connect the Basys3
board via USB port to the computer. Now, you should see
localhost/xilinx_tcf/Digilent/21083637269A near the Hardware Manager title. If the
Basys3 board is automatically detected, the Hardware Manager window will be as in
Fig. 4.18.

Click on the program device link beneath the title and select xc7a35t_0. The popup
window in Fig. 4.19 should appear. Click Program to program the board. As this
operation finalizes successfully, implemented HDL description should be running on
the Basys3 board.

4.6.3 Adding the Arty Board Constraint File to the Project
The project in Sec. 4.6.2 can also be realized on the Arty board. To do so, we should
first add the constraint file for this board to the project instead of Basys3 board’s
constraint file. Besides, the same Verilog description in Listing 4.5 will be used here.



FIGURE 4.19 Hardware programming window.

The constraint file for the Arty board can be downloaded from [19]. After
extracting this zip file, rename the file Arty_sw_btn_Demo.xdc as Arty_Master.xdc
for consistency.

4.6.4 Programming the FPGA on the Arty Board
We will follow the same steps in Sec. 4.6.2 to program the FPGA on the Arty board. If
everything goes as expected while generating the bitstream, then the FPGA should be
programmed correctly.

There is one minor issue due to Vivado. Sometimes, programming the FPGA can-
not be done automatically. Then, the bitstream file location in Fig. 4.19 will be empty.
The reader should manually enter this location. For the present design, the location to
be entered will be as H:/Xilinx_Projects/first_project/first_project.
runs/impl_1/first_system.bit. Project root folder is H:/ for our case. Then,
programming can be done as expected.

4.7 Vivado Design Suite IP Management
We can benefit from existing intellectual property (IP) blocks available in Vivado for
our design. We can also convert a Verilog or VHDL description to an IP block as well.
In this section, we will make a brief introduction to these topics. Then, we will
extensively use these options in the following chapters. For further information on IP
management in Vivado, please see [20–23].

4.7.1 Existing IP Blocks in Vivado
Vivado has extensive IP blocks available to be used in a project. These can be reached
from IP Catalog under Project Manager window. As we press the corresponding
button, a new window appears as in Fig. 4.20. The reader can select the desired IP
block from this list. In the following chapters, we will use these IP blocks in our
projects.



4.7.2 Generating a Custom IP
A Verilog or VHDL description can be converted to a custom IP block in Vivado. This
increases reusability of the description. Let’s take the first_system in Listing 4.1 in
our first project. We can create a custom IP from this description. To do so, we should
first select “Create and Package IP...” option under the Tools section in Vivado. A new
window appears titled as “Create and Package New IP.” As we click Next, a new
window appears as in Fig. 4.21. Here, select the “Package your current project” under
the “Packaging Options.”

FIGURE 4.20 IP Catalog window.



FIGURE 4.21 Create and Package New IP window.

The next window summarizes location of the generated IP and include options.
Here, select “Include.xci files” option. As we press next, a new window appears
summarizing the IP block generation process. Pressing Finish in this window generates
a segment as in Fig. 4.22. Within this section, the reader can make necessary
adjustments related to the generated IP. To finalize IP generation, we should select the
Review and Package option. In default settings, the generated custom IP will not be
archived for future use. Only the current project can use it. To change this option, we
should select “edit packaging settings.” In the opened project settings window, we
should select the IP tab. Then, “create archive of IP” should be checked under the
“After Packaging” part. Within the window, we can also set the archive name and
location. This information will be important while using the generated IP in another
project. As we press OK, Package IP button appears. Pressing this button generates the
IP block for the first system.



FIGURE 4.22 Package IP - first system.

Generated IP block for the first system can be seen in IP catalog under the UserIP
section as in Fig. 4.23. We will show how to use this IP block in a description in Chap.
5.

4.8 Application on the Vivado Design Suite
We will introduce an application to get familiar with Basys3 and Arty boards in this
section. Moreover, topics introduced in this application will be of use in the following
chapters. Let’s start with the Basys3 board.

In Listing 4.6, we provide the Verilog description in which LEDs and switches on
the Basys3 board are connected. Therefore, the reader can turn on/off a LED by the
corresponding switch. To run this application, generate a new project as explained in
this chapter. Include the Verilog description in Listing 4.6 to the project. Do not forget
to include the Basys3 board XDC file to the project. Within this file, enable all LED
and switch-based lines.



FIGURE 4.23 Modified IP Catalog.

Listing 4.6 Switches to LEDs Application on the Basys3 Board in Verilog

Listing 4.7 Switches to LEDs Application on the Basys3 Board in VHDL



We can also generate the same project using the VHDL description in Listing 4.7.
Again, all steps for the Verilog description should be applied to this project as well.

The same project can be implemented on the Arty board as well. To do so, modified
Verilog and VHDL descriptions are as in Listings 4.8 and 4.9. As in the Basys3 board–
based application, do not forget to add the Arty XDC file to the project.

Listing 4.8 Switches to LEDs Application on the Arty Board in Verilog

Listing 4.9 Switches to LEDs Application on the Arty Board in VHDL

4.9 Summary
Vivado is a design platform to synthesize, simulate, and implement HDL descriptions.
It can also be used to program a target FPGA. This chapter introduced Vivado such
that it can be used in realizing digital systems in the following chapters. To do so, we
started from scratch and developed a project using provided Verilog and VHDL
descriptions. At this stage, the reader may not know the structure of the description
provided. Such a strategy was necessary to coherently explain the working principles
of Vivado. We will explain how these descriptions are constructed in detail in Chap. 5.
Therefore, we kindly ask the reader to focus on Vivado usage in this chapter. The final
stage here was realizing the given description on the Basys3 or Arty board. Afterward,
we also introduced methods on IP management in Vivado. We will also analyze these
in detail in the following chapters.



4.10 Exercises
4.1   Download the latest version of Vivado HL WebPACK edition to your computer

and install it.
4.2   Create an empty project;

a. add the Verilog description in Listing 4.1 to the project.
b. synthesize and simulate the project.
c. observe simulation results.

4.3   Create an empty project;
a. add the VHDL description in Listing 4.2 to the project.
b. synthesize and simulate the project.
c. observe simulation results.

4.4   Create an empty project. Use Basys3 as the target board;
a. add the Verilog description in Listing 4.5 to the project.
b. add the constraint file for the Basys3 board to the project.
c. implement the project and generate bitstream to program the FPGA.
d. run the project on the FPGA.

4.5   Repeat Exercise 4.4 using the Arty board.
4.6   Repeat Exercise 4.4 using the VHDL description in Listing 4.10.
4.7   Repeat Exercise 4.6 using the Arty board.

Listing 4.10   VHDL Description of the First System with Switches and LEDs as Input
and Output
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CHAPTER 5
Introduction to Verilog and

VHDL

ardware description languages help us formalizing and representing a
digital system at hand. Hence, it can be implemented on a target FPGA
platform. Two popular HDLs are Verilog and VHDL. This chapter
introduces basics of both HDLs. We will explore these HDLs in detail in
representing digital systems in the following chapters. Although we
provide Verilog and VHDL in one chapter, we strongly suggest the reader

to master one HDL first, then learn the other. Throughout the book, we give
precedence to Verilog since it resembles C programming language. Therefore, we start
with Verilog fundamentals next. Then, we introduce testbench formation in Verilog.
Afterward, we handle VHDL concepts in the same order. We also consider adding an
IP block to a project.

5.1 Verilog Fundamentals
Verilog is the first HDL we will be using to describe a digital system. Therefore, we
will introduce Verilog fundamentals with basic keywords in this section.

5.1.1 Module Representation



Let’s analyze this structure in detail. First, the module should have a unique name
which should not be the same as any of the predefined Verilog keywords. In the above
description, we set the name as module_name. Second, the module should have input
and output ports assigned to it. We represent these ports as port_list in the above
description. The port list does not have a specific order. Therefore, input and output
ports can be represented in any order within the list. For convenience, we suggest
representing output ports first. At this stage, definition of the module is done. Next
comes internal structure of the module. Here, we first define port elements within the
module. Each element can be input, output, or inout. As the name implies, the input
keyword declares that the related port will get data from outside world. The output
keyword declares that the related port will feed data to outside world. The inout
keyword declares that the related port can be used for both input and output purposes.
Then, we describe the digital system. This is indicated by statement 1, statement 2,
and statement 3 above. It is important to remember that order of statements is not
important in the description since they will be represented by hardware elements in the
FPGA. Afterward, we close the module by keyword endmodule. Note that we can use
the symbol // to add a comment to the Verilog description.

To understand the module definition, let’s consider the first Verilog description in
Listing 4.1. As a reminder, circuit diagram of this digital system has been given in Fig.
4.11. As can be seen in this figure, the digital system has two input ports in1 and in2.
It also has two output ports out1 and out2. Now, let’s focus on the first part of the
description in Listing 4.1 given below.

As can be seen here, the module name for this description is first_system. The



port list is composed of out1, out2, in1, in2. Ports in1 and in2 are defined as
input in the following line. Similarly, ports out1 and out2 are defined as output in
the next line.

The following part in Listing 4.1 is the description of digital system. There are three
different methods of modeling, such as structural, dataflow, and behavioral, in
describing a digital system in Verilog. We will introduce each modeling method next.

5.1.1.1 Structural Modeling
The first method in describing a digital system is using structural modeling. In this
method, each element to be used in the description statement should have been defined
under Verilog as a structure. Since logic gates are extensively used in Verilog
descriptions, they have been defined beforehand. Therefore, this description method is
also called gate-level modeling.

Each gate is represented by the following structure in this method. First, gate type is
defined by the corresponding Verilog keyword. Then, a name for the gate is assigned.
Note that name assignment is not mandatory. Finally, output and input ports for the
gate are defined within parenthesis. Therefore, the structural model of a logic gate will
be as gate_keyword name (port_list). The port list should be such that output of the
structure is defined first.

Let’s describe the digital system in Listing 4.1 using structural modeling. The
reader can also consult Fig. 4.11 for this purpose. As can be seen in this figure, four
gates are used in this system as AND, OR, NOT, and XOR. Corresponding Verilog
keywords for these are and, or, not, and xor, respectively. Let’s give a name to each
logic gate to be used in the description as gate_and, gate_or, gate_not, and
gate_xor, respectively. Using these, we can construct the structural model. There is
one issue to be solved in describing the digital system. Inputs of the XOR gate are
output of the AND and OR gates. We should define variables using the Verilog
keyword wire to make this connection. In fact, the user can remember this easily as if
we are adding a wire between logic gates. Based on these, we can form the structural
model of the digital system as in Listing 5.1. As can be seen in this description, the
first system is defined using only predefined logic elements. To emphasize again, these
elements can be defined in any order in Listing 5.1.

Listing 5.1 Structural Model of the First System in Verilog



5.1.1.2 Dataflow Modeling
The second method in describing a digital system in Verilog is using dataflow
modeling. In this method, the relation between input and output ports is formed as a
function. Therefore, this description method is also called functional modeling.

The main keyword in dataflow modeling is assign. The syntax here is assign
output = function of inputs. Output in this representation must always be a scalar
or vector. Here, the function may be formed by logic gate representations. As in
structural modeling, we will only consider logic gates AND, OR, NOT, and XOR here.
Corresponding operators to be used in dataflow modeling are {& , |, ∼, ˆ } respectively.

In fact, the digital system in Listing 4.1 has been described by dataflow modeling
such that we represented each logic gate input and output as a function. Then, we
formed dataflow model of the digital system as in Listing 5.2. As in structural
modeling, we used the wire keyword in this description to connect input and output of
logic gates.

Dataflow modeling allows merging functions, which leads to a more compact
representation. Let’s reconsider the description in Listing 5.2. We provide the merged
form of this description in Listing 5.3. As can be seen here, output out1 is defined in
one merged line. Therefore, wire definitions are discarded from the description.

Listing 5.2 Dataflow Model of the First System in Verilog



Listing 5.3 Dataflow Model of the First System in Merged Form

5.1.1.3 Behavioral Modeling
The third method in describing a digital system in Verilog is using behavioral
modeling. In this method, digital system at hand is represented by its behavior. In other
words, Verilog keywords corresponding to conditional and recursive statements can be
used within the model.

In behavioral modeling, statement (or statements) to be executed should be
triggered by a signal (or signals) to operate. The keyword always is used to indicate
this triggering operation. Once the signal changes its state, the statement is executed. If
there is more than one statement to be executed, then they should be encapsulated by
begin and end keywords. Hence, syntax for this representation becomes as follows:



Here, sensitivity_list stands for triggering signal(s). The sensitivity list can be
formed of signals separated by comma or combined by or keyword. If the behavioral
description is to be executed for any input changes, then * sign can be used instead of
the sensitivity list. Here, whenever one of the signals in the sensitivity list changes its
state, the behavioral description is executed. Again, order of statements is not
important in behavioral modeling.

One other important Verilog keyword for behavioral modeling is initial. Via this
keyword, an initial block can be formed which is executed at time zero. Syntax of the
initial block is as follows:

Let’s describe the digital system in Listing 4.1 using behavioral modeling. Behavior
of the system will change when the first or second input changes. Therefore, at the
beginning of the always block, the sensitivity list will consist of inputs in1 and in2.
We can represent the relation between input and output of the system as in dataflow
modeling. However, the assign keyword will not be used in behavioral modeling.
Since there is more than one statement to be executed, they are encapsulated within
begin and end keywords. As a result, behavioral model of the first system will be as in
Listing 5.4.

Listing 5.4 Behavioral Model of the First System in Verilog



We should take a closer look at the description in Listing 5.4. The always keyword
executes the beneath description block (encapsulated by begin and end keywords)
whenever in1 or in2 changes. If there is no change in these variables, output will not
be provided by the system. Therefore, we have to save previous output values. This
can be done by the Verilog keyword reg. We used this keyword to keep the previous
value of out1 and out2 in Listing 5.4. We also initialized these variables to logic level
zero using the initial keyword.

There are two assignment types in behavioral modeling. These are called blocking
and nonblocking. Statements having blocking assignment are executed one by one in
sequential order. Therefore, as the name implies, each assignment blocks the execution
of the next in hierarchy. Operator for the blocking assignment is =. Statements having
non-blocking assignment are executed concurrently. Therefore, they don’t block each
other. Operator for the nonblocking assignment is <=.

Let’s consider a simple example for blocking and nonblocking assignments.
Assume that there is a Verilog module with output array y having six elements. Input
of the module is represented by x. Within the always block, let’s describe assignments
as follows:



Here, the first three assignments are of blocking type. Next three assignments are of
nonblocking type. When input x becomes logic level one, blocking assignments result
as y[0]=1, y[1]=1, and y[2]=1. In other words, input first affects output y[0]. Then,
outputs affect each other in sequential order. On the other hand, nonblocking
assignments will be as y[3]=1, y[4]=0, and y[5]=0. Hence, input only affects the first
out-put y[3]. Remaining outputs do not change their initial value. This is because of
the concurrent operation such that all output values are assigned at once. Hence, the
new value of output y[3] could not affect remaining outputs.

We provide the complete Verilog description of the above example in Listing 5.5.
Final simulation results for this description will be as in Fig. 5.1. Blocking and
nonblocking assignment results are clearly seen in this figure.

FIGURE 5.1 Simulation results for blocking and nonblocking assignments.

It is strongly suggested in literature that blocking assignments should be used in
combinational circuits. Nonblocking assignments should be used in sequential circuits.
Hence, Verilog descriptions till Chap. 9 will only use blocking assignments in
behavioral models. Starting from Chap. 9, nonblocking assignments will be used in
behavioral models. There is also a good reference by Cummins [24] on the usage of
blocking and nonblocking assignments in Verilog. We strongly suggest the reader to



check this reference for in-depth understanding of this concept.

5.1.2 Timing and Delays in Modeling
Vivado allows adding simulation timings in Verilog descriptions. Moreover, if a blank
Verilog file is to be opened, Vivado adds the first line automatically as ’timescale
1ns / 1ps. These are the default timing values such that the first one(1ns) indicates
the reference time unit. Whenever a time value is added to the Verilog description, it
will be in the order of one nanosecond. The second timing value (1ps) indicates the
smallest precision that can be achieved. Hence, the default smallest precision in
simulation is one picosecond. Again, these values will be of use during simulation.
They will have no effect in the actual FPGA realization step.

Listing 5.5 An Example on Blocking and Nonblocking Assignments

Up to this point, we did not take physical characteristics of logic gates into account
in simulation. In other words, we assumed all delay times to be zero within logic gates.
If the user wants to obtain accurate results (especially in timing diagrams) of the
implemented digital system, then delay values should be added to the Verilog
description. These can be done in connection with the reference time unit.

There are three delay types that can be added to a digital device in Verilog. These
are rise delay, fall delay, and turn-off delay. The rise delay indicates the transition time
needed from any logic value to logic level one. The fall delay indicates the transition
time needed from any logic value to logic level zero. The turn-off delay indicates the
transition time needed from any logic value to high impedance. Next, we provide an
example on the usage of these delay times in structural modeling.



In the first line, the delay value is specified as #(5). This indicates that all delay values
are five time units. If the default reference time is used, this corresponds to 5 ns. In the
second line, two delay values are specified as #(3, 4). Here, the rise delay is taken as
three time units. The fall delay is taken as four time units. The turn-off delay is taken
as the minimum of these two values. Hence, it becomes three time units. In terms of
the default reference time, these values become 3 ns, 4 ns, and 3 ns, respectively. In
the third line, three delay values are specified as #(3, 4, 5). Here, the rise delay is
taken as three time units. The fall delay is taken as four time units. The turn-off delay
is taken as five time units. Again, in terms of the reference time, these values will be as
3 ns, 4 ns, and 5 ns, respectively.

We can also apply delay values in dataflow modeling. Such an example is assign
#10 and_out = in1 & in2. Here, #10 indicates that the assignment will be performed
by a 10-time-unit delay. This will correspond to 10-ns delay with respect to the default
reference time.

Let’s apply delay to the dataflow model of the first system in Listing 5.3. Delay is
applied such that out2 is calculated with a 20 time-unit lag. We provide the modified
description in Listing 5.6.

We can simulate the Verilog description in Listing 5.6 using methods in Sec. 4.4.
Obtained simulation result will be as in Fig. 5.2. As can be seen in this figure, the
second output (out2) has a 20-ns delay.

FIGURE 5.2 Simulation results after adding a delay of 20 ns to the second output.

Listing 5.6 Verilog Description of the First System After Adding a Delay



5.1.3 Hierarchical Module Representation
Projects we have considered up to this point contain only one module. In larger
projects, the number of modules may be more than one. In this section, we will show
how a project with more than one module can be handled.

Let’s reconsider dataflow model of the first system in Listing 5.2. We can represent
the same description as a combination of three modules such that AND and OR gates
are described in different modules. Let’s call these as and_module and or_module,
respectively. These should be formed as valid modules with their input/output ports
and descriptions. We should instantiate the and_module and or_module in the top
module first_system. This can be done as if structural modeling is used. In other
words, the and_module should be represented within the first_system module as
and_module instantiation_name (port_list).

There are two options in forming port list correspondence between module to be
instantiated and the top module using it. The first one is using locations. Here, the port
list order in the top module and instantiation should be the same. The second method
in forming the port list correspondence is using the declaration .sub_module_name
(top_module_name). Here, port in the module to be instantiated is declared as
sub_module_name. The corresponding port in the top module is declared as (top_
module_name). This operation should be done for all input/output ports. We will use
both declarations throughout the book, although the second one should be picked
whenever possible.

Based on the first port list declaration, hierarchical representation of the first system
will be as in Listing 5.7. Here, instantiation name for the and_module and or_module is
U1 and U2, respectively.

Schematic view of the modular design (under the RTL analysis option) in Listing
5.7 will be as in Fig. 5.3a. As can be seen in this figure, the and_module and
or_module are represented as black boxes. As the “+” sign is pressed on these boxes,
the RTL representation will be as in Fig. 5.3b. In this figure, black boxes are



represented by the actual description of each module. Therefore, it becomes easy to
analyze the overall description.

FIGURE 5.3 RTL schematic view of the first system in hierarchical module representation.

Vivado allows hierarchical module representation to be composed of more than one
source file. Therefore, larger projects can be composed of smaller source files merged
in Vivado. We can show how this method works as follows. Let’s reconsider modular
description of the first system in Listing 5.7. This file can be partitioned into two parts



such that the first one holds the top module (first_system). The second one holds
and_module and or_module. We can represent these two source files as in Listings 5.8
and 5.9. These two should be added to the project as source files. Then, Vivado merges
them and forms the final description.

Listing 5.7 Verilog Description of the First System in Hierarchical Module
Representation

5.2 Testbench Formation in Verilog
Characteristics of a digital system can be analyzed in Vivado by using a testbench.
Here, we will explain the structure of a testbench file, taking the one in Listing 4.3 as
an example. Note that we provide the testbench file for each Verilog description
considered in this book on a companion website,
www.mhprofessional.com/1259837904. Therefore, we strongly suggest that the reader

http://www.mhprofessional.com/1259837904


visit this website. Finally, more information on Verilog testbench formation can be
found in [25].

5.2.1 Structure of a Verilog Testbench File
A Verilog testbench file is composed of five parts as follows:

• Testbench module declaration
• Input/output port declaration
• Instantiation of the unit under test (UUT)
• Providing input to the UUT
• Displaying test results

Let’s explain these parts taking the testbench file in Listing 4.3 as an example.
The testbench is itself a Verilog module. Therefore, it needs valid module and

input/output port declarations. This is the first step in testbench formation. These
declarations are done as follows in Listing 4.3.

Listing 5.8 Verilog Description of the First System-the Top Module

Listing 5.9 Verilog Description of the First System–the Supplement File



Here, first the simulation timing value is declared by the timescale keyword. Then,
the testbench module is declared as module first_system_tb. We specifically
assigned such a name to the testbench module to associate it with the top module to be
tested. The reader is free to choose any valid name here. Next, input and output ports
of the test-bench module are declared as reg in1t, in2t and wire out1t, out2t.
Again, the reader can pick any valid name for each input or output port in the
testbench module.

The second step in testbench formation is associating the module to be tested (unit
under test) with the testbench module. This is done by instantiation. The related part in
Listing 4.3 is as follows:

Here, as in hierarchical module declaration, the module to be tested (for our case
first_ system) is instantiated in the testbench module with the name UUT. Then, each
port in the testbench module and the module to be tested are associated (or connected)
such as .out1(out1t). Here, the port in the module to be tested is declared as .out1.
The corresponding port in the testbench module is declared as (out1t). This operation
is done for all input/output ports.

The third step in testbench formation is providing input to the UUT. The related
part in Listing 4.3 is as follows:



Here, testbench input ports (in1t and in2t) are initialized first. Then, a delay of 100
ns is added by the command #100. This delay is added such that the module to be
tested is reset properly. Otherwise, some undesired effects may occur during
simulation. Next, input values are fed to the UUT. In Listing 4.3, this is done in two
lines as follows. The first line contains the command repeat (4). This indicates that
the following line will be repeated four times. The second line contains the command
#100 { in1t,in2t } = { in1t,in2t } + 1’b1. This indicates that inputs will be
incremented one by one sweeping the pattern 00, 01, 10, and 11. Transition between
each input combination is done after a 100-ns delay. We will explain Verilog data
formats in these lines in Chap. 6.

We can import input test signals from an existing text file. The testbench file in
Listing 4.3 should be modified as in Listing 5.10 for this purpose. Here, a text file is
opened by the attribute initial $readmemb. File entries are saved in ROM.
Afterward, file entries are read and processed line by line from ROM. We will provide
more information on this issue in Sec. 9.5.

5.2.2 Displaying Test Results
The testbench module is constructed following steps in previous section. The reader
has two options to observe simulation results in Vivado. The first one is through
input/output waveforms as explained in Sec. 4.4. This is a valid option and can be used
in most tests.

The second option in observing output of the test is adding specific display
commands such that output can be observed through Vivado’s Tcl console. The related
optional part in Listing 4.3 is as follows:

Here, the display function prints the string fed to it. The monitor function prints



variables fed to it. The first part of this function handles formatting. Hence, \ t%b
stands for “add tab and represent the value in binary form.” The corresponding
variable to be displayed is provided in the second part of the function as in1t. All
input and output ports are tabulated this way. Therefore, whenever a change in input
occurs, it is displayed on Vivado’s Tcl console. The console output will be as in Fig.
5.4 for the testbench in Listing 4.3.

FIGURE 5.4 Simulation results observed in Vivado’s Tcl console.

Listing 5.10 The Testbench File Reading Input Signals from a Text File



5.3 VHDL Fundamentals
VHDL is the second HDL we will be using to describe a digital system. Therefore, we
will introduce VHDL fundamentals in this section. As in Verilog, we will introduce
the remaining VHDL keywords in connection with related digital design concepts in
the following chapters.



5.3.1 Entity and Architecture Representations
A digital system should be declared in two parts in VHDL. The first part includes the
entity declaration which defines input and output characteristics of the system to be
implemented. The structure of the entity part will be as follows:

Here, system_name is the name assigned to the system to be described. The keyword
port defines actual ports of the device. Each port entry will have a unique name
indicated by port_name. A port_mode can be in, out, or inout. As the name implies,
the in keyword declares that the related port will get data from outside world. The out
keyword declares that the related port will feed data to outside world. The inout
keyword declares that the related port can be used for both input and output purposes.
VHDL requires variable and port types to be used in entity declaration to be strongly
defined. Therefore, port_type should be declared within library_elements included
to the design by library and use keywords.

Second part of digital system declaration defines its architecture. This is done as
follows:

Here, the user should give a specific name to architecture of the digital system as
architecture_name. The system_name defined in the entity part should also be used
in architecture definition. Then, variable, signal, constant, and component
declarations should be made. The first three of these are related to data definitions and
assignments within the design. These should have valid types defined in the included
library_elements in the entity declaration. The component declaration allows
hierarchical structural representation definition to be considered in detail in Sec. 5.3.5.



Finally, system description is done within the architecture part. This is indicated by
statement 1, statement 2, and statement 3 above. It is important to remember that
the order of statements is not important in the description since they will be
represented by hardware elements in an FPGA. Note that we can use the symbol -- to
add comment to the VHDL description.

Next, we will consider the entity and architecture parts on an example. Therefore,
let’s revisit the VHDL description in Listing 4.2. The entity part of this declaration is
as follows:

Here, the system has two input ports as in1 and in2. It also has two outputs as out1
and out2. We deliberately set the names of input and output ports as in the Verilog
description in Listing 4.1. Hence, the reader can form a correspondence between them
easily. In Listing 4.2, the library used in operation is picked as ieee. Within this
library, all types defined under the ieee.std_logic_1164 subset are imported. This
allows using the std_logic type which can represent binary values such as logic level
zero and one. We will evaluate this operation in detail in Chap. 6. As for now, please
accept the provided representation as it is.

The only remaining part in the above VHDL description is representation of the
digital system. In this book, we will only consider dataflow and behavioral models in
VHDL. Note that some definitions in these models may overlap. We will introduce
each modeling method next.

5.3.2 Dataflow Modeling
The first method to be considered in describing a digital system in VHDL is using
dataflow modeling. In this method, the relation between input and output ports is
formed by a function as in Verilog. Syntax in this function representation is output <=
function of inputs.

The digital system described in Listing 4.2 has been formed in terms of dataflow
modeling. There, we named the architecture as dataflow_model. The system name
defined in the entity declaration has also been used in the architecture definition as
first_system. We used logic gates AND, OR, NOT, and XOR within the architecture
declaration. Corresponding VHDL keywords for these are and, or, not, xor,
respectively. For completeness, let’s provide the dataflow model of this system in
Listing 5.11.



Listing 5.11 Dataflow Model of the First System in VHDL

5.3.3 Behavioral Modeling
The second method in describing a digital system in VHDL is using behavioral
modeling. As in Verilog, the digital system at hand is represented by its behavior in
this method. In other words, VHDL keywords corresponding to conditional and
recursive statements can be used within this model.

In behavioral modeling, statement(s) to be executed should be triggered by a signal
(or signals) to operate. The keyword process is used to indicate this triggering
operation. Once the signal changes its state, the statement(s) is executed. Syntax for
this representation becomes as follows:

Here, the sensitivity_list stands for the triggering signal(s). In VHDL, the
sensitivity list can be formed of signals separated by comma only. Whenever one of
the signals in the sensitivity list changes its state, the behavioral description is
executed. The process may have its own declarations which can be placed before the
begin keyword. Then, the behavioral model is encapsulated by begin and end
process keywords. To note again, the order of statements is not important in
behavioral modeling.

Let’s describe the digital system in Listing 4.2 using behavioral modeling. Behavior



of the system will change when the first or second input changes its value. Therefore,
the sensitivity list for the process will consist of inputs in1 and in2. We can represent
the relation between inputs and outputs of the system similar to dataflow modeling. As
a result, the behavioral model of the first system will be as in Listing 5.12. Here,
architecture of the digital system is named as behavioral_model.

Dataflow and behavioral models share similar structures in VHDL. Their main
difference is the process keyword used in dataflow modeling. Therefore, we will
provide either the dataflow or behavioral model from this point based on its
appropriateness in describing the digital system at hand.

Listing 5.12 Behavioral Model of the First System in VHDL

5.3.4 Timing and Delays in Modeling
As in Verilog, we can add delay times to descriptions in VHDL. This leads to precise
simulation results especially in timing diagrams. Again, these values will be of use
during simulation. They will have no effect in the actual FPGA realization step.

Different from Verilog, delay times can be added to a VHDL description using the
keyword after. Let’s assume that we want to add a 20-ns delay to the second output
(out2) in Listing 4.2. The modified description line will be out2 <= not in1 after
20 ns. As this modification is done and simulation of the description is run, the same
waveform in Fig. 5.2 should be observed.

5.3.5 Hierarchical Structural Representation
VHDL allows structural hierarchical representation for large projects. As in Verilog,
the idea here is decomposing the project into subparts. Hence, it becomes manageable.



Let’s reconsider dataflow model of the first system in Listing 5.11. As in Sec. 5.1.6,
we can represent this description as a combination of three parts such that the AND
and OR gates are represented separately. Let’s call these as and_module and
or_module, respectively. These should be formed with their valid entity and
architecture descriptions. Then, we should instantiate the and_module and or_module
in the top (main) module first_system. This can be done by using component
declarations.

The component declaration should be made in architecture part of the top module
with the following structure:

This definition should be made at the beginning of the architecture part. Then,
instantiation can be done by using the below structure:

There are two options in forming the port list correspondence. The first one is using
locations. Here, the port list order in the main entity declaration and instantiation
should be the same. Although this is a valid option, it may cause problems in
implementation if the port order is not followed correctly. The second method in
forming the port list correspondence is using the declaration component_port_name =>
main_port_name. Here, a correspondence is formed between each port in the
component and main entity declarations. Based on these, hierarchical structural
representation of the first system will be as in Listing 5.13. Here, the instantiation
name for the and_module and or_ module are U1 and U2, respectively. Schematic view
of this hierarchical representation (under the RTL analysis option) will be as in Fig.
5.3. Properties of this figure explained beforehand are also valid here.

Vivado allows hierarchical structural representation to be composed of more than
one source file. Therefore, larger projects can be composed of smaller source files
merged in Vivado. We can show how this method works as follows. Let’s reconsider
modular description of the first system in Listing 5.13. This file can be partitioned into
two parts such that the first one holds the top module (first_system); the second one
holds the and_module and or_module. We can represent these two files as in Listings
5.14 and 5.15. These two should be added to the project as source files. Then, Vivado
merges them and forms the final description.

The supplement file in Listing 5.15 can be represented as a library in VHDL. This
can be done by the keyword package. Afterward, the library can be called in the main
file by the library and use keywords. For more detail on this issue, please see [26].

There are two more methods which can be used in hierarchical structural
representation. These are function and procedure methods. For more information on
these methods, please see [27].



5.4 Testbench Formation in VHDL
A VHDL description can be analyzed via its testbench in Vivado. Therefore, we will
explore the structure of a testbench file, taking the one in Listing 4.4 as an example.
We provide the testbench file for each VHDL description (as in Verilog) considered in
this book on the companion website www.mhprofessional.com/1259837904.
Therefore, we strongly suggest that the reader visit it. Finally, more information on
VHDL testbench formation can be found in [25].

5.4.1 Structure of a VHDL Testbench File
A VHDL testbench file is composed of five parts as follows:

• Testbench entity and architecture declarations
• Input/output port declaration
• Instantiation of the unit under test (UUT)
• Providing input to the UUT
• Displaying test results

Listing 5.13 VHDL Description of the First System in Hierarchical Structural
Representation

http://www.mhprofessional.com/1259837904




Listing 5.14 VHDL Description of the First System–the Top Module

These parts are almost the same as in Sec. 5.2. Let’s explain them taking the testbench
file in Listing 4.4 as an example.

The testbench is itself a VHDL description. Therefore, it needs valid entity and
architecture declarations. This is the first step in testbench formation. These
declarations are done as follows in Listing 4.4:



Listing 5.15 VHDL Description of the First System-the Supplement File

Here, the testbench is declared as first_system_tb. We specifically assigned such a
name to associate it with the architecture to be tested. The reader is free to choose any
valid VHDL name here. Entity declaration of the testbench is empty since it will not
get any input or feed output. Signals to be used within the testbench file are declared
next. These are in1t, in2t, out1t, and out2t. Note that these signals are initialized
while being declared. More information on this operation can be found in Chap. 6.



The second step in testbench formation is associating the description to be tested
(unit under test) with the testbench module. This is done by instantiation. The related
part in Listing 4.4 is as follows:

Here, as in hierarchical structural representation, unit to be tested (for our case
first_system) is instantiated in testbench with the name UUT. Then, each port in the
testbench and the unit to be tested are associated (or connected) such as in1 => in1t.
Here, the port in unit to be tested is declared as in1. The corresponding port in the
testbench is declared as in1t. This is done for all input/output ports.

The third step in testbench formation is providing input to the UUT. The related
part in Listing 4.4 is as follows:

Here, testbench input ports (in1t and in2t) are set to zero first. Then, a delay of 100
ns is applied by the command line wait for 100 ns. This delay is added such that the
description to be tested is reset properly. Otherwise, some undesired effects may occur
during simulation. Afterward, different input combinations are fed to UUT. Transition
between each input combination is done after a 100-ns delay. We will explain VHDL
data formats in these lines in detail in Chap. 6.

VHDL allows receiving input signals from an existing text file. The testbench file



in Listing 4.4 should be modified as in Listing 5.16 for this purpose. Here, a text file is
opened by file file_input: text open read_mode is. Afterward, file entries are
read line by line.

5.4.2 Displaying Test Results
The testbench in VHDL is constructed using steps in the previous section. The reader
can observe simulation results through input/output waveforms as explained in Sec.
4.4. Waveforms for the testbench in Listing 4.4 will be as in Fig. 4.13.

Similar to Verilog, VHDL provides an explicit method to display results on
Vivado’s Tcl console. The related optional part in Listing 4.4 will be as follows:

Here, the report attribute prints the string fed to it. The std_logic’image function
prints the variable (in standard logic form) fed to it.

VHDL also allows writing simulation results to a text file. The testbench file in
Listing 4.4 should be modified as in Listing 5.17 for this purpose. Operations here are
similar to the ones in reading input data from a text file.

5.5 Adding an Existing IP to the Project
We can add an existing IP block to the project. The beauty of using IP blocks is that
the HDL used for generating the IP is not important. In other words, we can use an IP
generated by VHDL in a Verilog project or vice versa. Therefore, this option allows us
merging Verilog and VHDL descriptions in the same project. Let’s analyze how this
can be done next.

5.5.1 Adding an Existing IP in Verilog
Let’s start with the custom-generated IP block in Sec. 4.7. There, we have generated



the IP block for the first system in Verilog. Now, let’s add this IP to a new project. The
first step here is adding the previously generated custom IP to IP catalog of the current
project. To do so, we should first locate the custom IP files. Then, we should select the
Interfaces tab in the IP Catalog. We should press the IP settings button (the last one)
there. In the opened window, we should select the Repository_Manager in the IP tab.
Here, we should add the IP repository by pressing the green + sign. Here, we should
use location of the custom IP to be added. Then, the window should look like as in Fig.
5.5.

FIGURE 5.5 Adding a custom IP to the repository.

After adding the custom IP to the repository, it will be available in the IP catalog as
in Fig. 4.23. To add it to the project, we should double click on it. A new window
appears as in Fig. 5.6. Here, the first system is actually shown as a black box with
input and output ports. As the OK button is pressed in Fig. 5.6, a new window appears
summarizing which files will be generated. Here, we should select the “Synthesis
Option” as “out of context per IP.” As we press the Generate button in this window,
the IP block will be added to the project.



FIGURE 5.6 IP block representation of the first system.

We can observe the included files to the project from the sources → IP sources
section as in Fig. 5.7. Here, there are two files of interest under the Instantiation
Template section. These are first_system_0.vho and first_system_0.veo. These
are instantiation blocks to be used in the top module. The first file is for use in a
Verilog description. The second file is for use in a VHDL description.

FIGURE 5.7 IP block representation in the IP sources section.

The important step here is adding the IP to the top module of the project by
instantiating it. Assume that we have generated a top module in Verilog and added it to
the project. Then, we can add the instantiation template to the top module as in Listing



5.18.
The RTL schematic of this description will be as in Fig. 5.8. As can be seen in this

figure, the IP block is represented by a black box in the RTL schematic.

FIGURE 5.8 RTL schematic of the top module after adding the IP block.

Listing 5.16 The Testbench File Reading Input Signals from a Text File





Listing 5.17 The Testbench File Reading Input Signals from a Text File and Writing
Simulation Results to Another Text File





Listing 5.18 Adding the IP Block of the First System to the Top Module in Verilog

Listing 5.19 Adding the IP Block of the First System to the Top Module in VHDL



5.5.2 Adding an Existing IP in VHDL
Next, we add the IP block of the first system to a VHDL description. We will follow
the same steps as in the previous section. The new top module in VHDL will be as in
Listing 5.19. As can be seen here, the IP block generated in Verilog can be directly
used in the VHDL description.

5.6 Summary
Verilog and VHDL are the HDLs to be used throughout the book. We explored the
fundamental properties of both HDLs through examples in this chapter. Basically, we
explored the module representation in Verilog. Then, we introduced three modeling
methods related to it. Afterward, we considered the effect of timing and delays in
modeling. We also considered hierarchical module representation in Verilog. We
finally analyzed how a testbench can be formed in Verilog. We followed the same
methodology in exploring VHDL fundamentals next. We also considered adding an IP
block to a Verilog and VHDL project. Here, we benefit from the generated IP block
for the first system in Sec. 4.7. In all these sections, we benefit from examples
introduced in Chap. 4. In the following chapters, we will expand our knowledge on
Verilog and VHDL with digital system properties to be introduced. However, using



fundamentals introduced in this chapter is a must to implement them. Therefore, topics
in this chapter can be taken as basis for the following chapters.

5.7 Exercises
5.1   Check whether the structural, dataflow, and behavioral Verilog modeling of the

first system evaluated in Sec. 5.1 require similar (or same) FPGA building
blocks in Vivado.

5.2   Repeat Exercise 5.1 when VHDL is used in describing the first system evaluated
in Sec. 5.3.

5.3   Does hierarchical module representations in Secs. 5.1 and 5.3 add any extra
FPGA building blocks in implementation? Check in Vivado.

5.4   Does adding the first system as an IP block add any extra FPGA building blocks
in implementation? Check in Vivado.
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CHAPTER 6
Data Types and Operators

his chapter is on basic data types and operators in digital systems. We will
explore these concepts in two parts. In the first part of the chapter, we will
handle data types and operators from a generic point of view without using
any HDL description. Therefore, we will first consider binary, octal, and
hexadecimal number representations. Then, we will explore methods to

represent a negative number in a digital system. We will next introduce methods to
represent a binary number with fractional parts. Here, we will use fixed-and floating-
point representations. We will also consider the ASCII code to represent characters in
a digital system. Then, we will evaluate arithmetic operations on binary numbers. In
the second part of the chapter, we will explore data types and operators defined in
Verilog and VHDL. Therefore, we will review most of the concepts introduced in the
first part of the chapter using HDLs. Moreover, we will also refer to data types used in
previous chapters. Finally, we will analyze how all these concepts can be realized in an
FPGA.

6.1 Number Representations
We use the decimal number system in our daily life. This representation provides
weights (powers of 10 here) of a digit with respect to its location. Here, the least
significant integer digit gets weight 100, the next one gets 101, and so on. Using this
form, we can represent an entity in a systematic way. Therefore, a decimal number 255
in fact means 2 × 102 + 5 × 101 + 5 × 100. A decimal number with fractional part can
also be represented in a similar way. Now, weight of the digits in fractional part
become 10−1, 10−2, and so on starting from the dot (separating integer and fractional
parts) from left to right. As an example, the decimal number 1.25 corresponds to 1 ×
100 + 2 × 10−1 + 5 × 10−2.



6.1.1 Binary Numbers
A digit in binary number system (called bit) can take two values as 0 or 1. This
perfectly matches with the digital system having two voltage levels as explained in
Chap. 2. Therefore, binary numbers are used in digital systems instead of decimal
representation.

Binary number representation has weights in powers of two as 20, 21, 22, · · ·, 2N.
For the fractional part, weights become 2−1, 2−2, 2−3, and so on starting from the dot
separating integer and fractional parts. In a binary number, bits with the highest and
lowest weight are specifically called the most significant bit (MSB) and least
significant bit (LSB), respectively. Binary digits are grouped slightly different than
decimal numbers. Eight bits correspond to one byte; 1024 bytes to one kilobyte (kB);
1024 kilobytes to one megabyte (MB); and 1024 megabytes to one gigabyte (GB).

6.1.1.1 Decimal to Binary Conversion
Integer part of a decimal number can be converted to binary form by iteratively
dividing it by two. Iteration ends either when the dividend becomes less than two or
number of iterations reach a predefined limit. Let’s give a simple example on this
operation. If we want to convert the decimal number 14 to binary, we divide it by two
iteratively till we reach the remainder 0 or 1. This operation is tabulated in Table 6.1.
As can be seen in this table, the division operation reaches remainder 1 after three
iterations. We can construct the binary number by forming an array starting from this
remainder and going backwards from the last division to the first in the list. Therefore,
binary representation of the decimal number 14 will be 1110.

TABLE 6.1 Decimal to Binary Conversion Example, Integer Part

Fractional part of a decimal number can be converted to binary form by iteratively
multiplying it by two. After each multiplication, integer part of the product is separated
and multiplication continues from the fractional part. Iteration ends either when the
fractional part becomes zero or number of iterations reach a predefined limit. Let’s
give a simple example on this operation. If we want to convert the decimal number
0.125 to binary, we multiply it iteratively till we reach the product 1.00. This operation
is tabulated in Table 6.2. As can be seen in this table, the multiplication operation
reaches the product 1.00 after three iterations. Since the fractional part becomes zero,
iteration ends.



TABLE 6.2 Decimal to Binary Conversion Example, Fractional
Part

We can construct the binary number by forming an array starting from the integer
part of the first product to the last in the list. Therefore, binary representation of the
decimal number 0.125 will be 0.001.

6.1.1.2 Binary to Decimal Conversion
We can convert a decimal number with integer and fractional parts by applying the
above procedures separately to the number. As an example, binary representation of
the decimal number 14.125 will be 1110.001.

6.1.1.2 Binary to Decimal Conversion
We can convert a binary number to decimal by weighting each digit by its value and
summing the result. Let’s explain this operation on an example. To convert the binary
number 1110.001 to decimal form, we apply the following operation: 1 × 23 +1 × 22

+1 × 21 +0 × 20 +0 × 2−1 +0 × 2−2 +1 × 2−3. Summing these, we will obtain 14.125 in
decimal form.

6.1.2 Octal Numbers
Although binary numbers are suitable for digital systems, their representation may not
be compact. Octal numbers can be used instead to have a more compact representation.
Here, there are eight digits as (0, 1, 2, 3, 4, 5, 6, 7). Next, we consider how
conversions can be made between binary and octal numbers.

6.1.2.1 Binary to Octal Conversion
We can convert a binary number to octal by grouping bits in blocks of three. Then,
each group can be represented by the corresponding octal digit. As a result, we will
obtain the octal representation. If the number groups do not form blocks of three, then
we append zeros to the integer part as a prefix and fractional part as a suffix.

Let’s convert the binary number 1110.001 to octal. Since the total number of bits in
the integer part of number is not a multiple of three, we should represent it by
appending zeros as 001110.001. Then, we can group these digits as 001=1, 110=6, and
001=1. As a result, octal representation of the binary number 1110.001 will be 16.1.
As can be seen in this example, the octal number is more compact compared to its



binary counterpart.

6.1.2.2 Octal to Binary Conversion
We can convert an octal number to binary by applying the reverse operation. Hence,
we represent each octal digit by three bits and form the final binary number. Let’s take
the octal number 16.1. We can represent each octal digit by three binary digits as
1=001, 6=110, and 1=001. As a result, binary representation of the octal number 16.1
will be 001110.001. Since the two leftmost zero bits do not change the value of
number, it can be represented as 1110.001.

6.1.3 Hexadecimal Numbers
While representing binary numbers in compact form, hexadecimal numbers will be
more useful compared to octal numbers. A hexadecimal number has 16 digits as (0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Next, we consider how
conversions can be made between binary and hexadecimal numbers.

6.1.3.1 Binary to Hexadecimal Conversion
We can convert a binary number to hexadecimal by grouping bits in blocks of four.
Then, each group can be represented by the corresponding hexadecimal digit. If bit
groups do not form blocks of four, then we append zeros to the integer part of the
binary number as a prefix and fractional part as a suffix. As a result, we will obtain the
hexadecimal representation.

Let’s convert the binary number 1110.001 to hexadecimal form. Since the total
number of bits in the fractional part of the number is not a multiple of four, we should
represent it by appending zero as a suffix as 1110.0010. Then, we can group these
digits as 1110=E and 0010=2. As a result, hexadecimal representation of the binary
number 1110.001 will be E.2. As can be seen in this example, the hexadecimal
number is more compact compared to its binary (and octal) form.

6.1.3.2 Hexadecimal to Binary Conversion
We can convert a hexadecimal number to binary by applying the reverse operation.
Hence, we represent each hexadecimal digit by four bits and form the final binary
number. Let’s take the hexadecimal number E.2. We can represent each hexadecimal
digit by four binary digits as E=1110 and 2=0010. As a result, binary representation of
the hexadecimal number E.2 will be 1110.0010. Since the rightmost zero bit does not
affect the value of the number, it can also be represented as 1110.001.

6.2 Negative Numbers
There may be negative binary numbers in operation. Although in daily life we put a
negative sign in front of the number, this is not the case in a digital system. Instead,
there are three methods to represent both positive and negative binary numbers. These



are the signed bit, one’s complement, and two’s complement representation.

6.2.1 Signed Bit Representation
The first representation mimics the daily life practice (negative sign in front of
number) by a sign bit in the MSB of number. In this representation, a positive number
will have the sign bit as zero. A negative number will have the sign bit as one. Hence,
the name signed bit representation. Although this method seems straightforward, it is
not very effective since addition and subtraction may need extra operations as will be
seen in Sec. 6.5.

Let’s give two examples on signed bit representation. Assume that we have decimal
number 14. We know that binary representation of this number is 1110. As can be seen
here, the MSB represents the number value. Therefore, it is not possible to assign it as
the sign bit. To overcome this problem, let’s append four more zeroes to the number.
Then, it becomes 0000 1110. In this representation, we can use the MSB as sign bit.
Remaining bits will serve as value bits. Since the number 14 is positive, its sign bit
representation will be 0000 1110. Now, let’s represent the decimal number −14 using
signed bit. Corresponding binary number will become 1000 1110. Therefore, only the
MSB has changed to show that the number is negative.

6.2.2 One’s Complement Representation
The second representation is based on the bit complement (NOT) operation. Here, the
negative number is represented by the bit complement of the corresponding positive
number. Therefore, this representation is called one’s complement. In this
representation, no extra bit is assigned to sign. However, arithmetic operations are not
straightforward in this representation.

Let’s give two examples on one’s complement representation. As in the previous
section, let’s first take the decimal number 14. Based on the previous format, it will be
represented as 0000 1110. Now, let’s represent the decimal number −14 in one’s
complement form. To do so, we take the complement of each bit and obtain 1111
0001.

6.2.3 Two’s Complement Representation
The third representation is based on two’s complement. Here, the negative number is
first represented in one’s complement form. Then, the result is incremented by one.
Two’s complement has a major advantage compared to the previous representations.
Subtracting two binary numbers can be formulated as adding the first number with
two’s complement of the second. The result also keeps the sign information.
Therefore, need for an extra sign bit is eliminated. We will see this operation in Sec.
6.5.

Let’s continue with the example given in one’s complement form. There, the
decimal number −14 was represented as 1111 0001 in one’s complement form. To
obtain the two’s complement form of −14, we should add one to the LSB of one’s



complement representation. Hence, we obtain 1111 0010 as the two’s complement
representation of decimal number −14.

6.3 Fixed- and Floating-Point Representations
Binary number to be processed in a digital system may have a fractional part. We
distinguished the integer and fractional parts of such numbers by a dot in the previous
section. This is not possible in a digital system. Instead, there are two methods to
represent a binary number with integer and fractional parts. These are fixed-and
floating-point representations.

6.3.1 Fixed-Point Representation
The number of bits assigned to the integer and fractional parts is fixed in this
representation. Hence the name fixed-point representation. This method is easy to
implement since the number of bits assigned to the integer and fractional parts is fixed.

We can show an unsigned fixed-point number (without a sign bit) as UQp.q. Here,
U indicates the unsigned bit notation; pq represents the number, p being the integer
and q being the fractional part. We provide some fixed-point representation formats in
Table 6.3. Note that we are not limited by these formats in an FPGA implementation
since the user is free to assign any number of bits to the integer and fractional parts.
We will see such examples in Secs. 6.7 and 6.9.

TABLE 6.3 Fixed-Point Unsigned Number Representation Formats

Let’s reconsider the decimal number 14.125. We know that binary representation of
this number is 1110.001. Assume that we would like to represent this number in
UQ16. form. Therefore, there will be no fractional part. The number of bits to be
assigned to the integer part will be 16. Hence, the resulting number in hexadecimal
form will be 000E. Zeros appended to the left of the number will not affect its value.
They will only satisfy the fixed-point representation format. If the UQ16.16 fixed-
point representation is used for the same number, then the integer part of 14.125 will
be the same in hexadecimal form as 000E. The fractional part will be in hexadecimal
form as 0200. Here, zeros are appended to the right of the number. Therefore, the value
of the fractional part will not be affected. As a result, fixed-point representation of the
number will be 000E0200. As can be seen here, there is no separator between the
integer and fractional parts of the number. Knowing that the number is in UQ16.16
form, we can easily extract the integer and fractional parts (since we know the number
of bits assigned to each).



In a similar way, we can represent signed numbers. In this form, the MSB is
reserved for the sign bit. Therefore, we use the sign bit representation here. We
provide three signed bit formats for the fixed-point representation in Table 6.4. Similar
to the unsigned bit representation, fixed-point number will be in the form Qp.q.

TABLE 6.4 Fixed-Point Signed Number Representation Formats

Let’s consider the decimal number −14.125. Assume that we would like to
represent this number in Q15. form. The resulting number in hexadecimal form will be
800E. Here, the MSB is set to 1 as the sign bit to represent that the number is negative.
If the Q15.16 fixed-point representation is used for the same number, then
hexadecimal form of the number will be 800E0200. Again, the MSB is kept as the sign
bit in this representation.

6.3.2 Floating-Point Representation
Fixed-point representation is easy to implement and process. However, it has a major
drawback. The number of bits assigned to integer and fractional parts is always fixed
in this representation. This causes limitations both in the range of numbers to be
represented and their resolution. Floating-point representation can be used to overcome
these problems. As the name implies, the number of bits assigned to integer and
fractional parts is not fixed in this representation. Instead, the assigned number of bits
differ for each number depending on its significant digits. Therefore, a much wider
range of values can be represented in this form.

In floating-point representation, a binary number with fractional part will be shown
as N = (−1)S × 2E × F. Here, S stands for the sign bit, E represents the exponent value,
and F stands for the fractional part. Then, floating-point number N is kept in memory
as X = SEF.

To represent a floating-point number as N = (−1)S × 2E × F, the number should be
normalized such that the integer part will have one digit. For ease of binary
representation, the exponent will be biased by 2(e−1) −1, where e is the number of bits
to be used for E in the given format. Finally, certain number of bits will be assigned to
S, E, and F depending on the standard format used for representation. The IEEE 754
standard is used by most digital systems in floating-point representation. This standard
is summarized in Table 6.5.



TABLE 6.5 The IEEE 754 Standard for Floating-Point
Representation

Let’s take the decimal number 14.125 and represent it in floating-point form. We
will follow the below itemized procedure for this purpose:

• Decide on the format: Let’s pick the “half” format for this example.
• Represent the integer and fractional parts of the decimal number in binary form:

The number becomes 1110.001.
• Decide on the sign bit S: Since the number is positive, (−1)0 = 1, S=0.
• Normalize the number such that the integer part will have one digit: The number

becomes 1.110001×23.
• Find the exponent value: For the half format, the exponent bias is 15. Therefore,

the exponent will become E = 15 + 3 = 18 with bias. Or, in binary form E=10010.
• Find the fractional part: The fractional part (after normalization) was 110001.

Since 10 bits should be used to represent the fractional part of the number in half
format, F=1100010000. Remember, since this is the fractional part, we append
extra zeros to its right so that the value of the number is not affected.

• Construct X = SEF: Finally, X = 0 10010 1100010000. Or in hexadecimal form,
X=4B10.

Next, let’s represent the decimal number −14.125 in floating-point form. As in the
previous example, let’s use the half format. Then, the only change will be in the sign
bit. As a result, the number will become X = 1 10010 1100010000. Or in hexadecimal
form, X=CB10.

6.4 ASCII Code
We do not only process numbers in digital systems. For some applications, we may
need to handle characters and symbols as well. We know that everything in a digital
system is represented in binary form. Therefore, characters and symbols should also be
represented as such. One way of representing characters and symbols in binary form is
using the ASCII code. ASCII stands for the American Standard Code for Information
Interchange. The ASCII code for characters and symbols are given in Table 6.6. In this
table, LSB stands for least significant byte and MSB stands for most significant byte.
To represent a specific character (or symbol), its corresponding code should be given.



Let’s assume that we would like to represent the @ symbol. Using Table 6.6, the
corresponding ASCII code in hexadecimal form will be 40.

TABLE 6.6 ASCII Code Table

6.5 Arithmetic Operations on Binary Numbers
We will consider arithmetic operations on binary numbers from a generic point of
view in this section. Therefore, we will first analyze each arithmetic operation based
on binary numbers having only integer part. Then, we will consider arithmetic
operations on numbers with fractional part (represented by fixed-and floating-point
forms).

6.5.1 Addition
Adding two binary numbers is not different than adding two decimal numbers. The
only condition the reader should remember is that a binary number can take only two
values as zero or one. Therefore, adding two binary digits will produce a carry bit
whenever two digits with value one are added.

Let’s give an example on adding two binary numbers represented by eight bits as
0000 1110 and 0010 0111. We can also call these numbers as fixed-point with format
UQ8.0. The sum will be 0011 0101.

There may be cases where adding two N bit numbers result in a N + 1 bit number.
For such cases, the MSB (N+1th bit) is called overflow. This bit should be handled
separately if the number of bits assigned to the sum is N.

Adding two binary numbers with fractional part is also the same as in its decimal
counterpart. Here, the important point is that the two numbers should be represented in
the same format. If this is not the case, the first step is making formats the same. Next,
let’s consider the binary addition operation on fixed- and floating-point numbers.

6.5.1.1 Fixed-Point Addition



Let’s start with adding two binary numbers represented by the same unsigned fixed-
point format. Since both numbers will have the same number of integer and fractional
bits, addition will be straightforward for this case. As an example, let’s take two binary
numbers represented in UQ8.4 format as 0000 1110 0010 and 0010 0111 0110. The
sum will be 0011 0101 1000. The first and second numbers are 14.125 and 39.375 in
decimal form with the sum 53.5. The sum obtained in UQ8.4 format is also the same
as this number is in binary form.

Adding two fixed-point signed numbers with common format is the same as adding
two numbers with unsigned fixed-point format. The only difference is that the sign bit
in each number should not be taken into account in the addition operation. At this step,
we assume that the two fixed-point signed numbers have the same sign. We will see
adding two numbers with different sign bits in the next section under subtraction.

6.5.1.2 Floating-Point Addition
Adding two binary numbers represented by floating-point format is more complicated.
As a reminder, a binary number is represented as N = (−1)S × 2E × F in floating-point
form. Moreover, the number is saved as X = SEF. To make the addition operation, the
first constraint is that the two numbers should have the same floating-point format
such as half, single, double, or quad. Moreover, the exponent value (E) should be the
same for both numbers. If they are not the same, then fractional parts should be
adjusted accordingly. Then, addition can be done. After addition, the fractional part
and exponent should be adjusted such that a valid floating-point representation is
obtained. Here, we assume that the sign bit of two numbers to be added are the same.
We will handle adding two numbers with different sign bits in the next section under
subtraction.

Let’s give an example on adding two decimal numbers 14.125 and 39.375. Assume
that the half floating-point form is selected such that first and second numbers are
represented as X1 = 0100 1011 0001 0000 and X2 = 0101 0000 1110 1100. These
numbers can be represented as 1.110001×23 and 1.00111011×25 after discarding the
exponent bias. We can equate the exponential value for these such that the second
number becomes 100.111011×23. Then, we can add these two numbers as (1.110001
+ 100.111011)×23. Here, the addition operation on two numbers can be done as if
they are in a fixed-point form. The result becomes 110.101100×23. This number can
be represented as 1.10101100×25. Hence, half floating-point representation of the
result becomes X3 =0101 0010 1011 0000. As can be seen in this example, adding
two floating-point numbers require format changes and condition checks. There-fore,
it is not straightforward to add two numbers represented in floating-point form.

6.5.2 Subtraction
Two binary numbers can be subtracted in two different ways. The first method is plain
subtraction as in decimal numbers. There is nothing specific about this operation. The



second method is using two’s complement representation. Here, the negative number
is represented in two’s complement form. This provides a clear advantage such that
subtraction is performed by addition. Hence, no second circuitry is needed for the
subtraction operation. Moreover, if the result of subtraction is negative it is
automatically represented in two’s complement form as well. Therefore, this method is
used in most digital systems.

Let’s give two examples on subtracting two binary numbers using two’s
complement representation. In the first example, let’s subtract 0000 1110 from 0010
0111. First, we obtain the two’s complement of 0000 1110 as 1111 0010. Adding
11110010 to 0010 0111 gives 1 0001 1001. As can be seen, the result is represented
by nine bits. In other words, an overflow occurred. If overflow occurs, we should
discard it and the result is final. In other words, subtraction results in 0001 1001. In the
second example, let’s subtract 0010 0111 from 0000 1110. Here, we obtain the two’s
complement of 0010 0111 and add it to 0000 1110. The result becomes 1110 0111. In
this operation, no overflow occurs. This indicates that the result is negative and
represented in two’s complement form. We can check it by obtaining the two’s
complement of the first subtraction result which gives 1110 0111. As can be seen here,
two’s complement representation handles sign of the result after operation.

Subtraction operation can also be applied to two binary numbers with fractional
part. As in addition, the important point here is that the two numbers should be
represented in the same format. If this is not the case, the first step is making formats
the same. Next, let’s consider binary subtraction operation on fixed-and floating-point
numbers.

6.5.2.1 Fixed-Point Subtraction
Let’s start with subtracting two binary numbers represented by the same unsigned
fixed-point format. To explain subtraction, let’s take two binary numbers represented
in UQ8.4 format as 0000 1110 0010 and 0010 0111 0110. In the first example, let’s
subtract 0000 1110 0010 from 0010 0111 0110. We can apply two’s complement
method as in the previous example. Therefore, we first obtain the two’s complement of
0000 1110 0010 as 1111 0001 1110. Adding 1111 0001 1110 to 0010 0111 0110
gives 1 0001 1001 0100. As can be seen here, the result should be represented by 13
bits but the original format had 12 bits. Since overflow occurred, we discard the MSB
and obtain the final result as 0001 1001 0100. Here, the first and second numbers were
14.125 and 39.375, respectively in decimal form. Subtracting 14.125 from 39.375
results in 25.25. Binary subtraction result obtained in UQ8.4 form is also the same as
this number. In the second example, let’s subtract 0010 0111 0110 from 0000 1110
0010. Applying the same steps as in the previous example, we will obtain the
subtraction result as 1110 0110 1100. In this operation, no overflow occurs. This
indicates that the result is negative and represented in two’s complement form.

Subtracting two fixed-point signed numbers with the same format is the same as in
subtracting two numbers with unsigned fixed-point format. The only difference is that
the sign bit should be taken into account such that if the number is negative, it should



be represented as such in the subtraction operation.

6.5.2.2 Floating-Point Subtraction
As in addition, subtracting two binary numbers represented by floating-point format is
more complicated. To subtract numbers, the first constraint is their having the same
floating-point format as half, single, double, or quad. Moreover, exponent (E) should
be the same for both numbers. If they are not the same, then fractional parts should be
adjusted accordingly. Then, subtraction can be done. Afterward, the fractional part,
exponent, and sign bit should be adjusted such that a valid floating-point
representation is obtained. While subtracting numbers, the sign bit should be taken into
account such that if the number is negative, it should be represented as such in
operations.

Let’s take two examples on subtracting two floating-point numbers. For these let’s
pick two decimal numbers as 14.125 and 39.375 (which we have been using up to
now). Assume that the half floating-point form is selected. Hence, the first and second
numbers are represented as X1 = 0100 1011 0001 0000 and X2 = 0101 0000 1110
1100. These numbers can be represented as 1.110001×23 and 1.00111011×25 after
discarding the exponent bias. We can equate the exponential value for these such that
the second number becomes 100.111011×23. As first example, let’s subtract
1.110001×23 from 100.111011×23. We can represent the subtraction as
(100.111011−1.110001)×23. Here, subtraction can be done as if they are in fixed-
point form. The result becomes 11.001010×23. This number can be represented as
1.1001010×24. Hence, the half floating-point form of the result becomes X3 =0100
1110 0101 0000. As second example, let’s subtract 100.111011×23 from
1.110001×23 which can be shown as (1.110001−100.111011)×23. The result of this
operation becomes −1.1001010×24. Hence, the half floating-point form of the result
becomes X3 =1100 1110 0101 0000.

6.5.3 Multiplication
Multiplying two binary numbers is also the same as multiplying two decimal numbers.
The reader should be aware that the product term requires more bits for representation
compared to multiplied numbers. Let’s give an example on multiplying two binary
numbers represented by eight bits as 0000 1110 and 0010 0111. Their product will be
10 0010 0010. As can be seen here, the product term requires 10 bits for
representation. The multiplication operation can also be applied on two binary
numbers with fractional part. Next, let’s consider the binary multiplication operation
on fixed-and floating-point numbers.

6.5.3.1 Fixed-Point Multiplication
Let’s start with multiplying two binary numbers represented by the same unsigned



fixed-point format. To explain the multiplication operation, let’s take two binary
numbers represented in UQ8.4 format as 0000 1110 0010 and 0010 0111 0110. Here,
the reader can represent these two numbers as 11100010×2−4 and 1001110110×2−4.
Product of these two numbers will be 11100010× 1001110110×2−8. Hence, the result
becomes 100010110000101100×2−8. We can represent this number in UQ8.4 format as
0010 1100 0010. As can be seen in this example, an overflow with two and four bits
occurred in integer and fractional parts, respectively. Therefore, a larger format should
be used in representing the result. Multiplying two fixed-point signed numbers is the
same as in unsigned numbers. However, the sign bit should be taken into account in
deciding the sign of the product.

6.5.3.2 Floating-Point Multiplication
Multiplying two binary numbers represented by floating-point format is more
complicated as in addition and subtraction. Let’s give an example on multiplying two
decimal numbers 14.125 and 39.375. Assume that these numbers are represented by
the half floating-point form. From previous examples we know that these numbers can
be represented as 1.110001×23 and 1.00111011×25 or in simplified form as
1110001×2−3 and 100111011×2−3, respectively. Hence, their product will be 1110001×
100111011×2−6. The result becomes 1000101100001011×2−6. This number can be
represented as 1.000101100001011 ×29. Hence, half floating-point form of the result
will be X3 =0110 0000 0101 1000. In this representation, least significant five bits are
discarded due to the half floating-point format. However, the effect of these bits are
minor compared to the overflow in fixed-point representation. In this example, the two
floating-point numbers had the same sign bit as positive. For floating-point numbers
having negative sign bit, this should be taken into account in operations.

6.5.4 Division
Dividing two binary numbers is also the same as dividing two decimal numbers. The
reader should be aware that the division of two integer numbers may result in a
number with extra fractional part. Let’s give an example on dividing two binary
numbers represented by eight bits as 0010 0111 and 0000 1110. Let’s divide the first
number by the second. Integer part of the division will be 10. Besides, there is also a
fractional part of the division. For ease of demonstration, we can represent this
fractional part by four bits as 1100. The division operation can also be applied on two
binary numbers with fractional part. Next, let’s consider the binary division operation
on fixed-and floating-point numbers.

6.5.4.1 Fixed-Point Division
To explain the division operation, let’s take two binary numbers in UQ8.4 format as
0000 1110 0010 and 0010 0111 0110. Here, the reader can represent these two
numbers as 11100010×2−4 and 1001110110×2−4. Let’s divide the second number by



the first which can be represented as 1001110110÷ 11100010×20. The division results
in a fractional number with overflow. Therefore, it should be truncated. Then, the
result becomes 101100×2−4. We can represent this number in UQ8.4 format as 0000
0010 1100.

6.5.4.2 Floating-Point Division
Let’s finally give an example on dividing the decimal number 39.375 by 14.125
represented by half floating-point form. We know that these numbers can be
represented as 1.00111011×25 and 1.110001×23, respectively, from previous sections.
We can represent these numbers as 100111011×2−3 and 11100011 ×2−3. Therefore,
their division can be represented as 100111011 ÷ 1110001 ×20. The result of division
will be 1.0110010011 ×21. Hence, half floating-point form of the result becomes
X3=01000001 1001 0011. In this representation, least significant bits lower than digit
10 are discarded due to half floating-point format. However, effect of these bits are
minor compared to the overflow in fixed-point representation. In this example, two
floating-point numbers had the same sign bit as positive. For floating-point numbers
having negative sign bit, this should be taken into account in operations.

6.6 Data Types in Verilog
We introduced number representations and related concepts from a generic point of
view in previous sections. Starting from this section, we will handle these concepts
using HDLs. Therefore, we will start exploring data types in Verilog in this section.
Then, we will consider constants and parameters. Afterward, we will introduce
vectors. We will analyze the FPGA implementation details of these in Sec. 6.11.

6.6.1 Net and Variable Data Types
A value in a digital system can basically be represented either as net or variable in
Verilog. The net data type is specific for connecting two elements. For us, the most
important net data type is wire. As the name implies, this data type acts simply as a
wire connecting two elements. The variable data type can be used to represent a
generated data till it changes. Useful variable data types are reg and integer in
Verilog. A reg variable can be used to represent one-bit data. An integer variable
typically represents 32-bit long data. We can define a net or variable data type in
Verilog by the structure data_type data_name. For example, we can define wire in1
to indicate a variable in1 of type wire.

6.6.2 Data Values
A net or variable data type can get one of four predefined values. These are as follows:

0 corresponds to logic level zero.



1 corresponds to logic level one.
x represents the undefined logic level.
z represents high impedance.

We are familiar with logic level zero and one from previous chapters. The
undefined logic level x is used in logical operations when the corresponding value is
unknown or it does not affect the operation. For the second case, x is most of the times
called “don’t care” condition. The high impedance value z indicates that connection at
that point is disabled. In other words, it indicates an open circuit at the given location.

6.6.3 Naming a Net or Variable
While describing a digital system in Verilog, one may want to name a net or variable.
Here, the reader is free to choose among many options. The only constraint here is that
the name should not begin with a digit and it should not be any of Verilog keywords.
Besides, Verilog is case sensitive. Hence, an uppercase and lowercase character is not
the same. This should be taken into account while assigning a name. More
importantly, meaningful and representative names should be picked for assignment to
increase the readability of Verilog description.

6.6.4 Defining Constants and Parameters
We can represent binary, octal, hexadecimal, and decimal constant values (besides
others) in Verilog. General structure of representing a constant for these types is
bit_width ’radix constant_value. Here, bit_width indicates the number of bits to
represent the constant value. If this is not set, the default value is 16 bits. The radix
can be binary (b), octal (o), hexadecimal (h), or decimal (d). The constant_value is
the actual constant to be represented.

Let’s give some examples on constants. 1’b0 indicates the binary number 0. 2’b10
indicates the binary number 10. 4’b10 indicates the binary number 0010. 6’o75
indicates the octal number 75. 8’hCA indicates the hexadecimal number CA. Finally,
8’d251 indicates the decimal number 251 which can be represented by eight bits.

6.6.5 Defining Vectors
A net or variable need not be composed of one bit in Verilog. Instead, it can be
represented as a vector. This allows us to represent data in compact form. The vector
format for representation will be the same as a net or variable definition with an extra
[N-1:0] prefix which indicates that there will be N net variable entries packed as a
vector. Here, MSB and LSB are located at the N-1th and zeroth entries, respectively.

As an example, we can define wire[7:0] in1 to indicate a variable in1 of type
wire with eight entries. Here, in1 represents all eight-bit values at once. in1[7]
represents the most significant entry. in1[0] represents the least significant entry. We
can select a subpart of the vector as in1[5:3] such that the fourth, fifth, and sixth
entries are selected.



We can also change the order of bits in representing a vector. Continuing from the
above representation, we can redefine wire[0:7] in1 to indicate a variable in1 of
type wire with eight entries. Now, the most significant bit will be represented by
in1[0]. The least significant entry will be represented by in1[7].

We next provide Verilog description as an example of vector operations in Listing
6.1. Here, first a specific vector entry is selected. Then, subpart of the vector is
selected. Finally, the vector bit order is reversed. We provide the RTL schematic of
these vector operations in Fig. 6.1. As can be seen in this figure, vector operations are
performed by wiring input and output ports only.

FIGURE 6.1 RTL schematic of basic vector operations.

To explain working principles of vector operations, we provide a testbench file in
Listing 6.2. Here, the input vector to be processed is taken as FA. We provide the
results obtained from the testbench file in Fig. 6.2. These results indicate that vector
entries can be processed as desired in Verilog.

FIGURE 6.2 Basic Vector Operation Results in Verilog.



6.7 Operators in Verilog
There are basically six operator groups in Verilog. These are logical, arithmetic, shift,
concatenate, replicate, and condition. We will introduce arithmetic, concatenation, and
replication operators in this chapter. The rest will be introduced in the following
chapters. We will analyze the FPGA implementation details of operations considered
here in Sec. 6.11.

Listing 6.1 Basic Vector Operations in Verilog

Listing 6.2 Testbench File for Basic Vector Operations in Verilog



6.7.1 Arithmetic Operators
Verilog has five arithmetic operations as addition (+), subtraction (-), multiplication
(*), division (/), and modulus (%). All these operations can be performed on vectors
with user-defined size. Hence, these can be called fixed-point operations with user-
defined format. When result of an operation becomes negative, it is represented in
two’s complement form.

Let’s give basic examples on the usage of arithmetic operations. The first example
is on arithmetic operations by using a vector input and constant defined as a parameter.
We provide the corresponding Verilog description in Listing 6.3. Here, five arithmetic
operations (addition, subtraction, multiplication, division, and modulus) are applied on
the constant coef=8’h02 and input vector num. Dataflow modeling is used in
describing these operations. We provide the RTL schematic of the description in Fig.
6.3. As can be seen in this figure, constant values are taken as fixed voltage levels in
the schematic.



FIGURE 6.3 RTL schematic of arithmetic operations on a constant and vector.

To explain working principles of arithmetic operations including a constant, we
provide the testbench file in Listing 6.4. Here, input vector to be processed is taken as
8’h07. Arithmetic operation results are provided (in hexadecimal form) in Fig. 6.4. As
can be seen in this figure, only the integer part of the division operation is kept.
Besides, obtained results are as expected.



FIGURE 6.4 Result of arithmetic operations on a constant and vector in Verilog.

The second example on arithmetic operations is based on examples (on two eight-
bit numbers) in Sec. 6.5. Here, again five arithmetic operations are applied on two
eightbit input vectors num1 and num2. We provide the corresponding Verilog
description in Listing 6.5. Dataflow modeling is used in describing these operations.
Note that the multiplication result is represented by a 14-bit vector in the description.
The reader can also use a 16-bit vector as well. We provide the RTL schematic of the
description in Fig. 6.5. As can be seen in this figure, all arithmetic operations are
represented as basic blocks.



FIGURE 6.5 RTL schematic of arithmetic operations on two vectors in Verilog.

To be consistent with the examples in Sec. 6.5, we construct the testbench file in
Listing 6.6. Here, the two vectors are taken as 8’b00001110 and 8’b00100111.
Arithmetic operation results are provided in Fig. 6.6. As can be seen in this figure, the
negative result is represented in two’s complement form. Also, only integer part of the
division operation is given. Besides, the reader can observe that results obtained here
are the same as in Sec. 6.5.



FIGURE 6.6 Result of arithmetic operations on two eight-bit vectors in Verilog.

The third example on arithmetic operations is based on examples (on fixed-point
numbers with UQ8.4 format) in Sec. 6.5. Here, fixed-point numbers are represented by
two 12-bit input vectors num1 and num2. We provide the corresponding Verilog
description in Listing 6.7. Note that the multiplication result is represented by a 24-bit
vector in the description. The RTL schematic of this description is the same as in Fig.
6.5. Only the number of wires used in operations differ.

Listing 6.3 Arithmetic Operations on a Constant and Vector in Verilog



To be consistent with the fixed-point arithmetic examples in Sec. 6.5, we construct
the testbench file in Listing 6.8. Here, the two vectors are taken as 12’b000011100010
and 12’b001001110110. Arithmetic operation results are provided in Fig. 6.7. As in the
previous example, the reader can observe that results obtained here are the same as in
Sec. 6.5.



FIGURE 6.7 Result of arithmetic operations on two 12-bit vectors in Verilog.

As can be seen in all these examples, arithmetic operations can be performed
without any difficulty in Verilog. Therefore, we will not explore dedicated arithmetic
operation circuits in the following chapters. We should warn the reader about
multiplication and division operations at this point. Although these operations can be
performed, they heavily dissipate the FPGA resources. We will see this resource
dissipation by actual examples in Sec. 6.11. Therefore, multiplication and division
operations should be avoided whenever possible.

6.7.2 Concatenation and Replication Operators
The concatenation operator in Verilog allows merging two or more vectors. This is
done by the curly bracket. Let’s give an example. Assume that we want to merge two
vectors num1 and num2. We can do this by {num1, num2}. The replication operation can
be used to copy a vector multiple times to generate a new vector. This can be done by
n{num1} where n is the duplication number.

Listing 6.4 Testbench File for Arithmetic Operations on a Constant and Vector in
Verilog

Listing 6.5 Arithmetic Operations on Two Eight-bit Vectors in Verilog



Listing 6.6 Testbench File for Arithmetic Operations on Two Eight-bit Vectors in
Verilog



Listing 6.7 Arithmetic Operations on Two 12-bit Vectors in Verilog



We provide dataflow model of concatenation and replication operations on vectors
in Listing 6.9. Here, first two vectors num1 and num2 are concatenated. Then, the
replicate of the vector num1 is generated twice. The RTL schematic of these operations
are as in Fig. 6.8. As can be seen in this figure, concatenation and replication
operations are implemented by using wiring between input and output ports.

FIGURE 6.8 RTL schematic of concatenation and replication operations.



Listing 6.8 Testbench File for Arithmetic Operations on Two 12-bit Vectors in
Verilog

We provide the testbench file in Listing 6.10 to explain concatenation and
replication operations on an example. Here, the two vectors are taken as 8’hFA and
8’h0F. Concatenation and replication operation results are provided in Fig. 6.9. The
reader can see how both operations resulted there.

FIGURE 6.9 Result of concatenation and replication operations in Verilog.

6.8 Data Types in VHDL



As in Verilog, we should know data types in VHDL. Hence, they can be used in
processing data in digital systems. In this section, we will introduce data types and
their usage for this purpose.

Listing 6.9 Concatenation and Replication Operations in Verilog

Listing 6.10 Testbench File for Concatenation and Replication Operations in Verilog

6.8.1 Signal and Variable Data Types
A value in a digital system can be basically represented either as a signal or variable
in VHDL. The signal data type is similar to the wire in Verilog. Hence, it can be used



to connect two elements. The signal (with its assigned type) can be defined as signal
signal_name : signal_type. The variable data type in VHDL is similar to the one
in Verilog. However, it is generally used in storing intermediate values and loop
counters. Therefore, we will provide its usage in the following chapters when needed.

The signal should have an associated type which defines values that can be taken by
it. Although there are several signal types in VHDL, we will use four of them at this
level as std_logic, std_logic_vector, signed, and unsigned. We may introduce
new types in the following chapters if needed.

The std_logic type is for bitwise representations. Related to it, the std_logic_
vector type is for an array of bits to be explored in detail in Sec. 6.8.5. To use
std_logic and std_logic_vector types, we should include the ieee library in the
description. We should also add the use ieee.std_logic_1164.all line to the
description.

Signed and unsigned types have the same properties as std_logic_vector.
However, they are specifically used in arithmetic operations to be introduced in Sec.
6.9. To use signed and unsigned types, we should include the ieee library in the
description. We should also add the use ieee.numeric_std.all line to the
description.

6.8.2 Data Values
Std_logic data type has nine different values. We will use the following four values
throughout the book:

0 corresponds to logic level zero.
1 corresponds to logic level one.
- represents the undefined logic level.
z represents high impedance.

We are familiar with logic level zero and one from previous chapters. The
undefined logic level, -, is used in logical operations when the corresponding value is
unknown or it does not affect the operation. For the second case, - is most of the times
called “don’t care” condition. The high impedance value z indicates that connection at
that point is disabled. In other words, an open circuit is present at that location.
Std_logic_vector, signed, and unsigned types also use the mentioned data values.

6.8.3 Naming a Signal or Variable
As in Verilog, the user can select a wide range of names for a signal or variable in
VHDL. However, a VHDL keyword cannot be used as a name. Besides, the name
should begin with a letter. It cannot end with an underscore or it cannot have two
successive underscores. Unlike Verilog, VHDL is not case sensitive. Therefore, the
reader should take this into account while defining a name. Meaningful and
representative names should be picked for assignment to increase the readability of a
VHDL description.



6.8.4 Defining Constants
A constant can be defined to represent a value in VHDL. This is done to improve the
readability of description. Structure of a constant declaration is constant constant_
name : type_name := value. Here, if the value is one bit, then it should be
represented between apostrophes as `0’ or `1’. If the value has more than one bit,
then it should be represented between double quotes as “0101”. Moreover, we can use
the format x“value” or o“value” to represent the hexadecimal and octal values,
respectively. For example, the binary value “0101” can also be represented as x“5” as
hexadecimal.

6.8.5 Defining Arrays
In VHDL, we can use std_logic_vector, signed, and unsigned types to represent bit
arrays. The signal array (with its assigned type) can be defined as signal array_
name : array_type (low to high) or signal array_name : array_type (high
downto low). Here, low and high values indicate the array’s first and last index
values.

Each array entry can be reached in VHDL. Let’s give an example for this operation.
Assume we define an array in1 as signal in1 : std_logic_vector (7 downto 0).
Here, in1 represents all eight bits at once. in1(7) represents the MSB. in1(0)
represents the LSB. We can also change the order of bits in representing an array. To
do so, we should redefine the array in1 as signal in1 : std_logic_vector (0 to
7). Now, the MSB will be represented by in1(0). The LSB will be represented by
in1(7).

We next provide the VHDL description as an example of array operations in Listing
6.11. Here, first a specific array entry is selected. Then, subpart of the array is selected.
Finally, the array bit order is reversed. Dataflow modeling is used in describing these
operations. The RTL schematic of this description is the same as in Fig. 6.1. As can be
seen in this figure, array operations are performed by wiring input and output ports
only.

To explain working principles of array operations, we provide the testbench file in
Listing 6.12. Here, input array to be processed is taken as “11111010”. Array operation
results will be as in Fig. 6.2. These results indicate that array entries can be processed
as desired in VHDL.

Listing 6.11 Basic Array Operations in VHDL



Listing 6.12 Testbench File for Basic Array Operations in VHDL



6.9 Operators in VHDL
There are basically five operator groups in VHDL. These are arithmetic, relational,
shift and rotate, concatenation, and logical operators. We will introduce arithmetic and
concatenation operators in this chapter. The rest will be introduced in the following
chapters.

6.9.1 Arithmetic Operators
We will use seven arithmetic operators in VHDL throughout the book. These are
absolute value (abs), multiplication (∗), division (/), modulus (mod), remainder (rem),
addition (+), and subtraction (-). Except abs, all arithmetic operations are performed



on signed or unsigned numbers. Obtained result from these operations will also be
either a signed or unsigned number. The abs needs a signed number to operate. As in
Verilog, when the result of an operation is negative, it is represented in two’s
complement form in VHDL. Note that addition and subtraction operations can also be
applied to signals defined by std_logic_vector.

Let’s give three examples on the usage of arithmetic operations. The first example
is on arithmetic operations using an array input and constant. We provide the VHDL
description in Listing 6.13. Here, three arithmetic operations (addition, subtraction,
and multiplication) are applied on a constant coef and input array num. Here, the
constant is defined as “00000010”. Dataflow modeling is used in describing these
operations. This description is the VDHL version of the one given in Listing 6.3.

Listing 6.13 Arithmetic Operations on a Constant and Array in VHDL

To explain working principles of arithmetic operations including a constant, we
provide the testbench file in Listing 6.14. Here, the input array to be processed is taken
as “0000111”. Arithmetic operation results obtained will be the same as in Fig. 6.4.

The second example is arithmetic operations based on examples (on two eight-bit
numbers) in Sec. 6.5. Here, six arithmetic operations (addition, subtraction,
multiplication, division, modulus, and remainder) are applied on two eight-bit input
arrays num1 and num2. We provide the corresponding VHDL description in Listing



6.15. Dataflow modeling is used in describing these operations. This description is the
VDHL version of the one given in Listing 6.5. We provide the RTL schematic of the
VHDL description in Fig. 6.10. As can be seen in this figure, all arithmetic operations
are represented as basic blocks.

FIGURE 6.10 RTL schematic of arithmetic operations on two arrays.

Listing 6.14 Testbench File for Arithmetic Operations on a Constant and Array in
VHDL



Listing 6.15 Arithmetic Operations on Two Eight-bit Arrays in VHDL



To be consistent with examples in Sec. 6.5, we construct the testbench file in
Listing 6.16. Here, the two eight-bit arrays are taken as “00001110” and “00100111”.
Arithmetic operation results are provided in Fig. 6.11. These are the same as in Fig.
6.6. Besides, the reader can observe that results obtained here are the same as in Sec.
6.5.



FIGURE 6.11 Result of arithmetic operations on two eight-bit arrays in VHDL.

The third example is arithmetic operations based on examples (on fixed-point
numbers with UQ8.4 format) in Sec. 6.5. Here, fixed-point numbers are represented by
two 12-bit input arrays num1 and num2. We provide the corresponding VHDL
description in Listing 6.17. This description is VDHL version of the one in Listing 6.7.
The RTL schematic of this description is the same as in Fig. 6.10. Only number of
wires used in operations differ.

To be consistent with fixed-point arithmetic operation examples in Sec. 6.5, we
construct the testbench file in Listing 6.18. Here, two arrays are taken as
“000011100010” and “001001110110”. Arithmetic operation results are provided in
Fig. 6.12. As in the previous example, the reader can observe that results obtained here
are the same as in Sec. 6.5.

FIGURE 6.12 Result of arithmetic operations on two 12-bit arrays in VHDL.

Similar to Verilog, all arithmetic operations can be performed without any difficulty
in VHDL as can be seen in Listing 6.15. Therefore, we will not explore dedicated



arithmetic operation circuits in the following chapters. We should warn the reader
about multiplication and division operations at this point. Although these operations
can be performed, they heavily dissipate the FPGA resources. Therefore,
multiplication and division operations should be avoided whenever possible.

6.9.2 Concatenation Operator
The concatenation operator in VHDL allows merging two or more arrays. This is done
by the & operator. Let’s give an example. Assume that we want to merge two arrays
num1 and num2. We can do this by num1&num2.

We provide dataflow model of concatenation operation on arrays in Listing 6.19.
Here, two arrays num1 and num2 are concatenated. The RTL schematic of this
description is a part of Fig. 6.8.

Listing 6.16 Testbench File for Arithmetic Operations on Two Eight-bit Arrays in
VHDL



Listing 6.17 Arithmetic Operations on Two 12-bit Arrays in VHDL



Listing 6.18 Testbench File for Arithmetic Operations on Two 12-bit Arrays in VHDL



Listing 6.19 Concatenation Operation in VHDL



We provide the testbench file in Listing 6.20 to explain the concatenation operation
on an example. Here, two arrays are taken as “11111010” and “00001111”. The
obtained result will be the same as in Fig. 6.9.

6.10 Application on Data Types and Operators
In this section, we will construct a primitive calculator to add, subtract, multiply, and
divide two four-bit numbers on the Basys3 board. Input bits and the operation type is
represented by switches on the board. Output bit values are represented by LEDs on
the board. The reader can consult Sec. 4.8 related to this setup. In Listing 6.21, we
provide Verilog description of the calculator.

6.11 FPGA Building Blocks Used in Data Types and Operators
We introduced several operators to process data in this chapter. The aim here is trying
to show the reader how these are implemented in an FPGA. Therefore, he or she can
grasp the fundamental idea in using this device. Note that the FPGA implementations
provided in this section are not unique. They are the ones provided by Vivado. In other
words, we are bound by Vivado’s optimization tools in generating these
implementations.

Listing 6.20 Testbench File for Concatenation Operation in VHDL



In this section, we picked Verilog descriptions used in the chapter. The reader may
also test VHDL descriptions. However, we do not expect them to be totally different
than the ones given here.

6.11.1 Implementation Details of Vector Operations
We first focus on vector operations in Listing 6.1. To show implementation details on
this description, let’s set the input vector length to four as input [3:0] num1. With
this new form, a specific vector entry is selected (assign res1=num1[2]), subpart of a
vector is selected (assign res2=num1[3:2]), and vector bit order is reversed. After
synthesizing the modified description in Vivado, its schematic will be as in Fig. 6.13.



FIGURE 6.13 FPGA implementation of vector operations.

As can be seen in Fig. 6.13, 11 input/output ports are used in the implementation.
Besides, each input or output port has an associated buffer with it. Moreover, only
wiring is done between input and output ports. Therefore, this implementation only
uses input/output blocks and interconnect resources from the FPGA building blocks
introduced in Sec. 2.2.

Listing 6.21 Calculator Implemented on the Basys3 Board in Verilog



Listing 6.22 Enforcing Vivado to Use DSP Block in Arithmetic Operations in Verilog

Listing 6.23 Enforcing Vivado to Use DSP Block in Arithmetic Operations in VHDL



Implementation schematic should emphasize that no variable or memory element is
used in the design as in a programming language. Only wires and ports are used. This
is also the case for concatenation and replication operations in Listing 6.9.

6.11.2 Implementation Details of Arithmetic Operations
Implementing arithmetic operations in the FPGA is an important topic by itself.
Therefore, let’s closely analyze implementation details of the description in Listing
6.5. To understand how Vivado implements arithmetic operations, let’s first focus on
the addition operation. As in the previous section, let’s apply addition on two two-bit
vectors. Schematic of the description after synthesis will be as in Fig. 6.14. As can be
seen in this figure, the addition operation is implemented by two LUTs in the FPGA.

FIGURE 6.14 FPGA implementation of addition operation.

The architecture in Fig. 6.14 is kept when subtraction, multiplication, and division
operations are implemented. However, the reader should remember that these



operations are done on two vectors each having two bits. If the vector length is
increased, resource usage difference between arithmetic operations become more
apparent. For example, when eight-bit addition, subtraction, multiplication, and
division operations in Listing 6.5 are implemented separately, addition and subtraction
operations will need eight LUTs. However, multiplication and division operations will
need 67 and 69 LUTs, respectively. Moreover, if the bit length is increased to 12 as in
Listing 6.7, then addition and subtraction operations will need 12 LUTs. The
multiplication operation will need one DSP block. The division operation will need
155 LUTs. Hence, the multiplication and division operation implementations need
extensive number of LUTs or DSP blocks. Note that LUT and DSP usage numbers are
obtained using tools in Sec. 4.3.

We can enforce Vivado to synthesize arithmetic operations using DSP blocks. The
way to do this in Verilog is adding attribute (* use_dsp48=“yes” *) in front of the
module to be handled this way. We provide such an example in Listing 6.22. Here, the
addition operation is implemented using the DSP block. In VHDL, the same operation
can be done by adding an attribute in the port definition part. We provide such an
addition example in Listing 6.23. More information on this topic can be found in [28].

We can summarize basic findings in this section as follows. Arithmetic operations
are implemented either using CLBs or DSP blocks in the FPGA. Besides, interconnect
resources and input/output blocks are needed during implementation. There is one
important issue. Size of data to be processed directly affects the resource usage.
Related to this, multiplication and division operations may require heavy resource
usage when data size increases.

6.12 Summary
We introduced key data type and operator concepts in this chapter. While doing this,
we first explored number representations, negative numbers, and fixed- and floating-
point numbers from a generic point of view. Then, we explored binary arithmetic
operations. We next explored all of these concepts using HDLs. We postponed
floating-point operation implementation in HDL descriptions till Chap. 13 since it
requires advanced tools. We also analyzed HDL descriptions introduced in this chapter
from an FPGA implementation perspective. The idea here was to give an insight how
these descriptions are implemented in the FPGA. We will also apply the same
methodology in the following chapters.

6.13 Exercises
6.1   Find the fixed-point representation of number 315.2342 in formats a. UQ16.

b. UQ.16
c. UQ16.16

6.2   Find the fixed-point representation of numbers −315.2342 and 315.2342 in
formats a. Q15.



b. Q.15
c. Q15.16.

6.3   You have four numbers as 13.25, 15.50, 17.50, and 19.25. Find the hexadecimal
representation of these numbers in fixed-point UQ16.16 format.

6.4   Find the floating-point representation of numbers −315.2342 and 315.2342 in
formats
a. half
b. single
c. double

6.5   We will only have an approximation in representing the number 8751.135 in half
floating-point form. What is the difference between the actual number and this
approximation?

6.6   Find the floating-point representation of the number 8751.135 in single form.
Will there be an approximation here?

6.7   Find the floating-point representation of π in half form.
6.8   The ASCII codes given in Table 6.6 are called regular. What happens if we want

to represent regional characters like ü, ü and ç?
6.9   Two 16-bit numbers are taken as FFFF and 0005 in hexadecimal form. Write a

Verilog or VHDL description and its testbench to implement and simulate below
operations.
a. FFFF+0005
b. FFFF-0005
c. 0005-FFFF

6.10   We know that only lowercase characters enter a system. Write a Verilog or
VHDL module to convert each entry to uppercase form. Simulate the result by
forming a testbench file.

6.11   Vivado offers an IP block called Adder/Subtracter in its IP Catalog. Use it to
implement addition and subtraction operations in previous exercises in Verilog
or VHDL.

6.12   What will be the value of y2, y1, y0 when the below Verilog description is
simulated? The input is set as x=8h’4F for simulation.



6.13   Form a Verilog description in behavioral modeling to calculate cube of a given
number. Only one multiplication operation can be used at once.
a. use nonblocking assignments b. use blocking assignments

6.14   (Joystick application.)A two-axis joystick provides analog voltage values
corresponding to its horizontal (x-axis) and vertical (y-axis) position when an
analog interfacing is done. These analog voltage values can be converted to
digital form by an analog-to-digital converter (ADC) module. Assume that the
analog interfacing is done and the ADC module is set to work. Hence, you get
two vectors as xp and yp each with 12 bits each. We will take the most
significant eight bits for xp and yp. Hence, sample hexadecimal values of these
vectors with respect to joystick position are as in Fig. 6.15.



FIGURE 6.15    Sample readings from the joystick.

We will use LEDs and switches on the Basys3 board for our operation.
Therefore, LEDs and switches 15 to 8 are assigned to the vertical position (yp
array) reading. LEDs and switches 7 to 0 are assigned to the horizontal position
(xp array) reading.
a. Form a Verilog or VHDL description to display the values of joystick axes

directly via designated LEDs.
b. Let’s design a simple game using our setup. The first user forms a 16-bit

pattern with setting each switch as on or off. The second user (without seeing
this pattern) tries to match this pattern by moving the joystick in x- and y-
axes. When the second user matches the pattern with the joystick position, all
LEDs will turn off. Form a Verilog or VHDL description to realize this
game.
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CHAPTER 7
Combinational Circuits

digital system can be implemented in two forms. In the first one, output
depends on current input only. This form can be realized by combinational
circuits, which is the main topic of this chapter. In the second form, output
depends on past input or output values besides the current input. This form
can be realized by sequential circuits, which will be introduced in Chap. 10.

A combinational circuit is composed of logic gates to perform a specific
task. To understand the working principles of a combinational circuit, we will start
with basic definitions. Then, we will review logic gates from a combinational circuit
perspective. Afterward, we will introduce tools to analyze combinational circuits.
Related to this, we will explore how a combinational circuit can be implemented in an
field-programmable gate array (FPGA). Then, we will evaluate combinational circuit
design steps. We will also provide sample designs so that the reader can grasp the idea
in designing such a circuit. We will finally summarize how FPGA building blocks are
used in combinational circuit implementation.

7.1 Basic Definitions
Before going further, we should make basic definitions which will be used throughout
the book. Let’s start with defining binary variable.

7.1.1 Binary Variable
While analyzing or designing a combinational circuit, logic level at certain location
may be needed. To represent this value in generic form, we will assign a binary
variable at that location. This variable can only take either logic level zero or one by its
definition. Since we will be extensively using these logic levels for binary variables,
we will call them as 0 and 1 from this point on.



The customary way to represent a binary variable is using characters. Throughout
the book, we will adopt the same methodology by using characters such as x, y, and z
for this purpose. Therefore, we can represent value of a binary variable as x = 1 or x =
0.

7.1.2 Logic Function
A logic function by its definition is formed of logic gates operating on binary
variables. To be more specific, inputs of a logic function are defined as binary
variables. Then, logic gates operating on these produce output, again as a binary
variable. This will allow us to represent a combinational circuit in formal way.

We will represent a logic function by capital letter throughout the book. One such
example is z = F(x, y). Here, the logic function F is defined on two binary variables x
and y. Output of the function is another binary variable z. Depending on the definition
of the logic function F, z will be represented in terms of binary variables x and y.

7.1.3 Truth Table
One way of describing input/output characteristics of a logic function is by forming its
truth table which will tabulate all input combinations on its left-hand side. For each
input combination, corresponding output will be provided on the right-hand side of the
table. Hence, a generic truth table will be as in Table 7.1.

TABLE 7.1 Generic Truth Table

Let’s assume that the logic function (or corresponding combinational circuit) has N
input variables. Since each binary variable can take two values, total number of input
combinations will be 2N. The truth table should tabulate all these combinations.
Output of the logic function for each input combination is either 0 or 1. Therefore, the
truth table describes combinational circuit characteristics precisely. In other words, we
know how the combinational circuit behaves for any given input. Hence, the truth table
will be our main tool in analyzing and designing combinational circuits.

7.2 Logic Gates
We have introduced logic gates as digital electronic devices in Sec. 2.1. Here, we
review them by focusing on their combinational characteristics. Moreover, we provide
hard-ware description language (HDL) description of all logic gates considered here.



7.2.1 The NOT Gate
NOT is the first logic gate to be considered. It is actually an inverter with single input
and output. Let’s assume that input to the NOT gate is represented by binary variable
x; and let output of the gate be binary variable y. Then, the NOT gate can be
represented by the logic function y = x. Truth table of the NOT gate based on this logic
function will be as in Table 7.2. Symbol of the NOT gate for this logic function is as in
Fig. 7.1.

TABLE 7.2 Truth Table of the NOT Gate

FIGURE 7.1 Symbol of the NOT gate.

7.2.1.1 The NOT Gate in Verilog
The NOT gate has a specific keyword not for structural modeling in Verilog. For
dataflow and behavioral modeling, operator for the NOT gate is “ ∼ “. Using these, we
can describe the logic function y = x in Verilog as follows:

Here, y and x correspond to output and input of the NOT gate, respectively. We named
the NOT gate as not_gate in structural modeling.

7.2.1.2 The NOT Gate in VHDL
The VHDL keyword for the NOT gate is not. Using it, we can describe the logic
function y =  as follows:



7.2.2 The OR Gate
OR is the second logic gate to be considered. It may have two or more inputs.
However, the gate has one output. The working principles of the OR gate are as
follows. Whenever any of its inputs has value 1, output will be 1. Output will be 0 if
and only if all inputs have value 0. To represent the input/output characteristics of the
OR gate, let’s assume it has two inputs as binary variables x and y; and let output of
the gate be binary variable z. The operator to represent the OR gate is “ + “. Based on
these, the two-input OR gate can be represented by the logic function z = x + y. The
truth table of the OR gate based on this logic function will be as in Table 7.3. The
symbol of the OR gate for this logic function is as in Fig. 7.2.

TABLE 7.3 Truth Table of the

FIGURE 7.2 Symbol of the OR gate.

FIGURE 7.3 Symbol of the NOR gate.



A NOT gate can be connected to output of the OR gate. This combination forms the
NOR (NOT-OR) gate. As in the OR gate, let’s assume inputs of this gate be
represented by binary variables x and y; and let output of the gate be binary variable z.
Then, the two-input NOR gate can be represented by the logic function z = x + y. The
truth table of the NOR gate based on this logic function will be as in Table 7.3. Only
out-put values will be inverted. The symbol of the NOR gate for this logic function is
as in Fig. 7.3.

7.2.2.1 The OR Gate in Verilog
The OR gate has a specific keyword or for structural modeling in Verilog. For
dataflow and behavioral modeling, the operator of the OR gate is “ | “. Using these, we
can describe the logic function z = x + y in Verilog as follows:

Here, z corresponds to output of the OR gate. x and y correspond to inputs of the gate.
Note that we can increase the number of inputs as we like. In structural modeling, we
named the OR gate as or_gate.

7.2.2.2 The OR Gate in VHDL
The VHDL keyword for OR gate is or. Using it, we can describe the logic function z =
x + y as follows:



7.2.3 The AND Gate
AND is the third logic gate to be considered. As in the OR gate, it may have two or
more inputs. However, it has one output. The working principles of the AND gate are
as follows. Whenever all of its inputs have value 1, output will be 1. Output will be 0 if
any of the inputs has value 0. To represent input/output characteristics of the AND
gate, let’s assume two inputs as binary variables x and y; and let output of the gate be
binary variable z. Operator to represent the AND gate is “ · “. Based on these, the two-
input AND gate can be represented by the logic function z = x · y. The truth table of
the AND gate based on this logic function will be as in Table 7.4. The symbol of the
AND gate for this logic function is as in Fig. 7.4.

FIGURE 7.4 Symbol of the AND gate.

A NOT gate can be connected to output of the AND gate. This combination forms
the NAND gate. As in the AND gate, let’s assume input to this gate be binary
variables x and y; and output of the gate be binary variable z. Then, the two-input
NAND gate can be represented by the logic function z = x · y. The truth table of the
NAND gate based on this logic function will be as in Table 7.4. Only output values
will be inverted. The symbol of the NAND gate for this logic function is as in Fig. 7.5.

TABLE 7.4 Truth Table of the AND Gate

FIGURE 7.5 Symbol of the NAND gate.

7.2.3.1 The AND Gate in Verilog
The AND gate has a specific keyword and for structural modeling in Verilog. For
dataflow and behavioral modeling, the operator for the AND gate is “ & “. Using
these, we can describe the logic function z = x · y in Verilog as follows:



Here, z corresponds to output of the AND gate. x and y correspond to inputs of the
gate. Note that we can increase the number of inputs as we like. In structural modeling,
we named the AND gate as and_gate.

7.2.3.2 The AND Gate in VHDL
The VHDL keyword for the AND gate is and. Using it, we can describe the logic
function z = x · y as follows:

7.2.4 The XOR Gate
The fourth and final logic gate to be considered is XOR (Exclusive-OR). This gate can
be constructed by using AND, OR, and NOT gates. Therefore, it may or may not be
taken as a fundamental logic gate. However, XOR is used in combinational circuit
representation. Therefore, we explore it in this section. The working principles of the
XOR gate are as follows. When two inputs of the gate have the same logic level (either
0 or 1), its output will be 0. Whenever the two inputs of the gate have different logic
levels, its output will be 1. To represent input/output characteristics of the XOR gate
based on this definition, let’s assume two inputs as binary variables x and y. Let output
of the gate be binary variable z. Then, two-input XOR gate can be represented by the
logic function z = (x · ) + (  · y). This logic function can be simplified by using the “ 

 “ operator to represent the XOR gate as z = x  y. The truth table of the XOR gate



based on this logic function will be as in Table 7.5. The symbol of the XOR gate for
this logic function is as in Fig. 7.6.

TABLE 7.5 Truth Table of the XOR Gate

FIGURE 7.6 Symbol of the XOR gate.

7.2.4.1 The XOR Gate in Verilog
The XOR gate has a specific keyword xor for structural modeling in Verilog. For
dataflow and behavioral modeling, the operator for the XOR gate is “ ˆ “. Using these,
we can describe the logic function z = x  y in Verilog as follows:

Here, z corresponds to output of the XOR gate. x and y correspond to inputs of the
gate. In structural modeling, we named the XOR gate as xor_gate.

7.2.4.2 The XOR Gate in VHDL
The VHDL keyword for the XOR gate is xor. Using it, we can describe the logic
function z = x  y as follows:



7.3 Combinational Circuit Analysis
Logic gates introduced in the previous section can be used to construct combinational
circuits. To understand the working principles of a combinational circuit, we should
analyze it. Therefore, we should first form a logic function between its inputs and
output(s). If needed, we can also form the truth table of combinational circuit based on
this representation. The final step in analysis is representing the combinational circuit
by less (or simpler) elements, which is called gate-level minimization.

7.3.1 Logic Function Formation between Input and Output
The first step in analyzing a combinational circuit is forming the logic function
between its inputs and output(s). Here, we assume that the corresponding circuit
diagram is at hand. Then, we should “read” this diagram. Let’s give a simple example.
Assume that a combinational circuit has been designed beforehand by discrete logic
gates as in Fig. 7.7. We would like to form the corresponding logic function.

FIGURE 7.7 Circuit diagram of a combinational circuit.

In Fig. 7.7, we specifically labeled output of each logic gate by a binary variable.
Based on these, we can represent input/output characteristics of the combinational
circuit. To do so, we first obtain output of each logic gate separately as follows:



These lead to input/output characteristics of the combinational circuit as follows:

This logic function can be implemented by an HDL in an FPGA. However, some
simplifications can be done on it before its implementation. Next, we will consider
how this can be done.

7.3.2 Boolean Algebra
We can benefit from Boolean algebra for gate-level minimization. Boolean algebra is
the framework to represent and analyze logic functions formed by binary variables and
logic gates. Boolean algebra can be explained in a rigorous way using mathematical
definitions. However, we will take a simpler approach in this book. The idea is to
cover basic definitions of Boolean algebra necessary for our purposes.

First, we will review basic identities by Boolean algebra. Let’s assume two binary
variables x and y. We can define identities on AND and OR gates as in Table 7.6.
Although these identities can be justified by using a truth table, the reader can consult
the mentioned reference for more rigorous proof [29].

We can describe Boolean algebra identities in Verilog as in Listing 7.1. Here, the
out-put of identities are represented by two arrays y_or[3:0] and y_and[3:0].
Corresponding VHDL description will be as in Listing 7.2. Synthesis result of the
Verilog description is as in Fig. 7.8. As can be seen in this figure, Vivado’s
optimization tool actually applied Boolean identities such that outputs are simplified
accordingly. Note that ground and supply voltage levels are represented by special
signs in this figure.



FIGURE 7.8 Synthesis result of Boolean identities.

Next, we will review basic Boolean algebra properties on AND, OR, and NOT
gates (or operations corresponding to them). These are involution, commutative,
associative, distributive, and absorption properties and DeMorgan’s theorem as
summarized in Table 7.7. Involution property tells us that applying NOT on a binary
variable twice gives its original value. Commutative property tells us that the order of
variables in logic gates is not important. Associative property tells us that if more than
one operation is done, then the order is not important. Distributive property tells us
that AND and OR operations are distributive on each other. As the name implies,
absorption property discards unnecessary variables. The reader can remember
DeMorgan’s theorem as follows. If the NOT operation is applied on an AND or OR
operation, inputs will be inverted. More-over, the operation will be changed from
AND to OR or vice versa. Again, rigorous proof of these properties can be found in
[29].



TABLE 7.6 Boolean Algebra Identities

Listing 7.1 Boolean Identity Operations in Verilog

Listing 7.2 Boolean Identity Operations in VHDL



TABLE 7.7 Boolean Algebra Properties on AND, OR, and NOT
Operations



TABLE 7.8 Truth Table of the Combinational Circuit in Fig. 7.7

7.3.3 Gate-Level Minimization
Gate-level minimization aims to simplify input/output characteristics of a
combinational circuit. The idea here is obtaining the same truth table with less number
of logic gates. This operation can be done using Boolean algebra identities and
properties introduced in the previous section. However, this requires expertise. There
are also very effective methods for gate-level minimization. In this book, we will
depend on Vivado’s optimization tool for gate-level minimization since it can handle
most cases very effectively. This does not mean that the reader should not know basics
of gate-level minimization.

Let’s see how gate-level minimization can be done on two examples. The first
combinational circuit to be minimized is the one in Fig. 7.7. As can be seen there, the
circuit is composed of six logic gates. The truth table of this combinational circuit is as
in Table 7.8. This truth table corresponds to the AND gate. Hence, the combinational
circuit can be represented by the logic function z = x · y. Therefore, one logic gate is
sufficient to implement it instead of using six gates.

As second example, let’s take the combinational circuit with the logic function z = x
· y + x · y. Boolean algebra identity and properties given in Tables 7.6 and 7.7 can be
used to simplify this logic function such that the end result will be z = y. In other
words, input x does not have any effect on the output of the combinational circuit. We
provide Verilog and VHDL descriptions of this combinational circuit in Listings 7.3
and 7.4.
Let’s take the Verilog description in Listing 7.3. We provide initial form of the
combinational circuit in Vivado (the RTL design) in Fig. 7.9a. As can be seen in this
figure, the combinational circuit is constructed exactly as represented by the Verilog
description. We also provide the synthesization result in Fig. 7.9b. As can be seen in
this figure, input x is not connected to any logic block. Therefore, Vivado’s
optimization tool worked as expected.



FIGURE 7.9 Gate-level minimization example in Vivado.

Listing 7.3 Verilog Description of the Combinational Circuit to be Minimized

Listing 7.4 VHDL Description of the Combinational Circuit to be Minimized



7.4 Combinational Circuit Implementation
We can implement a combinational circuit using several methods as explained in Sec.
2.3. Since the main focus of this book is on the FPGA-based implementation, we will
use the look-up table (LUT) representation for combinational circuits here. To do so,
we will start with the truth table–based implementation next. Then, we will consider
implementing combinational circuits with different number of inputs.

7.4.1 Truth Table-Based Implementation
A combinational circuit can be implemented when its truth table is available. The idea
here is focusing on input combinations producing output 0 or 1 separately. Each input
combination can be represented by a standard logic function. This leads to the overall
logic function of the combinational circuit.

To explain the truth table–based implementation methodology, let’s first focus on
input combinations producing output 1. Assume that the truth table of a two-input
combinational circuit is as in Table 7.9. As can be seen in this table, the output z will
be 1 when x = 0 and y = 1 or x = 1 and y = 1. This helps us forming the logic function
for the combinational circuit as follows. First, z should be 1 when x = 0 and y = 1. We
can satisfy this constraint by the logic function z =  · y. Second, z should be 1 when x
= 1 and y = 1. Using the same reasoning, we can form the logic function z =  · y.
Now, z will be 1 when either the first or second constraint is satisfied. Therefore, we
can form the final logic function as z =  · y + x · y.

TABLE 7.9 Truth Table of the Example Two-Input Combinational
Circuit

The logic function z =  · y + x · y can be described by only mentioning which input
combinations produce output 1. This representation is called sum of products (SOP).
As the name implies, each constraint is represented by an AND gate. The final logic
function is formed by applying OR gate to all constraints. Hence, the name sum of
products. For our example, the SOP form will be as z = ∑(1, 3). Here, the sum sign
represents the SOP form. The numbers within the parentheses stand for which input
combinations produce the output 1.

The truth table–based implementation can also be done by focusing on input
combinations producing the output 0 as the second case. Here, we can modify the truth



table by taking the inverse of the output. Then, it becomes as in Table 7.10. We can
form the logic function for  using the SOP representation as  = ∑(0, 2). Or, as a
logic function it becomes  =  ·  + x · . Using Boolean algebra properties in Table
7.7, we can obtain  This logic function can be represented in the
simplified form as z = (x + y) · (  + y). This representation is called product of sums
(POS). Different from SOP, here each constraint is represented by an OR gate. The
final logic function is formed by applying AND gate to all constraints. Hence, the
name product of sums. The above example can be represented in POS form as z = ∏(0,
2). Here, the product sign represents the POS form. Numbers within the parentheses
stand for which input combinations produce the output 0.

TABLE 7.10 Modified Truth Table of the Example Two-Input
Combinational Circuit

TABLE 7.11 Generic Truth Table of a One-Input Combinational
Circuit

The reader is free to choose the SOP or POS form in implementation. However, it is
advisable to choose the one which requires the less number of logic operations (gates)
in implementation. Next, we will focus on the multiplexer-based implementation
methodology for SOP and POS forms.

7.4.2 Implementing One-Input Combinational Circuits
Combinational circuits are implemented by LUTs in an FPGA. As explained in Sec.
2.2.3, a generic LUT is composed of a multiplexer and memory elements in its basic
form. Therefore, we will explore how a logic function (corresponding to a
combinational circuit) can be implemented by memory elements and multiplexers in
this and the following sections.

The first group of combinational circuits to be explored has one input. We can



represent a generic logic function for such a combinational circuit as y = F(x). Here, x
and y are the input and output variables, respectively. To implement this logic function
by a multiplexer, we should first form its truth table. The generic truth table will be as
in Table 7.11.

Based on the truth table in Table 7.11, we can construct an implementation using a
two-to-one multiplexer and memory elements as in Fig. 7.10. Here, the select pin of
the multiplexer is set as the input variable x. The multiplexer input pins are connected
to memory elements which are set according to output values of the logic function to
be implemented as indicated in its truth table. The multiplexer output corresponds to
the output of the logic function y.

FIGURE 7.10 Generic implementation of a one-input combinational circuit.

TABLE 7.12 Generic Truth Table of a Two-Input Combinational
Circuit

We can take the NOT gate as an example of one-input combinational circuit. Based
on its truth table in Table 7.2, implementation of this gate will be as in Fig. 7.11. As
can be seen in this figure, characteristics of the setup can be changed just by changing
input values of the multiplexer (set as memory elements).

FIGURE 7.11 NOT gate implemented by a two-to-one multiplexer.

7.4.3 Implementing Two-Input Combinational Circuits



The second group of combinational circuits to be explored has two inputs. We can
form a generic logic function to represent such a combinational circuit as z = F(x, y).
Here, x and y are input variables and z is the output of the logic function. The truth
table of this function will be as in Table 7.12.

We can implement the logic function z = F(x, y) in two different ways. First, the
truth table in Table 7.12 leads to the structure in Fig. 7.12 as in the previous section.
Here, a four-to-one multiplexer and memory elements are used. The select pins of the
multiplexer are set as input variables x and y. The multiplexer input pins are connected
to memory elements which are set according to output values of the logic function to
be implemented as indicated in its truth table. The multiplexer output corresponds to
the output of the logic function z.

Let’s consider the two-input OR, AND, and XOR gates as examples. These can be
implemented using the structure in Fig. 7.12 by their truth table as in Fig. 7.13.

FIGURE 7.12 Generic implementation of a two-input combinational circuit.

FIGURE 7.13 OR, AND, and XOR gates implemented by a four-to-one multiplexer.

TABLE 7.13 Generic Truth Table of a Two-Input Combinational
Circuit in Decomposed Form



The second implementation method for the logic function z = F(x, y) is by using
three separate two-to-one multiplexers. To explain this structure, let’s closely look at
Table 7.12. As can be seen in this table, the variable x will have the value 0 for the first
two input combinations. It will have the value 1 for the last two input combinations.
This allows us to decompose the truth table into two parts as in Table 7.13.

Let’s consider a hierarchical implementation strategy based on Table 7.13. To do
so, we should initially handle the first and second parts. Since the binary variable x is
fixed for each subpart, we will consider only the binary variable y. Therefore, the first
and second parts can be implemented by two two-to-one multiplexers. Input values of
the first multiplexer will be F(0, 0) and F(0, 1). Input values of the second multiplexer
will be F(1, 0) and F(1, 1). The select pin of these multiplexers will be set as the
binary variable y. The output of these multiplexers is fed to another two-to-one
multiplexer as input. The select pin of this multiplexer will be connected to the binary
variable x. The output of this multiplexer corresponds to the output of the logic
function F(x, y). Therefore, this multi-plexer will decide which part in Table 7.13 will
be connected to the output. Generic structure of this hierarchical implementation will
be as in Fig. 7.14. Logic gates in Fig. 7.13 can also be implemented this way.

As can be seen in Fig. 7.14, the hierarchical implementation is more complex
compared to the one in Fig. 7.12. However, it has one main advantage. This structure
allows implementing two different one-input combinational circuits with the same
input. Let’s assume that we have two such logic functions as y1 = F1(x) and y2 =
F2(x). We can implement these using the hierarchical structure as in Fig. 7.15. Here,
the binary variable s decides on which logic function is active.

FIGURE 7.14 Generic implementation of a two-input combinational circuit using hierarchical
structure.



FIGURE 7.15 Generic implementation of two one-input combinational circuits using
hierarchical structure.

TABLE 7.14 Generic Truth Table of a Three-Input Combinational
Circuit

7.4.4 Implementing Three-Input Combinational Circuits
The third and final group of combinational circuits to be explored has three inputs. We
can form a generic logic function to represent such a combinational circuit as w = F(x,
y, z). Here, x, y, and z are the input variables and w is the output of the logic function.
The truth table of this function will be as in Table 7.14.



FIGURE 7.16 Generic implementation of a three-input combinational circuit.

TABLE 7.15 Generic Truth Table of a Three-Input Combinational
Circuit Decomposed into Two Parts

We can implement the logic function w = F(x, y, z) in three different ways. The first
implementation method is based on a single eight-to-one multiplexer as in Fig. 7.16.
This is the straightforward method as introduced in the previous sections.

The second and third implementation methods for the logic function w = F(x, y, z)
are based on the hierarchical structure introduced in the previous section. Let’s start
with the second implementation method by decomposing the truth table of the logic
function w = F(x, y, z) into two parts as in Table 7.15. We can implement the first and
second parts separately using four-to-one multiplexers. The final form of this
implementation will be as in Fig. 7.17. Similar to the previous section, this structure
can also be used to implement two different two-input combinational circuits as z1 =
F1(x, y) and z2 = F2(x, y). We can implement these using the hierarchical structure as
in Fig. 7.18. Here, the binary variable s decides on which logic function is active.

The third implementation method for the logic function w = F(x, y, z) is based on
the hierarchical structure using two-to-one multiplexers. To do so, we should



decompose the truth table of the logic function w = F(x, y, z) into four parts as in Table
7.16. This leads to the implementation as in Fig. 7.19. This structure can also be used
to implement three one-input combinational circuits.

FIGURE 7.17 Generic implementation of a three-input combinational circuit using four-to-one
multiplexers.

FIGURE 7.18 Generic implementation of two two-input combinational circuits using
hierarchical structure.



TABLE 7.16 Generic Truth Table of a Three-Input Combinational
Circuit Decomposed into Four Parts

FIGURE 7.19 Generic implementation of a three-input combinational circuit using two-to-one
multiplexers.

The hierarchical implementation strategy can be generalized to combinational
circuits with more than three inputs. In fact, a similar idea has been applied to the LUT
formation in FPGAs as mentioned in Sec. 2.2.3. There, it is mentioned that in the
Artix-7
FPGA, each CLB slice has four six-input LUTs. This allows two seven-input LUT or



one eight-input LUT formation.

7.5 Combinational Circuit Design
Designing a combinational circuit requires expertise. Moreover, this is a topic of its
own. On the other hand, there are some standard steps to be followed for any design.
In this section, we will introduce these steps such that they can be applied throughout
the book.

7.5.1 Analyzing the Problem to Be Solved
The first and most important step in designing a combinational circuit is understanding
the problem to be solved. In other words, the problem to be solved should be well-
defined. This leads to forming the solution. At this step, design constraints should also
be taken into account. Related to this, the input data to be processed and the output to
be fed by the circuit should be set. This will allow defining input and output binary
variables to be processed. Here, the reader should remember that a combinational
circuit gets input as logic levels 0 or 1 (or voltage values corresponding to these).
Therefore, if an input is to be received from a sensor, it should be adjusted
accordingly. The output of the combinational circuit will also be in the form of logic
levels 0 or 1. Therefore, if an actuator is to be driven by output of the combinational
circuit, a suitable interface should be established between the combinational circuit
and actuator.

7.5.2 Selecting a Solution Method
After analyzing the problem, the next step is forming a method or algorithm to solve it.
Since we are dealing with combinational circuits, the solution will be in terms of a
logic function between the inputs and output of the circuit. The formed logic function
should satisfy all design constraints specified in the previous step.

7.5.3 Implementing the Solution
The final step in the design process is the implementation. Since the main focus of this
book is on the FPGA, we will implement the design on it. Therefore, the
corresponding HDL for the designed combinational circuit should be formed first.
Afterward, we can benefit from the Vivado’s optimization tool for gate-level
minimization. It is also advisable to simulate the designed system before
implementation. If it satisfies all design constraints, then the corresponding bitstream
can be generated and embedded on the FPGA chip. Hence, the design is concluded.

7.6 Sample Designs
We can apply the previous design steps on designing combinational circuits to solve
real-life problems. Here, we pick three such cases as home alarm, digital safe, and car
park occupied slot counting system. We will discuss each design next.



7.6.1 Home Alarm System
We can design a basic home alarm system using tools introduced in this and previous
chapters. To do so, let’s first define the problem. Assume that the alarm system to be
designed is to be applied on three windows and a door. Each window and the door has
a sensor such that when it is opened, it will give logic level 1. There should be an
on/off switch for the alarm. If we want to activate the alarm, the switch will give logic
level 1. Otherwise, it will give logic level 0. At this point, the problem is defined and
design constraints are set.

To implement the combinational circuit for the design, let’s assign binary variables
s0, s1, s2, and s3 to each sensor output. Let the on/off switch be represented by the
binary variable m. Let’s define the binary variable a as an output. This variable will
have logic value 1 when an intruder triggers the alarm. Otherwise, the output of the
system will be logic level 0. Based on all these constraints, the logic function between
the input and output will be a = (s0 + s1 + s2 + s3) · m. The corresponding circuit
diagram will be as in Fig. 7.20.

We can form Verilog description of the circuit in Fig. 7.20 as in Listing 7.5. The
VHDL description of the same circuit will be as in Listing 7.6. Vivado synthesizes the
Verilog or VHDL description as in Fig. 7.21. As can be seen in this figure, one five-
input LUT is sufficient for implementation.

FIGURE 7.20 Circuit diagram of the home alarm system.

Listing 7.5 Verilog Description of the Home Alarm System

Listing 7.6 VHDL Description of the Home Alarm System



FIGURE 7.21 Synthesization result of the home alarm system.

7.6.2 Digital Safe System
We can design a simple digital safe using combinational circuits. Assume that the
system has a four-bit predefined password. We will use four switches as the input to
the system. If the input matches the predefined password, then the first output will
have logic level 1. Otherwise, the second output will have logic level 1.

We can implement the corresponding combinational circuit using an XOR gate
followed by a NOT gate for each bit to be tested. Therefore, if input bit matches the
corresponding password bit, then the XOR gate followed by NOT will give logic level
1. If all input bits match corresponding predefined password bits this way, the first
output will have logic level 1 and the second output will have logic level 0. The second
output will simply be inverse of the first output.

To implement the combinational circuit for the design, let’s assign binary variables



s0, s1, s2, and s3 as input. Predefined password can be represented as p[0] · · · p[3].
Let’s define the first and second outputs as binary variables l1 and l2, respectively.
The logic function between the inputs and first output variable will be 

  The second output will be l1 = . The
corresponding circuit diagram will be as in Fig. 7.22.

We can form Verilog description of the circuit in Fig. 7.22 as in Listing 7.7. The
VHDL description of the same circuit will be as in Listing 7.8. Vivado synthesizes the
Verilog description as in Fig. 7.23. As can be seen in this figure, two four-input LUTs
are sufficient for implementation.

FIGURE 7.22 Circuit diagram of the digital safe system.

Listing 7.7 Verilog Description of the Digital Safe System

Listing 7.8 VHDL Description of the Digital Safe System



FIGURE 7.23 Synthesization result of the digital safe system.

7.6.3 Car Park Occupied Slot Counting System
Our last real-life problem is as follows. There is a car park with three slots and we
would like to know how many of its slots are occupied at a given time. Within the
design, occupied slot locations are not important. We can design a combinational
circuit for this purpose. Assume that we placed a sensor over each slot which gives
output logic level 1 when the slot is occupied. If the slot is empty, sensor gives output
logic level 0. Let’s label output of sensors as binary variables s0, s1, and s2. The
designed combinational circuit will provide the output as a two-bit binary number c1
(MSB) and c0 (LSB). Therefore, we should cover all input combinations in terms of a
truth table as in Table 7.17.



Using Table 7.17, we can form logic functions for c0 and c1 in the SOP form as
follows:

TABLE 7.17 Truth Table of the Car Park Occupied Slot Counting
System

Listing 7.9 Verilog Description of the Car Park Occupied Slot Counting System

Listing 7.10 VHDL Description of the Car Park Occupied Slot Counting System



FIGURE 7.24 Synthesization result of the car park occupied slot counting system.

Listing 7.11 Home Alarm System Implemented on the Basys3 Board in Verilog

We can implement these logic functions in Verilog and VHDL as in Listings 7.9 and
7.10. Vivado synthesizes the Verilog description as in Fig. 7.24. As can be seen in this
figure, two LUTs each with three inputs are sufficient for implementation.



7.7 Applications on Combinational Circuits
In this section, we will implement sample designs in Sec. 7.6 on the Basys3 board.
There-fore, we will cover home alarm, digital safe, and car park occupied slot counting
systems. For all three applications, we will get input bit values from switches on the
board. Out-put bit values are represented by LEDs on the board. The reader can
consult Sec. 4.8 related to this setup.

7.7.1 Implementing the Home Alarm System
We can implement the home alarm system on the Basys3 board. Therefore, we provide
the Verilog description in which LEDs and switches on the board are connected as the
input and output in Listing 7.11. Here, we use the Verilog description of the system in
Listing 7.5 as an IP block. Therefore, we expect the reader has generated the
corresponding IP block.

7.7.2 Implementing the Digital Safe System
As in previous application, we can implement the digital safe system on the Basys3
board. In Listing 7.12, we provide the Verilog description in which LEDs and switches
on the board are connected as the input and output. Here, we use the Verilog
description of the system in Listing 7.7 as an IP block. Therefore, we expect the reader
has generated the corresponding IP block.

Listing 7.12 Digital Safe System Implemented on the Basys3 Board in Verilog

Listing 7.13 Car Park Occupied Slot Counting System Implemented on the Basys3
Board in Verilog



7.7.3 Implementing the Car Park Occupied Slot Counting System
We can also implement the car park occupied slot counting system on Basys3 board.
As in previous applications, we provide Verilog description in which LEDs and
switches on the board are connected in Listing 7.13. Here, we use Verilog description
of the system in Listing 7.9 as an IP block. Therefore, we expect the reader has
generated the corresponding IP block.

7.8 FPGA Building Blocks Used in Combinational Circuits
LUTs are extensively used in the combinational circuit implementation as explained in
detail in Sec. 7.4. Hence, CLBs will be the main blocks to be used in this chapter.
Besides, interconnect resources and input/output blocks are needed while
implementing a combinational circuit.

7.9 Summary
Combinational circuits and their properties were the main focus of this chapter. There-
fore, we started with analyzing basic logic gates NOT, OR, AND, and XOR. Then, we
introduced tools to analyze combinational circuits formed by these basic logic gates.
At this step, we benefited from Vivado extensively. Hence, we did not cover
mathematical derivations and methods. Instead, we directed the reader to related
references. We then explored how combinational circuits can be designed. Related to
this, we provided sample designs to show how real-life problems can be solved using
combinational circuits. We also provided sample designs on real-life problems in
exercises. We believe that solving these will let the reader grasp digital design
principles at least from the combinational circuit perspective.

7.10 Exercises
7.1   Form the truth table of a three-input

a. AND gate.
b. OR gate.

7.2   Construct three- and four-input AND gates using two-input AND gates.



7.3   Construct three- and four-input OR gates using two-input OR gates.
7.4   A combinational circuit is represented by logic function F(x, y, z) = x · y + y · z +

z · x. Implement this circuit using
a. an eight-to-one multiplexer.
b. four-to-one and two-to-one multiplexers.
c. two-to-one multiplexers.

7.5   Describe the combinational circuit in Exercise 7.4 in Verilog or VHDL.
7.6   A combinational circuit is represented by logic function F(x, y, z) = x · z + x · y.

Implement this circuit using
a. an eight-to-one multiplexer.
b. four-to-one and two-to-one multiplexers.
c. two-to-one multiplexers.

7.7   Describe the combinational circuit in Exercise 7.6 in Verilog or VHDL.
7.8   A combinational circuit is represented in the SOP form F(x, y, z) = ∑(0, 2, 4, 6).

a. Describe this circuit in Verilog or VHDL using dataflow modeling.
b. Obtain the simplest form of this circuit.

7.9   Construct the truth table of a three-input XOR gate. Describe the POS form of
this gate in Verilog or VHDL using the dataflow modeling.

7.10   (Two’s complement calculator.) Design a combinational circuit with the
following specifications. Input to the circuit is a three-bit unsigned number.
Output of the circuit is two’s complement of input. Implement the designed
combinational circuit either in Verilog or VHDL.

7.11   (Two’s complement calculator with sign bit.) Design a combinational circuit
with the following specifications. Input to the circuit is a four-bit signed
number. Output of the circuit is the three value bits. If the number is negative,
then it is represented in two’s complement form at output. Implement the
designed combinational circuit either in Verilog or VHDL.

7.12   (Arithmetic operations.) Arithmetic operations introduced in Chap. 6 can be
implemented by combinational circuits. Let’s take two two-bit numbers x[1]x[0]
and y[1]y[0].
a. Design combinational circuits for arithmetic operations on these numbers as

addition, subtraction, multiplication, and division.
b. Implement the designed combinational circuits either in Verilog or VHDL.
c. Compare the implemented design with the ones provided in Chap. 6 in terms

of the FPGA resource usage.
7.13   (Fire alarm system.) Design a fire alarm system with the following

specifications. The system has an on/off switch. The system works only if the
switch is on. There is a smoke detector giving the output in three bits. When the
smoke density is maximum, the output of the sensor is seven in the binary form.



When there is no smoke detected, the output of the sensor is zero in the binary
form. The alarm will be active if the output of the smoke detector exceeds four
in the binary form. Implement the designed combinational circuit either in
Verilog or VHDL.

7.14   (Seven-segment display decoder.) In digital systems, seven-segment displays
are used extensively. The display has seven independent segments (A, B, C, D,
E, F, G) as in Fig. 7.25.

FIGURE 7.25 Seven-segment display.

Design a decoder circuitry with a four-bit input representing a decimal
number. The decoder converts this number to corresponding seven-segment pin
pattern as in Table 7.18. Implement the designed combinational circuit either in
Verilog or VHDL.

TABLE 7.18 Seven-Segment Display Patterns

7.15   (Keypad decoder.) A simple keypad can be represented as in Fig. 7.26. As can
be seen in this figure, the keypad has seven output lines, three for row and four
for column locations, respectively. When a key is pressed, corresponding row
and column lines will produce logic level 1. Design a combinational circuit
working as a keypad decoder. The input of the circuit will be the output lines of



the keypad. The output of the circuit will be the corresponding binary number in
three bits. If * or # key is pressed, the output of the circuit will be zero.
Implement the designed combinational circuit either in Verilog or VHDL.

FIGURE 7.26 Simple keypad.

7.16    Merge the designs in Exercises 7.14 and 7.15 such that when a number is
pressed on the keypad, it is shown in the seven-segment display. Implement the
designed combinational circuit either in Verilog or VHDL.

7.17   (Remote controller—key pattern generator.) Design a simple remote
controller key pattern generator system with the following specifications. Only
the key pattern part is handled in the design. There are three buttons on the
controller. When the first one is pressed, the combinational circuit should
produce pattern 001. For the second and third buttons, this pattern will become
010 and 100, respectively. When more than one button is pressed, the output of
the combinational circuit will be the pattern 000. This pattern will also be used
when no button is pressed. Implement the designed combinational circuit either
in Verilog or VHDL.

7.18   (Even/odd number detector.) Design an even/odd number detector with the
following specifications. Input to the system is a four-bit number. If the number
is even, the first output will be logic level 1. Otherwise, the second output will
be logic level 1. Implement the designed combinational circuit either in Verilog
or VHDL.

7.19   (Simple safety belt alarm system for cars.) Design a simple safety belt alarm
system for cars. Only the front seat safety belts are of focus. The alarm system
works as follows. If the car engine has started, the passenger has seated, and the
passenger has not plugged in the belt, then alarm signal starts till the belt has
been plugged in. The engine status (started or not) is provided by a digital
signal. If the engine has started and operating, logic level 1 is fed. Otherwise,
logic level 0 is fed. Pressure sensor attached to the driver and passenger seats
provide a digital signal with logic level 1 when a mass produces pressure.
Otherwise, the sensor provides logic level 0. The safety belt plug-in apparatus
has a digital sensor such that when the belt is plugged in, it produces logic level
1. Otherwise, it produces logic level 0. Although an audio alarm signal is
desirable, in this question we will use two LEDs to indicate the alarm. If the
driver has seated, started the engine, and not plugged the belt, the alarm will
turn on till the belt is plugged in. The same settings in the driver seat apply to
the passenger seat. Please note that the two seat alarms operate independently.



Implement the designed combinational circuit either in Verilog or VHDL.
7.20   (Joystick application.) Use the joystick setup in Exercise 6.14 to form a new

Verilog or VHDL description. Here, when the joystick goes to its four limits
(two for x-axis and two for y-axis) four separate LEDs on the Basys3 board
(led[0], led[3], led[6], and led[9]) will turn on separately. Otherwise, all LEDs
will turn off.
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CHAPTER 8
Combinational Circuit Blocks

e have introduced combinational circuits in the previous chapter.
There, the focus was on general characteristics of these circuits. There
are also well-known combinational circuit blocks used in digital
systems. These can be counted as adders, comparators, decoders,
encoders, multiplexers, parity generators, and checkers. This chapter
discusses these combinational circuit blocks.

8.1 Adders
Although addition is performed using a different method in an FPGA, the basic adder
circuit is still worth analyzing. Therefore, we will consider it in this section. There are
two basic adder types: half and full.

8.1.1 Half Adder
The half adder (for one-bit addition) has two inputs and two outputs. It adds input bits
and gives sum and carry-out bits as the output. The truth table of the one-bit half adder
is presented in Table 8.1. In this table, binary variables x and y stand for input bits to
be added. Binary variables s and co represent sum and carry-out values, respectively.



TABLE 8.1 Truth Table of the Half Adder (for One-Bit Addition)

As can be seen in Table 8.1, the carry-out bit has logic level 1 when both input bits
are at logic level 1. This corresponds to the AND operation. The sum bit (s) has logic
level 1 when input bits have different logic levels. This corresponds to the XOR
operation. Based on these observations, the half adder can be constructed as in Fig.
8.1.

FIGURE 8.1 Circuit diagram of half adder.

8.1.2 Full Adder
The half adder does not take the input carry-in bit into account in operation. This
causes problems when adding binary numbers with more than one digit. The full adder
is introduced to overcome this problem. Besides having two input pins, the full adder
also has a carry-in pin. The truth table of this device is presented in Table 8.2. In this
table, binary variables x and y stand for input bits to be added. Binary variable ci
stands for the carry-in bit. Binary variables s and co represent sum and carry-out bits,
respectively. As in half adder, circuit diagram of full adder can be constructed by
analyzing Table 8.2. The final constructed circuit diagram of the full adder is shown in
Fig. 8.2.

TABLE 8.2 Truth Table of Full Adder (for One-Bit



FIGURE 8.2 Circuit diagram of full adder.

8.1.3 Adders in Verilog
As mentioned in Chap. 6, addition is handled differently in an FPGA: either the DSP
block is used for this operation or a LUT structure is formed. We have introduced the
addition operation in Verilog in Sec. 6.7. Here, we will only provide half and full
adders in the gate level. Let’s start with the one-bit half adder. We provide the Verilog
description for this circuit in Listing 8.1. Here, x and y represent input bits to be added.
s and co stand for sum and carry-out bits, respectively.

We next provide the Verilog description of the one-bit full adder in Listing 8.2. The
only difference here is that the device has an extra carry-in bit represented as ci.

8.1.4 Adders in VHDL
We have introduced the addition operation in VHDL in Sec. 6.9. Here, we will only
provide half and full adders in the gate level. Let’s start with the one-bit half adder.

Listing 8.1 Verilog Description of One-Bit Half Adder

Listing 8.2 Verilog Description of One-Bit Full Adder



Listing 8.3 VHDL Description of One-Bit Half Adder

Listing 8.4 VHDL Description of One-Bit Full Adder



We provide the VHDL description for this circuit in Listing 8.3. Binary variables used
in this description are the same as in the previous section.

We next provide the VHDL description of the one-bit full adder in Listing 8.4. As
in the Verilog description, the only difference here is that the circuit has an extra carry-
in bit represented as ci.

8.2 Comparators
We may need to compare the magnitude of two binary numbers to obtain their status.
Here, the first number may be greater than the second. The two numbers may be equal.
Or, the first number may be less than the second. To achieve this goal, we will need a
comparator. We can explain the comparison operation on two binary variables x and y
(each being one bit) using the truth table presented in Table 8.3. Here, g, e, and l stand
for greater, equal, and less, respectively.

TABLE 8.3 Truth Table of the One-Bit Comparator

Based on Table 8.3, we can obtain logic functions between inputs and outputs of
the one-bit comparator as follows:



Obtained logic functions lead to the circuit diagram of the one-bit comparator as in
Fig. 8.3.

8.2.1 Comparators in Verilog
We provide the Verilog description of the one-bit comparator in terms of structural
and dataflow modeling forms in Listing 8.5. Here, we implemented the circuit in Fig.
8.3. Therefore, input bits to be compared are represented by binary variables x and y.
Output values are represented by binary variables g, e, and l.

FIGURE 8.3 Circuit diagram of one-bit comparator.

The Verilog description of an N-bit comparator to compare two N-bit numbers
using dataflow and structural modeling will be complex. Therefore, behavioral
modeling will be more appropriate for this case. To do so, we need to introduce
relational operators and conditional statements in Verilog. Let’s start with relational
operators.

8.2.1.1 Relational Operators in Verilogs
While constructing a Verilog description, we may need to compare two variables or
vectors. Verilog has specific operators for this purpose. We provide operators to be
used in this book and their explanation in Table 8.4 using two binary variables x and y.
As these operations are executed, their result will be either logic level 0 or 1 based on
whether the given condition is satisfied or not.

Listing 8.5 Verilog Description of One-Bit Comparator



TABLE 8.4 Relational Operators in Verilog

8.2.1.2 Conditional Statements in Verilog
Verilog allows forming conditional statements using if keyword under behavioral
modeling. Via this keyword, given statements can be executed if the condition is
satisfied. The condition can be formed by a single variable, two or more variables
combined with logical operators, or relational operators. The syntax of a conditional
statement using the if keyword is as follows:



The if keyword also allows using else if and else keywords. The syntax for their
usage is as follows. The else if keyword allows adding a new condition (in a
sequential manner). The else keyword is executed if none of the above conditions are
satisfied.

An N-bit comparator can be constructed by the if keyword. We provide such a
Verilog description only for behavioral modeling in Listing 8.6. Here, two vectors
each with four-bits (x and y) are compared and the result is written to another vector
comp. If the first vector is greater than the second one, then comp[2]=1. If the second
vector is greater than the first one, then comp[0]=1. Finally, if the two vectors are
equal, then comp[1]=1. We provide the RTL schematic of the four-bit comparator in
Fig. 8.4. As can be seen in this figure, equality operators and multiplexers are used in
synthesizing the Verilog description. We will analyze how the comparator is
implemented in an FPGA in Sec. 8.8.

Listing 8.6 Verilog Description of Four-Bit Comparator Using if Keyword



FIGURE 8.4 RTL schematic of four-bit comparator.

8.2.2 Comparators in VHDL
We next provide the VHDL description of the one-bit comparator in terms of the
dataflow modeling in Listing 8.7. As in the Verilog description in Listing 8.5, we
directly implement the circuit in Fig. 8.3. Hence, input bits to be compared are
represented by binary variables x and y. Output values are represented by binary
variables g, eq, and l.

The VHDL description of an N-bit comparator using dataflow modeling will be
complex. Therefore, behavioral modeling will be more appropriate for this case. To do
so, we will introduce relational operators and conditional statements in VHDL. Let’s
start with relational operators.

8.2.2.1 Relational Operators in VHDL
While constructing a VHDL description, we may need to compare two variables or
arrays. As in Verilog, VHDL has specific operators for this purpose. We provide the
operators to be used in this book and their explanation using two binary variables x
and y in Table 8.5. As these operations are executed, their result will be either logic



level 0 or 1 based on whether the given condition is satisfied or not.

Listing 8.7 VHDL Description of One-Bit Comparator

TABLE 8.5 Relational Operators in VHDL

8.2.2.2 Conditional Statements in VHDL
As in Verilog, VHDL allows adding conditional statements to a behavioral description
using if keyword. Via this keyword, given statements can be executed if the condition
is satisfied. The condition can be formed by a single signal, two or more signals
combined with logical operators, or relational operators. The syntax of a conditional
statement using the if keyword is as follows:

The if keyword also allows using elsif and else keywords. The syntax for their



usage is as follows. The elsif keyword allows adding a new condition (in a sequential
manner). The else keyword is executed if none of the above conditions are satisfied.

An N-bit comparator can be constructed by the if keyword. We provide such a
VHDL description only for behavioral modeling in Listing 8.8. Here, two arrays each
being four-bits (x and y) are compared and the result is written to another array comp.
If the first array is greater than the second one, then comp(2)=1. If the second array is
greater than the first one, then comp(0)=1. Finally, if the two arrays are equal, then
comp(1)=1. The RTL schematic of the VHDL description will be as in Fig. 8.4.

Listing 8.8 VHDL Description of Four-Bit Comparator Using the if Keyword



TABLE 8.6 Truth Table of Two-to-Four Decoder

8.3 Decoders
Basic usage of a decoder is to decode its input and give specific output corresponding
to it. In general, the decoder has N inputs and 2N outputs to cover all input
combinations. Let’s focus on the two-to-four decoder with the truth table presented in
Table 8.6. As can be seen in this table, there are two inputs and four (22) outputs. The
output corresponding to a given input will be at logic level 1. For this combination, all
other outputs will be at logic level 0. Hence, the input is decoded.

The decoder can be constructed by AND and NOT gates. The circuit diagram of the
two-to-four decoder will be as in Fig. 8.5. As can be seen in this figure, the decoder is
constructed by two NOT and four AND gates. If we consider y0, it gives logic level 1
only when x0 and x1 are at logic level 0. Therefore, zeroth input sets output y0. This
input combination sets all other outputs to logic level 0.

FIGURE 8.5 Circuit diagram of two-to-four decoder.

8.3.1 Decoders in Verilog
We provide the Verilog description of the two-to-four decoder in Listing 8.9. Here, we
implemented the circuit in Fig. 8.5. Therefore, input to the decoder is represented by
the two-element vector x. The output of the decoder is represented by the four-element
vector y.

The Verilog description of the three-to-eight decoder using dataflow and structural
modeling will be complex. Behavioral modeling will be more appropriate for this case.
Here, we can use the if keyword to construct conditional statements. However,



Verilog

Listing 8.9 Verilog Description of Two-to-Four Decoder

also has another keyword which is more appropriate for the decoder structure. This
keyword is case with the syntax as follows:

As can be seen here, the variable to be used in the case statement is defined in
parentheses just after the keyword. For each value of this variable, a statement is
assigned. If we have more than one statement for a variable, then we should use block
keywords (begin and end) to encapsulate them. Note that variable values need not be
exhaustive. We can only define values of interest. Then, we can define a default value



for the rest. Moreover, we can group variable values by adding a comma in between.
This way, we can eliminate duplicates. We provided such an example on the fourth
and fifth values above.

The three-to-eight decoder can be constructed by the case keyword. We provide
such a Verilog description only for behavioral modeling in Listing 8.10. In this
description, the input to the decoder is represented by the three-element vector x. The
output of the decoder is represented by the eight-element vector y. We provide the
RTL schematic of the three-to-eight decoder in Fig. 8.6. As can be seen in this figure,
only a block memory element (ROM, to be explored in Sec. 9.5) is used in
synthesizing the Verilog description. We will analyze how the decoder is implemented
in an FPGA in Sec. 8.8.

FIGURE 8.6 RTL schematic of three-to-eight decoder.

Listing 8.10 Verilog Description of Three-to-Eight Decoder Using case Keyword

8.3.2 Decoders in VHDL



We next provide the VHDL description of the two-to-four decoder in terms of
dataflow modeling in Listing 8.11. As in the Verilog description in Listing 8.9, we
directly implement the circuit in Fig. 8.5. Therefore, the input to the decoder is
represented by a two-element array x. The output of the decoder is represented by a
four-element array y.

As in Verilog, the VHDL description of the three-to-eight decoder using dataflow
and structural modeling will be complex. Behavioral modeling will be more
appropriate for this case. Here, we can use the if keyword to construct conditional
statements. However, VHDL also has another keyword which is more appropriate for
the decoder structure. This keyword is case with the syntax as follows:

Listing 8.11 VHDL Description of Two-to-Four Decoder

Listing 8.12 VHDL Description of Three-to-Eight Decoder Using case Keyword



As can be seen here, the variable to be used in the case statement is defined just
after the keyword. For each value of this variable, a statement is assigned. The reader
can use the others keyword to define the default case.

The three-to-eight decoder can be constructed by the case keyword. We provide
such a VHDL description only for behavioral modeling in Listing 8.12. In this
description, the input to the decoder is represented by a three-element array x. The
output of the decoder is represented by an eight-element array y. The RTL schematic
of the VHDL description will be as in Fig. 8.6.

8.4 Encoders
The encoder works just as the opposite of the decoder. Its function is to encode a given
input and provide encoded output. In general, an encoder has at most 2N inputs and N
outputs. Let’s focus on the four-to-two encoder with the truth table presented in Table
8.7.



TABLE 8.7 Truth Table of the Four-to-Two Encoder

As can be seen in Table 8.7, the output of the encoder is the binary representation
of the input. While constructing the truth table, we assumed that no two inputs will
have logic level 1 at the same time. If such a case occurs, then the output of the
decoder becomes unpredictable. To overcome this problem, we can add priority to
inputs such that the output is the one with the higher precedence. Based on this form,
the new truth table becomes as in Table 8.8. Here, don’t care conditions are
represented by “ - “ sign. Within the priority encoder, we still assume that all inputs
will not be zero at the same time. To check whether such an input comes, we can add a
valid signal, v, to the output. This will indicate that the obtained output is either valid
or not.

TABLE 8.8 Truth Table of Four-to-Two Priority Encoder

Based on Table 8.8, we can construct the combinational circuit of the four-to-two
priority encoder as follows:

The above input–output relations lead to the circuit diagram of the four-to-two
priority encoder as in Fig. 8.7.



FIGURE 8.7 Circuit diagram of four-to-two priority encoder.

8.4.1 Encoders in Verilog
We provide the Verilog description of the four-to-two priority encoder in Listing 8.13.
Here, we directly implement the circuit in Fig. 8.7. Therefore, the input of the encoder
is represented by a four-element vector x. The output of the encoder is represented by a
two-element vector y and a binary variable v.

We next focus on an eight-to-three priority encoder. Unfortunately, the dataflow
and structural models will be complex for this device. Therefore, we will provide only
the behavioral model in Verilog. Here, we will again benefit from the case keyword.
How-ever, since we have don’t care conditions in operation, we will use the casex
keyword instead. We provide the Verilog description in Listing 8.14. In this
description, the input to the encoder is represented by an eight-element vector x. The
output of the encoder is represented by a three-element vector y. Within this
description, we discarded the valid (v) output. Instead, we set the output to high
impedance (z) for such cases. We provide the RTL schematic of the eight-to-three
priority encoder in Fig. 8.8. As can be seen in this figure, two block memory elements
(ROM) are used in synthesizing the Verilog description. We will analyze how priority
encoder is implemented in an FPGA in Sec. 8.8.

FIGURE 8.8 RTL schematic of an eight-to-three priority encoder.

Listing 8.13 Verilog Description of Four-to-Two Priority Encoder



Listing 8.14 Verilog Description of Eight-to-Three Priority Encoder Using casex
Keyword



8.4.2 Encoders in VHDL
We next provide the VHDL description of the four-to-two priority encoder in terms of
the dataflow modeling in Listing 8.15. As in the Verilog description in Listing 8.9, we
directly implement the circuit in Fig. 8.7. Therefore, the input to the encoder is
represented by a four-element array x. The output of the encoder is represented by a
two-element array y and a binary variable v.

As in Verilog, the dataflow modeling of an eight-to-three encoder in VHDL will be
complex. Therefore, we consider only the behavioral model of this device in VHDL.
We next provide this description in Listing 8.16. Here, the input to the encoder is
represented by an eight-element array x. The output of the encoder is represented by a
three-element array y. The RTL schematic of the VHDL description will be as in Fig.
8.8.

Listing 8.15 VHDL Description of Four-to-Two Priority Encoder



Listing 8.16 VHDL Description of Eight-to-Three Priority Encoder

8.5 Multiplexers
We have introduced the multiplexer in Sec. 2.2.3. Moreover, we have used it in the
combinational circuit implementation in Chap. 7. For completeness, let’s review its



fundamental properties. The multiplexer is a combinational circuit that transfers data
coming from several inputs to single output. Therefore, it can be used to select a
specific input from a group of inputs and feed it to the output. To perform this task, the
multiplexer has N select pins, 2N input pins, and one output pin.

TABLE 8.9 Truth Table of Four-to-One Multiplexer

Let’s focus on a four-to-one multiplexer. This device has four inputs, two select
pins, and one output with the truth table presented in Table 8.9. In this table, select
pins are represented by binary variables s0 and s1. Inputs are labeled as x0, · · ·, x3.
The output of the multiplexer is represented by binary variable y.

FIGURE 8.9 Circuit diagram of a four-to-one multiplexer.

We can implement a four-to-one multiplexer as in Fig. 8.9. As can be seen in this
figure, only one AND gate is enabled for each select input sequence. For instance, the
first AND gate is enabled when s1 and s0 are at logic level 0. All other AND gates are
disabled for this sequence. Hence, only input x0 appears at output y.

8.5.1 Multiplexers in Verilog
We provide the Verilog description of a four-to-one multiplexer in Listing 8.17. Here,
we directly implemented the circuit in Fig. 8.9. Therefore, select values are



represented by a two-element vector s; inputs are represented by a four-element vector
x; and the output is represented by binary variable y.

For the eight-to-one multiplexer, the dataflow and structural representations in
Verilog will be complex. On the other hand, the behavioral model in Verilog will be
neat. We next provide such a description in Listing 8.18. As in a four-to-one
multiplexer, select pins are represented by a three-element vector s; inputs are
represented by an eightelement vector x; and the output is represented by a binary
variable y in this description. We provide the RTL schematic of an eight-to-one
multiplexer in Fig. 8.10. As can be seen in this figure, the multiplexer is used in
synthesizing the Verilog description as it is.

FIGURE 8.10 RTL schematic of eight-to-one multiplexer.

Listing 8.17 Verilog Description of Four-to-One Multiplexer



Listing 8.18 Verilog Description of Eight-to-One Multiplexer



Listing 8.19 VHDL Description of Four-to-One Multiplexer

8.5.2 Multiplexers in VHDL
We next provide the VHDL description of a four-to-one multiplexer in Listing 8.19.
As in the Verilog description, here we directly implemented the circuit in Fig. 8.9.
Therefore, select pins are represented by a two-element array s; inputs are represented
by a four-element array x; and the output is represented by a binary variable y.

As in Verilog, the dataflow model of an eight-to-one multiplexer in VHDL will be
complex. Therefore, we consider only the behavioral model for this device. We next
provide this description in Listing 8.20. As in a four-to-one multiplexer, select pins are
represented by a three-element array s; inputs are represented by an eight-element



array x; and the output is represented by a binary variable y in this description. The
RTL schematic of the VHDL description will be as in Fig. 8.10.

TABLE 8.10 Truth Table of Three-Bit Even-Parity Generator

Listing 8.20 VHDL Description of Eight-to-One Multiplexer



8.6 Parity Generators and Checkers
While transferring or storing binary data, some bit values may change because of a
physical effect or an unpredicted disturbance. To check whether such an undesired
change has occurred or not, extra bits can be added to the data. This is called parity
generation. The idea here is setting standard characteristics to data such that when a
change occurs, it can be detected easily.

8.6.1 Parity Generators
One simple method in parity generation is adding an extra bit to set the total number of
bits in a binary data block as even or odd. The idea here is as follows. If a bit value
changes from logic level 1 to 0 (or vice versa) by an undesired effect, the total number
of even (or odd) bits will not satisfy the initial condition. Therefore, the change can be
detected easily. There are two options here. The first option is setting the total number
of ones to be even. This is called even parity. The second option is setting the total
number of ones to be odd. This is called odd parity.

Let’s assume three-bit data. Furthermore, assume that even parity will be applied to
it. We can form a truth table to generate the parity bit for each input data combination
as in Table 8.10. Here, the three-bit data is represented by binary variables b0, b1, and
b2. The generated even-parity bit is represented by binary variable pe.

Based on Table 8.10, the even-parity bit can be generated by the logic function pe =
b0 ⊕ b1 ⊕ b2. Therefore, the even-parity generator can be composed of two XOR gates
with two inputs. The corresponding circuit diagram will be as in Fig. 8.11.

FIGURE 8.11 Circuit diagram of three-bit even-parity generator.

If odd parity is required, the only change needed will be inverting the generated
parity bit. Therefore, for the above example, the odd-parity bit will be po = pe. An N-
bit parity generator can be constructed in the same way. Here, we will need N − 1
XOR gates. Besides, the architecture will be the same.

8.6.2 Parity Checkers
After adding a parity bit, we can construct a combinational circuit to check whether an
undesired change has occurred in the data during transmission or storage. To do so, we
can use the same circuitry as in the parity generator with an additional parity bit. This
is called parity checker. Let’s continue with the previous example having even parity
for three bits of data. Parity checker circuitry can be constructed by logic function c =
b0  b1  b2  pe. Hence, we will use four XOR gates each having two inputs. The
circuit diagram for this setup will be as in Fig. 8.12. An N-bit parity checker can be



constructed in the same way. Here, we will need N XOR gates. Besides, the
architecture will be the same.

FIGURE 8.12 Circuit diagram of three-bit even-parity checker.

8.6.3 Parity Generators and Checkers in Verilog
We provide the Verilog description of a three-bit even-parity generator in Listing 8.21.
Here, we directly implement the circuit in Fig. 8.11. Therefore, the input is represented
by a three-bit vector b. The generated parity bit is represented by binary variable pe.
We provide the RTL schematic of a three-bit even-parity generator in Fig. 8.13. As can
be seen in this figure, two XOR gates are used in synthesizing the Verilog description.

FIGURE 8.13 RTL schematic of three-bit even-parity generator.

Listing 8.21 Verilog Description of Three-Bit Even-Parity Generator

Listing 8.22 Verilog Description of Three-Bit Even-Parity Checker



We next provide the Verilog description of a three-bit even-parity checker in
Listing 8.22. Here, we directly implement the circuit in Fig. 8.12. Different from the
three-bit parity generator, this description has pe bit as input. The output of the parity
checker is c in the description. We provide the RTL schematic of a three-bit even-
parity checker in Fig. 8.14. As can be seen in this figure, three XOR gates are used in
synthesizing the Verilog description.

FIGURE 8.14 RTL schematic of three-bit even-parity checker.

8.6.4 Parity Generators and Checkers in VHDL
We next provide the VHDL description of the three-bit even parity generator in
Listing 8.23. As in Verilog, we directly implement the circuit in Fig. 8.11. Hence, the
input is represented by the three-bit array b. The generated parity bit is represented by
binary variable pe. The RTL schematic of the VHDL description will be as in Fig.
8.13.

We finally provide the VHDL description of a three-bit even-parity checker in
Listing 8.24. As in Verilog, we directly implement the circuit in Fig. 8.12. Different
from the three-bit parity generator, this description has the pe bit as an input. The



output of the parity checker is c in the description. The RTL schematic of the VHDL
description will be as in Fig. 8.14.

Listing 8.23 VHDL Description of Three-Bit Even-Parity Generator

Listing 8.24 VHDL Description of Three-Bit Even-Parity Checker

8.7 Applications on Combinational Circuit Blocks
We can improve applications in previous chapters using combinational circuit blocks.
Therefore, we will reconsider calculator, home alarm, and car park occupied slot
counting systems in this section.

8.7.1 Improving the Calculator
We can improve the calculator introduced in Sec. 6.10 using the case keyword. The
modified Verilog description for the calculator will be as in Listing 8.25. As can be
seen in this description, the case keyword improved the readability of the description.

We represent this module as an IP block and provide a modified top module for the
calculator in Listing 8.26. Here, the calculator IP is represented as calculator_0.



8.7.2 Improving the Home Alarm System
We can improve the home alarm system using a seven-segment display. When the
system is active, the display will show character A. When it is closed, the display will
show character O. To do so, we should add a seven-segment display decoder module to
the system. This module converts the provided hexadecimal number to the
corresponding seven-segment display pattern as introduced in Exercise 7.14. We
provide the Verilog description of the seven-segment display decoder module in
Listing 8.27. We should form an IP block for this module to be used in the application.
The VHDL version of the seven-segment display decoder module is also available in
Listing 8.28.

Listing 8.25 Modified Calculator Using the case Keyword in Verilog

Listing 8.26 Improved Calculator Implemented on the Basys3 Board in Verilog

Listing 8.27 Verilog Description of the Seven-Segment Display Decoder Module



We provide the modified Verilog description for the application in Listing 8.29.
Here, the home alarm system in Listing 7.5 is taken as an IP block. Therefore, we
assume that the reader has converted it to an IP block and added it to the project.

8.7.3 Improving the Car Park Occupied Slot Counting System
We can improve the car park occupied slot counting system in two ways. First, we can
extend the number of slots to be examined to nine. We provide the modified Verilog
description for the car park occupied slot counting system in Listing 8.30. We should
form an IP block for this part to be used in the project.

Second, we can display the number of occupied slots on the rightmost seven-
segment display of the Basys3 board. To do so, we should add the seven-segment
display decoder module in Listing 8.27. Based on these modifications, the Verilog
description of the top module for car park occupied slot counting system will be as in
Listing 8.31.

Listing 8.28 VHDL Description of the Seven-Segment Display Decoder Module



Listing 8.29 Improved Home Alarm System Implemented on the Basys3 Board in
Verilog



Listing 8.30 Verilog Description of the Car Park Occupied Slot Counting System for
Nine Cars

Listing 8.31 Improved Car Park Occupied Slot Counting System Implemented on the
Basys3 Board in Verilog



8.8 FPGA Building Blocks Used in Combinational Circuit
Blocks
We have provided the RTL schematic of combinational circuit blocks considered in
previous sections. The reader can observe that different RTL building blocks are used
in implementing the comparator, decoder, encoder, multiplexer, parity generators, and
checkers. In fact, all these combinational circuit blocks are implemented by LUTs on
an FPGA. To be more specific, four-bit comparator requires five LUTs. An eight-to-
three decoder needs four LUTs. In a similar manner, a three-to-eight encoder needs
four LUTs. An eight-to-one multiplexer needs two LUTs. Finally, a three-bit parity
generator and checker requires one LUT for each. Hence, CLBs will be the main block
to be used in this chapter. Besides, interconnect resources and input/output blocks are
needed while implementing combinational circuit blocks considered in this chapter.

8.9 Summary
This chapter discussed the combinational circuit blocks extensively used in digital
design. We specifically focused on adders, comparators, decoders, encoders,
multiplexers, parity generators, and checkers. We provided Verilog and VHDL
descriptions of each building block. We also introduced conditional statements and
relational operators while constructing implementations. These will be extensively
used in the following chapters. Therefore, the reader should practice using these.

8.10 Exercises
8.1   Use the full adder block in Sec. 8.1.2 to add two four-bit numbers.

a. Implement this device in Verilog or VHDL.
b. Compare this implementation with the one realized by the “ + “ operator

introduced in Chap. 6.



8.2   Implement a four-bit full adder/subtractor. The user decides on operation type by
a control input. When the control input is logic level 1, subtraction will be done.
When the control input is logic level 0, addition is done. Implement this device
in Verilog or VHDL.

8.3   Design an eight-bit comparator for unsigned numbers. Implement this device in
Verilog or VHDL.

8.4   Repeat Exercise 8.3 for eight-bit signed numbers.
8.5   Design an eight-bit comparator for unsigned numbers. The output of the

comparator will be the larger number. Implement this device in Verilog or
VHDL.

8.6   Repeat Exercise 8.5 for eight-bit signed numbers.
8.7   Implement the two-to-four decoder in Verilog or VHDL using

a. case keyword.
b. if keyword.

8.8   How can we realize a two-input logic function z = F(x, y) using a two-to-four
decoder and four-input OR gate.

8.9   A combinational circuit is represented in a SOP form F(x, y, z) = ∑(0, 2, 4).
Implement this circuit using one decoder and one three-input OR gate.

8.10   Implement the four-to-two encoder in Verilog or VHDL using
a. case/casex keyword.
b. if keyword.

8.11   Represent logic function of the four-to-one multiplexer in Fig. 8.9
a. in SOP form.
b. in POS form.

8.12   Implement the four-to-one multiplexer in Verilog or VHDL using
a. case/casex keyword.
b. if keyword.

8.13   Find the SOP form of three-bit even
a. parity generator.
b. parity checker.

8.14   Use multiplexers and memory elements to realize a three-bit even
a. parity generator.
b. parity checker.

8.15   (Arithmetic operations on signed numbers.) Use conditional statements to
apply arithmetic operations on fixed-point signed numbers introduced in Chap.
6. Implement these operations in Verilog or VHDL.

8.16   (Car park occupied slot counting system.) Redesign the car park occupied slot



counting system in Sec. 7.6.3 using conditional statements and arithmetic
operations in Verilog or VHDL. The new park has 16 slots.

8.17   (Fire alarm system.) Redesign the fire alarm system in Exercise 7.13 using
conditional statements in Verilog or VHDL.

8.18   (Keypad decoder.) Redesign the keypad decoder system in Exercise 7.15 using
conditional statements in Verilog or VHDL.

8.19   Repeat the Exercise 7.16 using conditional statements in Verilog or VHDL.
8.20   (Even/odd number detector.) Design a combinational circuit to detect whether

a given N-bit number is even or odd. Implement the designed circuit using
arithmetic operations and conditional statements in Verilog or VHDL.

8.21   (ASCII lowercase/uppercase converter.) Design a combinational circuit to
detect whether a given ASCII code corresponds to a character in lowercase
form. If this is the case, then the circuit converts the character to uppercase
form. Implement the designed circuit using arithmetic operations and
conditional statements in Verilog or VHDL.

8.22   (Joystick application.) Repeat Exercise 7.20 using conditional statements.
8.23   (Moving LEDs.) Write a complete Verilog or VHDL description for the

following operation. Four switches on the Basys3 board (sw[0], sw[1], sw[14],
sw[15]) will control the pattern of 16 LEDs (from led[0] to led[15]). Here
• led[7] and led[8] will turn on when all switches are in off condition (initial

condition).
• led[0] and led[1] will turn on when only sw[0] is on.
• led[1] and led[2] will turn on when only sw[1] is on.
• led[13] and led[14] will turn on when only sw[14] is on.
• led[14] and led[15] will turn on when only sw[15] is on.
• led[7] and led[8] will turn on for all other combinations of these switches.
Also each pattern has a condition number which will be displayed on the
leftmost seven-segment display digit as follows. The seven-segment display
shows 0 for initial condition, 1 when sw[0] is on, 2 when sw[1] is on, 3 when
sw[14] is on, 4 when sw[15] is on, and 0 for all other conditions.

8.24    (Car door alarm system.) In this application, we will design a car door alarm
system. The system should allow checking all four doors and the trunk (back).
We will use five buttons on the Basys3 board. In our application, btnL and btnR
represent front doors. btnU and btnD represent back doors. btnC represents the
trunk door. We will show whether a door is open or closed by the rightmost
seven-segment display digit on the Basys3 board. Based on the label of
segments in Fig. 7.25, segments F and B will show status of front doors.
Segments E and C will show status of back doors. Segment D will show status of



the trunk door. When a segment is on, it indicates that the corresponding door is
open. When all the doors are closed, led[0] on the Basys3 board should turn on.
Write a complete Verilog or VHDL description to realize this application.

8.25   (Displaying numbers.) Write a complete Verilog or VHDL description on the
Basys3 board which will take four-bit input from switches (from sw0 to sw3)
and show it on the seven-segment display as a decimal number. Conditions for
displaying the number is given below:
• If btnL is pressed, the number will be displayed only on the first seven-

segment display digit.
• If btnD is pressed, the number will be displayed only on the second seven-

segment display digit.
• If btnR is pressed, the number will be displayed only on the third seven-

segment display digit.
• If btnU is pressed, the number will be displayed only on the fourth seven-

segment display digit.
• If btnC is pressed, the number will be displayed on all seven-segment display

digits at the same time.
• If more than one button is pressed at the same time, the number should be

displayed on the corresponding display digit according to the conditions given
above.

• If none of the buttons are pressed, all display digits should be turned off.
• If the number to be displayed is greater than 9, character E should be displayed.



D

CHAPTER 9
Data Storage Elements

ata storage in a digital system can be made in two ways. First, the system
can be designed as a sequential circuit, which will be introduced in the next
chapter. In such a circuit, the output depends on past input or output besides
current input values. Hence, the data should be stored within the system.
This operation is generally performed by flip-flops. Second, the data can be
stored in a memory block associated with the system. The memory block

can also be constructed by flip-flops. Therefore, we will introduce data storage
elements starting from latches as basic building block of flip-flops in this chapter.
Then, we will introduce different flip-flop types. Flip-flops can be used to form
registers as basic elements of memory blocks. Therefore, we will evaluate register
formation next. Afterward, we will focus on read-only memory (ROM) and random
access memory (RAM). In constructing ROM and RAM, we will extensively use IP
blocks provided by Xilinx.

9.1 Latches
A latch is a basic data storage element that can store one bit of data. Next, we
introduce SR and D latches.

9.1.1 SR Latch
An SR latch is the simplest data storage element composed of either two cross-coupled
NAND or NOR gates. Let’s look at an SR latch composed of two NOR gates with
circuit diagram in Fig. 9.1. As can be seen in this figure, an SR latch has two inputs as
set (s) and reset (r). It has two outputs as q and  which are inverse of each other.



FIGURE 9.1 Circuit diagram of SR latch.

We can represent input/output characteristics of an SR latch in tabular form in a
characteristic table. The difference between this table and the truth table is that it can
also represent previous and future output values. The characteristic table of an SR
latch is presented in Table 9.1. As can be seen in this table, when inputs s and r have
logic levels 0 and 1, respectively, the output q will be at logic level 0. In other words,
the SR latch is reset. When inputs s and r have logic levels 1 and 0, respectively, the
output q will be at logic level 1. We can call this as setting the SR latch. When both s
and r have logic level 0, the SR latch stays in its previous state qprev. Hence, it stores
the previous output value. When s and r are at logic level 1, we can call this input as
both setting and resetting (SR) latch at the same time. Here, a contradiction occurs
such that both  and q should be at logic level 1. However,  is the inverse of q. The
output cannot be predicted due to race conditions in transistor level for such a
condition. Hence, this input combination should be avoided while using the SR latch.
The output at this stage is represented by the undefined symbol (U) in Table 9.1.

TABLE 9.1 Characteristic Table of Latch with Control Input

We can add a control input to the SR latch. Via this input, we can control when to
operate the device. The circuit diagram of the SR latch with control input is shown in
Fig. 9.2.



FIGURE 9.2 Circuit diagram of SR latch with control input.

The characteristic table of the SR latch with control input is presented in Table 9.2.
Here, the only difference from the SR latch is control input c. When this input is at
logic level 0, the output of the SR latch will be kept in its previous value independent
of inputs applied to it. Therefore, inputs are represented by the don’t care symbol in
Table 9.2 when c is at logic level 0. The SR latch becomes active when c is set to logic
level 1. Afterward, its output can be changed by s and r inputs.

TABLE 9.2 Characteristic Table of SR Latch with Control Input

9.1.2 D Latch
One way to avoid setting and resetting the SR latch at the same time is always feeding
inverse inputs to s and r. We can achieve this by adding a NOT gate between them.
We call the new structure a D (or data) latch since it saves one bit of data. The circuit
diagram of a D latch is depicted in Fig. 9.3.

FIGURE 9.3 Circuit diagram of D latch.

The characteristic table of the D latch (with control input) is presented in Table 9.3.
As can be seen in this table, when the control input is at logic level 0, the D latch keeps
its previous output value. We can save the data in the D latch by providing logic level
1 to its control input. Afterward, the bit value at the input d will be saved in the latch.
Hence, when d has logic level 0, q will be at logic level 0. When d has logic level 1, q
will be at logic level 1. Therefore, the D latch simply stores one bit of the data. The
symbol of the D latch (with control input) is presented in Fig. 9.4.



FIGURE 9.4 Symbol of D latch with control input.

TABLE 9.3 Characteristic Table of D Latch with Control Input

9.1.3 Latches in Verilog
We can form the latch description in two different ways in Verilog. The first one is by
using the circuit diagram of the latch and forming the corresponding structural or
dataflow model. We will form such a description only for an SR latch. The second way
of describing a latch is by using a behavioral model. This will be the form we will be
using extensively in describing latches.

9.1.3.1 SR Latch
We provide the Verilog description of the SR latch in Listing 9.1. Here, we have
structural and dataflow models of the latch based on the circuit diagram in Fig. 9.1.
Besides, the behavioral model of the SR latch is available in the description. The
reader should enable the model to be implemented while disabling other models. In all
three models, inputs of the SR latch are represented by s and r. Outputs of the latch
are denoted by q and qn. Please note the nonblocking assignment usage in behavioral
modeling. As explained in Sec. 5.1.4, we will be using nonblocking assignments in the
behavioral model of sequential circuits.

Listing 9.1 Verilog Description of SR Latch



We provide the RTL schematic of the SR latch using the dataflow model in Fig.
9.5. As can be seen in this figure, the RTL schematic is the same as the circuit diagram
in Fig. 9.1. Vivado synthesizes the SR latch description in the dataflow model as in
Fig. 9.6. Here, three-input and two-input look-up tables (LUTs) are used in
implementation. There is a feedback loop between the output and input of the three-
input LUT which establishes the data storage capability of the module. Remember that
feedback loops from the out-put to input are general characteristics of latches.

FIGURE 9.5 RTL schematic of SR latch described using dataflow model.



FIGURE 9.6 Synthesization result of SR latch described using dataflow model.

FIGURE 9.7 RTL schematic of SR latch described using behavioral model.

We next provide the RTL schematic of the SR latch using the behavioral model in
Fig. 9.7. As can be seen in this figure, the RTL schematic is composed of two latches.
Therefore, the RTL schematic and circuit diagram in Fig. 9.1 is not the same. Further-
more, Vivado synthesizes the SR latch description in the behavioral model as in Fig.
9.8. As can be seen in this figure, two flip-flops are used in implementation. Therefore,
dataflow and behavioral models of the same SR latch are implemented in different
ways in Vivado. We will analyze the difference between these two implementations in
detail in Sec. 9.8.



FIGURE 9.8 Synthesization result of SR latch described using behavioral model.

Listing 9.2 Verilog Description of SR Latch with Control Input

9.1.3.2 SR Latch with Control Input
We next provide the Verilog description of the SR latch with control input in Listing
9.2. Here, we have only the behavioral model of the circuit in Fig. 9.2. As in the SR
latch description in Listing 9.1, inputs of the SR latch are represented as s and r with
an extra control input c. When the control input c is at logic level 0, the SR latch does
not respond to other inputs. Outputs of the latch are denoted by q and qn.

The synthesization result of the SR latch with control input is as in Fig. 9.9 which is
almost the same as Fig. 9.8. The only difference is the control input. Therefore, the
behavioral model of the SR latch with and without control input is implemented in a
similar way in Vivado.



FIGURE 9.9 Synthesization result of SR latch with control input.

9.1.3.3 D Latch
We finally provide the Verilog description of the D latch using the behavioral model in
Listing 9.3. In this description, inputs of the latch are represented as d and c. As in the
SR latch with control input, when c is at logic level 0, the D latch does not respond to
d input. Outputs of the latch are denoted by q and qn in the description.

We provide the RTL schematic of a D latch in Fig. 9.10. As can be seen in this
figure, the RTL schematic consists of two D latches (one for each output). In fact, if
we had only one output as q, then the RTL schematic would consist of one D latch. We
will see in Sec. 9.8 why this is the case. The synthesization result of the D latch
description will be as in Fig. 9.11. As can be seen in this figure, one-input LUT and
two flip-flops are used in implementation. We will analyze this implementation in
detail in Sec. 9.8.

FIGURE 9.10 RTL schematic of D latch.



FIGURE 9.11 Synthesization result of D latch.

Listing 9.3 Verilog Description of D Latch

9.1.4 Latches in VHDL
As in Verilog, we can form the latch description in two different ways in VHDL. The
first one is using circuit diagram of the latch and forming the corresponding dataflow
model. We provide this description only for an SR latch. The second way of describing
the latch is by using a behavioral model as it is easier to interpret. We do not provide
the RTL schematic and synthesization results in this section since these will be almost
the same as in Sec. 9.1.3. However, we suggest the reader to observe them in Vivado.

Listing 9.4 VHDL Description of SR Latch



9.1.4.1 SR Latch
We provide the VHDL description of the SR latch in dataflow and behavioral models
in Listing 9.4. Here, the dataflow model of the SR latch is based on the circuit diagram
in Fig. 9.1. As in the corresponding Verilog description, inputs of the SR latch are
represented as s and r. Outputs of the latch are denoted by q and qn. In the behavioral
model, the undefined output when s = 1 and r = 1 is represented by don’t care symbol
in Listing 9.4.

9.1.4.2 SR Latch with Control Input
We provide the VHDL description of the SR latch with control input in Listing 9.5. As
in the SR latch description in Listing 9.4, inputs of the latch are represented as s and r
with extra control input c. When control input c is at logic level 0, the SR latch does
not respond to other inputs. Outputs of the latch are denoted by q and qn. Again, the
undefined output when s = 1 and r = 1 is represented by don’t care symbol in Listing
9.5 as in the SR latch description.

Listing 9.5 VHDL Description of SR Latch with Control Input



Listing 9.6 VHDL Description of D Latch

9.1.4.3 D Latch



We finally provide the VHDL description of the D latch with control input in Listing
9.6. In this description, inputs of the latch are represented as d and c. As in the SR
latch with control input, when c is at logic level 0, the D latch does not respond to d
input. Outputs of the latch are denoted by q and qn in the description.

9.2 Flip-Flops
A latch may change its output whenever its input changes. This may cause
inconsistency in the operation of a sequential circuit. To overcome this problem, the
clock signal introduced in Sec. 2.2.7 may be used. Therefore, the change at the output
of a circuit may occur on either the rising or falling edge of the clock signal. To
distinguish such devices from the latches introduced in the previous section, we will
call them flip-flops. There are basically three flip-flop types: D, JK, and T.

9.2.1 D Flip-Flop
The D flip-flop can be constructed by connecting two D latches with control input as
in Fig. 9.12. In this setup, let’s call the two latches a leader and a follower,
respectively. We can explain the working principles of the D flip-flop as follows. The
control input of both the leader and follower latches are connected to the same clock
signal. However, the follower latch receives the inverted clock signal. Therefore, when
the clock signal reaches logic level 1 from 0 (rising edge of the clock), the leader latch
is enabled and the follower latch is disabled. At this time, the output of the leader latch
can be changed by its input (hence the input of the flip-flop). The output of the
follower latch (hence the output of the flip-flop) does not change during this time
interval since its control input is at logic level 0. When the clock signal reaches logic
level 0 from 1 (falling edge of the clock), the control input of the leader latch will be at
logic level 0. Hence, its output will be kept in its previous value. In other words, the
output of the leader latch will reflect its input when the clock signal was at logic level
1. As can be seen in Fig. 9.12, the output of the leader latch is connected to the input of
the follower latch. Since the control input of the follower latch is at logic level 1, its
output is set to its input. Therefore, the output of the D flip-flop changes. This
operation is specifically called edge-triggered since flip-flop changes its output during
rising (or falling) edge of the clock signal.

FIGURE 9.12 Constructing D flip-flop from two latches.

The symbol of the D flip-flop is presented in Fig. 9.13. Here, the control input is
specifically represented by a triangle to indicate that this device changes its output on



the rising edge of the clock signal.

FIGURE 9.13 Symbol of D flip-flop.

The characteristic table of the D flip-flop is presented in Table 9.4. Here, we
represent the output of the flip-flop as q[n + 1] to indicate the value at the next clock
cycle. We implicitly assume the present clock cycle as n. Within the characteristic
table, the clock operation is not explicitly shown.

TABLE 9.4 Characteristic Table of D Flip-Flop

TABLE 9.5 Characteristic Table of JK Flip-Flop

9.2.2 JK Flip-Flop
The D flip-flop provides a good option to save one bit of data. We can form a more
general flip-flop structure using it. The new device will act similar to the SR latch
while eliminating its undeterminate state. We call this device the JK flip-flop. The
circuit diagram of the JK flip-flop constructed by a D flip-flop is shown in Fig. 9.14.



FIGURE 9.14 Circuit diagram of JK flip-flop.

The characteristic table of the JK flip-flop is presented in Table 9.5. As can be seen
in this table, the JK flip-flop acts similar to the SR latch. However, there is no
undetermined output here. We can assume the j input as set, the k input as reset. As in
the D flip-flop, the output at the next clock cycle is represented by q[n + 1]. The output
at the present clock cycle is represented by q[n]. When both j and k inputs are at logic
level 1, the output of the JK flip-flop toggles.

9.2.3 T Flip-Flop
We can obtain a specific structure called a T (toggle) flip-flop by connecting input pins
of a JK flip-flop. Although this new structure may seem redundant, it will be of great
use in counters to be introduced in Sec. 10.4. The characteristic table of the T flip-flop
is presented in Table 9.6. As can be seen in this table, the T flip-flop is, in fact, a
limited version of a JK flip-flop such that it either gets input of logic level 0 or 1.
When the input is at logic level 0, the output of the flip-flop does not change. When
the input is at logic level 1, the output of the flip-flop toggles.

TABLE 9.6 Characteristic Table of T Flip-Flop

Listing 9.7 Verilog Description of D Flip-Flop



9.2.4 Flip-Flops in Verilog
Flip-flops introduced in the previous section can be described in Verilog. Behavioral
modeling is the most suitable form to describe a flip-flop since it operates on clock
cycles. Let’s start with the D flip-flop.

9.2.4.1 D Flip-Flop
The D flip-flop can be described by using behavioral modeling as in Listing 9.7. In
this description, inputs of the flip-flop are d (data), clk (clock), and clr (clear). The
data input is for a bit value to be saved in the flip-flop. The clock input is for the clock-
based operation. The clear input resets the flip-flop output independent of its input.
Outputs of the flip-flop are denoted by q and qn in the description. The flip-flop is
reset when a negative edge of the clear signal comes. This is achieved by the Verilog
keyword negedge. The flip-flop operates whenever a positive edge of the clock signal
comes. Again, this is achieved by the Verilog keyword posedge. As a result, the
sensitivity list in behavioral modeling becomes posedge clk, negedge clr.

We provide the RTL schematic of a D flip-flop in Fig. 9.15. As can be seen in this
figure, the RTL schematic consists of two D flip-flops (one for each output). In fact, if
we had only one output as q, then the RTL schematic would consist of one D flip-flop.
We will see in Sec. 9.8 why this is the case. The synthesization result of the D flip-flop
description will be as in Fig. 9.16. As can be seen in this figure, two one-input LUTs
and D flip-flops are used in implementation. We will analyze this implementation in
detail in Sec. 9.8.

FIGURE 9.15 RTL schematic of D flip-flop.



FIGURE 9.16 Synthesization result of D flip-flop.

9.2.4.2 JK Flip-Flop
We next provide the Verilog description of a JK flip-flop in Listing 9.8. In this
description, inputs are represented as j (set), k (reset), clr (clear), and clk (clock).
Outputs of the flip-flop are denoted by q and qn in the description. The working
principles of a JK flip-flop are similar to those of a D flip-flop. The only difference is
that the JK flip-flop has two inputs to set and reset output.

Vivado synthesizes the JK flip-flop description as in Fig. 9.17. As can be seen in
this figure, four LUTs and two D flip-flops are used in implementation. This is in line
with the circuit diagram of the JK flip-flop constructed from the D flip-flop in Fig.
9.14. In other words, the JK flip-flop is implemented by D flip-flops in Vivado. We
will analyze this implementation in detail in Sec. 9.8.

FIGURE 9.17 Synthesization result of JK flip-flop.

9.2.4.3 T Flip-Flop
We finally provide the Verilog description of a T flip-flop in Listing 9.9. In this



description, inputs are represented as t (toggle), clr (clear), and clk (clock). Outputs
of the flip-flop are denoted by q and qn in the description. As explained in Sec. 9.2.3, a
T flip-flop is a special type of a JK flip-flop. Therefore, the reader can deduce the
working principles of a T flip-flop by referring to a JK flip-flop.

Vivado synthesizes the T flip-flop description in Verilog as in Fig. 9.18. Similar to
the synthesis result of the JK flip-flop in Fig. 9.17, three LUTs and two D flip-flops are
used in implementation. This is expected since the T flip-flop is a special case of a JK
flip-flop.

FIGURE 9.18 Synthesization result of T flip-flop in behavioral model.

Listing 9.8 Verilog Description of JK Flip-Flop

Listing 9.9 Verilog Description of T Flip-Flop



Listing 9.10 VHDL Description of D Flip-Flop

9.2.5 Flip-Flops in VHDL
We next provide the VHDL description of D, JK, and T flip-flops. As in the previous
section, we consider behavioral modeling here. We did not provide the RTL schematic
and synthesization results in this section since these will be almost the same as in Sec.
9.2.4. However, the reader can observe them in Vivado if needed.



9.2.5.1 D Flip-Flop
We provide the VHDL description of a D flip-flop in Listing 9.10. As in the
corresponding Verilog description, the inputs of the flip-flop are d (data), clk (clock),
and clr (clear). The data input is for the bit value to be saved in flip-flop. The clock
input is for clock-based operation. The clear input resets the flip-flop output
independent of its input. The outputs of the flip-flop are denoted by q and qn in the
description. The sensitivity list of the process in behavioral modeling contains only the
clock signal. The flip-flop is reset when a clear signal comes and the clock is at logic
level 1. The flip-flop operates when-ever the rising edge of the clock signal comes.
This is achieved by the VHDL keyword rising_edge. If the falling edge of the clock
was required as the triggering signal, then the corresponding VHDL keyword would be
falling_edge.

Listing 9.11 VHDL Description of JK Flip-Flop



9.2.5.2 JK Flip-Flop
We next provide the VHDL description of a JK flip-flop in Listing 9.11. In this
description, inputs are represented as j (set), k (reset), clr (clear), and clk (clock).
Outputs of the flip-flop are denoted by q and qn in the description. The working
principles of the JK flip-flop are similar to those of a D flip-flop. The only difference
is that the JK flip-flop has two inputs to set and reset output.

9.2.5.3 T Flip-Flop
We finally provide the VHDL description of a T flip-flop in Listing 9.12. In this
description, inputs are represented as t (toggle), clr (clear), and clk (clock). Outputs
of the flip-flop are denoted by q and qn in the description. As explained in Sec. 9.2.3,



the T flip-flop is a special type of a JK flip-flop. Therefore, the reader can deduce the
working principles of the T flip-flop by referring to the JK flip-flop.

Listing 9.12 VHDL Description of T Flip-Flop

9.3 Register
A register is an N-bit data storage element constructed by N flip-flops. In forming a
register, flip-flops are connected in parallel in such a way that data can be processed
all at once. We provide the block diagram of a four-bit register constructed by four D
flip-flops in Fig. 9.19. As can be seen in this figure, flip-flops share the same clock.
Besides, the input to each flip-flop is independent of the other. Hence, four bits can be
stored to the register in a parallel manner. In the same way, the output of each flip-flop
is independent of the other. Therefore, stored N-bit data can be observed in a parallel
manner. The symbol of a four-bit register is provided in Fig. 9.20.

FIGURE 9.19 Block diagram of four-bit register.



FIGURE 9.20 Symbol of four-bit register.

9.4 Memory
The memory is a data storage element constructed by registers. Within memory, a
specific register should be reached. This is achieved by its address. More generally, the
wires holding the address data are called address bus. We should be able to write or
read the data from a specific register. The wires used for this operation are called data
bus. We provide a sample memory implementation by using two four-bit registers in
Fig. 9.21. As can be seen in this figure, the data input to two separate registers are
done in parallel. An input register is selected by a one-to-two encoder in such a way
that the selected register gets the clock signal. The other register not receive the clock.
Hence, it will be disabled. The data output from registers are selected by multiplexers.
Both data input and output locations are selected by the address bit. Although this is a
simple setup, it shows how the memory works.

FIGURE 9.21 Circuit diagram of 2 × 4 bit memory.

9.5 Read-Only Memory
The stored data may be taken as static during operation of a digital system. In other
words, the data in a specific memory location should not be altered within the system.
Such a location is called read-only memory (ROM). We can represent ROM both in



Verilog and VHDL.

9.5.1 ROM in Verilog
We provide the Verilog description of a 4×8 bit ROM in Listing 9.13. One can think
of this module as composed of four registers each holding eight bits. The input of the
module is address. The output of the module is data. The ROM content can be loaded
either in a binary or a hexadecimal form. To use the binary form, the command
$readmemb should be used. Entries of the ROM are saved in the text file
ROM_entries_bin.txt for this case. To use the hexadecimal form, the command
$readmemh should be used. Here, entries of the ROM are saved in the text file
ROM_entries_hex.txt for this case.

Listing 9.13 Verilog Description of 4 × 8 bit ROM Module

9.5.2 ROM in VHDL
We provide the VHDL description of a 4 × 8 bit ROM in Listing 9.14. This module
has the same naming convention as the corresponding Verilog description. The ROM
content is loaded from the text file ROM_entries_hex.txt similar to the application in
Sec. 5.4. The only difference is using the for keyword and to_integer implicit
function. The for keyword is used to form a loop. The to_integer function converts a
given value to an integer form. Besides, the file reading operation is the same.

9.5.3 ROM Formation Using IP Blocks
Xilinx offers IP blocks for memory construction, with two options: distributed and
block memory formation. Distributed memory is composed of LUTs. In fact, the ROM
descriptions in the previous section are good examples of distributed memory



formation. Block memory uses the FPGA parts dedicated for this operation as
explained in Chap. 2.

Let’s start with distributed ROM generation using IP. Here, we will explain the
concept using the Verilog description. The same idea applies to the VHDL description
as well. Assume that a Vivado project is opened as explained in Chap. 4. We can add
the distributed ROM by selecting it under IP catalog following Memories & Storage
Elements → RAMs & ROMs → Distributed Memory Generator. Then the customized
IP window appears. In this window, the user can configure the memory element at
hand. Since we plan to generate the distributed ROM, we should apply the following
steps. First, we should set the depth and data width of the memory block in the
“memory config” tab. Assume that we need a 16-element ROM, each element with
eight bits. Hence, the depth will be 16 and data width will be eight. Next, we should
select the memory type. Here, we will select the ROM. We can set input and output
port properties in the “port config” tab. Finally, we can add an initialization file from
the “RS & initialization” tab. We can add the text file ROM_entries_hex.txt here with
little modification. The IP accepts files in coe format which is easy to construct [30].
The modified file (to be added) will be ROM_entries_hex.coe. As we add the
modified IP block to the project, we can form a top module as in Listing 9.15.
Afterward, we can reach a specific ROM content by providing its address. For more
information on the distributed ROM, please see [30].

Listing 9.14 VHDL Description of 4 × 8 bit ROM Module



We can also use the block memory IP to construct a ROM module. As in the
distributed ROM formation example, we will only handle the Verilog description here.
Assume that a Vivado project is opened as explained in Chap. 4. We can add a block
ROM by selecting it under the IP catalog following Memories & Storage Elements →
RAMs & ROMs & BRAMs → Block Memory Generator. Then, customized IP



window appears. In this window, the user can configure the memory element at hand.
Since we plan to generate a block ROM, we should apply the following steps. First, we
should set the interface type as “Native” and the memory type as “Single Port ROM”
from the “Basic” tab. Then, we should switch to the “Port A Options” tab and set the
“Port A Width” and “Port A Depth.” Assume that we need a 16-element ROM, each
element with eight bits. Hence, the width will be eight and depth will be 16. Finally,
we can add an initialization file from the “Other Options” tab. We can add the file
ROM_entries_hex.coe here. As we add the modified IP block to the project, we can
form a top module as in Listing 9.16. Afterward, we can reach a specific ROM content
by providing its address. For more information on block ROM, please see [31].

Listing 9.15 Verilog Description of Distributed ROM Using IP

Listing 9.16 Verilog Description of Block ROM Using IP

9.6 Random Access Memory
The stored data may be taken as dynamic during operation of a digital system. In other
words, the data in a specific memory location can be altered within the system. Such a
location is called random access memory (RAM). We can represent the RAM both in
Verilog and VHDL by modifying ROM descriptions in Sec. 9.5. The only difference
will be adding a data write option to descriptions. Instead, we will directly use IP
blocks introduced in the previous section to construct the RAM.



Let’s start with the distributed RAM generation using IP. We will follow the steps
in forming the distributed ROM in the previous section. Different from there, we
should select the memory type as “Single Port RAM.” In the “Port Config” tab, we can
also set output options as “registered.” We can add the initial RAM content by
including the file RAM_entries_hex.coe. As we add the modified IP block to the
project, we can form a top module as in Listing 9.17. The top module writes numbers
to specific memory locations when the write enable value is at logic level 1. When this
value goes to logic level 0, the user can read a specific memory location. For more
information on the distributed RAM, please see [30].

Listing 9.17 Verilog Description of Distributed RAM Using IP

We can modify the distributed RAM application by using the block RAM. Here, we
will follow the steps in forming the block ROM in the previous section. Different from
there, we should set the memory type as “Single Port RAM” from the “Basic” tab.
Then, we should switch to “Port A Options” tab and set the Memory Size as “Write
Width” to eight bits, “Read Width” to eight bits, and “Write Depth” to 16 bits. “Read
Depth” will be set automatically based on this value. As we add the modified IP block
to the project, we can form a top module as in Listing 9.18. Similar to Listing 9.17, the
top module writes numbers to specific memory locations when the write enable value
is at logic level 1. When this value goes to logic level 0, the user can read a specific
memory location. For more information on block RAM, please see [31].



9.7 Application on Data Storage Elements
We can improve the calculator by adding memory to it. We provide the top module for
the improved calculator in Listing 9.19. Here, the calculator IP is represented as
calculator_0. To keep the result of an operation in memory, the user should press
btnC button on the Basys3 board. If the user wants to add a number to the one in
memory, he or she should press btnL button on the Basys3 board. If subtraction is
required, then the user should press btnR button on the Basys3 board. If the user wants
to turn back to normal operation (without using the value in memory) then he or she
should press btnD button on the Basys3 board.

Listing 9.18 Verilog Description of Block RAM Using IP

Since buttons are used in all operations, we should eliminate their malfunction
known as “debouncing.” This problem occurs when physical properties of the button
result in more than one button press effect when it is actually pressed once. There are
two ways to eliminate debouncing. One is using the physical resistor and capacitor
circuitry [32]. Although this is a good solution, we should avoid adding discrete circuit
elements at this step. Therefore, the second solution is adding a delay element to the
button press port. We provide the Verilog module performing this operation in Listing
9.20.

In Listing 9.20, the inputs to the debounce module are btn (representing button
press) and clk (representing clock signal). The output of the module is btn_clr which



indicates the button press signal without any (possible) debouncing effect. The module
works as follows. The delay parameter is set as 650000. Assume that we feed the
Basys3 clock with a frequency 100 MHz that corresponds to 10-ns clock period.
Hence, the delay parameter corresponds to 6.5-ms time duration. The module provides
clean button press output if it stays unchanged in this time interval.

9.8 FPGA Building Blocks Used in Data Storage Elements
Data storage elements require different FPGA building blocks compared to the ones
used in previous chapters. Let’s start with the FPGA building blocks used in latch
implementation. As indicated in Sec. 9.1.3, while implementing the SR latch the model
used affects the FPGA building blocks used. To be more specific, the dataflow model
of the SR latch in Listing 9.1 needs two LUTs used as logic elements. Here, the data
storage is performed by a feedback loop as in Fig. 9.6. On the other hand, the
behavioral model of the SR latch requires one LUT and two D latches. Therefore,
dataflow and behavioral model implementations require different FPGA building
blocks. Moreover, elements used in implementing behavioral model of the SR latch
are formed of D latches. This may seem contradictory since we need D latches to
construct the SR latch. However, the reader should remember that there are only D
latches in the Artix-7 XC7A35T FPGA. Therefore, this is the main latch structure to
be used in Vivado. We can confirm this by looking at Figs. 9.10 and 9.11.

Listing 9.19 Improved Calculator Implemented on the Basys3 Board in Verilog





Listing 9.20 Verilog Description of Debounce Module

Next, let’s focus on the flip-flop implementation details. Again, here the main
building block used in the FPGA implementation is the D flip-flop independent of flip-
flop type considered. This is also because of the fact that there are only D flip-flops in
the Artix-7 XC7A35T FPGA. Therefore, these are the main building blocks in
operation. Let’s focus on the D, JK, and T flip-flop implementation details. The D flip-
flop requires two LUTs used as logic elements, two slices, and one LUT flip-flop pairs
in implementation. The JK flip-flop, on the other hand, requires four LUTs (two being
used as logic elements), two slices, and one LUT flip-flop pairs in implementation.
Finally, the T flip-flop requires three LUTs used as logic elements, two slices, and two
LUT flip-flop pairs in implementation.

Since a register is composed of flip-flops, it is implemented in a similar way. The
distributed ROM and RAM will also be based on flip-flop and LUTs. However, as the
name implies the block ROM and RAM is specifically based on the block RAM in the
FPGA as explained in Chap. 2. The reader can check this property while implementing
these elements in Secs. 9.5 and 9.6. There, the block RAM is used to construct
memory elements.

We can summarize the fundamental results while implementing data storage
elements in the FPGA as follows. Since D latches and flip-flops reside in CLBs in the
FPGA, basically they are used in implementation. The distributed ROM and RAM is
also constructed in the same way. The block ROM and RAM will be based on specific
FPGA blocks for implementation. Besides, interconnect resources and input/output



blocks are also needed while implementing data storage elements, as considered in this
chapter.

We should warn the reader about one important implementation detail of latches
and flip-flops. The provided Verilog and VHDL descriptions work without any
problem in the simulation level. However, they may not work as expected (or the
corresponding bitstream cannot be generated) when implemented on the Basys3 or
Arty board. The reason for this shortcoming is as follows. Vivado specifically asks for
any sensitivity list entry labeled by posedge or nededge to be a clock signal. If this is
not satisfied, then a bitstream cannot be generated. To overcome this problem, an edge
detector circuit should be used in the description. We provide such an edge detector for
Verilog in Listing 10.33.

9.9 Summary
Data storage is a necessary property for most digital systems. A latch can be taken as
the basic data storage element to be used for this purpose. However, its usage in an
actual FPGA implementation is not desired since a latch lacks a synchronization
signal. On the other hand, flip-flops can be constructed by using latches. Therefore,
exploring the latch structure was necessary. We will be using flip-flops extensively in
constructing sequential circuits. The specific type to be used in implementation will be
the D flip-flop because of its availability in the Artix-7 XC7A35T FPGA. Therefore,
the reader should understand its working principles. D flip-flops lead to registers and
they lead to memory blocks. If the block data is to be saved in an FPGA, these should
be used in implementation.

9.10 Exercises
9.1   Construct the SR latch in Sec. 9.1.1 using NAND gates.
9.2   Describe the SR latch with control input in Verilog using

a. structural modeling.
b. dataflow modeling.

9.3   Describe the D latch with control input in Verilog using
a. structural modeling.
b. dataflow modeling.

9.4   Describe the SR latch with control input in VHDL using dataflow modeling.
9.5   Describe the D latch with control input in VHDL using dataflow modeling.
9.6   Obtain the RTL schematic of SR and D latches in Sec. 9.1.4. Compare the

obtained results with the ones in Sec. 9.1.3.
9.7   How would the FPGA building block usage change if only the q output of the D

flip-flop is required?
9.8   Use a button and a LED on the Basys3 (or Arty) board such that when the button



is pressed once, the LED turns on. When it is pressed twice, the LED turns off.
Use a suitable flip-flop description for this operation in Verilog or VHDL.



F

CHAPTER 10
Sequential Circuits

lip-flops introduced in the previous chapter allow us to design sequential
circuits. The common characteristic of these circuits is that they have
memory. Hence, their behavior depend not only on the current input but also
on the past input and output. Flip-flops serve as memory elements for this
purpose. In this chapter, we will extensively use the D flip-flop since it is
available in the Artix-7 XC7A35T FPGA. To understand sequential circuits,

we will start with their analysis. This will be different from combinational circuit
analysis due to memory elements in the sequential circuit. Therefore, we will introduce
new methods specific for this purpose. Then, we will explore the timing concept in
sequential circuits. Afterward, we will explain working principles of two sequential
circuit families used extensively. These are shift registers and counters. As in
combinational circuits, we will review the basic design methodology for sequential
circuits by adding extra tools. Finally, we will focus on how sequential circuits can be
implemented on the field-programmable gate array (FPGA).

10.1 Sequential Circuit Analysis
We can analyze characteristics of a sequential circuit in three different ways using
state equation, state table, and state diagram. This section is on these concepts. Let’s
first start with defining what a state is.

10.1.1 Definition of State
A flip-flop can store one bit of data as either logic level 0 or 1. Therefore, we can say
that it can be in one of two states. If a sequential circuit has N flip-flops, then it can
store N bits of data having one of 2N combinations. In other words, the sequential
circuit can be in one of 2N states. Since there are finite number of states the sequential



circuit can be in, it is also called a finite state machine. Throughout the book, we will
use both names interchangeably.

10.1.2 State and Output Equations
A sequential circuit changes its state by an input signal and/or clock fed to it. Hence,
we can characterize the sequential circuit using its state transitions described by state
equations. The aim here is representing the next state using the present state and input
values. To represent the output of a sequential circuit, we can use two different models
as Mealy and Moore. In Mealy model, the output is a function of both present state and
input. In Moore model, the output is a function of the present state only. For more
information on Mealy and Moore models, please see [26,33].

Let’s take the sequential circuit in Fig. 10.1 as an example and form its state and
output equations. As can be seen in this figure, the sequential circuit contains two D
flip-flops and logic gates. Let’s call the first and second flip-flops as q1 and q2,
respectively. Based on these, possible state values in the circuit will be as {q2q1} ∈
{00,01,10,11}.

FIGURE 10.1 Circuit diagram of the sample sequential circuit.

By analyzing the circuit diagram in Fig. 10.1, we can form state and output
equations of the corresponding sequential circuit. The output of a D flip-flop can be
taken as its present state. This can be represented as q[n] where n indicates the present
clock cycle. Therefore, we will have present state values as q1[n] and q2[n] in the
sequential circuit. The input of a D flip-flop can be taken as its next state since it will
be fed to the output by the next clock cycle. Hence, q1[n + 1] and q2[n + 1] will be
taken as next state values where n + 1 indicates the next clock cycle. These definitions
lead to state and output equations. Here, we will take next states and the output
separately as if they are simple combinational circuits. Using techniques introduced in
Chap. 7, we can form state and output equations for the sequential circuit in Fig. 10.1



as follows:

10.1.3 State Table
The state (characteristic) table of a sequential circuit is similar to the truth table of a
combinational circuit. However, the state table holds all input and present state
combinations at its first section. The second section of the state table holds both output
and next state values.

We can form the state table of the sequential circuit in Fig. 10.1 by using its state
and output equations. Using these, the state table can be constructed as presented in
Table 10.1. This table summarizes characteristics of the sequential circuit. By looking
at it, we can know what the next state and output will be based on the present state and
input values.

TABLE 10.1 State Table of the Example Sequential Circuit

10.1.4 State Diagram
Although the state table characterizes a sequential circuit, it may not be descriptive
enough. Therefore, the third method to describe the sequential circuit is using a state
diagram composed of circles and directed arcs. Each circle represents a state. A
directed arc represents the transition between states. The directed arc also holds the
required input value for transition to occur. However, transition timings are not
explicitly shown in the state diagram.

If the sequential circuit is of the Mealy type, the directed arc holds what the
corresponding output will be after the state transition. Let’s provide part of a generic
state diagram (for the Mealy model) in Fig. 10.2. As can be seen in this figure, the



directed arc holds information on what the input value should be for transition to the
next state to occur. The directed arc also holds information on the output value after
this transition.

FIGURE 10.2 Part of a generic state diagram for Mealy model.

The state diagram based on the Moore model requires outputs to be defined along
with states. Therefore, directed arcs will have only input values. Next, we provide part
of a generic state diagram for the Moore model in Fig. 10.3. As can be seen in this
figure, the directed arc only contains the input value required for transition. The circle
representing the state also holds the corresponding output value.

FIGURE 10.3 Part of a generic state diagram for Moore model.

Let’s turn back to the sequential circuit characterized by its state table in Table
10.1. The output equation of the circuit clearly indicates that this is a Mealy model.
Besides, there are four states based on two flip-flops in the circuit. Hence, there will be
four circles in the state diagram. Since there is one input and output in the sequential
circuit, its state diagram will be as presented in Fig. 10.4.



FIGURE 10.4 State diagram of the example sequential circuit.

The state diagram in Fig. 10.4 can be read as follows. There are four states labeled
as 00, 01, 10, and 11. Directed arcs have labels such as 1/0. Here, the number before
the slash represents input. The number after the slash represents the output. As an
example, the directed arc between states 00 and 01 is labeled as 1/0. This indicates that
when the system is at state 00 and an input with logic level 1 comes, the system goes
to state 01 while producing the output 0. In a similar manner, when the system is at
state 00 and an input with logic level 0 comes, the system stays at the same state while
producing output 0.

We should mention what the initial state of the sequential circuit should be. We
implicitly assumed that the circuit under consideration starts its operation with state
00. In other words, both flip-flops were reset when the first input comes. This setup
can be taken as default unless a specific state is taken as the initial state.

We are in a position to judge what the sequential circuit in Fig. 10.4 does. Here, the
most helpful representation is its state diagram. Based on it, we can decide that the
sequential circuit gives output of logic level 1 only when a sequence of inputs with
pattern 1101 comes. Hence, this device is a sequence detector. Such devices are
helpful in detecting specific patterns in a sequence.

10.1.5 State Representation in Verilog
We can represent the sequence detector in Fig. 10.1 in Verilog. The first method in
describing it is using state and output equations. We provide Verilog description of the
sequence detector using these in Listing 10.1.

Instead of representing the sequence detector as presented in Listing 10.1, we can
take the advantage of the behavioral modeling in Verilog. The aim here is having a
more descriptive representation of the device. Moreover, Verilog allows us to



represent states in parametric form. This makes the description more readable. Let’s
apply this idea to the sequence detector by representing state values {00, 01, 10,
11} in the device as {A, B, C, D}, respectively. Based on this representation, we will
have the new state diagram as shown in Fig. 10.5.

FIGURE 10.5 State diagram of the sequence detector using parametric form.

Listing 10.1 Verilog Description of the Sequence Detector



Based on the state diagram in Fig. 10.5, we can reconstruct the Verilog description of
the sequence detector. Here, we will represent states as A, B, C, and D. Besides, we
will have the actual behavioral description such that state transitions are done by case
statements. The final Verilog description of the sequence detector will be as presented
Listing 10.2. This description allows us to analyze working principles of the sequential
circuit easily. Therefore, we will represent sequential circuits this way whenever
possible from this point on.

Listing 10.2 Verilog Description of the Sequence Detector in Behavioral Form

Vivado synthesizes the sequence detector description in Listing 10.2 as presented in
Fig. 10.6. Here, four LUTs and three D flip-flops are used in implementation. We will
analyze this implementation in detail in Sec. 10.7.



FIGURE 10.6 Synthesization result of the sequence detector in behavioral model.

10.1.6 State Representation in VHDL
The sequence detector in Fig. 10.1 can also be described in VHDL. As in the Verilog
description in Listing 10.1, the first method is using state and output equations in
describing the sequence detector. We provide the VHDL description of the sequence
detector formed this way in Listing 10.3.

The second method in describing the sequence detector is using the power of
behavioral modeling. VHDL provides an extra advantage compared to Verilog such
that states in the device can be represented as a new data type by the VHDL keyword
type. The usage of this keyword will be as type state_type is (A,B,C,D). This
usage defines a new data type called state_type which can take four values as
A,B,C,D. If a signal with the name state is to be defined by type state_type, this can
be done by signal state : state_type. We provide the behavioral model of the
sequence detector described this way in Listing 10.4. Compared to the description in
Listing 10.3, this new form is more readable and explains working principles of the
sequence detector clearly. Hence, we will use such a behavioral description whenever
possible from this point on. The synthesization result of the sequence detector
description in Listing 10.4 will be similar to the one in Fig. 10.6. Therefore, we did not
provide it here.

Listing 10.3 VHDL Description of the Sequence Detector



Listing 10.4 VHDL Description of the Sequence Detector in Behavioral Model



10.2 Timing in Sequential Circuits
Sequential circuits can operate in two different modes in terms of timing. These are
synchronous and asynchronous operations. Let’s start with the former one.



10.2.1 Synchronous Operation
What we mean by synchronous operation is as follows. All transitions within the
sequential circuit are done in clock cycles. In other words, circuit elements share a
common clock such that every operation is synchronized with it. The reason of using
such a synchronization signal is as follows. When there are flip-flops in the circuit, we
may need present state values in obtaining next state values. However, these
operations should be done in order. Otherwise, the next state value may be used
erroneously instead of the present state value. Hence, synchronization is necessary
within the circuit. The sequence detector introduced in Sec. 10.1 is a good example of
the synchronous sequential circuit. As can be seen in Fig. 10.1, there are two D flip-
flops in the device sharing the same clock signal. The synchronization in the circuit is
accomplished this way.

One method to perform synchronous operation in HDL is putting all state transition
operations in the same block which is evoked by a change in clock signal. Let’s focus
on this operation in Verilog first. In Listing 10.2, the description under always @
(posedge clk) is responsible for state transitions and output formation. The posedge
keyword indicates that the always block is executed whenever a rising edge of clock
comes. Since all state transitions are performed in the always block, these operations
are synchronized by the rising edge of clock. The same operation can be achieved by
the falling edge of clock. Then, the keyword for this operation would be negedge.

The synchronization in the VHDL description can be performed by using the
process block triggered by clock signal. In the VHDL description of the sequence
detector given in Listing 10.4, the synchronization is done by putting all state
transitions under process(clk). Different from Verilog, VHDL does not allow adding
a complex constraint to trigger the process block. Hence, it is triggered first by a
change in clock signal. Then, state transitions are performed by the required transition
type within block. For the sequence detector, this was the rising edge of the clock
described by the condition rising_edge(clk) within the if condition. To perform the
same operation in the falling edge of clock signal, the falling_edge(clk) condition
should have been used.

10.2.2 Asynchronous Operation
There are also asynchronous sequential circuits. In these, there is no common clock
shared by all sequential circuit elements. Although asynchronous operations may be
beneficiary for some applications, such circuits are not easy to construct and analyze.

We can analyze how asynchronous operation can be achieved in HDL using a basic
example. Let’s start with the Verilog description in Listing 10.5. Here, there are two
always blocks. The first one is triggered by the positive edge of the clock signal. The
second block is triggered by the negative edge of the binary variable q in the first
block. In other words, the execution of the second block depends on the first block, not
on the clock signal. This is a simple example of asynchronous operation in Verilog.

The asynchronous operation in Listing 10.5 can also be performed in VHDL. The
corresponding description will be in Listing 10.6. Here, there are two process blocks



the first being triggered by clock signal. Within the first process block, a signal q
changes its state in each rising edge of clock. This change triggers the second process
block. Hence, the second block is not triggered by clock signal. Therefore, the overall
operation within the device becomes asynchronous.

10.3 Shift Register as a Sequential Circuit
There are sequential circuit families extensively used in digital systems. One such
family is the shift register which will be introduced in this section. The register
introduced in Sec. 9.3 can be modified such that bit locations can be altered in a
sequential manner. The family of devices performing this operation is called shift
register. There are four shift register types: serial in/serial out, parallel in/serial out,
parallel in/parallel out, and serial in/parallel out.

Listing 10.5 Asynchronous Operation Example in Verilog

Listing 10.6 Asynchronous Operation Example in VHDL



In the serial in/serial out shift register, data is fed to the device in a serial manner.
The output is also received in serial manner. This operation is especially useful when a
sequence of bits is to be shifted to the left or right. The block diagram of the four-bit
serial in/serial out shift register is as presented in Fig. 10.7. As can be seen in this
figure, the shift register is constructed by four D flip-flops connected as a chain.
Hence, the output of one flip-flop is connected to the input of the next flip-flop. New
data bit is fed to the device through its x pin. At each clock cycle, bits are shifted to
right between flip-flops. Last data bit is fed to output from y pin.

In the parallel in/serial out shift register, data is fed to the device in a parallel
manner. Hence, data is fed all at once. Besides, shifting operation is the same as in
serial in/serial out shift register.

Parallel in/parallel out and serial in/parallel out shift registers work similarly. In
both devices, data is received in parallel manner. The only difference between these
devices is how input is fed to the device. In the parallel in/parallel out shift register,
data is fed all at once. In the serial in/parallel out shift register, data is fed bit by bit.
Besides, shifting operation in these devices is the same as in the serial in/serial out
shift register.

We can summarize working principles of four shift register types as follows.



Shifting operation in all these devices is the same. The only difference between them is
how the input and output is received. Therefore, let’s consider N-bit serial in/serial out
shift register to explain the overall operation. To construct the shift register, we should
use N D flip-flops. Here, each bit in the sequence to be shifted is saved in a flip-flop
named qi. In this setup, let q0 and qN−1 represent the least and most significant bits,
respectively. This shift register can be explained best using its state and output
equations as follows:

As can be seen in above state equations, at every clock bits are shifted to the right flip-
flop. The output equation indicates this is a Moore machine since the output depends
only on the present state value.

State and output equations given above can be modified such that a left shift
operation can be performed. Modified equations are given below. As can be seen in
these equations, the mechanism of shifting operation is the same. Only the connection
between the flip-flops, input, and output pins is altered.

10.3.1 Shift Registers in Verilog
Verilog has predefined operators for shifting data in a vector. The shift right operator
is “>>”. The shift left operator is “<<”. Let’s assume that a vector Q is to be shifted to
left by one bit. The Verilog description for this operation will be Q << 1.

Using predefined shifting operators in Verilog, we can describe shift registers. Let’s
focus on four-bit serial in/parallel out shift register which shifts data to right. We
provide the Verilog description of this device in Listing 10.7. We deliberately handled
the serial in/parallel out shift register to show how shifting operation is done in every
clock cycle.

Vivado synthesizes the four-bit serial in/parallel out shift register description as pre-
sented in Fig. 10.8. Here, only four D flip-flops are used in implementation. This is in
line with the block diagram of the shift register in Fig. 10.7.



FIGURE 10.7 Block diagram of four bit serial in/serial out shift register.

10.3.2 Shift Registers in VHDL
The easiest way to construct a shift register in VHDL is using the array assignment
operator. Through it, we can copy and replace portion of the array to be shifted. We
provide the VHDL description of the serial in/parallel out shift register in Listing 10.8.
As can be seen in this description, shifting is performed by array operators. The
synthesization result of the shift register description will be similar to the one in Fig.
10.8. Therefore, we did not provide it here.

FIGURE 10.8 Synthesization result of four-bit serial in/parallel out shift register.

Listing 10.7 Verilog Description of Four-Bit Serial In/Parallel Out Shift Register



Listing 10.8 VHDL Description of Four-Bit Serial In/Parallel Out Shift Register

10.3.3 Multiplication and Division Using Shift Registers
We can use shift registers to multiply or divide a binary number by integer powers of
two. Assume that we keep a binary number in shift register. As we shift all its bits to
the left, while feeding input of logic level 0, the result will be the multiplication of
original number by two. We can shift the result again to obtain multiplication by four.
This operation can be repeated many times to obtain the multiplication of original
number by a power of two. Here, the reader should be aware of overflow possibility
such that the most significant bit may be lost during operation. Therefore, this bit
should be handled specifically during shifting. If shifting is done to the right, then
division of the original number by the power of two will be obtained.

Let’s consider a simple example on binary multiplication and division operations by
powers of two in HDL. We can start with the Verilog description in Listing 10.9. Here,
we use an eight-bit parallel in/parallel out shift register for multiplication and division
operations. Within the description, p2 represents the power of two for multiplication or
division operation. Variable md can be set to logic level 1 for the multiplication
operation. It can be set to logic level 0 for the division operation. If an overflow
occurs, it is saved in ovr.

Listing 10.9 Verilog Description of the Eight-bit Parallel In/Parallel Out Shift Register
for Multiplication and Division Operations



Listing 10.10 VHDL Description of the Eight-bit Parallel In/Parallel Out Shift
Register for Multiplication and Division Operations



We provide the VHDL description of the binary multiplication and division
example in Listing 10.10. As in the Verilog description, we use eight-bit parallel
in/parallel out shift register for multiplication and division operations. Signal names
here are same as in the corresponding Verilog description. While setting bits to logic
level 0, we used others =>’0’. This description is very useful when the total number
of bits to be processed is not known in advance in VHDL.

In Listing 10.10, we used VHDL keyword generic to pass a specific information
into an entity. More specifically, we used it to define constant p2 to be used throughout
the shift register architecture. We will use generic in the following chapters for such
purposes as well.

10.4 Counter as a Sequential Circuit
The counter is another sequential circuit family used in digital systems. As the name
implies, the first usage area of this circuit is counting number of input occurrences.
The second usage area of a counter is in time-based operations. Here, a number of
clock pulses are counted. If the period of the clock is known, then the total time passed



during counting operation can be calculated. The third usage area of the counter is in
frequency division operation. Here, the frequency of the input clock signal is divided
by powers of two.

Working principles of a counter are as follows. Whenever an input signal comes,
the counter circuit changes its state. If we assign successive numbers to states in the
circuit, then the device visits each number successively. Here, the total number of
states indicate the capacity of the counter. Based on the number assignment to states,
upward or downward counting can be done.

The counter can best be explained by its state diagram. Let’s pick a two-bit (four
state) up counter as example. States of this circuit will be 00, 01, 10, and 11. Hence, the
circuit will count upwards. If the count value reaches state 11, then the next state will
be 00. To indicate that the count reached the final value and restarted counting, we can
set the output as logic level 1 at this transition. The corresponding state diagram for the
overall operation will be as presented in Fig. 10.9.

FIGURE 10.9 State diagram of two-bit up counter.

A counter can be realized in two different ways as a synchronous or an
asynchronous sequential circuit. Next, we explain each realization in detail.

10.4.1 Synchronous Counter
In asynchronous counter, all flip-flops within the sequential circuit are clocked with
the same clock signal. We can implement the two-bit synchronous up counter as
presented in Fig. 10.9. Since there are four states in the circuit, we will need two flip-
flops in implementation. We can form the state table for the counter as presented in
Table 10.2. Here, the input to the counter is represented by the binary variable x. The
output of the counter is denoted by y.



TABLE 10.2 State Table of a Two-Bit Synchronous Up Counter

We can form state and output equations by referring to Table 10.2 as follows:

Based on these state and output equations, the final circuit for two-bit synchronous up
counter will be as presented in Fig. 10.10.

FIGURE 10.10 Circuit diagram of two-bit synchronous up counter.

10.4.2 Asynchronous Counter



There is another way of implementing the two-bit up counter. To do so, we should
analyze the state table in Table 10.2 more closely. As can be seen in this table, q1
toggles its state whenever rising edge of clock comes and input x equals to logic level
1. q2 toggles its state whenever falling edge of q1 comes and input x equals to logic
level 1. This leads to asynchronous (ripple) counter in which clock signal is fed only to
the first flip-flop. The second flip-flop changes its state based on the output of the first
flip-flop.

We provide the circuit diagram of the two-bit asynchronous up counter in Fig.
10.11. Here, we use two D flip-flops. As can be seen in this figure, no extra
combinational circuit is needed.

FIGURE 10.11 Circuit diagram of a two-bit asynchronous up counter.

10.4.3 Counters in Verilog
Counters can be described in Verilog using arithmetic operations. Let’s start with the
two-bit synchronous up counter in Fig. 10.10. We can describe this circuit as presented
in Listing 10.11. As can be seen in this description, counting operation is done by
arithmetic addition by one at every clock cycle when input x is at logic level 1.

Listing 10.11 Verilog Description of Two-Bit Synchronous Up Counter

Vivado synthesizes the two-bit synchronous up counter in Listing 10.11 as



presented in Fig. 10.12. Here, three LUTs and D flip-flops are used in implementation.

FIGURE 10.12 Synthesization result of two-bit synchronous up counter.

We can generalize the two-bit synchronous counter to N bits. Moreover, we can add
up or down counting, and clearing the count value functionality. We provide the N-bit
counter having all these properties in Listing 10.12. Here, ud decides the count
direction. If this variable is set to logic level 1, then up counting is performed.
Otherwise, down counting is done. Variable clr can be used to clear the count value.

Listing 10.12 Verilog Description of N-bit Synchronous Up/Down Counter

Next, we consider the two-bit asynchronous up counter in Fig. 10.11. We provide
the Verilog description of this circuit in Listing 10.13. As can be seen in this
description, two always blocks are used to perform the asynchronous operation.

Vivado synthesizes the two-bit asynchronous up counter in Listing 10.13 as
presented in Fig. 10.13. Here, four LUTs and three D flip-flops are used in
implementation. This implementation clearly shows asynchronous operation if the



reader follows clock signal connections.

FIGURE 10.13 Synthesization result of two-bit asynchronous up counter.

10.4.4 Counters in VHDL
Counters can also be described in VHDL. Let’s reconsider the two-bit synchronous up
counter in Fig. 10.10. We can describe this circuit as presented in Listing 10.14. As
can be seen here, counting operation is done by arithmetic addition by one. The
synthesization result of the two-bit synchronous up-counter description will be similar
to the one in Fig. 10.12. Therefore, we did not provide it here.

Listing 10.13 Verilog Description of Two-Bit Asynchronous Up Counter

Listing 10.14 VHDL Description of Two-Bit Synchronous Up Counter



Listing 10.15 VHDL Description of N-bit Synchronous Up/Down Counter



As in the previous section, we can generalize the counter to have up/down and clear
properties. We provide the VHDL description for this setup in Listing 10.15. Here,
variable names are the same as the ones used in corresponding Verilog description.
Hence, the reader can associate both descriptions.

Listing 10.16 VHDL Description of Two-Bit Asynchronous Up Counter



Finally, we handle the two-bit asynchronous up counter in Fig. 10.11. We provide
the VHDL description of this circuit in Listing 10.16. As can be seen in this
description, two process blocks are used to perform asynchronous operation. The
synthesization result of the two-bit asynchronous up-counter description will be
similar to the one in Fig. 10.13. Therefore, we did not provide it here.

10.4.5 Frequency Division Using Counters
The clock frequency of a digital system may not be suitable for operation. Hence, we
may need to change it. Module performing this is called frequency divider. Counters
can be used for this purpose. What we have to do is feeding the clock signal as input



and obtaining new clock signal with the frequency divided by powers of two from the
output of counter flip-flops. We provide such a synchronous frequency divider in Fig.
10.14. Here, we use T (toggle) flip-flops introduced in Sec. 9.2.3.

FIGURE 10.14 Block diagram of a synchronous frequency divider.

Listing 10.17 Verilog Description of Synchronous Frequency Divider

Next, we consider HDL description of this frequency divider circuit. We provide
the corresponding Verilog description in Listing 10.17. Here, the synchronous
counting is performed. Divided frequency values are taken from count digits. We also
provide the frequency division result of the clock signal obtained from Vivado in Fig.
10.15. As can be seen in this figure, at each output the digit frequency of an input
clock is divided by two, four, and eight. We provide the VHDL description of the
synchronous frequency divider working on the same principle in Listing 10.18.

FIGURE 10.15 Frequency division results of synchronous frequency divider.

10.5 Sequential Circuit Design



We have introduced combinational circuit design steps in Sec. 7.5. These apply to
sequential circuit design as well. However, the designer has to plan state
representations and transitions besides usual input/output relationship in designing a
sequential circuit. In fact, the main design criterion is deciding which states to be used.
We can benefit from either the state diagram or state table for this purpose. The easiest
way is using the state diagram. Through it, the designer can plan state transitions and
corresponding input/output pairs visually. This leads to state and output equations.

The reader can either implement the state and output equations using HDL or,
implementation can be done in HDL by taking benefit of behavioral modeling. We
strongly suggest the latter method in implementation since it is easy to describe
working principles of the sequential circuit this way. Again let’s emphasize that ideas
mentioned here do not reflect a complete design methodology. The reader should take
these just as introductory steps. Designing a sequential circuit should be mastered by
consulting related literature.

Listing 10.18 VHDL Description of Synchronous Frequency Divider

10.6 Applications on Sequential Circuits
We can use sequential circuits to further improve applications introduced in previous
chapters. Therefore, we will reconsider home alarm, digital safe, and car park occupied
slot counting systems. We will also introduce two new applications on sequential
circuits as vending machine and digital clock in this section.

10.6.1 Improving the Home Alarm System



Using sequential circuits can improve the home alarm system. To do so, we can add
password, buzzer, and LED blink modules to the system. The modified system works
as follows. Once the alarm is activated by pressing btnC on the Basys3 board, the
rightmost seven-segment display digit shows character A. This indicates that the
system is active. If one of the windows is opened, then the alarm LED turns on to
indicate that alarm has turned on. Hence, the buzzer starts working. If the user enters
the correct password, then the alarm is deactivated. Hence, the buzzer stops. If the
door is opened, then the user has 20 seconds to enter the password. If the correct
password is entered within this time slot, then the alarm turns off. Otherwise, the alarm
LED turns on and buzzer starts working. Counting of 20 seconds is displayed on the
two leftmost sevensegment display digits of the Basys3 board.

We provide the modified Verilog description for the home alarm module in Listing
10.19. This module has seven inputs. These are clk (main clock signal), pass (eight-
bit password), act (activation signal), door (door input), win1, win2, win3 (window
inputs). Door and window inputs are at logic level 1 when they are open. Otherwise
they are at logic level 0. The module has five outputs. These are blinkled (warning
LED during alarm countdown), alarmled (shows the alarm status), seg, an (seven-
segment display ports), and buzzer (the buzzer output).

Listing 10.19 Verilog Description of the Modified Home Alarm Module via
Sequential Circuits





Working principles of the modified home alarm module (as a state machine) are as
follows. The state machine has four states as AOFF, AON, PASSCHECK, and SOUND. When
act goes to logic level 1, state changes from AOFF to AON. There are two options here.
If one of the windows are opened, state machine directly goes to SOUND state which
sounds the alarm. If the door is opened, state machine goes to PASSCHECK state. Here,
the machine waits for 20 seconds for the user to enter password. The password is
initially set to 55 in the hexadecimal form. If the entered password is correct, then the
machine goes to AOFF state. Otherwise, the state machine goes to SOUND state which
sounds the alarm. IP modules binarytoBCD_0 and sevenseg_driver_0 should be
added to the project.

Let’s explain the sevenseg_driver module first. The main purpose of this module
is to drive the seven-segment display on the Basys3 board. This display is a “common
anode” type four-digit display. There are seven signals, named as seg, to drive four
digits commonly, and four-digit enable signal, named an, to enable each digit. Since
these are all common anode signals, they should be set to logic level 0 when they are
active. Since four digits have common seg signals, an signal should be periodically
changed at a rate faster than the human eye can catch. In every step, seven-bits seg
data will be fed to the selected digit. We provide the Verilog description of the module
in Listing 10.20. The module has six inputs as clk (main clock), clr (active-high
reset), and four four-bit digit inputs in1, in2, in3, in4. Outputs of the module are seg
and an. The VHDL version of the seven-segment display driver module is available in
Listing 10.21.

Listing 10.20 Seven-Segment Display Driver Module in Verilog for Four Digits on



the Basys3 Board





Listing 10.21 Seven-Segment Display Driver Module in VHDL for Four Digits on the
Basys3 Board





Listing 10.22 Binary to BCD Converter Module in Verilog

The working principle of the seven-segment display driver module is as follows.
First, we need to divide input clock by 212 to drive segments. If clr goes to logic level
1 at anytime, both seg and an go to logic level 0. Then, all digits and segments are
turned on and 8888 is seen on the display. Otherwise, a state machine starts. We have
four states to indicate the position of digits from left to right. Note that four-bit inputs
have been converted into seven-bit seven-segment codes with the module
decoder_7seg in Listing 8.27. The state machine starts in LEFT state where the



decoded pattern is loaded to seg and the first digit from left is selected by loading
0111 to an. Next, state turns to MIDLEFT. The same operation is done to drive the
second digit from left. This continues in a loop for all four digits in the display.

Let’s explain the binarytoBCD module next. This module converts a binary number
to the corresponding binary coded decimal (BCD) form. For example, when we have
an eight-bit binary number 11111111, we cannot show it directly on the seven-segment
display. Therefore, we need to obtain every digit as a four-bit binary decimal code. For
example, the corresponding decimal number is 255. Hence, we should have 0010 for
decimal two in hundreds digit, 0101 for decimal five in tens digit, and 0101 for five in
ones digit. We provide the Verilog description for binary to BCD converter in Listing
10.22. The module has one input as binary representing the binary number to be
converted. Outputs of the module are thos, huns, tens, and ones. Here, we had to use
blocking assignments in behavioral model to keep digit values. The VHDL version of
the binary to BCD converter is available in Listing 10.23. We used variable definitions
within the description to keep digit values. Moreover, we had to use the
std_logic_vector function which converts its input to standard logic vector form.

Listing 10.23 Binary to BCD Converter Module in VHDL



Listing 10.24 Modified Home Alarm System Implemented on the Basys3 Board in
Verilog



We provide the top module to implement the modified home alarm system on the
Basys3 board in Listing 10.24. Here, we use buttons on the board to imitate the door
and windows in the home alarm module. Hence, btnU represents the door, btnR, btnD,
and btnL stand for windows. Debounce modules are employed within the top module
to get the clear button output. Seven-segment display ports seg and an are connected
to relevant ports on the Basys3 board. We connected a passive piezo buzzer module to
JA port on Basys3 to sound the alarm. This buzzer has three ports as VCC, GND, and
I/O. The first two ports are connected to VCC and GND ports of JA on the Basys3
board. I/O is connected to JA[0]. When I/O goes to logic level 0, the buzzer sounds.
We use the first eight switches to enter the password.

10.6.2 Improving the Digital Safe System
We can improve the digital safe system by using sequential circuits. Here, the user will
have chance to enter his or her password instead of a fixed initial value. We provide
the modified Verilog description for the digital safe module in Listing 10.25. This
module has five inputs. These are clk (main clock signal), passinput (16-bit
password), pass_set (input to change password), pass_reg (input to save new
password), and pass_lock (to lock safe again after the password change). The output
of the module is a two-bit vector safestate. This output indicates the state of lock,
such that 00 shows locked; 01 indicates open; 10 represents enter new password; and
11 shows new password set.



Working principles of the modified digital safe module (as a state machine) are as
follows. The state machine has two states: ENTERPASS and SETPASS. In ENTERPASS
state, the machine checks whether the input matches the password. If this is the case,
safestate changes to 01 which shows that lock is open. Besides, if pass_set is at
logic level 1, then state of the machine goes to SETPASS where the new password is
entered. After the user determines a new password, pass_reg should go to logic level
1 to save it. Then, pass_lock should go to logic level 1 to lock the safe again.

Listing 10.25 Verilog Description of the Modified Digital Safe Module via Sequential
Circuits

We can further improve the digital safe system to be implemented on the Basys3



board. Here, we can show state of the lock and the new password on the seven-
segment display. To do so, we should add the seven-segment display module as an IP
block. Inputs of the digital safe module will be connected to buttons and switches on
the Basys3 board. Hence, we should also add the debounce module as an IP block. We
provide the top module for this application in Listing 10.26.

In Listing 10.26, pass_set, pass_reg, and pass_lock inputs are assigned to btnU,
btnD, and btnC of the Basys3 board respectively. Sixteen switches are used as
passinput. The master clock of the board is connected to clk signal. The output
safestate of the digital safe module is kept in a vector with the same name to control
the seven-segment display on the board. Hence, when safestate is at 00 all four
seven-segment display digits will show character C which stands for “Close”. When
safestate is at 01, all display digits will show the character O which stands for
“Open”. When safestate is at 11, all digits will show the character S which stands for
“Set”. In the 01 state (referring to the password change), digits show the password
while the user changes it.

Listing 10.26 Modified Digital Safe System Implemented on the Basys3 Board in
Verilog



10.6.3 Improving the Car Park Occupied Slot Counting System
We can improve the car park occupied slot counting system using sequential circuits.
Hence, we will use the seven-segment display to show total occupied slots. Since we
can use more than one seven-segment display digit now, we extend the car park system
to count for 16 slots. We provide the modified Verilog module in Listing 10.27.

We provide the top module to implement the modified car park system on the
Basys3 board in Listing 10.28. As in previous applications, we used the Basys3 LEDs,
switches, and seven-segment display in this top module. Besides, we added a



proximity sensor (working as a switch to one of the car park clot) to the system as
well. The proximity sensor is connected to JC[3] port of the Basys3 board. It works in
active-low form such that when no obstacle is detected, the sensor gives logic level 1,
otherwise it gives logic level 0 as output. We included seven-segment display driver
and binary to BCD IP blocks in the top module.

Listing 10.27 Verilog Description of the Modified Car Park Module via Sequential
Circuits

Listing 10.28 Modified Car Park System Implemented on the Basys3 Board in Verilog

10.6.4 Vending Machine



We can construct a prototype vending machine using sequential circuits. Let’s briefly
explain how it works. The machine has two money inputs for 25 cents and 1 dollar
(100 cents). Here, the reader can assume that the actual machine has one input for
coins. However, 25 cents and 1 dollar are differentiated by a mechanism. Hence, we
see two inputs. The vending machine is capable of offering four different products.
Each product tray can keep up to 15 items. The user can select a product by its
corresponding button. After the selection, the user should press the buy button to
finalize the operation. The vending machine gives signal when a product goes out of
stock. Then, the maintenance team can fill the corresponding tray and update the stock
number by a button.

We provide the Verilog description of the vending machine module in Listing
10.29. This module has six inputs. These are clk (main clock signal), coin1 (25 cents
input), coin2 (1 dollar input), select (selection input, every bit representing a
different product), buy (buy the selected product), and load (load empty tray). The
vending machine module has three outputs. These are money (total deposited money),
products (triggers the tray of the corresponding product after a successful trade), and
outofstock (to indicate a product has gone out of stock).

Listing 10.29 Verilog Description of the Vending Machine





Working principles of the vending machine (as a state machine) are as follows. In
every rising edge of clk, the machine looks for a rising edge on coin1, coin2, and buy.



If coin1 goes to logic level 1, the machine adds 25 cents as a credit. If coin2 goes to
logic level 1, the machine adds 1 dollar (100 cents) as a credit. If the user presses buy
button, the machine first checks which product is selected. Then, it checks whether the
total credit is enough and there is at least one product in stock. If all the conditions are
satisfied, then the vending machine withdraws price of the product from total credit;
decreases stock of the product by one; and sets the relevant bit of the product output
to logic level 1. When buy goes to logic level 0, products vector is also reset to logic
level 0. At the end of each transaction, the vending machine checks whether any
product has gone out of stock. Again, we should remind that each product is
represented by a separate bit in input, output, and register vectors in the module. For
example, if outof-stock is 0010, this means that the second product is out of stock.
Or, if the maintenance team loads the tray of the fourth product, then load should be
set to 1000.

We provide the top module to implement the vending machine on the Basys3 board
in Listing 10.30. As in previous applications, we used the Basys3 LEDs, switches, and
seven-segment display in this top module. Besides, we included the seven-segment
display, binary to BCD, and debounce IP blocks in the top module.

10.6.5 Digital Clock
We can construct a digital clock using counters introduced in Sec. 10.4. Our clock
displays hour and minute digits with 10−8 -second accuracy. The user can adjust the
time by buttons.

We provide the Verilog description of the digital clock module in Listing 10.31.
This module has five inputs. These are clk (main clock signal), en (active high enable
signal), rst (resets all outputs when in logic level 1), hrup and minup (adjust hour and
minute values). The digital clock module has six outputs each with four bits. These are
s1 and s2 (for second digits), m1 and m2 (for minute digits), h1 and h2 (for hour digits).

Listing 10.30 Vending Machine Implemented on the Basys3 Board in Verilog



Listing 10.31 Verilog Description of the Digital Clock





Working principles of the digital clock (as a state machine) are as follows. There is
an integer counter in the module. There is also a parameter onesecond representing
one second when 100-MHz clock is used. In every rising edge of the clock, rst is
checked. If it is at logic level 1, all output values are reset. Else the machine checks
minup and hrup to increment minute or hour digits by one to adjust the clock. If rst,
minup, and hrup are at logic level 0 and en is at logic level 1 then the clock starts
operating. Here it waits for the counter to count up to onesecond to increment second
digits. Afterward, minute and hour digits are incremented as in an actual digital clock
operation.

We provide the top module to implement the digital clock on the Basys3 board in
Listing 10.32. As in previous applications, we used the Basys3 LEDs, switches, and
seven-segment display in this top module. Here, sw[0] enables the clock when it goes
to logic level 1; btnC resets the clock; btnU increases the hour digit and btnR increases
the minute digit. Besides, we included the seven-segment display, binary to BCD, and
debounce IP blocks within the top module.

10.7 FPGA Building Blocks Used in Sequential Circuits
The FPGA building blocks used in this chapter are closely related to the ones
considered in Sec. 9.8. Therefore, it is not necessary to reconsider them here.
However, we strongly suggest the reader to observe Vivado synthesis result of
sequential circuits evaluated in this chapter. This may allow understanding sequential
circuit concepts better.

We should mention one important FPGA building block usage at this step. If
sensitivity list of an always block in behavioral description depends on positive or
negative edge of a clock signal (such as posedge clk or negedge clk), then any
variable represented by the reg keyword will automatically have a D flip-flop. Hence,
this value can be kept between clock cycles.

10.8 Summary
Sequential circuits allow constructing digital systems with memory. This opens up a
new perspective which cannot be performed by combinational circuits. Therefore, we
explored sequential circuits in detail in this chapter starting from basic definitions.
Then, we analyzed timing in sequential circuits. Here, we can either use synchronous



or asyn-chronous operations. We provided HDL examples for both. Afterward, we
handled shift registers and counters as two popular sequential circuit families. Then,
we briefly introduced sequential circuit design methodology. We suggest the reader to
master how sequential circuits can be designed using related literature. We believe the
overall handling of sequential circuits in this chapter will help the reader understand
advanced concepts introduced in following chapters.

Listing 10.32 Digital Clock Implemented on the Basys3 Board in Verilog

10.9 Exercises



10.1   A sequential circuit is represented by the state diagram in Fig. 10.16. The input
to the circuit is x. The output of the circuit is y. Implement this sequential
circuit in Verilog or VHDL using case statements.

FIGURE 10.16 State diagram for Exercise 10.1.

10.2   Redo Exercise 9.8 such that the LED turns on after every five button presses. It
turns off in the second button press after turned on.

10.3   Obtain the state diagram of the two-bit down counter in Sec. 10.4.
10.4   (Barrel shifter.) Design a barrel shifter in Verilog or VHDL.
10.5   (Asynchronous frequency divider.) Design an asynchronous frequency

divider in Verilog or VHDL.
10.6   (Frequency divider.) Design a frequency divider module in Verilog or VHDL

such that the user can select what the division ratio should be by selecting
pins of the device. The device should feed the output as frequency of the input
clock divided by one (no division), two, four, and eight.

10.7   (Frequency divider.) Design a frequency divider module in Verilog or VHDL
such that the user can select what the division ratio should be by selecting
pins of the device. The device should feed the output as frequency of the input
clock divided by 1 (no division), 6, 10, and 12.

10.8   (Up-down counter.) Design an up-down counter in Verilog or VHDL such
that the digital system counts up to the desired number. Then, it counts
downward to zero. When the count value reaches zero, the output should be
logic level 1.

10.9   (Frequency divider.) Design a frequency divider in Verilog or VHDL to
generate a clock with one hertz frequency using the master clock of the



Basys3/Arty board. Connect the generated clock to a LED on the board to
observe how it turns on and off.

10.10   (Edge detector in Verilog.) An edge detector circuit is used to detect the rising
edge of a signal with reference to the associated clock. Analyze the Verilog
description of the edge detector in Listing 10.33.

10.11   (Edge detector in VHDL.) Design an edge detector in VHDL using the
analysis in Exercise 10.10.

10.12   (Blink the LED.) Design a digital system to blink led[0] on the Basys3 board
every second using a frequency divider and counter. In other words, the
rightmost LED on the board will turn on one second and turn off one second
periodically.
a. Construct a synchronous frequency divider module in Verilog. Input to the

module will be the clock of Basys3 board which has a frequency 100
MHz. The output of the module will be another clock with frequency
100/8 MHz.

b. Write a complete top module in Verilog or VHDL to turn on and off led[0]
every second. To do so, construct a 24-bit counter. Note that 224

=16777216. Therefore, the counter can count from 0 to 16777215 in
decimal. Use the Verilog or VHDL description for frequency division in
the previous part of the exercise.

Listing 10.33 Verilog Description of the Edge Detector

10.13   (DNA sequence detector.) DNA is a helical structure of two conjugate strands.
One strand in a string of about 3 billion organic molecules is named as
nucleotides. There are four known nucleotides: Adenine (A), Thymine (T),
Guanine (G), and Cytosine (C). The string of nucleotides tells us much about
the organism. We can develop a state machine to detect a specific nucleotide



sequence. Assume that we would like to detect the exact sequence composed
of nucleotides ATTCGC. Form a Verilog or VHDL description to implement
this detector. Here, it is assumed that nucleotides are read and provided to our
system as four code values as 00, 01, 10, and 11 representing A, T, C, and G.

10.14   (DNA sequence detector with empty slots.) We can extend the sequence
detector in Exercise 10.13 such that extra three nucleotides are allowed
between A and T in the sequence ATTCGC. Modify the Verilog or VHDL
description of your DNA sequence detector to handle this case.

10.15   (Detecting the first logic level 1 in a binary sequence.) Assume that we are
fed with a binary sequence with values of logic 1 and 0. Design and
implement a digital system in Verilog or VHDL for the following operations:
a. When the first logic level 1 in the sequence is detected, the output of the

system becomes logic level 1.
b. The location of the detected logic level 1 is fed as another output of the

digital system.
10.16   (Snake game.) We can design a snake game using seven-segment display and

buttons on the Basys3 board. The aim of the game is extending the snake
while not crossing over itself. We can form the snake on segments of the
rightmost sevensegment display digit. Buttons btnU, btnD, btnL, and btnR can
be used to enter the next direction of the snake. Here, we will take eight
directions as up, down, left, right, up left, up right, down left, and down right.
btnC acts as a reset button for the game.
a. Form the basic game in Verilog or VHDL such that snake is initially

represented by a segment (let’s take E) in the rightmost seven-segment
display digit of the Basys3 board. As the user extends the snake fully,
led[0] on the board will turn on. If the snake crosses itself during the game,
the snake turns back to its initial state.

b. Add a timing module such that the snake extension should be done within
limited time.

c. Is it possible to extend this game on four seven-segment display digits?
10.17   (Pulse width modulation.) The aim of the pulse width modulation (PWM) is

forming a digital signal with constant period but with varying on and off time
values within a period. Form a Verilog or VHDL description to observe basic
working principles of the PWM.

10.18   (Digital clock.) How can we implement the digital clock application in Sec.
10.6 using asynchronous operations in Verilog or VHDL?
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CHAPTER 11
Embedding a Soft-Core

Microcontroller

ost of the time, digital systems implemented on field-programmable gate
array (FPGA) and microcontroller platforms seem like rivals. In fact, this
is not the case. Both platforms have their advantages and disadvantages
as mentioned in Chap. 2. Fortunately, the FPGA design allows including
a microcontroller (in soft-core form) as an IP block. This opens up a way

to benefit from advantages of both the FPGA and microcontroller platforms at once.
Therefore, this chapter focuses on how a soft-core microcontroller can be implemented
on the FPGA platform. To explain this process, we will start with introducing building
blocks of a generic microcontroller. While doing this, we will reference combinational
and sequential circuit blocks introduced in previous chapters. Then, we will introduce
two Xilinx microcontroller IP cores named PicoBlaze and MicroBlaze. Finally, we
will explore properties of both microcontrollers in detail as well as their usage in
simple projects.

Before going further, let’s clarify one point. This chapter is not on microcontroller
programming which requires a study of its own. Hence, we will direct the reader to
related references for this purpose [32]. Instead, the aim here is explaining basics of a
microcontroller architecture from an hardware description language (HDL) point of
view. This will be a very valuable insight for both FPGA and microcontroller users.
The former will understand how a microcontroller can be constructed by HDL
description. The latter will have a chance to observe what is going on inside a
microcontroller in lowest (possible) level. Hence, the FPGA and microcontroller users
can benefit from topics explored in this chapter.



11.1 Building Blocks of a Generic Microcontroller
There are several microcontroller families developed by different vendors. Although
these have different properties, they share similar building blocks. In this section, we
overview these building blocks by taking a generic microcontroller as benchmark. This
will give an insight in the microcontroller development, discussed in the following
sections.

11.1.1 Central Processing Unit
The central processing unit (CPU) is a sequential circuit in its basic sense. It is
responsible for executing commands given to it in the form of instructions. Therefore,
the CPU is the fundamental block responsible for working of a microcontroller.

Each CPU family has a specific instruction set of its own. The user should form a
code block using these instructions to program the microcontroller. Generally, this is
called assembly language programming. Recent microcontrollers also allow C, C++,
or similar languages for programming. Each program is executed sequentially by the
CPU. If allowed, interrupts are also served such that an asynchronous operation is
performed.

Data or instructions to be processed by the CPU should be taken from other
modules such as memory and peripheral units. Two set of wires are needed for this
operation. The first set is address bus which holds the location of the data (or
instruction) to be processed. The actual data (or instruction) is carried by the data bus
which is the second set of wires. The size of the data bus helps decide the type of
microcontroller, such as either eight bit or 16 bit.

Most CPUs have registers on them. These are data storage elements as explained in
Sec. 9.3. The bit size of these registers should also be in line with the type of
microcontroller. Hence, an eight-bit microcontroller will have registers formed also of
eight bits. The first group of registers is reserved for the operation of the CPU. One
such register is the program counter (PC) which holds the address of the next
instruction to be executed. Depending on the type of the CPU, there may also be a
specific register (status register) holding the status of the CPU after an instruction is
executed. This is also called a flag. Some flags can be used to modify the working
state of the CPU, such as allowing an operation to be executed. The second group of
registers is provided to the usage of the programmer.

11.1.2 Arithmetic Logic Unit
An arithmetic logic unit (ALU) is a subpart of the CPU responsible for executing
arithmetic and logic operations. Therefore, the ALU is basically composed of
combinational circuits. Depending on the microcontroller type, the ALU can perform
addition, subtraction, multiplication, and division operations. Most microcontrollers
will only have addition and subtraction operations since they are easy to implement.
These operations are done on fixed-point numbers. If floating-point operations need to
be done, the microcontroller should have a floating-point unit. Logic operations to be



performed in the ALU may be AND, OR, NOT, and XOR. Besides, the ALU may
have a comparator unit.

11.1.3 Memory
A microcontroller needs memory for two reasons. First, instructions to be executed by
the CPU should be kept somewhere. Program memory (ROM) is the place for this
operation. Second, some instructions to be executed will work on data which need to
be stored in memory. Data memory (RAM) will be the block for this operation.
Therefore, a micro-controller should have ROM and RAM blocks. Depending on the
microcontroller type, the size of these blocks will differ.

11.1.4 Oscillator/Clock
Being a sequential device, the microcontroller needs a clock signal to operate. A clock
is generated either by an external source or internal oscillator in the microcontroller.
Initial microcontrollers had just one clock source to operate. Recent microcontrollers
have more than one clock source such that each can be used by a different block in the
microcontroller. This allows enabling and disabling different blocks based on the
application at hand. As a result, power savings can be achieved by using only needed
blocks.

11.1.5 General Purpose Input/Output
A microcontroller interacts with the outside world through its input and output pins.
These are called general purpose input and output (GPIO). Most of the times, GPIO
pins operate with digital data. These pins may be of use for other applications as well,
such as the digital communication and analog-to-digital conversion. Therefore, the
reader can use these pins for a wide range of applications.

11.1.6 Other Blocks
A microcontroller may also have other blocks generally called peripherals. The digital
communication, analog-to-digital converter (ADC), and digital-to-analog converter
(DAC) can be counted as such blocks. A microcontroller implemented on the FPGA
has freedom on such blocks since any digital device can be implemented alongside it.
In other words, the user is free to add any peripheral device to the microcontroller
implemented on the FPGA.

11.2 Xilinx PicoBlaze Microcontroller
PicoBlaze is an eight-bit soft-core microcontroller developed by Xilinx. The specific
core to be used in this book is called KCPSM6, which is suitable for the Xilinx Artix-7
FPGAs. PicoBlaze documentation and files can be downloaded from [34] as file
KCPSM6_Release9_30Sept14.zip. We will next analyze functional blocks of
PicoBlaze. Then, we will explore how it can be used in connection with Verilog and



VHDL descriptions.

11.2.1 Functional Blocks of PicoBlaze
Functional block diagram of PicoBlaze (provided by Xilinx) is presented in Fig. 11.1.
We will explain PicoBlaze using it based on definitions in Sec. 11.1. However, we will
not cover all blocks and operations (such as stack) in this figure to simplify the
explanation. More information on these issues can be found in [35, 36].

The CPU is not specifically shown in Fig. 11.1. However, we can consider the
instruction decoder, PC, stack, registers, and flags as parts of the CPU. The instruction
decoder is responsible for fetching and preparing the instruction to be executed. The
PC holds the address of the next instruction to be executed. The PC is automatically
incremented to the next instruction location when the present instruction is executed.
PicoBlaze has a 10-bit PC that supports 1024 instruction address. PicoBlaze has 16
registers each holding eight bits. These are named as s0 to sF in Fig. 11.1. There are
also three flags in PicoBlaze. The first one, called IE, enables and disables interrupts.
The second and third flags are called Z and C, respectively. These are set when a zero
or carry occurs after the ALU operation.

PicoBlaze has its own assembly language formed of instructions represented by 18
bits. The assembly language and its usage are explained in detail in [35, 36].
Instructions to be executed are saved in program memory called instruction PROM.
The program written in assembly language should be embedded to PROM via a
specific procedure explained in Sec. 11.2.4. PicoBlaze has the data memory called
Scratchpad RAM which can save up to 64 bytes of data.

FIGURE 11.1 Functional block diagram of the PicoBlaze microcontroller.

The ALU in PicoBlaze can perform arithmetic and logic operations required by the
instruction to be executed. Arithmetic operations that can be performed on PicoBlaze



are addition and subtraction. Logic and compare operations that can be performed on
the microcontroller are bitwise logic operations, arithmetic compare and bitwise test
operations, and comprehensive shift and rotate operations.

The GPIO in PicoBlaze is indicated by IN_PORT, OUT_PORT, and PORT_ID in
Fig. 11.1. PicoBlaze supports up to 256 input and 256 output pins or a combination of
both. The interrupt is indicated as another input called INTERRUPT in Fig. 11.1.

The oscillator/clock module is not specifically shown in Fig. 11.1. However, the
user should add it so that the microcontroller can operate. Moreover, the user is free to
add any extra peripheral blocks to PicoBlaze through the HDL description.

11.2.2 PicoBlaze in Verilog
Xilinx provides the Verilog description of the PicoBlaze microcontroller in KCPSM6_
Release9_30Sept14.zip. The microcontroller module in Verilog is named as
kcpsm6.v within this archive. The reader can use this module within his or her design
by providing necessary peripheral devices including the clock signal. We provide the
shortened version of kcpsm6.v in Listing 11.1. Here, all input and output connections
of the microcontroller are defined.

To program the microcontroller, the reader should prepare a file (with extension
psm) consisting of assembly language instructions. These should be embedded to
PROM. To do so, the reader should run the assembler kcpsm6.exe which can be found
in KCPSM6_ Release9_30Sept14.zip. The assembler will convert the file containing
assembly language instructions to a Verilog file to be added to the project. At this
point, please remember that the Verilog file ROM_form.v should be in the same folder
with the assembler kcpsm6.exe. As all files are added and settings are done, the
Verilog description can be implemented. We will provide such an example in Sec.
11.2.4.

11.2.3 PicoBlaze in VHDL
Xilinx also provides the VHDL description of the PicoBlaze microcontroller in
KCPSM6_ Release9_30Sept14.zip. The microcontroller module in VHDL is named as
kcpsm6.vhd within the archive. The reader can use this module within his or her
design by providing necessary peripheral devices including the clock signal. We
provide the shortened version of kcpsm6.vhd in Listing 11.2. As in the Verilog
description, all input and output connections of the microcontroller are defined.

Listing 11.1 Verilog Description of the PicoBlaze Microcontroller in Shortened Form



Programming the microcontroller via its VHDL description is the same as in
Verilog. The only difference here is that the VHDL file ROM_form.vhd should be in the
same folder with the assembler kcpsm6.exe. Besides, the project should be
implemented as in the previous section.

11.2.4 PicoBlaze Application on the Basys3 Board
To show how an actual Verilog project can be established using PicoBlaze, we direct
the reader to Phil Tracton’s GitHub repository in [37]. There are several projects in
this address. However, we will only use digital I/O example in [38]. The idea of this
project is controlling first eight LEDs of the Basys3 board by corresponding eight
switches. The reader can benefit from this project such that he or she can observe how
PicoBlaze can be used with GPIO. As we were writing this book, VHDL version of the
project was not available. However, the reader can benefit from IP block operations to
use the Verilog description in a VHDL project.

11.3 Xilinx MicroBlaze Microcontroller
MicroBlaze is a 32-bit soft-core microcontroller developed by Xilinx. It has a fairly
complex architecture compared to PicoBlaze. Therefore, we will not handle its



functional blocks in detail here. Instead, we refer the reader to related references [39,
40]. Fortunately, Xilinx offers MicroBlaze IP cores in Vivado which we will introduce
next.

Listing 11.2 VHDL Description of the PicoBlaze Microcontroller in Shortened Form

11.3.1 MicroBlaze as an IP Block in Vivado
Vivado has two MicroBlaze IP cores named MicroBlaze and MicroBlaze
microcontroller system (MCS). Xilinx offers a detailed comparison of both cores on its
website [41]. As can be seen there, MicroBlaze MCS is a lite version of MicroBlaze.
However, it is easier to use. Therefore, we will focus on it here.

MicroBlaze MCS core can be reached from the IP catalog under the list “Embedded
processing” and “processor.” The reader can select MicroBlaze MCS for usage by
pressing on it twice. Afterward, the customize IP window opens up as in Fig. 11.2. As
can be seen in this figure, the user can modify almost all microcontroller properties
directly in this window. Afterward, the same steps for adding an IP block to a project
(as explained in Sec. 4.7) can be followed to add the MicroBlaze MCS.



FIGURE 11.2 MicroBlaze MCS in IP catalog.

At this stage, let’s assume that we will be using MicroBlaze MCS to turn on and off
LEDs by the corresponding switches as in Sec. 11.2.4. Therefore, we should set the
clock, memory, gpi, and gpo properties from the MicroBlaze MCS customize IP
window. Leave the clock frequency at 100.0 MHz and set memory size to 16 KB in
the MCS tab. Then, switch to the GPO tab. Make sure General Purpose Output 1 is
selected and set the number of bits to 16 since we will use all LEDs on the board.
Likewise, in the GPI tab, select General Purpose Input 1 and set the number of bits to
16 since we will use all switches on the board. As all these settings are done, press
OK. Generate Output Products window will appear. Here, click on Generate to
proceed. You will be informed by a window saying “Out-of-context module run was
launched for generating output products.” Just click OK. Vivado generates the
instantiation template for Verilog (in simplified form) as in Listing 11.3. The VHDL
version of this template is presented in Listing 11.4. Next, we will use these
instantiation templates in an application.

Listing 11.3 MicroBlaze MCS Instantiation Template in Verilog



11.3.2 MicroBlaze MCS Application on the Basys3 Board
We will turn on/off LEDs via switches on the Basys3 board in this application as
described in Sec. 11.2.4. Here, we will provide only the Verilog description since most
steps will be similar in VHDL. Hence, we expect the reader to transfer this design to
VHDL if needed. Let’s first create a project named Basys3_Microblaze. Do not add
any sources to the project at startup. As the project is created, add a new Verilog
source file and include the MicroBlaze MCS IP block to the project as explained in
Sec. 11.3.1. After adding and modifying the instantiation template, top module of the
project will be as in Listing 11.5.

Listing 11.4 MicroBlaze MCS Instantiation Template in VHDL

Listing 11.5 Initial Verilog Description of the Top Module for MicroBlaze
Application on Basys3

The top module in Listing 11.5 has a clk input as the master clock of the system.
The center button (btnC) will be used as the reset button of the MicroBlaze
microcontroller. Last, all switches and LEDs are associated to the Basys3 board items



via the XDC file to be added to the project. Therefore, add it to the project as
explained in Sec. 4.6.1. Do not forget to enable lines corresponding to the clock, 16
LEDs, and switches.

Follow the steps in Sec. 4.6.2 to generate the bitstream of the project. At this step,
implementation in the Vivado side is complete. Once the bitstream is generated, from
the Vivado main screen go to File → Export → Export Hardware. There, click OK by
leaving “include bitstream” option unchecked. To program the MicroBlaze
microcontroller in C language, we will use Xilinx software development kit (SDK)
which comes with the Vivado WebPACK. If this module has not been installed yet, go
to Help → Add design tools from Vivado selections and add it.

We will proceed with Xilinx SDK and embed a C code for the project. Here, we
will benefit from Duckworth’s tutorial titled MicroBlaze MCS Tutorial, v2 and
available at his website [42]. Launch Xilinx SDK by pressing File → Launch SDK
item. A welcome screen appears asking for the “exported location” and “Workspace.”
Leave both options as “Local to Project.” A project explorer window should appear as
in Fig. 11.3. As can be seen in this figure, Vivado project properties are transferred to
the SDK as well.

The next step in the SDK is programming the microcontroller in C language.
Therefore, we will generate a new project under Xilinx SDK by pressing File → New
Application Project. Let’s name this project Basys3_mcs. Then, the window should
look like as in Fig. 11.4. We will press “Next” and select a project template. Here, we
will select the predefined “Hello World” project and modify it to fit our needs.



FIGURE 11.3 Xilinx SDK project explorer window.



FIGURE 11.4 Xilinx SDK new project window.

Listing 11.6 C Code for the Xilinx SDK Project



To modify the “Hello World” project, go to helloworld.c source file located under
the directory Basys3_mcs→ src. Replace the source code as in Listing 11.6. Here,
predefined C functions are used for almost all operations.

As the modified C code is saved, the Xilinx SDK generates an executable and
linkable formatted file Basys3_msc.elf. We can use this file in Vivado to associate it
to the Verilog description. To do so, go to Vivado again and select Tools → Associate
ELF files. Ignore the upcoming warning window by pressing Continue. A pop-up
window will appear titled as Associate ELF File. Here, we should add the generated
elf file under the Xilinx SDK to our Vivado project. To do so, click on browse under
Design sources and add the generated elf file under
H:/Xilinx_Projects/project_1/project_1.sdk/Basys3_msc/Debug. The add
window should look like as in Fig. 11.5. Final view of the Associate ELF File window
should look like as in Fig. 11.6.



We should update the generated bitstream after adding elf file to the project. Click
on Generate Bitstream to regenerate your bit file with the embedded C code in it.
Once generation finishes, open hardware manager and program your FPGA as
explained in Sec. 4.6.2. As the program is run on the Basys3 board, a switch should
turn on and off the corresponding LED.

FIGURE 11.5 Adding the elf file to the Vivado project.

FIGURE 11.6 Final view of the adding ELF file window.

11.4 Soft-Core Microcontroller Applications



Different from previous chapters, we will refer the reader to successful soft-core
micro-controller applications by other researchers in this section. For this purpose, the
first repository to look for is by Tracton as mentioned in Sec. 11.2.4. Tracton offers
valuable applications on the PicoBlaze microcontroller. As for MicroBlaze-based
applications, we can direct the reader to the Digilent website. One good application
offered by Digilent is in [43]. There may also be other websites offering good
applications of soft-core micro-controllers. It is worth looking at them.

11.5 FPGA Building Blocks Used in Soft-Core
Microcontrollers
Soft-core microcontrollers are implemented using standard FPGA building blocks.
Therefore, analyzing their implementation details give insight to the reader. Let’s start
with the PicoBlaze implementation in Sec. 11.2.4. This application requires 233 LUTs
and 227 flip-flops. On the other hand, the MicroBlaze MCS implementation in Sec.
11.3.2 requires 654 LUTs, 290 flip-flops, and four block RAMs. As can be seen here,
both implementations fit to the FPGA on the Basys3 board without any difficulty.
Hence, the user can add extra peripherals to the Artix-7 FPGA besides fundamental
implemented blocks. Available resources on the Artix-7 FPGA also allow embedding
multiple microcontrollers for parallel operation. If we compare PicoBlaze and
MicroBlaze MCS, we can see that PicoBlaze requires almost one-third of the LUT
used by MicroBlaze. Both microcontrollers require similar number of flip-flops. Note
that the block RAM is inherently added by the MicroBlaze MCS. On the other hand,
PicoBlaze has its own RAM block.

11.6 Summary
FPGAs can be used to implement soft-core microcontrollers available either as an IP
block or a HDL description. This opens up a way to design custom-made micro-
controller systems. Hence, desired or unconventional peripherals can be added to the
microcontroller easily via the FPGA design. In this chapter, we explored methods for
such implementations. Note that the coverage of the topic in this chapter can be
considered introductory. The reader can check available references to master this topic.
Xilinx also offers a different platform called system on chip (SoC) which incorporates
the hardcore processors and FPGA chips. One recent SoC is Zynq family which has
ARM Cortex A9 processors with the Artix-7 FPGAs. This SoC family deserves special
consideration. Therefore, we suggest the reader to explore it for more advanced
applications.

11.7 Exercises
11.1   Modify the application in Sec. 11.2.4 such that the LED turns on when the

corresponding switch goes to logic level 0. The LED turns off when the
switch goes to logic level 1.



11.2   Create an IP block for the basic microcontroller in Sec. 11.2.4 such that the
same application can be implemented in VHDL.

11.3   Modify the application in Sec. 11.3.2 such that only four LEDs and switches
are used in implementation.

11.4   Redo Exercise 11.3 in VHDL.
11.5   The FPGArduino project is a good example of implementing Arduino as a soft-

core microcontroller [44]. Follow the steps there to implement Arduino on the
Arty board.

11.6   Imagination Technologies offers a soft-core processor on its website [45].
Follow the steps there to implement this microcontroller on the Basys3 board.

11.7   ARM offers the core of its Cortex M0 processor in [46]. Follow the steps there
to implement this microcontroller on the Basys3 board.
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CHAPTER 12
Digital Interfacing

digital system communicates with outside world through its analog and
digital interface. This chapter focuses on digital interfacing for the field-
programmable gate array (FPGA) design. Hence, we will first cover serial
communication protocols as universal asynchronous receiver/transmitter
(UART), serial peripheral interface (SPI), and inter-integrated circuit I2 C.
Then, we will explore video graphics array (VGA) interfacing to connect a

display to the FPGA. Afterward, we will cover universal serial bus (USB) and ethernet
connections. We will provide Verilog and VHDL descriptions to digital interfacing
concepts except ethernet. For it, we will benefit from an available IP block in Vivado.
To explain digital interfacing concepts clearly, we provide related applications in this
chapter.

12.1 Universal Asynchronous Receiver/Transmitter
A universal asynchronous receiver/transmitter (UART) is a digital communication
protocol for two or more devices. We will focus only on UART communication
between two devices in this book. Hence, one device will be the transmitter; the other
will be the receiver. Communication is done by sending and receiving data
asynchronously between the transmitter and receiver. Being asynchronous, the UART
does not need a common clock between the transmitter and receiver. Thus, connected
devices can work independently. The serial pin of the transmitter is generally called
transmit (TX). The corresponding receiver pin is generally called receive (RX). The
connection between the transmitter and receiver is established by physically wiring
these two pins.

The UART communication can be established between different devices. We will
especially focus on the one between the FPGA board of interest (Basys3 or Arty) and
PC. To do so, we will develop hardware description language (HDL) description of



transmitter and receiver modules. The transmitter module will be basically a shift
register that loads parallel data and shifts it in a specific rate through TX pin of the
device. The receiver module will convert the received serial data through RX pin into
parallel form to be processed by the receiver. Before dealing with HDL descriptions,
let’s first focus on the working principles of UART.

12.1.1 Working Principles of UART
To use a UART, we should understand how it works. Therefore, we introduce data
format, timing, transmission, and reception operations in this section. These will help
us forming HDL descriptions in the following section.

12.1.1.1 Data Format
Data is transmitted in terms of packages in the UART. Data framing of a UART
package begins with a start bit, followed by seven to eight data bits optionally attached
by a parity bit (explained in Sec. 8.6), and concluded by one or two stop bits. This
setup can be seen in Fig. 12.1.

FIGURE 12.1 Data framing of a UART package with eight-bit data.

12.1.1.2 Timing
Although the UART works in asynchronous manner, the transmitter and receiver
should have same timing values to transmit and receive data. In other words, the data
can be transmitted in asynchronous manner. However, as the transmission starts, the
receiver should know the duration of each pulse in the UART package. This is set by
the baud rate which determines the timing. The baud rate is denoted by bits per second
(bps). For example, a 2400-bps indicates a 416-µs bit width (or period) in the UART
transmission.

12.1.1.3 Transmission Operation
We can explain the transmission operation in the UART as a state machine. We will
explain this state machine in detail in Sec. 12.1.2. Here, let’s briefly summarize it. The
TX pin should be at logic level 1 when the transmitter is in idle mode. Once
transmission starts, a falling edge is created on the data transmit line which wakes up
the receiver. Afterward, the clock is set according to the baud rate and all bits are sent
one by one in every clock cycle in the transmitter side. The receiver should have the
same baud rate for receiving transmitted bits sequentially. As the transmit operation
finalizes, the TX pin should be set to logic level 1 for one or two bit widths to inform



the receiver that the transmission is done. These are also called stop bit(s). The number
of stop bits and usage of parity bit should also be predetermined so that the transmitter
and receiver have same settings.

12.1.1.4 Reception Operation
We can explain the reception operation in the UART as another state machine.
Although we will explain this state machine in Sec. 12.1.2, let’s briefly summarize it
here. The receiver will be in ready state initially. When a falling edge signal (start bit)
comes to RX pin, it starts receiving data bits sequentially. To do so, the receiver should
have an internal timer with the predetermined baud rate as in the transmitter. After
receiving start bit, the timer waits for a certain time to sample the first data bit. This
offset allows starting the sampling process in the middle of the first data pulse. Note
that although data is sent as logic levels 1 and 0 by the transmitter, these are converted
to analog pulse signals. Hence, the sampling operation converts the received analog
signal to logic level 0 or 1 again. Afterward, we perform the sampling operation at
each successive time period to recover data bits. As all bits are received this way, the
receiver checks the parity bit within the received data (if the protocol consists one).
When stop bit(s) is received, the receiver turns back to ready state waiting to receive
the next data packet.

12.1.2 UART in Verilog
We can describe the transmit and receive operations as two separate modules in
Verilog. Let’s start with the transmitter module.

12.1.2.1 The Transmitter Module
The Verilog description of the transmitter module is presented in Listing 12.1. This
module has three inputs as send, data, and clk. send is used to trigger starting a
transmit operation. data carries data to be transmitted. clk is used to enter the 100-
MHz clock of the FPGA board (Basys3 or Arty) to the module. The transmitter
module has two outputs as ready and tx. When ready is at logic level 1, this indicates
that the module is ready to transmit data. Output tx should be directly connected to TX
pin of the device.

The working principles of the transmitter module (as a state machine) are as
follows. Within the module, the baud rate is defined as a parameter and set to 9600 bps
by default. Here, baud_timer calculates the number of clock cycles needed for a
particular baud rate by dividing the main clock frequency to the baud rate. The
transmitter module has three states as RDY, LOAD_BIT, and SEND_BIT. RDY state indicates
that the module is ready to send next data package. When in the LOAD_BIT state, the
data is loaded to tx output. Finally, SEND_BIT state indicates that the data is being
transmitted. Initial state of the module is set as RDY. Hence, it waits for the send
trigger. When send is set to logic level 1, the module loads data with a leading zero
and a trailing one to txData. Afterward, the module switches to LOAD_BIT state. Here,



the first bit to be transmitted (LSB in our configuration) is loaded to txBit. Then, the
module waits for bit_index_max clock cycles in SEND_BIT state. Then, it switches
back to LOAD_BIT state to load the next bit to be transmitted. This operation is repeated
until the last stop bit is transmitted. At the end of the transmission operation, the state
is set as RDY. Hence, the transmitter module starts waiting for the next send trigger. In
this module, txBit is wired to tx and ready is set as a conditional assignment such
that when state equals to RDY, it is at logic level 1, otherwise 0.

12.1.2.2 The Receiver Module
The Verilog description of the receiver module is presented in Listing 12.2. The
module has two inputs as clk and rx. clk is used to enter the 100-MHz clock of the
FPGA board (Basys3 or Arty) to the module as in the transmitter module. rx should be
directly connected to RX pin of the device. Through it, the receiver module listens for a
possible incoming package. The receiver module has four outputs as data, parity,
ready, and error. data represents the received data. parity shows the received parity
bit. ready indicates that the receive operation is complete. Finally, error shows if the
data package is received with or without error.

The working principles of the receiver module (as a state machine) are as follows.
Within the module, the baud rate is defined as a parameter and set to 9600 bps similar
to the transmitter module. As in the transmitter module, baud_timer calculates the
number of clock cycles needed for a particular baud rate by dividing the main clock
frequency to baud rate. The receiver module has five states as RDY, START, RECEIVE,
WAIT, and CHECK. The state machine starts initially at RDY state, which indicates that the
module is ready to receive the next data package. Hence, it listens to the RX pin
through rx at every rising edge of the clock. When rx goes to logic level 0, the state
machine goes to START. There, it waits for half of the baud_timer period where it ends
up in the middle of the start signal. First data bit will be ready to be read after waiting
for baud_timer period. WAIT state acts as a delay station in which the receiver waits for
baud_timer period. Then, it returns to RECEIVE state unless ready is at logic level 1. In
RECEIVE state, the incoming data is sampled. Then, bitIndex is incremented by one
and checked whether it has reached the maximum value (eight for our case).

Listing 12.1 Verilog Description of the UART Transmitter Module





Listing 12.2 Verilog Description of the UART Receiver Module





Since we have eight data bits and a parity bit, the state machine has to switch to CHECK
state after all bits are received. Even parity check is performed in CHECK state. If the
received data package is consistent with parity bit, then ready is set to logic level 1
and the next state is set to WAIT. Received data and parity values in rxdata are written
to data and parity outputs. If the parity check fails, then error and ready go to logic
level 1. data is filled with logic level 1. Then, the reception operation ends. The
receiver turns back to RDY state waiting to receive the next data package.

12.1.3 UART in VHDL
As in Verilog, we can describe the transmit and receive operations in two separate
modules in VHDL. Let’s start with the transmitter module.

12.1.3.1 The Transmitter Module
The VHDL description of the transmitter module is presented in Listing 12.3. In this
description, we tried to keep the input, output definitions, and state names the same as
in Listing 12.1. Hence, the reader can associate the working principles of the
corresponding Verilog description with the VHDL description here.

12.1.3.2 The Receiver Module
We provide the VHDL description of the receiver module in Listing 12.4. Again, this
module has the same working principles as its Verilog version in Listing 12.1.

12.1.4 UART Applications
The UART needs an RS-232 port for communication. Unfortunately, Basys3 and Arty
boards do not have such a port. However, they share the micro USB port for the
UART communication as mentioned in Chap. 3. To run UART applications in this



section, the reader should have a terminal software such as RealTerm on the host PC.
Connect your Basys3 board to the PC through its USB cable and turn the board on.
Find the assigned COM port number by looking at the device manager. Here, we
assume that the application is run on a PC with Microsoft Windows operating system.
Please consult related resources for other operating systems. On the terminal, set the
baud rate to 9600 bps; the COM port to the one Basys3 board connected; parity bit to
“None”; data bits to eight; and stop bits to one. The default demo implemented on the
Basys3 board includes a UART module. Through it, the user can check whether the
connection has been established between the PC and Basys3 board. To check it, press
the center button (btnC) on the Basys3 board. You should see the sentence “BASYS3
GPIO/UART DEMO!” on the terminal window. If you press any of the remaining four
buttons on the board, you should see “Button press detected!” on the terminal window.
We will use the same setup for our UART applications next.

Listing 12.3 VHDL Description of the UART Transmitter Module





Listing 12.4 VHDL Description of the UART Receiver Module





12.1.4.1 Transmitting Data from the Basys3 Board to Host PC
The first UART application will be on transmitting data from the Basys3 board to host
PC. Therefore, connect your board to the host PC and check the status of connection as
explained in the previous section. Assuming that everything is set correctly and
working properly, we will implement our application. Therefore, we will build a top
module which employs the transmitter module and transmits incremental ASCII codes
starting from hexadecimal number 41 (corresponding to character A) when center
button (btnC) is pressed. The top module in Verilog is presented in Listing 12.5. The
VHDL version of the top module is also given in Listing 12.6.

The transmitter top module has two inputs as clock (clk) and center button (btnC).
These values will be obtained from the Basys3 board through its XDC file. The top
module has one output for the transmitter port of the board as RsTx. The top module
uses UART_tx_ctrl (given in Listing 12.1) and debounce (given in Listing 9.20) as
submodules. Hence, they should be included to the project. Note that the baud rate for
the UART_tx_ctrl module is set to 19200 bps here. The top module has three states as
TX_WAIT_BTN, TX_SEND_CHAR, and TX_SEND_WAIT. Therefore, we can explain its
working principles as a state machine. The top module is initially at TX_WAIT_BTN
state. Here, it waits for a button press. When the button is pressed, the state machine
enters TX_SEND_CHAR state. Here, initStr is loaded to uartData to be sent and
initStr is incremented by one. Therefore, the next character in ASCII table (Table
6.6) is reached. In TX_SEND_CHAR state, uartSend (connected to send in the transmit
module) goes to logic level 1. When the state machine is in state TX_SEND_WAIT, it
waits for the transmitter to send loaded data. When uartRdy is at logic level 1, the state
machine turns back to state TX_WAIT_BTN.



Listing 12.5 Verilog Description of the Transmitter Top Module
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To run this application, we should form a project in Vivado containing HDL
description files for the top module and submodules used within it. Besides, we should
also add the modified XDC file to this project. For more information on this issue,
please see Chap. 4. As we generate the bitstream and embed it on the Basys3 board, it
is ready to be tested. Now, open the terminal program on the host PC. Set your baud
rate to 19200 bps, select no parity bit option and one stop bit. As btnC is pressed on
the Basys3 board, you should see character A on the terminal window. As we press
btnC again, the next character in the ASCII table should be seen on the terminal
window.

12.1.4.2 Receiving Data to the Basys3 Board from Host PC
The next UART application will be on receiving data to the Basys3 board from host
PC. Within this application, we will turn on LEDs on the Basys3 board by received
data. Top module for this application is presented in Listing 12.7 in Verilog. The
corresponding VHDL description is given in Listing 12.8.

The receiver top module has two inputs as clock (clk) and receive (RsRx). It has
one output to adjust LEDs on the Basys3 board as the vector led. The input clk will
be obtained and the output led will be fed to LEDs on the Basys3 board through its
XDC file. The receiver module (UART_rx_ctrl) in Listing 12.2 is used as a submodule
here. The baud rate for this submodule is set to 19200 bps. We can represent
operations in the top module as a state machine with three states as RX_RDY, RX_WAIT,
and RX_DATARDY. When in the RX_RDY state, the state machine waits for data_ready to
switch from logic level 1 to 0. As this transition occurs, the state machine goes to
RX_WAIT until the module receives the data. When the data is received, the state
machine goes to RX_DATARDY. Meanwhile, data_ready goes to logic level 1 again. At
the same time, the received data is written to the first eight bits of led. The parity bit is
represented as the ninth led entry. If a transmission error occurs, it is indicated in the
tenth bit of led. Last six bits of led are used to show how many packages have been
received from the host PC. To run this application, please follow the steps explained in
the previous application. Since the receiver module is capable of receiving the parity



bit, do not forget to select even parity on your terminal settings.

12.2 Serial Peripheral Interface
The serial peripheral interface (SPI) is a digital communication protocol for two or
more devices as the UART. In this book, we will focus only on the SPI communication
between two devices. Hence, one device will be the transmitter and the other receiver.
Different from the UART, the SPI is a synchronous communication protocol. Besides,
communication between the transmitter and receiver is duplex. In other words, data is
transmitted and received at the same time in the SPI. Therefore, the SPI
communication uses four wires. Two of these wires are for data transfer. One wire is
used for the common clock signal (for synchronization). The fourth wire is used to
enable (select) signal to be explained in Sec. 12.2.1.

Listing 12.7 Verilog Description of the Receiver Top Module



Being synchronous, the SPI needs a common clock signal generated by either the
transmitter or receiver. Clock generating side is called leader. The other side is called
follower. These roles are generally called master and slave in literature. However, we
prefer leader and follower naming in this book. Therefore, we will use the terms
leaderfollower instead of master-slave from this point on. As a result we can have
leader-transmitter, leader-receiver, follower-transmitter, and follower-receiver options.
We will cover all these next.

12.2.1 Working Principles of SPI
The working principles of the SPI are simpler than the UART. To understand them, we
introduce the data format, connection diagram, transmission and reception operations,
and timing in this section. These will help us forming HDL descriptions for
transmission and reception next.
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12.2.1.1 Data Format
Different from the UART, data packet size is not constant in the SPI. This is an
advantage since the user can select the packet size as he or she desires. Moreover, the
dedicated common clock and enable signals avoid using start and stop bits in the
UART. The only requirement here is the need for determining the data packet size.
Hence, the transmitter and receiver can understand each other.

12.2.1.2 Connection Diagram
The SPI uses a dedicated clock line, two data lines (one for transmitter, one for
receiver), and a select (enable) line as mentioned in the previous section. We provide
the connection diagram between two devices using these lines in Fig. 12.2. Here, the
clock signal is denoted by SCK. The leader output, follower input is denoted by MOSI.
The leader input, follower output is denoted by MISO. Select is denoted by SS which is
used by the leader to wake up the follower. The select line is also used when more than
one follower is connected to a single leader.

FIGURE 12.2 SPI connection diagram between the leader and follower.

12.2.1.3 Transmission and Reception Operations
In the SPI, the data transmission and reception is controlled by the leader through SCK
and  signals. When there is no transmission,  stays at logic level 1 and SCK stays
either at logic level 0 or 1 depending on the SPI mode. The modes of the SPI and their
timing diagrams will be discussed later in Sec. 12.2.1.4. The SPI communication starts
when the leader wakes the follower by setting  to logic level 0. Next, the leader and
follower start interchanging data in every clock cycle set by SCK. Here, either the
leader sends a bit through MOSI line or the follower sends a bit through MISO line. The
SPI mode also determines if data will be sent on the rising or falling edge of SCK. After
all bits are transferred, the common clock stops and leader deselects the follower by
changing  to logic level 1.



12.2.1.4 Timing
As mentioned previously, SCK is generated by the leader and fed to the follower. Here,
SCK depends on the maximum data rate of the transmitter and receiver. Hence, the
device with the lowest rate defines its limit. Besides frequency, the leader also adjusts
the polarity and phase of clock denoted by CPOL and CPHA, respectively. Four possible
combinations of CPOL and CPHA are presented in Fig. 12.3. These combinations are
called modes of the SPI.

FIGURE 12.3 SPI communication timing diagram.

TABLE 12.1 SPI Modes in Tabular Form Based on Clock
Operation

We can briefly summarize the SPI modes presented in Fig. 12.3 and in Table 12.1.
Here, each operation in the corresponding mode is summarized based on the clock. For
more information on the SPI modes, please see [47].

12.2.2 SPI in Verilog
We can describe the transmit and receive operations (for the leader and follower) as
separate modules in Verilog. Let’s start with transmitter modules.

12.2.2.1 Transmitter Modules



As explained previously, either the leader or follower can be a transmitter. Therefore,
we should form a different description for each option. The Verilog description of the
leader-transmitter setup is presented in Listing 12.9. Inputs to this module are clock
(clk), data to be sent (data), and send event trigger (send). The outputs of this module
are sck, mosi, ss, and busy. The first three of these are directly associated with the SPI
lines. The fourth output shows if the module is busy while transmitting data. Within
the module, the data length to be sent is set as a parameter. The frequency division is
applied to the input clock so that sck is set at 2 MHz. CPOL and CPHA are set to zero.
Thus, all changes are performed on the falling edge of sck.

The working principle of the leader-transmitter module can be explained as follows.
The module is a state machine triggered in every falling edge of sck. In other words,
the data on the mosi line does not change while sck is at logic level 1. The state
machine is initially at RDY state. The transmission of data starts when send goes to
logic level 1. The state changes to START while index is set to the first bit of data and
busy goes to logic level 1. In START state, the leader module sets ss to logic level 0 to
wake up the follower. Then, the first bit of the data is loaded to mosi line and index is
decreased by one. The next state is TRANSMIT in which index is decreased by one and
the corresponding bit of data vector is sent to the output via mosi step by step. When
index equals to zero, iteration ends. The state machine switches to STOP state. Then,
busy goes to logic level 0 and ss goes to logic level 1. Next, the state machine turns
back to RDY state and waits for another send trigger.

Listing 12.9 Verilog Description of the SPI Leader-Transmitter Module





Listing 12.10 Verilog Description of the SPI Follower-Transmitter Module

The Verilog description of the follower-transmitter module is presented in Listing
12.10. Since this is the follower module, it has inputs sck, ss, and data. The outputs of
the module are miso and busy. Timing modes CPOL and CPHA are selected as zero.
Thus, all changes are performed on the falling edge of sck.



The working principle of the follower-transmitter module (as a state machine) will
be similar to the leader-transmitter module. However, there are major differences as
follows. The state machine is initially at RDY state. It is triggered by the falling edge of
sck which is generated by the leader-receiver. If ss is at logic level 0, then busy goes
to logic level 1. The first bit of the data vector is loaded to mosi. Then, the state
machine goes to the state TRANSMIT. Afterward, the module starts sending data. When
index equals to 0, it indicates that all data bits have been transmitted. Next, the state
machine goes to STOP state. It resets index and sets busy to logic level 0. Afterward,
the state machine turns back to RDY state and waits for ss to go logic level 0 for the
next transmission cycle.

12.2.2.2 Receiver Modules
As in the transmitter, either the leader or follower can act as a receiver. Therefore, we
will analyze both scenarios in this section. Let’s start with the follower-receiver
module in Listing 12.11. Inputs to this module are sck, ss, and mosi which are directly
related to the corresponding SPI signals. The outputs of the module are data, busy,
and ready. Here, busy is at logic level 1 when data is being received. When ready
goes to logic level 1, the received data will be available in data vector. Here, the data
length is defined as a parameter so that it can be changed depending on the application.

The working principles of the follower-receiver module (as a state machine) are as
follows. Initially, data_temp is set to the logic level 0 and index is set to the address of
the first bit in data vector (data_length-1). The state machine has three states: RDY,
RECEIVE, and STOP. RDY is the initial state in which module checks for ss to become
logic level 0 at every rising edge of sck. Once ss goes to logic level 0, data_temp is
set to receive the first data bit from mosi. Afterward, index is decreased by one; busy
goes to logic level 1; ready goes to logic level 0; and the state machine goes to
RECEIVE state. Then, the module receives data bits from mosi in every clock cycle like
a shift register. When index reaches zero, the state machine goes to STOP state. In this
state, busy goes to logic level 0; the received data is written to the data vector;
data_temp is set to logic level 0; index is set to the address of the first bit of data. In
the next cycle, the state machine turns back to RDY state and waits for another falling
edge on ss to receive the next data package. As a reminder, the follower-receiver
module should work together with the leader-transmitter module.

The leader-receiver module is presented in Listing 12.12. Here, the clock (clk),
MISO line (miso), and receive trigger (get) are inputs of the module which are directly
related to the corresponding SPI signals. The outputs of the module are data, sck, ss,
busy, and ready. The data length is defined as a parameter of flexibility. The leader-
receiver module starts listening the follower-transmitter when get goes to logic level
1. While receiving data, busy stays at logic level 1. Once all bits are received, ready
goes to logic level 1. Then, the received data can be obtained from the data vector.

The working principles of the leader-receiver module (as a state machine) are as
follows. Within the module, the frequency division is applied to the main clock to have
2-MHz sck. The state machine has three states: RDY, RECEIVE, and STOP. In RDY state,



the module checks for a receive trigger in every rising edge of sck. Once the module is
triggered, the state machine goes to RECEIVE state. Then, ss goes to logic level 0; busy
goes to logic level 1; ready goes to logic level 0; all bits of data_temp are set to logic
level 0; and (data_length-1) is loaded to index. In RECEIVE state, data bits are
received from the follower in every rising edge of sck. Meanwhile, index is decreased
until it reaches zero. Afterward, the state machine goes to STOP state. Here, busy goes
to logic level 0; ready goes to logic level 1; ss goes to logic level 1; and the received
data is written to the data vector. In the next clock cycle, state machine turns back to
RDY state and waits for another get trigger to receive the next incoming data. As a
reminder, the leader-receiver module should work together with the follower-
transmitter module.

Listing 12.11 Verilog Description of the SPI Follower-Receiver Module





Listing 12.12 Verilog Description of the SPI Leader-Receiver Module





12.2.3 SPI in VHDL
As in Verilog, we can describe the transmit and receive operations (for the leader and
follower) as separate modules in VHDL. Let’s start with the transmitter modules.

12.2.3.1 Transmitter Modules
The VHDL description of the leader-transmitter and follower-transmitter modules is
presented in Listings 12.13 and 12.14. In both the descriptions, we tried to keep the
input-output definitions and state names the same as in the corresponding Verilog
descriptions presented in Listings 12.9 and 12.10. Hence, the reader can associate the
working principles of the VHDL and Verilog descriptions.

12.2.3.2 Receiver Modules
The VHDL description of the leader-receiver and follower-receiver modules is
presented in Listings 12.15 and 12.16. As in the transmitter modules, we tried to keep
the input-output definitions and state names the same as in the corresponding Verilog
descriptions in Listings 12.12 and 12.11. Hence, the reader can associate the working
principles of the VHDL and Verilog descriptions.

12.2.4 SPI Application
To provide an actual application, we connect Digilent’s ambient light sensor
(PmodALS) module to the Basys3 board. The sensor module returns eight-bit data
based on the illumination level through the SPI. In our application, we will receive this
data and convert it to BCD form to show it on the seven-segment display of the Basys3
board.

The sensor module is connected to the top six pins (1 to 6) of the JB PMOD port on
the Basys3 board. Necessary adjustments are done on the XDC file to use this pin.
Since the sensor module is set to work in the follower-transmitter mode, we set Basys3
to work in the leader-receiver mode. We provide the Verilog description of the top
module of the SPI application in Listing 12.17. Unfortunately, the naming on the
sensor module is different from the standard SPI applications. Please see the Digilent
website for more information on this issue [48]. Therefore, , MOSI, and SCK lines are
denoted by cs, sdo, and sck in the top module. The sensor module works with a clock
frequency between 1 and 4 MHz. This is in line with our spi_leader_transmitter
module since the master clock on the Basys3 board (with 100 MHz rate) is divided to
obtain a 2-MHz clock. Therefore, we can directly integrate it.

The top module in Listing 12.17 uses submodules SPI_leader_ receiver,
binaryto2BCD, and sevenseg_driver. The binary to BCD converter and seven-
segment display driver have been mentioned in Sec. 10.6. Every unit of the BCD
converter is connected directly to the seven-segment display driver. The top module
can be represented as a state machine with two states. These are TRACK and GETIN. In
TRACK state, delay is decreased by one in every master clock cycle until it reaches



zero. This time slot is referred to as the delay time. It is specifically introduced to keep
the coherency of digits in the seven-segment display. When get goes to logic level 1,
the state changes to GETIN and the SPI module starts working. The top module waits
until the SPI module does its job and takes ready to logic level 1. Afterward, get goes
to logic level 0; delay is set to its initial value again; data from the SPI module is
written to the light-data vector; and the state turns back to TRACK.

Listing 12.13 VHDL Description of the SPI Leader-Transmitter Module





Listing 12.14 VHDL Description of the SPI Follower-Transmitter Module
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Listing 12.17 Verilog Description of the Top Module in SPI Application on the
Basys3 Board





We provide the VHDL version of the top module in Listing 12.18. As in previous
applications, we kept the naming convention the same between Verilog and VHDL
descriptions. Hence, the reader can easily follow the VHDL description.

12.3 Inter-Integrated Circuit
Inter-integrated circuit (I2 C) is the third and final digital communication protocol we
will cover in this chapter. As in the UART and SPI, we will first cover the working
principles of the I2 C. Then, we will implement its Verilog and VHDL descriptions.
Finally, we will provide a sample application using the I2 C.

12.3.1 Working Principles of I2 C
The I2 C is a multi-leader, multi-follower, serial communication protocol between
digital devices. We will focus only on the I2 C communication between two devices in
this book. In this section, we will cover the working principles of the I2 C in terms of
the data format, connection diagram, and transmission and reception operations. More
information on these topics can be found in [49].

12.3.1.1 Data Format
In the I2 C, every follower has a unique address. Data transfer starts with this address.
When the follower wakes up and acknowledges back the leader, transfer continues
with the pointer/address and data or directly data is transferred depending on the
protocol. The address of a follower is usually composed of seven bits. However, in
some cases the address can be either eight or ten bits. Independent of the address,
pointer, and data size, the transfer is performed in terms of eight-bit packages. Each
package has seven-bit address, pointer, and data and one-bit acknowledge value. The
receiver merges packets to extract data.

12.3.1.2 Connection Diagram
The I2 C data bus has two wires called serial data line (SDA) and serial clock line



(SCL). Besides, all connected devices need a common ground and power line. As a
result, the I2 C will need four wires for communication. The connection diagram of a
generic I2 C is presented in Fig. 12.4. The SDA and SCL are bidirectional lines. Both
the lines are connected to VDD by a pull-up resistor. This means they are at logic level
1 when idle.

FIGURE 12.4 Connection diagram of a generic I2 C.

Listing 12.18 VHDL Description of the Top Module in SPI Application on the Basys3
Board





Different from the SPI, every follower has a unique address in the I2 C. Therefore,
the follower and leader can be chosen over the serial data line without the need of a
select signal. Thus, other than power and ground signals, the I2 C bus has only two
wires connected to all the devices. This advantage saves the pin usage compared to the



SPI.

12.3.1.3 Transmission and Reception Operations
As mentioned in the previous section, data on the I2 C communication is carried by
eight-bit packages. The leader starts the transmission by sending the follower address
and read/write decision bit. The follower with this address on the network wakes up
and acknowledges the leader that it is alive and ready to talk. Then, depending on the
decision bit, the leader writes or reads data from the follower. The leader ends the talk
by sending a stop signal. Figure 12.5 shows the complete timing diagram of the I2 C
communication.

FIGURE 12.5 I2 C timing diagram.

As can be seen in Fig. 12.5, the leader starts transmission by a logic level 1 to 0
transition on SDA while SCL stays at logic level 1. We can call this as the start signal.
The transmission ends by a logic level 0 to 1 transition on the SDA while SCL is at
logic level 1. We can call this as the stop signal. The address of the device and data is
transmitted between start and stop signals. After the start signal, the leader sends the
seven-bit address of the follower. Then R/  signal is sent, which tells the follower if
the leader is going to read or write the data to/from the follower. This is concluded by
an acknowledge signal from the follower. Next, the leader starts sending or receiving
data (with the MSB first) followed by an acknowledge signal. There are no restrictions
on the number of successively transmitted data bits. The communication continues
until the leader sends the stop signal. Note that during the acknowledge signal the
transmitter releases the SDA line and the receiver pulls the line to logic level 0 while
SCL is at logic level 1. We will use these descriptions while implementing the I2 C
module next.

12.3.2 I2C in Verilog
We provide the Verilog description of the I2 C leader module in Listing 12.19. This
module has six inputs as clk, reset_n, ena, addr, rw, and data_wr. clk corresponds to
the clock signal to be used in the module. reset_n indicates the active low reset. ena is
for the active-high enable signal. addr represents the address of the follower to be
connected to. rw stands for the read/write input. When it is at logic level 1, the module



reads data. Otherwise, the module writes data. The module has four outputs as busy,
data_rd, ack_error, and eop. If the module is transmitting or receiving data, busy will
be at logic level 1. data_rd indicates the read data from the follower. ack_error
stands for the active-high acknowledge error. eop indicates the end of package. The
module also has inout signals sda and scl. These are the serial data and serial clock I2

C signals, respectively.

Listing 12.19 Verilog Description of the I2 C Leader Module

















We can explain the working principles of the I2 C leader module as a state machine.
There are nine states in the machine: READY, START, COMMAND, SLV_ACK1, WR, RD,
SLV_ACK2, MSTR_ACK, and STOP. The machine starts in READY state and waits for ena to
go to logic level 1. When this happens, busy goes to logic level 1; the follower address
with the rw bit is written to addr_rw vector; data_wr is registered to the data_tx
vector; and state changes to START. At this state, the MSB of the addr_rw vector is
loaded to sda_int. This directly controls the sda port. Then, the state changes to
COMMAND. In this state, addr_rw is loaded to sda line bit by bit. At the end of this
operation, the leader module waits for an acknowledgement from the follower by
going to SLV_ACK1 state. This is when the follower wakes up and says hello to the
leader by taking sda line to logic level 0. If the follower does not send an
acknowledgement, then ack_error goes to logic level 1. The next state is determined
by rw input. If rw is at logic level 1, the state machine switches to RD state. Otherwise,
it switches to WR state. In RD state, bits are received one by one. They are stored in the



data_rd vector. If the bit counter equals to 1, eop goes to logic level 1 to indicate that
the package is received. After all bits are received (bit counter goes to zero), the state
changes to MSTR_ACK where the leader acknowledges that the package is received.
Similarly in WR state, bits on data_tx vector are loaded to sda_int one by one. When
bit counter goes to 1, eop goes to logic level 1. When all bits are transferred, the state
changes to SLV_ACK2 where the state machine waits for an acknowledgement from the
follower. In both SLV_ACK2 and MSTR_ACK states, if ena is still at logic level 1, the new
follower address and rw bits are written to addr_rw vector. If these are same as in
previous values, then the state machine goes to the state START for a repeated start.
Otherwise, the state changes to STOP where a stop signal is applied to the I2 C line.
Then, the state machine goes to READY state waiting for the next transmission to start.

Within the I2 C leader module in Listing 12.19, we had to use conditional
statements in the dataflow modeling as the last two lines of the description. The
structure of such a statement is as assign variable = condition ? 0/1 :
value_to_be_assigned. This representation can be used in other Verilog descriptions
as well.

12.3.3 I2C in VHDL
We provide the VHDL version of the I2 C leader module in Listing 12.20. This
description is the modified version of the one available in [50]. It has been included
with their permission. This module shares the same input, output, inout, and state
descriptions as its Verilog version in Listing 12.19. To avoid repetition, we direct the
reader to the previous section for the working principles of the VHDL description.

12.3.4 I2C Application
In this application, we will use the PMOD three-axis digital compass module which
communicates by the I2 C. The website of the compass module is provided in [51].
The module uses the Honeywell HMC5883L 3-axis digital compass which measures
magnetic field and gives data in three dimensions with 16 bits two’s complement form.
The range of data varies from the hexadecimal number F800 to 07FF. There are 13
registers inside the chip each having eight-bit data length. The address of the chip is
the hexadecimal number 1E in seven bits. We have to configure the chip for
continuous measurement mode which is not set by default. This configuration register
is located at the address 02 in hexadecimal form. The value for the the continuous
mode is 00 in hexadecimal form. The measurements in x, y, and z axes are stored in
the register addresses between 03 and 08 in the hexadecimal form. Within the
application, we will read compass data and send them to PC terminal via the UART
interface.

To run the compass module, we will start the I2 C transmission in write mode and
set the chip to continuous mode. Then, we will continue with the read mode to read
stored measurements in register addresses. The compass chip is designed with an
internal address counter which increments the register address after every operation.



When the counter reaches the address 08, it turns back to 03. So, once we start reading
from 03, we do not have to set the internal register again. The chip needs some time to
make measurements. We can observe this time by watching its drdy port which goes
to logic level 0 when data gets ready in registers. You can find detailed information
about the Honeywell HMC5883L 3-axis digital compass chip in its data sheet.

Listing 12.20 VHDL Description of the I2 C Leader Module

















The Verilog description of the top module for our application is presented in Listing
12.21. This module has three inputs as follows. clk is the master clock on the Basys3
board. btnC is the center push-button on the Basys3 board which is used as reset
button. drdy is the data-ready signal coming from the compass module. The outputs of
the module are led corresponding to 16 LEDS on the Basys3 board and RsTx which is
the UART transmitter port of the Basys3 board. Since we will have the I2 C
communication, there will be inout signals scl and sda.

The top module in Listing 12.21 can be described as a state machine which
basically works with eop signals introduced in Sec. 12.3.2. If btnC is pressed on the
Basys3 board, reset_n, package counter (pck_cnt) and enable ena go to logic level 0.
reset_n is connected to the reset input in the I2C_leader module. When pck_cnt
equals to zero, the state machine goes to START state and pulls ena to logic level 1;
writes the follower address to addr vector; sets rw to write mode; and loads data to be
written in data_wr vector. In this case, the first data to be written is the address of the
configuration register in the compass chip which is 02 in hexadecimal form. Then, the
state machine waits for eop signal coming from the I2C_leader module. A rising edge
on eop indicates that communication is established with the follower and the first
eight-bit data is almost sent. Then, pck_cnt is incremented by one and state changes to
WRITE1. Here, data for the configuration register is loaded to data_wr vector. After the
second eop signal, we can understand that the compass chip is configured. The state
goes to WAITDATA where it waits for drdy to go to logic level 1 to start reading data
from the compass registers. During this time, ena goes to logic level 0. Once we are
informed that data is ready (drdy is at logic level 0), ena goes to logic level 1 again
and the state changes to READDATA by incrementing pck_cnt by one. In this state, rw
goes to logic level 1, which corresponds to the read mode. With the next eop signal,
the state machine will be ready to read data from the data_rd vector. Before the last
bit of the first register is read, eop goes to logic level 1 and the state changes to
READXH. When eop goes back to logic level 0, the eight-bit data on the data_rd vector
corresponds to the first eight bits of the x-axis on the compass. Therefore, we write it
to the MSB eight bit of the x_axis vector. Then, all data bits are received similarly. At
READZL state, ena goes to logic level 0. The state machine waits drdy to go to logic
level 0 to avoid repeated reads. When drdy goes to logic level 0, pck_cnt is reset to
START state and the operation starts again.

Once we have all the data, the UART transmitter module is triggered with the rising
edge of drdy signal. The module responsible for this operation is UART_word_tx. We
provide the Verilog description of this module in Listing 12.22. This module sends
data stored at x_axis, y_axis, and z_axis to host PC. The reader can observe these
values through a terminal program as explained in Sec. 12.1.

We provide the VHDL description of the top module of our application in Listing
12.23. This description can be understood by the corresponding Verilog description
since the descriptions share the same naming conventions as in previous sections. We
also provide the VHDL version of the UART_word_tx module in Listing 12.24.



Listing 12.21 Verilog Description of the Top Module for the I2 C Application









Listing 12.22 Verilog Description of the UART_word_tx Module





Listing 12.23 VHDL Description of the Top Module for the I2 C Application









Listing 12.24 VHDL Description of the UART_word_tx Module







12.4 Video Graphics Array
The video graphics array (VGA) is a display standard used in the CRT and LCD
monitors. The Basys3 board has a VGA port as mentioned in Chap. 3. We will use it to
develop projects in Verilog and VHDL in this section. Let’s start with the working
principles of the VGA.

12.4.1 Working Principles of VGA
In the VGA, the display is formed of pixels (picture elements). These are grouped into
horizontal lines. Horizontal lines placed on the screen form a frame. Therefore, a pixel
location has both horizontal and vertical coordinates. One standard VGA display size
is 640 × 480 pixels. This should be read as follows. The display is formed of 480
horizontal lines each holding 640 pixels.

The time needed to display a single pixel is determined by a pixel clock. Hence,
pixels in a horizontal line are displayed by the successive clock signals. When end of
the line is reached, the display should continue with a new line. This is set by the
horizontal synchronization signal. When all lines in a frame are displayed, a new frame
should be formed. This is set by the vertical synchronization signal which also defines
the refresh rate of display. The horizontal and vertical synchronization signals depend
on pixel clock by definition. Moreover, the monitor needs some time before applying
horizontal and vertical synchronization signals. This is called front porch. Similarly,
we should wait for a certain amount of time after displaying pixels in a horizontal line
and frame. This is called back porch. More information on the VGA timing can be
found in [52].

Every pixel has red, green, and blue (RGB) values in the VGA. As mentioned in
Chap. 3, the VGA connector on the Basys3 board allows these RGB values to be
represented by at most 12 bits. In this scenario, the RGB values get four bits each.
Hence, a pixel can have one of 24 × 24 × 24 = 4096 different colors. One can also use
eight bits to represent the RGB values. Then, the RGB values get three, three, and two
bits, respectively. Hence, a pixel can have one of 23 × 23 × 22 = 256 different colors.

12.4.2 VGA in Verilog
We can display an image using the VGA connection of the Basys3 board. To do so, we
first provide the Verilog description of the VGA module in Listing 12.25. This module
works in connection with the distributed ROM and clock divider modules. We will
introduce such a complete application in Sec. 12.4.4.

The inputs to the VGA module are clk25, pixel_data, sx, and sy. clk25 represents
the clock signal fed to the VGA module. For our case, it will be 25 MHz. pixel_data
represents the vector holding RGB pixel values to be displayed. The VGA module is
set to work with eight-bit data. Hence, the RGB values get three, three, and two bits,
respectively, as mentioned before. sx and sy represent the image size to be displayed.



Although the default display size in VGA module is 640 × 480 pixels, it is not
possible to keep such an image in the Artix-7 FPGA block or distributed ROM.
Therefore, we can set sx and sy to 80 and 87 pixels at most. The outputs of the VGA
module are red, green, blue, Hsync, Vsync, and pixel_address. The outputs red,
green, and blue represent the pixel color values each being three, three, and two bits,
respectively. Hsync and Vsync represent horizontal and vertical synchronization
signals. Finally, pixel_address represents the address of the pixel to be fed to the
accompanying ROM module.

Listing 12.25 Verilog Description of the VGA Module





The working principles of the VGA module in Listing 12.25 are as follows. The
module is set to work with 640 × 480 pixels. These values are represented as local
parameters in the module. Similarly, front and back porch values for horizontal and
vertical synchronization signals are set as local parameters. Based on these values, the
maximum horizontal and vertical display limits are set as 800 and 525 pixels as local
parameters within the module. We assume that the input clock to the module (clk25)
has 25-MHz frequency. Based on these values, the refresh time of a frame is 800 ×
600/25 × 10−6 s. Hence, the refresh rate of the display becomes 52 Hz, which is a
suitable value. The VGA module calculates the pixel address to be displayed, whether
to generate horizontal and vertical synchronization signals, and RGB values to be used
in display. All these operations depend on accurate and synchronous timing
calculations. Besides, no detailed operation is performed.

12.4.3 VGA in VHDL
The VHDL version of the VGA module introduced in the previous section is presented
in Listing 12.26. Within this module, we set all input, output, and parameter names the
same as presented in Listing 12.25. Besides, the working principles of both modules
are also the same. Hence, the reader can follow the explanation in the previous section
for the VHDL version of the VGA module as well.



12.4.4 VGA Application
We can use the VGA module (in Verilog or VHDL) in a simple application to show its
working principles. This application displays an RGB image on the display connected
to VGA port of the Basys3 board. We first provide the Verilog version of the top
module for the application in Listing 12.27.

Listing 12.26 VHDL Description of the VGA Module





The top module in Listing 12.27 has input and output values directly set for the
Basys3 board. Hence, XDC file namings are used there. Besides, the top module has
three submodules: clock, memory, and VGA. The VGA submodule is the one in Listing
12.25. The clock submodule is for dividing 100-MHz clock of the Basys3 board to 25
MHz to be used in the VGA submodule. To do so, we used “Clocking Wizard IP” which
can be found in IP Catalog → FPGA Features and Design → Clocking. With its
simple interface, this IP block allows generating a frequency divider. The image to be
displayed is kept in the distributed ROM as explained in Sec. 9.5. Here, the image is
saved in ROM as an initialization file in coe format. Here, we suggest a two-step
operation. We provide the MATLAB file to generate a text file from a given TIFF
image on this book’s companion website, www.mhprofessional.com/1259837904.

http://www.mhprofessional.com/1259837904


First, the reader can convert the image file to suitable text format via this file. Second,
this file should be converted to coe format as explained in Sec. 9.5. This way, the
image of interest can be included to the ROM module. As the project is built and the
VGA port is connected to the display, the image should be seen on it.

We also provide the VHDL version of the top module for the VGA application in
Listing 12.28. This module has the same working principles as presented in Listing
12.27. Therefore, the explanations there directly apply to it as well.

Listing 12.27 Top Module of the VGA Application in Verilog

Listing 12.28 Top Module of the VGA Application in VHDL







12.5 Universal Serial Bus
The Universal Serial Bus (USB) is an industry standard developed to unify connection,
communication, and power supply between digital devices. It can be used between a
PC and keyboard, mouse, external hard drive, printer, and digital camera. The Basys3
and Arty boards have USB ports used for powering and programming purposes as
explained in Chap. 3. The Basys3 board also has an extra USB port which can be used
to connect peripherals such as keyboard. In low level, the USB operations are not easy
to manage. Fortunately, the Basys3 board has a PIC24FJ128 chip which provides USB
HID host capability as mentioned in Chap. 3. We will use this option to develop the
HDL projects here. Specifically, we will focus on interfacing a keyboard to Basys3
board since the PIC24FJ128 chip available on the board converts the USB input to
standard PS/2 signals to communicate with a mouse or keyboard. Here, the Basys3
board will be the receiver. The keyboard will be the transmitter. Therefore, we will
focus only on the USB-receiving module next.

12.5.1 USB-Receiving Module in Verilog
The Verilog description of the USB-receiving module is given in Listing 12.29. The
inputs of this module are ps2data and ps2clk. The outputs of the module are data and
ready. The serial data on ps2data is received in every falling edge of ps2clk. Data is
stored in data output and ready goes to logic level 1 once all bits are received and
verified by parity check.

The USB-receiving module (represented as a state machine) has four states: RDY,
RECEIVE, PARITY, and STOP. The state machine starts at RDY state initially. In every
falling edge of ps2clk, it checks whether ps2data is at logic level 0, which indicates
the start of a new transmission. If ps2data is at logic level 0, ready goes to logic level
0; index is reset; and state changes to RECEIVE. After the start bit, in every falling edge
of ps2clk, data at ps2data is received serially by incrementing index. Data is stored
temporarily in vector received. When index reaches seven, the last bit is received and
state changes to PARITY where the parity bit is stored in prty. Then, in STOP state if the
ps2data is at logic level 1, ready goes to logic level 1. Here, parity check is
performed, such as if the parity of received data matches received parity bit, data is
written to the output vector. Otherwise the hexadecimal number EE is written to the
output vector to indicate a parity error.

12.5.2 USB-Receiving Module in VHDL
The VHDL version of the USB-receiving module is given in Listing 12.30. Here, the
working principles of both Verilog and VHDL descriptions are the same. Therefore,
the reader can check the Verilog description to understand the VHDL version.

12.5.3 USB Keyboard Application
As a USB application, we will read numeric data (1 to 8) coming from a keyboard
connected to the USB port of the Basys3 board. The received data (as a keyscan code)



will be displayed on eight LEDs (from 15 to 8) of the board. If any number from 1 to 8
is pressed on the keyboard, the corresponding LED (7 to 0) will toggle. Hence, this
application aims to show how a keyscan code can be read from a USB keyboard.

The keyscan code table of the PS/2 keyboard can be found in [53]. It is
straightforward to get data from the keyboard and check if it matches a number
between one to eight. However, reading a keyboard button data requires some
processing. Therefore, let’s first focus on this operation. Whenever a button is pressed
on the keyboard, its make code should be sent. The make code is the eight-bit code
you see on the reference keyscan code table. Once the button is released, a break code
is transmitted. The break code has a specific eight-bit code (the hexadecimal number
F0 for characters and numbers) followed by the same make code of the button. Let’s
explain how this is done by an example. The hexadecimal keyscan code of the button
for number one is 16. When the button is pressed, the make code of the button is sent
immediately. Once the button is released, the keyboard sends the break code as
hexadecimal number F0 and 16 again. Therefore, for the normal button press and
release, we should get the corresponding hexadecimal make code, number F0, and
make code again. If the button is pressed and held down, this key is called typematic.
If the button press exceeds the typematic delay time of the keyboard, it continues
sending the make code repeatedly until the button is released. Once the button is
released, the transmission concludes with the break code. This should be taken into
account in reading a button press from the keyboard.

Listing 12.29 Verilog Description of the USB Receiver Module



Listing 12.30 VHDL Description of the USB Receiver Module





We provide the Verilog description of the top module of the application in Listing
12.31. The inputs of the top module are clk, PS2Clk, and PS2Data. PS2Clk and
PS2Data are directly connected to the USB port of the Basys3 board via its XDC file.
clk is the master clock of the board. The output of the module is 16-element led
vector. Again, this output is connected to LEDs on the Basys3 board via its XDC file.

Listing 12.31 Verilog Description of the USB Keyboard Application





Top module for the USB application can be taken as a state machine with four
states: PRESS, EXTEND, RLS, and CHECK. Based on these, we can explain the working
principles of the top module as follows. In every rising edge of clk, ready signal from
the USB_keyboard module is checked to detect its rising edge. In PRESS state, if ready
goes to logic level 1 (when a button is pressed) the eight-bit receiving data (make
code) is stored in the most significant eight bits of 24-bit received vector and the state
changes to EXTEND. The top module waits for another rising edge of ready which can
be a repeated make code (when the button is still pressed) or the first byte of the break
code which is the hexadecimal number F0 if the button is released. Here, the received
data is written to the middle eight bits of received vector and the state is changed to
RLS. In this state, the previously received data is checked for whether the button is
released or not before waiting for the next ready signal. If the last received data is the
hexadecimal number F0, this means that the button is released and we are ready to
check if the pressed button was one of the numbers from one to eight. Otherwise, we
should understand that the button is still pressed and we should go back to EXTEND state
to wait for the button release. This depends on the designer. For a continuous press,
you can send multiple characters or wait for the button release and send the character
only once. We selected the latter option in our module. Hence, if the button is released,
the last eight-bit data will be received and written to the least significant eight bits of
the received vector. In CHECK state, the corresponding LED on the Basys3 board is
toggled if the pressed button was one of the numbers in the keyboard from 1 to 8. The



received data is also displayed on LEDs 15 to 8. The state of the machine turns back to
PRESS unconditionally and waits for another ready signal.

The VHDL description of the USB keyboard application is given in Listing 12.32.
This description is in line with its Verilog counterpart. Therefore, the explanation there
applies to this description as well.

Listing 12.32 VHDL Description of the USB Keyboard Application





12.6 Ethernet
Ethernet is an industry standard for local area network (LAN). Each device in the
network has a unique address called internet protocol (IP) address. IP is the the main
communication protocol in networking and it essentially forms the Internet. The data
communication is established on IP address headers followed by data signals.
Unfortunately, IP has a complicated structure which makes it hard to implement it at
the lowest level.

To explain the working principles of ethernet and how it can be implemented on an
FPGA, we benefit from the application in [54]. Here, an echo server is developed on
the Arty board since it has an integrated ethernet connector as explained in Chap. 3. As
all the steps explained in the mentioned website are followed, and the project is
implemented on the board, every character you write to the terminal echoes back to
your IP terminal. This application can be expanded further for more advanced
applications.

12.7 FPGA Building Blocks Used in Digital Interfacing
The digital interfacing concepts introduced in this section are both complex and
diverse. Therefore, we can assume that almost all the FPGA blocks introduced in
previous chapters are used in either one or two applications. Note that the digital
interfacing applications introduced in this chapter are not unique. In other words, HDL
modules given in this chapter are not unique for a given interfacing option. Hence,
comparing different digital interfacing options based on their FPGA resource usage



will not be fair. As a result, we ask the reader to check his or her digital interfacing
application’s FPGA usage.

12.8 Summary
The digital interfacing is becoming more and more important with the introduction of
the Internet of things in which communication of two or more embedded devices is a
fundamental necessity. Therefore, we started with serial communication methods as
UART, SPI, and I2 C as well as advanced ethernet protocol in this chapter. These
communication methods can also be used in interfacing the FPGA with sensor chips
using them. Then, we introduced other important interfacing methods, the VGA and
USB. The VGA allows the user to display images on a monitor. Hence, it opens up a
way for more advanced applications. In the same way, using a USB connection allows
the reader to benefit from more advanced peripheral devices such as a keyboard or
mouse. As a result, methods introduced in this chapter can improve the quality of the
application to be developed on the FPGA. We will provide such examples in the
following chapters.

12.9 Exercises
12.1   Implement the provided UART applications on the Basys3 board in Sec. 12.1

to check how they work.
12.2   Repeat Exercise 12.1 using the Arty board.
12.3   One method of testing the UART transmitter and receiver modules is

implementing both on the same FPGA. If these modules are also
appropriately connected via their TX and RX pins in a top module, then the
UART communication can be simulated on one FPGA chip. Implement such
an application on the Basys3 board such that when btnC is pressed, the
transmitter module sends a character to the receiver module. As this character
is received, led[0] on the Basys3 board toggles.

12.4   Modify the application in Exercise 12.3 to work on the Arty board.
12.5   Implement the provided SPI application on the Basys3 board in Sec. 12.2 to

check how it works.
12.6   Repeat Exercise 12.5 using the Arty board.
12.7   Repeat Exercise 12.3 using the SPI communication on the Basys3 or Arty

board.
12.8   Repeat Exercise 12.3 using the I2 C communication on the Basys3 or Arty

board.
12.9   Implement the provided VGA application on the Basys3 board in Sec. 12.4 to

check how it works.
12.10   Modify the VGA application in Sec. 12.4 such that when a color image is

given, its



a. red band is displayed only.
b. green band is displayed only.
c. blue band is displayed only.

12.11   Implement the provided USB application on the Basys3 board in Sec. 12.5 to
check how it works.

12.12   Modify the application in Exercise 12.11 such that when a button is pressed on
the keyboard, it is displayed on the rightmost seven-segment display of the
Basys3 board. Note that numbers can be displayed easily on the seven-
segment display. However, characters on the keyboard should be limited such
that only a subset of them can be displayed such as “E”, “R”, “U”, and so on.

12.13   Modify the application in Exercise 12.11 such that when a button is pressed on
the keyboard, the corresponding character is displayed on the terminal
window of the host PC via the UART communication.

12.14   Implement the provided ethernet application on the Arty board in Sec. 12.6 to
check how it works.
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CHAPTER 13
Advanced Applications

e have used the field-programmable gate array (FPGA) to implement
both basic digital systems and sample applications up to this chapter.
The FPGA can also be used to develop more functional and advanced
digital systems using tools introduced in previous chapters. This chapter
will be on such advanced applications. Therefore, we will start with

integrated logic analyzer IP core analyzer first. This IP core will allow us to analyze a
working digital system on the FPGA chip. Afterward, we will focus on the XADC
block usage to process analog signals on the FPGA. Then, we will provide 22
applications of which nine have implementation details here. Remaining applications
will only have their description such that they can be implemented on the FPGA.

13.1 Integrated Logic Analyzer IP Core Usage
When designing a digital system on an FPGA, we may need to observe internal signals
of the design. Vivado offers a way to achieve this by integrated logic analyzer (ILA)
IP core usage. This core acts as an actual logic analyzer for monitoring signals in the
FPGA. Since this is a very important topic for actual digital system realization, we
focus on it in this section. We pick a simple Verilog project on the Basys3 board to
show how ILA can be used. For more information on this issue, please see [55, 56].

Let’s take an example project to blink the rightmost LED on the Basys3 board
every second. We provide the Verilog description for this project in Listing 13.1. In
this module, there is a clock divider producing output clk1 from the main clock of the
Basys3 board. Assume that we would like to observe this signal using ILA.

We can observe the signal clk1 using ILA applying the following steps before
synthesizing the project. In Flow Navigator, select Synthesis → Set up Debug. In the
opening Set Up Debug window, add the signal clk1 to the list. This can be done in
several ways. The easiest way is dragging and dropping it from the Netlist window in



Project Explorer. Make sure that the probe type is selected as “Data and Trigger”. As
we press next, a new window titled ILA Core Options appears asking for the ILA
features. The user can select the sample data size in this tab. We should also tick
Capture control box in this tab. As we press Next, the final window appears titled as
Set up Debug Summary. Pressing Finish button at this window finalizes the debug
setup. Afterward, we should generate bitstream and embed it on the FPGA of the
Basys3 board. Different from steps explained in Sec. 4.6.2, there will be two files to be
embedded now, one for the actual implementation (Bitstream file), the other for
debugging (Debug probes file). Afterward, the ILA window appears in the project
explorer window. As we press “Run trigger for this ILA core” button, ILA starts
working and the result is displayed on the screen. The user can also export this result
by right clicking (and selecting Export ILA data) on the signal of interest in the ILA
window. In the opening window, the user should enter the target location and file
format type for the export operation. We suggest using VCD format for exporting data.
Hence, it can be opened as a text file.

Listing 13.1 Verilog Description of the Example Project for ILA Usage



13.2 The XADC Block Usage
Processing an analog signal in digital system requires analog-to-digital conversion as
the first step. The Artix-7 FPGA has a specific XADC block for this purpose as
mentioned in Sec. 2.2.8. This block is connected to the JXADC Pmod port of the
Basys3 board. It is capable of converting four external differential signals to digital
form since the port has four differential pins. Also, the XADC block has an internal
temperature sensor which can be selected to read its output. In this section, we will
focus on the usage of the XADC block with two applications. The first application will
be on reading temperature value from the internal sensor of the FPGA chip. The
second application will be on measuring voltage level of a battery connected to ports



of the Basys3 board.
We will benefit from an IP block (XADC Wizard) available in Vivado to use the

XADC block. Therefore, we should first create a project and add XADC Wizard to it.
To do so, we should select XADC Wizard from the IP Catalog → FPGA Features and
Design → XADC. By double-clicking on the IP block, we can open its configuration
window. For our two applications, we will remove reset_in and change Startup
Channel Selection mode to Channel Sequencer in the Basic tab. We can select which
channels to add to the XADC block from the Channel Sequencer tab. For our first
application (temperature sensing), we should tick the TEMPERATURE box. For our
second application (measuring voltage), we should tick the vauxp6/vauxn6 box. Now,
we are ready to integrate the IP block to our project.

After integrating the IP block to the project, you can go ahead and check its
instantiation file. Although there are many inputs and outputs, we do not have to use
all of them for a basic ADC operation. To be more specific, we will only need the
address register (daddr_in), clock in (dclk_in), enable (den_in), data out (do_out),
end of conversation signal (eoc_out), and data ready signal (drdy_out) for our two
applications. The address register will have value 00 and 16 in hexadecimal form for
TEMPERATURE and vauxp6/vauxn6 inputs, respectively. For more information on
the usage of the XADC Wizard, please see [5, 57].

As the first application, we will read analog values from the internal temperature
sensor of the FPGA. We will show the result on seven-segment display and LEDs of
the Basys3 board. Top module for the first application is given in Listing 13.2. This
module has one input as clk (the main clock signal on the Basys3 board). The outputs
of the module are 16-bit led, seven-segment display outputs seg and an associated
with XDC file of the Basys3 board.

Listing 13.2 Verilog Description of the Top Module to Convert Analog Temperature
Value to Digital Form



In Listing 13.2, we integrate the xadc_wiz_0 module with den_in connected to
eoc_out which ensures that the device operates in continuous mode. We provide the
temperature value in raw digital form on 16 LEDs of the Basys3 board. We also show
the temperature value in Celsius on seven-segment display. Raw digital data can be
converted into Celsius form with the help of the conversion formula in [5]. Note that
although the output of the XADC module is 16 bits, only most significant 12 bits are
valid since the XADC block has the 12-bit resolution.

As the second application, we will read voltage level on an alkaline battery
connected to the Basys3 board. Alkaline batteries have 1.5 V when they are fully
charged. This value goes down to 1 V when the battery is dead. To measure voltage
level on the battery, we should have a voltage divider circuit since analog input of the
XADC block accepts at most 1 V. To do so, connect two high-valued resistors in series
with one end at the positive terminal of the battery and the other end at the negative
terminal. Then, connect the common node of resistors to XA1_P port while connecting
negative terminal of the battery to XA1_A of the Basys3 board.

We will show the result on the seven-segment display and LEDs of the Basys3
board. Top module for the second application is given in Listing 13.3. This module has
three inputs: clk (the main clock signal on the Basys3 board) and auxiliary inputs



vauxp6, vauxn6 which are connected to XA1_P and XA1_A via the XDC file of the
Basys3 board. The outputs of the module are 16-bit led, seven-segment display values
seg and an associated with the XDC file of the Basys3 board.

In Listing 13.3, we integrate the xadc_wiz_0 module with den_in connected to
eoc_out, which ensures that the device operates in continuous mode. We provide the
voltage value in raw digital form on 16 LEDs of the Basys3 board. We also show the
voltage value (in millivolts) on the seven-segment display. Note that since we applied
voltage division, we should have seen only half of the voltage value. However, since
we modified the read value in the description, we will see actual voltage levels.
Therefore, if the voltage value is around 1500 (mV), this means the battery is full. If
the reading is around 1000 (mV), this means the battery is about to die.

13.3 Adding Two Floating-Point Numbers
We have introduced arithmetic operations on floating-point numbers in Chap. 6. We
have mentioned there that operations on the floating-point numbers are complex. In
this section, we will handle addition operation on two floating-point numbers in half
form. We provide the Verilog description of the corresponding module in Listing 13.4.
This module has four inputs as follows. clk represents the main clock to be fed to the
module. add is for starting the addition operation. number1 and number2 stand for
floating-point numbers to be added. The module has two outputs as result and ready.
The first one holds the result of the operation. The second one indicates that the
operation has ended.

The floating point adder module in Listing 13.4 uses two 42-bit vectors to perform
shifting operations on number1 and number2. The adder module is a state machine.
When add is at logic level 1, the state machine starts working. Hence, ready is set to
logic level 0, and state goes to START. Here, first sign bit of numbers are compared. If
these are different, the one with the bigger absolute value is determined. Therefore,
exponential and fractional parts of numbers are compared successively. The aim here
is subtracting the smaller number from the bigger one and keeping sign of the bigger
number. Afterward, the state machine goes to NEGPOS state. Here, shifting operations
are done and state of the machine goes to OP. Here, sign bits are considered again to
decide whether to perform addition or subtraction operation. If sign of both numbers
are the same, we add them and go to the SHIFT state to perform another shifting
operation. Then, the state goes to WRITE in which the machine forms result arrays. The
final state is RST, in which the final result is prepared and ready is set to logic level 1.
Hence, the state machine goes to RDY state for a new addition operation.

Listing 13.3 Verilog Description of the Top Module to Convert External Voltage
Value to Digital Form



Listing 13.4 Adding Two Floating-Point Numbers in Verilog











The user can check how the floating-point adder module works by using its
testbench file given at this book’s companion website,
www.mhprofessional.com/1259837904. We strongly suggest that the reader check
floating-point addition operations considered in Chap. 6 to cross-check the results
there. Moreover, the module introduced in this section can be expanded further to
handle subtraction, division, and multiplication operations on floating-point numbers
as well. Xilinx also offers an IP block for floating-point operations under IP catalog →
Math Functions → Floating Point. The reader can check it for efficient floating-point
calculations.

13.4 Calculator
The calculator application has been improved up to this chapter. Now, it is time to
finalize it. Therefore, we modify it such that two-digit decimal numbers can be taken
as input. A USB keyboard can be used for this purpose. The result (which can go up to
4096) will be seen on seven-segment display of the Basys3 board. We provide the top
module for the calculator application in Listing 13.5. As can be seen here, the top
module uses several IP modules developed in previous chapters. These are the seven-
segment display driver, calculator, debounce, and binary to BCD modules. When the
calculator IP module is used, the number length is set as seven.

Listing 13.5 Calculator in Final Form Implemented on the Basys3 Board in Verilog
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The top module also uses the keyboard keypad controller module. Before
explaining the top module, let’s focus on this module first. We provide the Verilog
description of the keyboard controller module in Listing 13.6. The working principles
of this module are very similar to the USB keyboard application in Chap. 12. There,
we processed the scancode to toggle LEDs on the Basys3 board. Here, we convert the
scancode of numbers 0 to 9 to the corresponding binary code. Hence, we can easily use
a USB keyboard as keypad.

In Listing 13.5, the direction buttons on the Basys3 board are used as operation
entries. Hence, btnU is used for addition; btnD is used for subtraction; btnR is used for
multiplication; btnL is used for division; and btnC is used as the equal sign. The top
module uses the main clock of Basys3 (clk) and communicates with the USB
keyboard by PS2Clk and PS2Data ports. The first switch of the Basys3 board (sw[0])
acts as reset input (which will be used after an operation). The seven-segment display
ports, seg and an, are also integrated in the top module.

The working principles of the calculator top module (as a state machine) are as
follows. The reset input sw[0] is checked at every positive edge of the main clock. If it
is at logic level 1, then all numbers, seven-segment display digits, and state of the
machine go to zero. When sw[0] is at logic level 0, the state machine checks for a
ready signal from the USB keyboard. When the first number is entered via keyboard, it
is written to the rightmost digit on the seven-segment display. The user should enter
the number as he or she is using an actual calculator. Hence, the first entry will be the
tens digit of the first number. Then, ones digit of the first number should be entered by
keyboard. After the first number is entered, the state machine waits for operator
selection. This can be done by pressing one of the direction buttons as mentioned
before. Afterward, the second number should be entered similar to the first one.
Pressing the center button (designated as the equal sign) will generate the result of the
operation and show it on the seven-segment display. The user should reset the
calculator (by using sw[0]) for a new operation. Note that reset can be applied in any
phase of the calculation.

13.5 Home Alarm System
We can use sensors instead of switches to realize an actual home alarm system.
Therefore, we replace switches representing windows and door by proximity sensors.
The proximity sensor we picked works as follows. If someone goes in front of the
sensor, it provides the output of logic level 0. Otherwise, the output of the sensor is at
logic level 1.

Listing 13.6 Verilog Description of the Keyboard Keypad Controller Module







Listing 13.7 Home Alarm System in Final Form Implemented on the Basys3 Board in
Verilog

Besides these sensors, we also added a movement (PIR) sensor and sound detector to
the home alarm system. The output of the movement sensor is at logic level 0. If it
senses a movement, this output goes to logic level 1. If the sound detector detects a
sound higher than its sensitivity value (threshold), then its output goes to logic level 0.
Otherwise, its output stays at logic level 1. Based on these improvements, we provide
the final form of the home alarm system in Listing 13.7.

Movement, proximity, and sound sensors all have three pins: VCC, GND, and
OUT. They are all supplied by 3.3 V from the Basys3 board. The output of the
movement sensor is connected to JB[3]. The proximity sensor output is connected to



JB[7]. The sound sensor output is connected to JA[3].

13.6 Digital Safe System
We can finalize the digital safe system by adding a USB keyboard to it. Besides, the
digital safe will work as explained in Chap. 10. We provide the modified and final
form of the digital safe in Listing 13.8.

Listing 13.8 Digital Safe System in Final Form Implemented on the Basys3 Board in
Verilog





Let’s explain the working principles of the digital safe system (as a state machine)
step by step. The system starts with a default password 1234. When the user enters it,
the safe opens. Here, user has two options. The first one is changing the password. The
second one is locking the safe again. When btnC on the Basys3 board is pressed, the
safe locks again. If the user presses btnU, digital safe goes to the password changing
state. Here, it expects the user to enter a new password. This can be done by using
numbers on the keyboard. Since this is a prototype system, the entered password is
also shown on the seven-segment display (and LEDs) of Basys3. When a new
password is entered, the user should press btnD to save it. Afterward, btnC should be
pressed to lock the safe again. While entering the password digits, the user may press
btnR anytime to restart again.

13.7 Car Park Occupied Slot Counting System
We can finalize the car park occupied slot counting system in several ways. First, we
can add a bluetooth module such that the user can open garage gate by using his or her
cell phone. Here, a simple Android application developed under MIT App Inventor



may be sufficient [58]. Also, we can add a proximity sensor to the garage gate. Hence,
we can detect whether the car is passing through the gate. We can also add a stepper
motor to open and close the garage gate.

Let’s start with the stepper motor. The stepper motor used in this application is
24BYJ48. This stepper motor has five terminals. The four of them drive coils and the
last one is ground as can be seen in Fig. 13.1. To run this motor, we will use the
Digilent Pmod STEP: stepper motor driver [59]. We will connect terminals of the
stepper motor from left to right like pink, yellow, orange, and blue to the driver. The
red wire is the ground. For connection properties, please see the website appearing in
[59].

FIGURE 13.1 Stepper motor terminals.

We provide the Verilog description of the stepper motor driver in Listing 13.9.
There are five inputs in the module. These are clk (clock signal), rst (active-high
reset), en (active-high enable), trig (active-high trigger), and dir (direction; logic
level 1: clock-wise, logic level 0: counter clockwise). The output of the module is a
four-bit vector driver.

We can explain the working principles of the stepper motor driver (as a state
machine) presented in Listing 13.9 as follows. The module has two parameters.
motorfreq determines the frequency in which the motor will be driven. degree is used
to tell the module how much it will turn in degrees (360 for a full spin). The state
machine has three states as follows. In RDY state, the driver waits for a trigger. In TURN
state, the motor turns depending on the degree parameter. The last state, MOTORSTATE
is used to drive the motor. Within the stepper motor driver module, the input clock
signal, clk, is divided to generate motorclk in frequency set by the parameter
motorfreq. This frequency will be used to run the motor. Since motorfreq is around
100 Hz at most, it is hard to catch the trigger signal. To avoid this issue, trig signal is
sampled in every clk signal. If its rising edge is catched, trig_int goes to logic level
1, and the state machine waits until the state changes to TURN. Hence, we make sure
that turning of the motor has begun. In every rising edge of motorclk, if the machine is
in RDY state, the module checks if en and trig_int are both at logic level 1. If this is
the case, the state changes to TURN and the motor is driven by four-bit outputs
depending on the dir bit until the predetermined degree is satisfied.

We provide the top module for the final car park occupied slot counting system in
Listing 13.10. Different from previous versions of the application, the proximity
sensor is located in the garage gate which controls if the car is still passing through.



Switches on the Basys3 board imitate the output of the proximity sensors located in
each parking slot. Once the user approaches the gate, he or she sends the character O
via cell phone to the bluetooth adapter connected to the Basys3 board via UART
communication. Then, the gate opens and waits for 12 seconds to close unless the car
is still passing through. Since the steppermotor module is integrated as an IP block to
the project, it asks for the rotation degree in initialization window. If you do not
integrate your module in your IP library, then you have to add 90 degree as a
parameter to module initialization.

Let’s briefly explain the hardware used in this application. The output of the
proximity sensor is connected to JC[3] port of the Basys3 board, the one we have used
before. The bluetooth adapter HC-06 is connected to JB port, such that the receiving
port of the module is connected to JB[3]. The clock used by the module is the master
clock on the Basys3 board. The stepper motor introduced in this section is used at the
garage gate.

Listing 13.9 Verilog Description of the Stepper Motor Driver Module





Listing 13.10 Car Park Occupied Slot Counting System in Final Form Implemented



on the Basys3





13.8 Vending Machine
We can finalize the vending machine by adding a bluetooth module to send a signal if
one of the products runs out of stock. We provide the final form of the vending
machine on the Basys3 board in Listing 13.11.

In Listing 13.11, we use the bluetooth module via the UART communication. The
bluetooth adapter HC-06 is connected to JC port. Hence, the transmitter port of the
module is connected to JC[2] port of the Basys3 board. As a reminder, outofstock
vector indicates if one of the products has gone out of stock in the vending machine.
Therefore, we check a rising edge in this vector. Assume that the second item went out
of stock. Then, the phrase “2 OUT OF STOCK” is loaded to the word vector of
vending_machine and wordsend is set to logic level 1 for the UART transmission (to
the bluetooth module) to start. Within the top module, the money entrance is imitated
by btnR for 25 cents and btnL for 1 dollar again. First four switches on the Bassy3
board are used to select the product and btnC stands for the final buy command. A
stepper motor (connected to JA port of the Basys3 board) is integrated to the top
module to realize the exact vending machine behavior. As in the previous application,
the steppermotor module is integrated as an IP block to the project; it asks for the
rotation degree in the initialization window. Set it to 360 degrees for this application.
For ease of implementation, only the first product is handled this way. Therefore,
when the customer buys the first product, the stepper motor does a full turn in
clockwise direction.

13.9 Digital Clock
We can finalize the digital clock by adding alarm and chronometer modules to it. We



provide the Verilog description of the alarm module in Listing 13.12. This module is
the simplified version of the digital clock module such that it only increments hour and
minute digits with the button press.

We provide the top module for the final digital clock application in Listing 13.13.
Within this module, sw input determines the mode of the system. Hence, if sw is 00, the
regular clock operation is done. When sw is set to 01, the system enters the alarm mode
and the user can set the alarm with btnU and btnR buttons. When the alarm is
activated, the leftmost eight LEDs on the Basys3 board flash for 60 seconds. When sw
is set to 11, the system enters the chronometer mode. Here, the digital clock module is
used again without its outputs. With every btnU press, the chronometer counts or
pauses. When the user presses btnC, the module clears the output and gets ready for
the next count. All three modes can work at the same time. Therefore, if the user wants
to use the chronometer he or she can do so without disturbing the digital clock and
alarm operations.

Listing 13.11 Vending Machine in Final Form Implemented on the Basys3 Board in
Verilog





Listing 13.12 Verilog Description of the Alarm Module for Digital Clock



Listing 13.13 Digital Clock in Final Form Implemented on the Basys3 Board in
Verilog







13.10 Moving Wave via LEDs
In this application, we will form a moving wave application via LEDs on the Basys3
board. To do so, we will benefit from the pulse width modulation (PWM) which forms
digital periodic pulses with varying width (duty cycle). Hence, the PWM is used to
obtain analog signals from a digital system most of the times [32]. We provide the
Verilog description to generate a PWM signal in Listing 13.14. This module has two
inputs. These are clk (main clock signal) and dutyc (duty cycle). The output of the
module is pwm_out which is the PWM signal.

The working principles of the PWM generator module in Listing 13.14 are as
follows. There is a four-bit pwmc vector in the module. What we do is basically
incrementing pwmc in every clock cycle and comparing it with dutyc. If pwmc is smaller
than or equal to dutyc, then the output will be at logic level 1, otherwise it will be at
logic level 0. We divide the full period of a square wave into 16 parts. The output
starts at logic level 1. With dutyc, we decide when it goes to logic level 0. Hence, for a
50% duty cycle, we should set dutyc to seven as half of its maximum value. Here, we
use the Clock Wizard IP for frequency division. Hence, clock-based operations within
the module are done appropriately.

We provide the top module for the moving wave application in Listing 13.15. This
module uses the PWM_generator module to drive all 16 LEDs on the Basys3 board
with different duty cycles. To have a moving wave effect visible to our eyes, we apply
the frequency division (with a counter having 28 bits) to the main clock of the Basys3
board. First three switches on the Basys3 board can be used to adjust speed of the
moving wave.

Listing 13.14 Verilog Description of PWM Module



Listing 13.15 Moving Wave Application Implemented on the Basys3 Board in Verilog



We can further improve the moving wave application by adding a joystick as input
medium. Hence, the user can decide on the wave movement direction using it. To do



so, the XADC module should also be used in connection with the joystick.

13.11 Translator
We can design a digital system to translate voice commands from English to Spanish
(or another language) and show them on a 16×2 LCD. The system will have two parts.
The first part will recognize the spelled out English word. We can use the EasyVR
shield for this purpose [60]. This module has predefined speaker-independent word
sets. Also, you can create your own speaker-dependent word set. In the second part of
the translator system, we will get the recognition result and form a state machine in the
FPGA to provide the translated word corresponding to the recognized one. Then, this
word is shown on the LCD.

The LCD we have used in our system is WH1602N with a built-in controller
ST7066 or equivalent. To use the LCD display, we need a Verilog description. We
provide such an LCD driver module in Listing 13.16. This module has four inputs:
clk, reset, wr_en, and data_in. The main clock signal, clk, is expected to be 100
MHz. Active-high reset signal resets the operation and the module waits for an
active-high write enable wr_en signal. data_in is eight-bit data that will be transmitted
to the display. The module has three outputs: data_out (eight-bit data output), en
(enable signal to drive the LCD), and rs (data/instruction selection signal for LCD).

Listing 13.16 Verilog Description of LCD Driver Module







The working principle of the LCD driver module (as a state machine) is as follows.
The module starts in INIT state where it initializes the display by the predefined
eightbit commands. Using them, we set the display for one line and 5 × 8 dots; then
cleared the display screen; set the cursor direction; and changed the cursor to blinking
mode. After initialization, the machine goes to WAIT state where it waits for wr_en
signal to go to logic level 1. Once this happens, the machine goes to WRITE state. Here,
it transfers data_in to data_out and waits for 1 microsecond. Afterward, the machine
turns back to WAIT state by incrementing clear vector by one and waits for another
wr_en signal. Once clear reaches 15 in decimal form, that means it reached the end of
the line and it turns back to INIT state and clears the display.

We can connect the LCD to the Basys3 board as follows. The LCD’s eight-bit data
bus line (DB0 to DB7) should be connected to JA port of the board (starting from JA[0]
to JA[7]). Enable signal of the LCD (E) should be connected to JB[0]. Similarly, RS
signal of the LCD should be connected to JB[2]. You can connect the R/W port of the
LCD to ground since we will always be in write mode. Also, do not forget to supply
VDD port of LCD with 5 V and connect VSS to ground. There is a contrast port VO on
the LCD. This port can be connected to ground for maximum contrast. Finally, A and K
ports control the back light of the LCD screen. You can set A to 5 V or 3.3 V, and K
goes to the ground to lit your LCD screen.

The EasyVR shield communicates through the UART interface. Hence, we can use
the UART transmitter and receiver blocks introduced in Chap. 12. After activating the
EasyVR shield, it recognizes words in its predefined word set 1 as default. This word
set includes English words Action, Move, Turn, Run, Look, Attack, Stop, and Hello.
The Spanish translation of these words are Accion, Movimiento, Giro, Correr, Mirar,
Ataque, Detener, and Hola, respectively.

Assuming that the reader does not have an EasyVR module, we simulate the
translation operation by feeding input signals via the first eight switches of the Basys3
board. We provide the Verilog description of the top module for the translator
constructed this way in Listing 13.17. This module has three inputs: clk (main clock
of Basys3), reset (active-high reset signal), and sw vector (first eight switches on the
Basys3 board). The outputs of the module are rs, en, and data_out, all of which are
LCD driving signals.

Listing 13.17 Translator Implemented on the Basys3 Board in Verilog











The top module in Listing 13.17 uses the LCD_driver module to show the
translation results. The top module has an internal counter which counts up to 160
milli-seconds. If reset signal goes to logic level 1, then counter, wr_en, and index
values will be equal to logic level 0. When counter reaches clk_param (corresponding
to 160 milliseconds), index of data memory is loaded into eight-bit character vector.
This is directly connected to data_in of the LCD_driver module. There is a case
statement at the end of the top module which loads Spanish translation corresponding
to the given command (or English word). For our application, depending on which
switch is at logic level 1, the corresponding word is loaded to data memory. Hence,
each character of this word is displayed with the help of the LCD_driver module. The
reader can modify this section if translation to another language is desired.

13.12 Air Freshener Dispenser
We can modify the air freshener dispenser system developed for the MSP430
microcontroller to work on the Basys3 board [32]. The system will have four different
programs to spray fresh odor in 5-, 10-, 15-, and 20-second intervals. These values
should be in minutes in an actual system. However, we set such values to observe the
system output. The system should have a counter for these operations. When counter
reaches the designated time value, the kit sprays the fresh odor and restarts counting
again. We can use two switches to select among four programs. Besides, there should
be an instant spray button. When it is pressed, the fresh odor should be sprayed and the
counter should be reset. When the user selects another program, the counter should
restart again. There should also be an on/off switch for the system. Spraying fresh odor
can be indicated by blinking an LED on the board for three seconds.

13.13 Obstacle-Avoiding Tank
We can modify the obstacle-avoiding tank system developed for the MSP430
microcontroller to work on the Basys3 board [32]. Hence, we will build a tank which
is driven by two stepper motors. The proximity sensors on the front edges of the tank
will be used to sense obstacles on the way. The tank will change its direction by
controlling motor speeds accordingly. The proximity sensor we have used in previous
applications can also be employed for this application. By using the tuning screw on
the sensor, the designer can adjust the distance the tank will turn when it faces an
obstacle.

The sensors can be connected to JB or JC ports of the Basys3 board. The motor
driver should also be connected to the JA port of the board. Since this application will
be integrated on a tank, the board itself can be powered by a battery to ensure
autonomy of the tank. Hence, 5 V has to be applied to external power pins of the
board. If the battery’s voltage is above 5 V, a regulator should be used.

13.14 Intelligent Washing Machine



We can modify and improve the washing machine system developed for the MSP430
microcontroller to work on the Basys3 board [32]. The washing machine will be
simulated by a stepper motor. Hence, the reader should check how it works in the car
park occupied slot counting system.

The washing machine is controlled by five buttons. The two of them are for the
main on/off and rotation speed. The remaining three buttons are for program selection
as follows:

• Prewash: 30 rotations in one direction, then 30 rotations in the other direction
• Normal wash: 100 rotations in one direction, then 100 rotations in the other

direction
• Final spin: 50 rotations in one direction, but faster than prewash and normal wash

The normal wash program can be improved by adding intelligence to it. To do so,
we can include an IR transmitter and receiver LED pair. The IR transmitter emits IR
light when fed with voltage. The IR receiver LED produces voltage when it absorbs IR
light. We can form a structure by using the IR transmitter and receiver such that when
water passing through them is dirty, no light transmission occurs. Hence, the output of
the receiver LED can be taken as logic level 0. When the water passing through these
LEDs is clean, the light transmission occurs. Hence, the output of the receiver LED
can be taken as logic level 1. Therefore, when the water is dirty, normal wash program
is repeated again. This program ends when water becomes clean.

When the main on/off button is pressed, the system is activated. To indicate this,
the rightmost LED on the Basys3 board will turn on. In this state, all programs
(prewash, normal wash, and final spin) can be performed. Each program can be
selected by a specific button. There is an extra button for adjusting the rotation speed
as slow and fast. Depending on the selection, the leftmost LED on the board will be
either on or off. When the main on/off button is pressed again, the system will be
deactivated. To indicate this, the rightmost LED will turn off.

13.15 Non-Touch Paper Towel Dispenser
We can modify the non-touch paper towel dispenser system developed for the
MSP430 microcontroller to work on the Basys3 board [32]. The system has a light-
dependent resistor (LDR). When the user crosses his or her hand by an LDR, this will
indicate that the paper towel is needed. This should start the timing module. The
rightmost LED on the Basys3 board will turn on for four seconds to indicate that the
paper towel is fed. During this time, no other paper towel request is accepted. When
the waiting time is over, the LED will turn off. The system will wait for a new paper
towel request.

We can also put a DC motor instead of an LED. To do so, we should set the PWM
frequency to 5 kHz. The duty cycle of the PWM signal should be 50%. The DC motor
will rotate for four seconds to simulate the feeding of the paper towel. Again, no other
paper towel request is accepted during this time. After the waiting time is over, the



motor will stop.

13.16 Traffic Lights
We can modify the traffic light system developed for the MSP430 microcontroller to
work on the Basys3 board [32]. The traffic light is located on a road which has two-
sided car traffic and a crosswalk for pedestrians. There are green and red lights for
both cars and pedestrians. Also there are buttons on each side of the crosswalk for
pedestrians. The green light duration for cars is 60 seconds. During this time, if any of
the buttons are pressed, light turns to red after 60 seconds for cars. Then, the green
light turns on after two seconds for pedestrians. The green light duration for
pedestrians is 20 seconds. If the button is not pressed, that means there are no
pedestrian. Hence, the green light for cars stays on. If a pedestrian presses the button in
any time after 60 seconds, it turns to red for cars. Then the system waits for two
seconds and the green light turns on for pedestrians to cross.

To implement this system on the Basys3 board, we should use the available LEDs
on it to simulate red and green lights. Moreover, we should also form a counter module
to indicate one second as we have done in digital clock and car park occupied slot
counting systems.

13.17 Car Parking Sensor System
We can modify the car parking sensor system developed for the MSP430
microcontroller to work on the Basys3 board [32]. The system will start working when
the proximity sensor reads a value corresponding to one meter. This value will be
shown by the seven-segment display and turning on all 16 LEDs on the board.
Afterward, as the distance between the car and obstacle decreases, LEDs start to turn
off with respect to distance. As the distance falls lower than 50 cm, then the buzzer
starts working. The frequency of the sound produced by the buzzer will increase with
respect to proximity such that when the car is five centimeters close to the obstacle, the
buzzer will have the highest frequency value. Note that the proximity sensor used in
this application will be different from the previously used ones. Here, we will need a
proximity sensor with analog output.

13.18 Body Weight Scale
The goal of this application is building a body weight scale we use in our homes.
Basically, we need four load cells (also called strain gauge) to be screwed to legs of
the scale. These load cells convert the applied force on them to the electrical voltage.
The XADC module on the Basys3 board can be used to convert this voltage to digital
form. Note that an instrumentation amplifier may be needed between the sensor and
Basys3 board depending on the sensor output. The weight of the user should be
displayed on the seven-segment display. The user should also be able to store the last
measurement in memory of the device. To avoid false measurements, the system



should wait for the sensor to get stabilized. Several measurements should be taken and
their average should be displayed on the seven-segment display or saved in memory.

13.19 Intelligent Billboard
Nowadays, companies want to measure the impact of an advertisement published on a
billboard. One way of doing this is extracting statistics based on who viewed or paid
attention to the billboard while the advertisement is on. We can develop a prototype
system for this purpose. Our system is composed of a proximity sensor and the GSM
module. The proximity sensor with digital output that we used in previous applications
in this book can also be used for this system as well. The proximity sensor will be
faced to people passing by. When someone gets closer to the billboard to read the
advertisement, a counter in the system will increase. Since the billboard is an
autonomous device located in the public area, we have to integrate GSM capability to
send the count results to the company. Here, the GSM Click module offered by
Microelektronika can be of use since it has an interface with the UART
communication [61]. Previously introduced UART modules can be used for this
purpose.

13.20 Elevator Cabin Control System
We can design a prototype elevator cabin control system using the Basys3 board. Our
elevator works in a building with six floors. We will use the first three switches on the
board (sw[0] to sw[2]) to identify which floor we are calling the cabin from. We also
need an elevator call button. Let’s assign btnC on the board for this purpose. We also
need six buttons inside the cabin to indicate the target floor. We will use the next six
switches (sw[3] to sw[8]) for this purpose. For example, after the elevator door is
closed and sw[8] goes to logic level 1, the elevator should go to the sixth floor.

The system works as follows. The cabin starts at the first floor. If someone at this
floor presses the call button, the door of the cabin will open. If someone from another
floor presses the call button, the cabin moves to that floor. Assume that the travel time
between each floor is three seconds. When the cabin reaches the target floor, its door
opens and stays in that state for ten seconds. Since this is a prototype system, we
assumed one user at a time. Therefore, scheduling issues within the elevator control
are avoided. However, we suggest that the reader think about the possibility as well of
a more advanced elevator cabin control system.

The first six LEDs on the Basys3 board will show which floor the cabin is at. The
seventh LED shows if the elevator is busy or not. The eighth LED indicates whether
the door is open or closed. At this stage, these are sufficient for a prototype system.
We can improve the system further by adding a proximity sensor for the cabin door.
Hence, if a user is at the door, it stays open. Besides, we can add two stepper motors:
one to move the cabin and the other to open/close the cabin door.



13.21 Digital Table Tennis Game
This project aims to develop a digital table tennis game to be run on the Basys3 board.
Rules of the game are as follows:

• There are two players controlling sw[15] and sw[0] on the board. These switches
act as rackets to send the ball to the other side.

• The ball is represented by a moving LED.
• When the first user (controlling sw[15]) sends the ball, the game starts.
• The second user should respond to the coming ball by raising the racket (turning

on the switch) when the ball reaches there. Since Basys3 has 16 LEDs, the racket
can be raised on last two LEDs. To avoid any confusion, both players should keep
their rackets low before striking the ball.

• If the racket is raised early by a player, it is taken as a fault and the other user gets
the point.

• If one player misses the ball, the other player gets the point.
• The game has four difficulty levels controlled by btnU and btnL. The difficulty

level is directly related to the speed of the moving ball.
• The difficulty level is shown on the rightmost seven-segment display digit.
• The score of the players are shown on the two leftmost seven-segment display

digits.
• The edge detector module (in Listing 10.33) can be used in the project to detect

switch movements.

13.22 Customer Counter
We can design a system on the Basys3 board to count customers in a shopping mall
with designated doors for entrance and leaving. To do so, we should place a proximity
sensor to each door. Hence, we can detect whether a customer passing through the gate
is entering or leaving. The customer counter is reset as the mall opens. The count is
increased by one for each entering customer. It is decreased by one for each leaving
customer. The total number of customers in the mall should be shown on the seven-
segment display. As the shopping mall closes, the security check will be done via the
count value. If no one is left in the mall, gates will be locked. This can be simulated by
an LED on the board. We can further expand the system by adding a bluetooth module
to each proximity sensor section such that they communicate with a main module.
Hence, the two follower modules and one leader module will be needed in developing
the system.

13.23 Frequency Meter
Frequency meter is a device to measure frequency (repetition rate per second) of an
analog periodic signal. We can design such a system using the Basys3 board. Assume
that, the average value of the analog signal is discarded. Hence, it oscillates around



zero. We can use the XADC module to detect zero crossings of the periodic signal.
The total number of zero crossings within one second can be used to calculate the
frequency of the signal. We can display the measured frequency on the seven-segment
display of the board. Let’s assume that we assign three digits for the measured
frequency value. Hence, the frequency values between 0 and 999 Hz can be measured
by the system.

13.24 Pedometer
Pedometer is a device that counts steps when you carry it on. We can design a
pedometer using a three-axis accelerometer sensor and the Basys3 board. We can pick
one of the available sensors working in similar ways. They communicate over the I2 C
interface providing 16 bits of data in each direction. Hence, the I2 C module
introduced in Chap. 12 will be of use here. You can connect the sensor to one of the
available PMOD connectors on the board. Once you get the acceleration data, you
have some work on it to extract steps. There is a good article explaining how to do this
[62]. Therefore, we strongly suggest applying the method described there. Once you
understand the steps, you can count them and let the user know when the total number
of steps reach a limit (let’s say per day). We can expand this module by using a
bluetooth module (such as HC-06) to send step counts to your cell phone.
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CHAPTER 14
What Is Next?

igital systems introduced up to now were fairly complex such that they can
be described by an hardware description language (HDL) (either Verilog or
VHDL). There may be complex digital systems needing more powerful and
high-level description. Xilinx offers such a platform called Vivado High-
Level Synthesis (HLS). Through it, the user can describe operational

characteristics of a digital system either in C or C++ language. The result can be
converted to an IP block to be used in the Verilog or VHDL description. We will
explore how this can be done in this chapter. To do so, we will start with Vivado HLS.
Then, we will develop a project under it to generate an IP. Finally, we will show how
the generated IP can be used in an HDL in Vivado. Therefore, the reader can
understand steps to be followed for such an implementation. Topics introduced in this
chapter are more complex compared to the ones introduced in previous chapters.
Moreover, it is not possible for us to cover them in depth here. Therefore, we titled this
chapter “What Is Next?” to emphasize that topics covered in this chapter should also
be included in an advanced book focusing on these issues.

14.1 Vivado High-Level Synthesis Platform
Vivado HLS is the platform that can be used to develop a complex digital system
benefiting from the power of C or C++ languages. Moreover, it allows the user to
represent the developed system as an IP block to be used in Vivado. As we were
writing this book, Vivado HLS was coming within the free Vivado WebPACK edition.
Therefore, there is no need of extra installation process for it.

Although Vivado HLS is a powerful platform, it is fairly complex to master. Xilinx
offers valuable references for this purpose [63–65]. We strongly suggest the reader to
review them. Xilinx also offers several example projects under Vivado HLS to be used
as a starting point. These will serve as valuable sources in using the platform. We will



provide a simple project (modified from one of Xilinx’s examples) to explain how a
fresh project can be developed in Vivado HLS next.

14.2 Developing a Project in Vivado HLS to Generate IP
After installing Vivado WebPACK, the reader should see a separate icon (titled
Vivado HLS 2016.3) on his or her desktop for the Vivado HLS. As this icon is pressed
twice, Vivado HLS will start with the welcome screen as in Fig. 14.1. Through this
screen, the user can create a new project; open an existing project; or open an example
project provided by Xilinx. Moreover, tutorials and user guides for Vivado HSL can
also be reached from this screen.

FIGURE 14.1 Vivado HLS welcome screen.

Let’s create a new project in the welcome screen. Assume that we want to add two
eight-bit numbers. As we press “Create New Project” in the welcome screen, a new
window appears asking for the “Project Name” and “Location.” Let the project name
be adder_HLS. The reader should also find a suitable location. We pick this location as
H:\Xilinx_Projects. As we press “Next,” a new pop-up window titled “Add/Remove
Files” appears asking for the “Top Function” in the project. As for now, let’s leave it
empty. As we press “Next,” the pop-up window asks for the testbench file to be used.
Let’s leave this one also empty. As we press “Next,” a new pop-up window titled



“Solution Configuration” appears as in Fig. 14.2. Here, we should set the “Solution
Name,” “Clock Period,” and “Uncertainty.” Let’s leave them as they are. We should
also select the FPGA platform from “Part Selection.” Let’s target the Basys3 board.
Hence, set the part name as xc7a35tcpg236-1. We can press “Finish” to create the
project.

FIGURE 14.2 Solution configuration window.

After the project is created, a new screen appears as in Fig. 14.3. The user can
adjust all properties of the project through this interface. Let’s first add the main file
titled adder.c to the project. To do so, right-click on the “Source” item in the
“Explorer” section; select the “New File” option and create the file. Let’s copy the C
source code in Listing 14.1 to the created file.



FIGURE 14.3 Project explorer window.

As can be seen in Listing 14.1, the adder.c file only has a function definition
adder. Input to this function are two eight-bit numbers inA and inB defined by type
int8. The output of the function is out1 defined as a pointer to another eight-bit
number. The adder.c file also refers to a header file which we named as adder.h
available in Listing 14.2. We should also add this file to the “Source” directory under
the project following previous steps. This structure should be kept since Vivado HSL
requires the function to be defined in the header file. Hence, it can be converted to an
IP block.

Vivado HLS requires a testbench file to test the C code. Let’s call the testbench file
adder_tb.c. This testbench file will be as presented in Listing 14.3. We should also
add it to the “Source” directory as explained before.

As all three files are added to the project, we should adjust “Project Settings” by
pressing the related icon in the project explorer window. There, we should declare the
“Top Function” under the “Synthesis” section. After this operation, the window should
look like as shown in Fig. 14.4a. We should also add the “Testbench Files” under the
“Simulation” section. After this operation, the window should look like as shown in
Fig. 14.4b. As we press “Ok,” we are ready to proceed.



FIGURE 14.4 Project settings window after adding C source and testbench files.



Listing 14.1 The adder.c Source Code

Listing 14.2 The adder.h Header File to Be Used in adder.c

Listing 14.3 Testbench File to Be Used in the Vivado HLS Project

We should generate an IP block corresponding to the project. Therefore, we should
follow the steps Run C Simulation → Run C Synthesis → Export RTL. Vivado HLS
offers extra test and validation steps at this point. The reader can check the mentioned
references on how these operations can be done. The generated IP block can be found
in the folder H:\Xilinx_Projects\adder_HLS\solution1\impl\ip. Next, we will use
this IP block in Vivado.

14.3 Using the Generated IP in Vivado
To use the generated IP block, let’s form a Vivado project following steps in Chap. 4.



Let’s call the project adder_Vivado. We should first add the generated IP block to the
IP catalog following the steps in Sec. 4.7. Based on the Vivado HLS project settings,
the specific IP directory to be added will be at
H:\Xilinx_Projects\adder_HLS\solution1\ impl\ip. Afterward, the generated IP
should be seen in the IP catalog under “User Repository” and “Vivado HLS IP.” We
can add it to the project by double-clicking on it.

Let’s form a top module and add the instantiation of the adder IP. The result will be
as presented in Listing 14.4. The reader can form a testbench file to test this top
module. The VHDL version of the top module will be as presented in Listing 14.5.

Listing 14.4 Verilog Top Module Using the Adder IP Generated in Vivado HLS

Listing 14.5 VHDL Top Module Using the Adder IP Generated in Vivado HLS



14.4 Summary
Verilog and VHDL are not the only options in describing complex digital systems. The
Vivado HLS offers an advanced platform to develop complex systems in C or C++
language. The developed system can be converted to an IP block to be used in either
Verilog or VHDL. We briefly introduced in this chapter methods on how this can be
done. We strongly suggest that the reader master these topics using references offered
by Xilinx.

14.5 Exercises
14.1   Modify the application introduced in Sec. 14.2 to



a. subtract two eight-bit numbers.
b. multiply two eight-bit numbers.
c. divide two eight-bit numbers.

14.2   Modify the application introduced in Sec. 14.2 to add two 16-bit numbers.
14.3   Repeat Exercise 14.1 using two 16-bit numbers as input.
14.4   Pick an example project under the Vivado HLS offered by Xilinx. Apply steps

introduced in this chapter to implement and run the project. Observe how a
complex digital system can be developed this way.

14.5   Using Exercise 14.4, analyze how the C testbench file can be used for a
detailed analysis in Vivado HLS.



References

1.   Xilinx. (2015). 7 Series FPGAs Select IO Resources User Guide, ug471 (v1.6)
ed.

2.   Xilinx. (2014). 7 Series FPGAs Configurable Logic Block User Guide, ug474
(v1.7) ed.

3.   Xilinx. (2014). 7 Series DSP48E1 Slice User Guide, ug479 (v1.8) ed.
4.   Xilinx. (2015). 7 Series FPGAs Clocking Resources User Guide, ug472

(v1.11.2) ed.
5.   Xilinx. (2015). 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC

Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide, ug480 (v1.7) ed.
6.   Xilinx. (2013). Efficient Implementation of Analog Signal Processing Functions

in Xilinx All Programmable Devices, wp442 (v1.0) ed.
7.   Xilinx. (2015). Driving the Xilinx Analog-to-Digital Converter, xapp795 (v1.1)

ed.
8.   Xilinx. (2014). 7 Series FPGAs GTP Transceivers User Guide, ug482 (v1.8) ed.
9.   Xilinx. (2016). 7 Series FPGAs Integrated Block for PCI Express v3.3

LogiCORE IP Product Guide Vivado Design Suite, pg054 ed.
10.   Digilent, https://reference.digilentinc.com/basys3:refmanual. Accessed

January 2, 2017.
11.   Microchip. (2006). PIC24FJ128GA Family Data Sheet, ds39747c ed.
12.   FTDI. (2012). FT2232H Dual High-Speed USB to Multipurpose UART/FIFO IC

Datasheet, FT_000061 ed.
13.   Spansion. (2013). S25FL032P 32-Mbit CMOS 3.0 Volt Flash Memory with 104-

MHz SPI (Serial Peripheral Interface) Multi I/O Bus, s25fl032p_00 rev. 9 ed.
14.   Digilent, https://reference.digilentinc.com/arty:refmanual. Accessed

January 2, 2017.
15.   TI. (2015). DP83848x PHYTER Mini / LS Single Port 10/100 MB/s Ethernet

Transceiver, snls250e ed.
16.   Micron. (2014). Micron Serial NOR Flash Memory, n25q128a ed.
17.   Micron. (2016). Micron DDR3L SDRAM, mt41k128m16 ed.

http://reference.digilentinc.com/basys3:refmanual
http://reference.digilentinc.com/arty:refmanual


18.   Digilent, http://www.xilinx.com/support/university/boards-
portfolio/xup-boards/Basys3Board.html. Accessed January 2, 2017.

19.   Digilent,
https://reference.digilentinc.com/_media/arty/arty_sw_btn_led.zip.
Accessed January 2, 2017.

20.   Xilinx. (2016). Vivado Design Suite User Guide: Designing with IP, ug896
(v2016.2) ed.

21.   Xilinx. (2016). Vivado Design Suite: Designing with IP Tutorial, ug939
(v2016.2) ed.

22.   Xilinx. (2016). Vivado Design Suite User Guide: Creating and Packaging
Custom IP, ug1118 (v2016.2) ed.

23.   Xilinx. (2016). Vivado Design Suite: Creating, Packaging Custom IP Tutorial,
ug1119 (v2016.2) ed.

24.   Cummins, C. E. (2000). Nonblocking assignments in Verilog synthesis, coding
styles that kill!, in SNUG 2000 San Jose.

25.   Hamid, M. (2010). Writing Efficient Testbenches, Xilinx, xapp199 (v1.1) ed.
26.   Brown, S., and Vranesic, Z. (2009). Fundamentals of Digital Logic with VHDL

Design, 3rd ed. McGraw-Hill, New York.
27.   Pedroni, V. A. (2014). Circuit Design and Simulation with VHDL, 2nd ed. The

MIT Press, Cambridge, MA.
28.   Xilinx. (2016). Vivado Design Suite User Guide: Synthesis, ug901 (v2016.2) ed.
29.   Mano, M. M., and Ciletti, M. D. (2006). Digital Design, 4th ed. Prentice Hall,

Englewood Cliffs, NJ.
30.   Xilinx. (2015). Distributed Memory Generator v8.0 LogiCORE IP Product

Guide, pg063 ed.
31.   Xilinx. (2016). Block Memory Generator v8.3 LogiCORE IP Product Guide,

pg058 ed.
32.   Ünsalan, C., and Gürhan, H. D. (2014). Programmable Microcontrollers with

Applications: MSP430 LaunchPad with CCS and Grace, 1st ed. McGraw-Hill,
New York.

33.   Brown, S., and Vranesic, Z. (2014). Fundamentals of Digital Logic with Verilog
Design, 3rd ed. McGraw-Hill, New York.

34.   Xilinx,
https://www.xilinx.com/ipcenter/processor_central/picoblaze/member/.
Accessed January 2, 2017.

35.   Xilinx. (2011). PicoBlaze 8-bit Embedded Microcontroller User Guide, ug129
ed.

36.   Chapman, K. (2014). PicoBlaze for Spartan-6, Virtex-6, 7-Series, Zynq and
UltraScale Devices (KCPSM6). Xilinx.

37.   Tracton, P., https://github.com/ptracton/Picoblaze. Accessed January 2,
2017.

http://www.xilinx.com/support/university/boards-portfolio/xup-boards/Basys3Board.html
http://reference.digilentinc.com/_media/arty/arty_sw_btn_led.zip
http://www.xilinx.com/ipcenter/processor_central/picoblaze/member/
http://github.com/ptracton/Picoblaze


38.   Tracton, P.,
https://github.com/ptracton/Picoblaze/tree/master/PicoBlaze_GPIO_Example

Accessed January 2, 2017.
39.   Xilinx. (2016). Vivado Design Suite Tutorial Embedded Processor Hardware

Design, ug940 ed.
40.   Xilinx. (2016). MicroBlaze Processor Reference Guide, ug984 ed.
41.   Xilinx, https://www.xilinx.com/products/design-tools/microblaze.html.

Accessed January 2, 2017.
42.   Duckworth, R. J., http://users.wpi.edu/∼rjduck/Microblaze. Accessed

January 2, 2017.
43.   Digilent,

https://reference.digilentinc.com/learn/programmablelogic/tutorials/arty-

getting-started-with-microblaze/start. Accessed January 2, 2017.
44.   FPGArduino, http://www.nxlab.fer.hr/fpgarduino/. Accessed January 2,

2017.
45.   Imagination, https://community.imgtec.com/university/resources/.

Accessed January 2, 2017.
46.   ARM, https://www.arm.com/products/designstart/index.php. Accessed

January 2, 2017.
47.   Motorola Inc. (2003). SPI Block Guide, s12spiv3/d ed.
48.   Digilent,

https://reference.digilentinc.com/reference/pmod/pmodals/start.
Accessed January 2, 2017.

49.   NXP. (2012). UM10204 I2C-Bus Specification and User Manual, rev. 5th ed.
50.   Larson, S., https://eewiki.net/pages/viewpage.action?pageId=10125324.

Accessed January 2, 2017.
51.   Digilent, http://store.digilentinc.com/pmod-cmps-3-axis-

digitalcompass/. Accessed January 2, 2017.
52.   Digilent, https://learn.digilentinc.com/Documents/269. Accessed January

2, 2017.
53.   Digilent, https://reference.digilentinc.com/basys3/refmanual. Accessed

January 2, 2017.
54.   Digilent, https://reference.digilentinc.com/learn/programmable-

logic/tutorials/arty-getting-started-with-microblaze-servers/start.
Accessed January 2, 2017.

55.   Xilinx. (2016). Integrated Logic Analyzer v6.2 LogiCORE IP Product Guide,
pg172 ed.

56.   Xilinx. (2016). Vivado Design Suite User Guide: Programming and Debugging,
ug908 ed.

57.   Xilinx. (2016). XADC Wizard v3.3 LogiCORE IP Product Guide, pg091 ed.
58.   MIT, http://appinventor.mit.edu/explore/. Accessed January 2, 2017.

http://github.com/ptracton/Picoblaze/tree/master/PicoBlaze_GPIO_Example
http://www.xilinx.com/products/design-tools/microblaze.html
http://users.wpi.edu/∼rjduck/Microblaze
http://reference.digilentinc.com/learn/programmablelogic/tutorials/arty-getting-started-with-microblaze/start
http://www.nxlab.fer.hr/fpgarduino/
http://reference.digilentinc.com/basys3:refmanual
http://www.arm.com/products/designstart/index.php
http://reference.digilentinc.com/reference/pmod/pmodals/start
http://eewiki.net/pages/viewpage.action?pageId=10125324
http://store.digilentinc.com/pmod-cmps-3-axis-digitalcompass/
http://learn.digilentinc.com/Documents/269
http://reference.digilentinc.com/basys3/refmanual
http://reference.digilentinc.com/basys3:refmanual
http://appinventor.mit.edu/explore/


59.   Digilent,
https://reference.digilentinc.com/reference/pmod/pmodstep/start.
Accessed January 2, 2017.

60.   Sparkfun, https://www.sparkfun.com/products/13316. Accessed January 2,
2017.

61.   Mikroelektronika, https://shop.mikroe.com/click/wireless-
connectivity/gsm. Accessed January 2, 2017.

62.   Zhao, N. (2010). Full-featured pedometer design realized with 3-axis digital
accelerometer. Analog Dialogue, 44 (06): 1–5.

63.   Xilinx. (2016). Vivado Design Suite Tutorial High-Level Synthesis, ug871 ed.
64.   Xilinx. (2016). Vivado Design Suite User Guide High-Level Synthesis, ug902

ed.
65.   Xilinx. (2013). Introduction to FPGA Design with Vivado High-Level Synthesis,

ug998 ed.

http://reference.digilentinc.com/reference/pmod/pmodstep/start
http://www.sparkfun.com/products/13316
http://shop.mikroe.com/click/wireless-connectivity/gsm


Index

Please note that index links point to page beginnings from the print edition. Locations
are approximate in e-readers, and you may need to page down one or more times after
clicking a link to get to the indexed material.

Note: Page numbers followed by f denote figures; by t, tables.

/, 91, 102
–, 91, 99, 102, 160
&, 49
ˆ, 49
=, 52
+, 91
*, 91, 102
%, 91
+, 102
{ }, 92
<=, 52
∼, 49
|, 49

0, 88, 99
1, 88, 99
2 × 4 bit memory, 196f
4 × 8 bit ROM module, 198

 A 
Absolute value (abs), 102
Absorption property, 127, 127t
Accelerometer sensor, 360
ADC. See Analog-to-digital converter (ADC)



Add sources window, 27f
Adders, 147–150
Adding two floating-point numbers, 328–332
Addition, 84–85
Advanced applications, 325–360. See also
Applications
after, 64
Air freshener dispenser, 356
Alkaline batteries, 328
ALU. See Arithmetic logic unit (ALU)
always, 50, 52
Analog-to-digital converter (ADC), 13
and, 49, 62
AND gate, 8, 8f, 121–122
Application-specific integrated circuit (ASIC), 15
Applications, 325–360

adding two floating-point numbers, 328–332
air freshener dispenser, 356
blink LED on Basys3 board every second, 325–326
body weight scale, 358
calculator. See Calculator
car park sensor system, 358
car park slot counting system. See Car park occupied slot counting system
customer counter, 360
digital clock, 344–349
digital safe. See Digital safe system
digital table tennis game, 359–360
elevator cabin control system, 359
frequency meter, 360
home alarm. See Home alarm system
ILA usage, 325–326
intelligent billboard, 358
intelligent washing machine, 356–357
inter-integrated circuit (I2 C), 295, 300–307
MicroBlaze, 253–257
moving wave via LEDs, 349–350
non-touch paper towel dispenser, 357
obstacle-avoiding tank, 356
paper towel dispenser, 357
pedometer, 360
PicoBlaze, 251



reading analog values from internal temperature sensor, 327–328
reading voltage level on alkaline battery, 328, 329
serial peripheral interface (SPI), 280, 285–286, 287–288
soft-core microcontroller, 257
switches to LEDs, 42–44
table tennis game, 359–360
traffic lights, 357–358
translator, 351–356
universal asynchronous receiver/transmitter (UART), 264–270
universal serial bus (USB), 315–321
vending machine, 344, 345–346
video graphics array (VGA), 310, 312–314
washing machine, 356–357
XADC block usage, 326–328

Architecture definition, 62
Arduino/chipKit compatible SPI header, 24
Arduino/chipKit shield connectors, 23
Arduino shields, 2
Arithmetic logic unit (ALU), 248, 250
Arithmetic operations:

addition, 84–85
binary numbers, 84–88
division, 87–88
implementation (FPGA building blocks), 112, 112f, 113
multiplication, 86–87
multiplication and division (shift register), 217–219
subtraction, 85–86
Verilog, 91–97
VHDL, 102–109

Arrays, 100–102
Artix-7 XC7A35T FPGA, 9
Arty board:

advanced connectors, 23–24
Arduino/chipKit compatible SPI header, 24
Arduino/chipKit shield connectors, 23
board layout, 21f, 22t
chipKit processor reset button and jumper, 23
configuring the FPGA, 23
ethernet connector, 23
external memory, 24
input/output connections, 22–23



LEDs, 23
oscillator/clock, 24
Pmod connectors, 22
powering the board, 21–22
shared UART/JTAG USB port, 23
slide switches, 23
tricolor LEDs, 23
use, 21

Arty board constraint file, 39–40
ASCII code, 83–84
ASCII lowercase/uppercase converter, 176
ASIC. See Application-specific integrated circuit (ASIC)
Assembly language programming, 248
assign, 49, 51
Associate ELF file, 256, 257f
Associative property, 127, 127t
Asynchronous counter, 220, 221f
Asynchronous frequency divider, 243
Asynchronous sequential circuit, 213
Automobile safety belt alarm system, 146
Avnet, 21

 B 
Back porch, 308
Barrel shifter, 243
Basys3 board:

advanced connectors, 20
board layout, 18f, 18t
configuring the FPGA, 20
external memory, 20
four-digit seven-segment display, 19
input/output connections, 19
LEDs, 19
oscillator/clock, 20–21
Pmod connectors, 19, 19f
powering the board, 17–18
push buttons, 19
shared UART/JTAG USB port, 20
slide switches, 19
USB host connector, 20



use, 17
VGA connector, 20

Basys3 board restraint file, 37–38
begin, 50, 157
Behavioral modeling:

Verilog, 50–52
VHDL, 63–64

Behavioral simulation, 34
Bibliography (references), 369–371
Billboard, intelligent, 358
Binary arithmetic operations, 84–88. See also Arithmetic operations
Binary digit (bit), 6
Binary numbers, 77–79
Binary representation, 5
Binary to BCD converter module, 232–233
Binary to decimal conversion, 79
Binary to hexadecimal conversion, 79–80
Binary to octal conversion, 79
Binary variable, 117
Bit, 77
Bit complement, 80
Bit representation, 80
Blink LED on Basys3 board every second, 325–326
Blink the LED, 244–245
Block keywords, 157
Block RAM, 12–13
Block random access memory (RAM), 200, 201
Block read-only memory (ROM), 199
Blocking assignment, 52, 53
Body weight scale, 358
Boolean algebra, 124–127, 125, 127, 127t
Boolean algebra identities, 125t
Boolean algebra properties, 125, 127, 127t
Buffer, 6, 6f
Building blocks, 2–3
Byte, 78

 C 
Calculator:

combinational circuit blocks, 171



data storage elements, 200, 202
final form, 332–336
keyboard keypad controller module, 335–336
primitive, 109, 111

Car door alarm system, 176
Car park occupied slot counting system, 140–142

Basys3 board, 143, 174
combinational circuit blocks, 172
end-of-chapter exercise, 176
final form, 339–344
sequential circuits, 236–237
synthesization, 142f
truth table, 141t
Verilog, 141, 143, 170, 237, 342–344
VHDL, 141

Car park sensor system, 358
Car safety belt alarm system, 146
Carry bit, 84
Carry-in bit, 148
Carry-out bit, 147, 148
case, 157, 159, 161, 171
Case sensitive, 89
casex, 161, 162
Central processing unit (CPU), 248, 249
chipKit processor reset button and jumper, 23
CLB. See Configurable logic block (CLB)
Clock, 13
Clock management tile (CMT), 13
Clock regions, 13
CMT. See Clock management tile (CMT)
Combinational circuit, 117–146. See also Combinational circuit blocks

binary variable, 117
Boolean algebra, 124–127
car park occupied slot counting system, 140–142, 143
circuit diagram, 124f
design, 136–137
digital safe system, 139–140, 142–143
FPGA building blocks, 143
AND gate, 121–122
gate-level minimization, 127–129
home alarm system, 137–138, 142



implementation. See Combinational circuit implementation
input/output characteristics, 124 logic function, 117–118
logic gates, 118–123
NAND gate, 121, 122f
NOR gate, 120, 120f
NOT gate, 118–119
one-input, 130–131
OR gate, 119–121
three-input, 133–135
three-step design process, 136–137
truth table, 118, 118t
two-input, 131–133
XOR gate, 122–123

Combinational circuit analysis, 124–129
Combinational circuit blocks, 147–177. See also Combinational circuit

adders, 147–150
calculator, 171
car park occupied slot counting system, 172–174
comparators, 150–156
decoders, 156–160
encoders, 160–163
FPGA building blocks, 174
home alarm system, 171–172, 173
multiplexers, 163–167
parity generators and checkers, 167–171

Combinational circuit design, 136–137
Combinational circuit implementation, 129–136

one-input combinational circuit, 130–131
other implementations, 136
POS form, 130
SOP form, 129
three-input combinational circuit, 133–135
truth table-based implementation, 129–130
two-input combinational circuit, 131–133

Commutative property, 125, 127, 127t
Comparators, 150–156
Compass module, 295
Component declaration, 62, 64
Concatenation operator:

Verilog, 98, 98f, 99f
VHDL, 105, 109, 110



Conditional statements:
Verilog, 152–153
VHDL, 155–156

Configurable logic block (CLB):
flip-flop, 11
look-up table (LUT), 11–12
multiplexer, 10–11
slices, 12

Constants:
Verilog, 89
VHDL, 100

Converting analog temperature value to digital form, 327
Converting external voltage value to digital form, 329
Counter, 219–226

asynchronous, 220, 221f
frequency division, 225–226
state diagram, 219, 219f
synchronous, 220, 220t, 221f
Verilog, 220–222
VHDL, 222–225

CPU. See Central processing unit (CPU)
Create a new project window, 26f
Create and Package New IP window, 41f
Customer counter, 360

 D 
D flip-flop, 188

characteristic table, 189t
sequential circuits, 205
symbol, 188f
Verilog, 190, 191f
VHDL, 193–194

D latch:
characteristic table, 181t
circuit diagram, 181f
Verilog, 184–185
VHDL, 187

Data storage, 179
Data storage elements, 179–204

calculator, 200, 202



cautionary note, 204
debouncing, 201, 203
flip-flop. See Flip-flop
FPGA building blocks, 201–204
latch. See Latch
memory, 196, 196f
random access memory (RAM), 199–200, 201
read-only memory (ROM), 196–199
register, 195, 195f

Data types and operators, 77–116
arithmetic operations on binary numbers, 84–88
ASCII code, 83–84
binary numbers, 77–79
data types (Verilog), 88–89
data types (VHDL), 99–102
example (calculator implemented on Basys3 board in Verilog), 109, 111
fixed-point representation, 81–82
floating-point representation, 82–83
hexadecimal numbers, 79–80
implementation details of arithmetic operations, 112, 112f, 113
implementation details of vector operations, 110, 111, 111f, 113
negative numbers, 80–81
number representations, 77–80
octal numbers, 79
operators (Verilog), 89–99
operators (VHDL), 102–110

Dataflow modeling:
Verilog, 49–50
VHDL, 62, 63

DDR3 SDRAM, 24
Debouncing, 201, 203
Decimal number system, 77
Decimal to binary conversion, 78
Decoders, 156–160
Delay types, 54
DeMorgan’s theorem, 127, 127t
Design:

combinational circuit, 136–137
FPGA, 14–16
sequential circuit, 226–227

Design philosophy, 14–16



Differential mode, 9
Digilent Inc., 17, 21, 23, 257
Digital clock, 240–243, 246, 344–349
Digital compass, 295
Digital electronics:

bit values as voltage levels, 5–6
buffer, 6, 6f
AND gate, 8, 8f
logic gates, 6–8
NOT gate, 7, 7f
OR gate, 7–8, 7f, 8f
transistor, 6, 6f

Digital interfacing, 259–323
ethernet, 321
FPGA building blocks, 321
I2 C. See Inter-integrated circuit (I2 C)
SPI. See Serial peripheral interface (SPI)
UART. See Universal asynchronous
receiver/transmitter (UART)
universal serial bus (USB), 315–321
VGA. See Video graphics array (VGA)

Digital logic gates, 6–8
Digital safe system, 139

Basys3 board, 142, 143
circuit diagram, 139f
final form, 337–339
sequential circuits, 234–236
synthesization, 140f
Verilog, 139, 143, 235, 236, 338–339
VHDL, 140

Digital signal processing (DSP) slices, 13
Digital system implementation, 117
Digital table tennis game, 359–360
Discrete elements, 15
Displaying numbers, 176–177
Distributed random access memory (RAM), 200
Distributed read-only memory (ROM), 199
Distributive property, 127, 127t
Division, 87–88
Division (shift register), 217–219
DNA sequence detector, 245



“Don’t care” condition, 88, 99, 160
DSP slices. See Digital signal processing (DSP) slices
DSP48E1, 13
Duckworth, R. J., 254
Duplication number, 92

 E 
EasyVR shield, 351, 353
Echo server, 321
Edge detector, 204, 244
Edge detector module, 360
Eight-input LUT, 12
Eight-to-one multiplexer, 134

Verilog, 165, 166f
VHDL, 167

Eight-to-three priority encoder, 162, 162f
Elevator cabin control system, 359
ELF file, 256, 257f
else, 153, 155
else if, 152, 153
elsif, 155
Encoders, 160–163
end, 50, 157
endmodule, 48
Entity declaration, 61
Ethernet, 321
Even/odd number detector, 146, 176
Even-parity generator, 167, 168f, 168t
Exclusive-OR (XOR) gate, 122–123
External memory:

Arty board, 24
Basys3 board, 20

 F 
Fall delay, 54
falling_edge, 194
Field-programmable gate array (FPGA):

advantages/disadvantages, 15–16
arithmetic operations, 112, 112f, 113
block RAM, 12–13



boards. See Arty board; Basys3 board
clock management, 13
combinational circuit blocks, 174
combinational circuits, 143
configurable logic block (CLB), 10–12
data storage elements, 201–204
design philosophy, 14–16 digital interfacing, 321
digital signal processing (DSP) slices, 13
high-speed serial I/O transceiver (HSSIO), 14
input/output blocks, 9–10
interconnect resources, 12
layout, 9
microcontroller. See Soft-core microcontroller
peripheral component interconnect express (PCIe), 14
points to remember, 14–15
programming the FPGA, 37–40
reconfigurability, 15
sequential circuit, 242
usage areas, 16
vector operations, 110, 111, 111f, 113
XADC block, 13–14

Finite state machine, 205. See also Sequential circuit
Fire alarm system, 144–145, 176
Fixed-point addition, 84
Fixed-point division, 87
Fixed-point multiplication, 87
Fixed-point representation, 81–82
Fixed-point signed number representation formats, 82t
Fixed-point subtraction, 85–86
Fixed-point unsigned number representation formats, 81t
Flip-flop, 11, 188–195

D, 188, 188f, 189t
JK, 189, 189f, 189t
T, 189, 190t
Verilog, 190–193
VHDL, 193–195

Floating-point adder module, 328, 329–331
Floating-point addition, 84–85
Floating-point division, 88
Floating-point multiplication, 87
Floating-point representation, 82–83



Floating-point subtraction, 86
Follower, 271
Four-bit comparator, 153, 153f, 155
Four-bit register, 195f
Four-bit serial in/parallel out shift register, 216, 217
Four-bit serial in/serial out shift register, 215f
Four-to-one multiplexer:

circuit diagram, 164f
three-input combination circuit, 134, 135f
truth table, 164t
two-input combinational circuit, 131, 132f
Verilog, 165
VHDL, 166

Four-to-two priority encoder, 160t, 161, 161f
FPGA. See Field-programmable gate array (FPGA)
FPGA boards, 2, 17. See also Arty board; Basys3 board
FPGA building blocks, 9–14. See also Field-programmable gate array (FPGA)
FPGA selection window, 27f
Frequency division, 225–226, 244
Frequency meter, 360
Front porch, 308
Full adder, 148, 148f, 148t
function, 65
Functional modeling, 49

 G 
Gate-level minimization, 127–129
Gate-level modeling, 48
General purpose input and output (GPIO), 249, 250
generic, 219
Generic look-up table (LUT), 130
Generic truth table, 118t
Gigabyte (GB), 78
GitHub, 251
GPIO. See General purpose input and output
(GPIO)
Ground voltage, 6
GSM Click module, 358

 H 



Half adder, 147, 148f
Hardware description language (HDL), 1, 47. See also Verilog; VHDL
Hardware Manager, 39, 39f
HDL. See Hardware description language (HDL)
Hexadecimal numbers, 79–80
Hexadecimal to binary conversion, 80
High impedance, 88, 99
High-speed serial I/O transceiver (HSSIO), 14
HL WebPACK edition, 25
Home alarm system, 137

Basys3 board, 142, 173
binary to BCD converter module, 232–233
circuit diagram, 137f
combinational circuit blocks, 171–172, 173
final form, 335–337
sequential circuits, 227–234
seven-segment display driver module, 229–232
synthesization, 138f
Verilog, 138, 142, 173, 228, 234, 337
VHDL, 138

Honeywell HMC5883L 3-axis digital compass, 295
HSSIO. See High-speed serial I/O transceiver (HSSIO)

 I 
I2 C. See Inter-integrated circuit (I2 C)
ieee library, 99
IEEE 754 Standard for floating-point representation, 83t
if, 152, 153, 155
ILA usage. See Integrated logic analyzer (ILA) IP core usage
initial, 51, 52
inout, 48, 61
input, 48
Input/output blocks, 9–10
Input/output pins, 9–10
Input/output port declaration, 58
Instantiation:

MicroBlaze MCS, 253, 254
Verilog, 58
Verilog testbench formation, 68
VHDL, 65



integer, 88
Integrated logic analyzer (ILA) IP core usage, 325–326
Intellectual property (IP)

adding existing IP, 70–75
IP management, 40–42
random access memory (RAM), 199–200, 201
read-only memory (ROM), 197–199
Vivado HLS, 361–366

Intelligent billboard, 358
Intelligent washing machine, 356–357
Inter-integrated circuit (I2 C):

application, 295, 300–307
connection diagram, 286, 288, 289f
data format, 286
serial data line (SDA)/serial clock line (SCL), 286
timing diagram, 289f
transmission and reception operations, 288–289
Verilog, 289–295, 301–303
VHDL, 295, 296–299, 304–307

Interconnect resources, 12
Internet of things, 322
Internet protocol (IP) address, 321
Involution property, 125, 127t
IP. See Intellectual property (IP)
IP address. See Internet protocol (IP) address
IP catalog window, 41f, 43f
IP management, 40–42

 J 
JK flip-flop, 189

characteristic table, 189t
circuit diagram, 189f
Verilog, 191, 192f
VHDL, 194

Joystick application, 146, 176

 K 
KCPSM6, 249
Keyboard keypad controller module, 335–336
Keypad decoder, 145–146, 176



Kilobyte (kB), 78

 L 
Latch, 179–187

D, 181, 181f, 181t
defined, 179
SR, 179–181
Verilog, 181–185
VHDL, 185–187

LCD driver module, 351–352
LDR. See Light-dependent resistor (LDR)
Leader, 271
Least significant bit (LSB), 78
library, 61, 65
Light-dependent resistor (LDR), 357
Logic analyzer, 325–326
Logic function, 117–118
Logic gates, 6–8, 118–123
Logic level one, 88, 99
Logic level zero, 88, 99
Look-up table (LUT), 11–12, 130, 136
LSB. See Least significant bit (LSB)
LUT. See Look-up table (LUT)

 M 
Master, 271
“Master Xilinx Design Constraint (XDC)” file, 38
Mealy model, 205, 207, 207f
Megabyte (MB), 78
Memory, 196, 196f. See also Random access memory (RAM); Read-only memory

(ROM)
MicroBlaze, 251–257

application (Basys3 board), 253–257
ELF file, 257, 258
instantiation template, 253, 254
IP block, 252–253

MicroBlaze MCS Tutorial, v2, 254
Microcontroller, 15–16. See also Soft-core microcontroller
Microelektronika, 358
Micron, 24



Modulus (%), 91
Modulus (mod), 102
Moore model, 205, 207, 207f
Most significant bit (MSB), 78
Moving wave application, 349–350
MSB. See Most significant bit (MSB)
Multiplexer, 10–11, 163–167
Multiplication, 86–87
Multiplication and division (shift register), 217–219

 N 
N-bit comparator, 151, 154
N-bit serial in/serial out shift register, 215
N-bit synchronous up/down counter, 222, 224
N input LUT, 12f
Naming:

data types (Verilog), 88–89
data types (VHDL), 100

NAND gate, 121, 122f
nededge, 204
Negative numbers, 80–81
negedge clr, 190
Net data type, 88
New project, 25–30
Non-touch paper towel dispenser, 357
Nonblocking assignment, 52, 53
NOR gate, 120, 120f
not, 49, 62
NOT gate, 7, 7f, 118–119
Number representations, 77–80

binary numbers, 77–79
hexadecimal numbers, 79–80
octal numbers, 79

 O 
Obstacle-avoiding tank, 356
Octal numbers, 79
Octal to binary conversion, 79
Odd parity, 168
One-bit addition, 147–150



One-bit comparator, 150–152, 154
One-input combinational circuit, 130–131
One’s complement representation, 80
Operators:

Verilog, 89–99
VHDL, 102–110

or, 49, 62
OR gate, 7–8, 7f, 8f, 119–121
Oscillator/clock:

Arty board, 24
Basys3 board, 20–21
PicoBlaze, 250
soft-core microcontroller, 248–249

out, 61
output, 48
Overflow, 84, 85

 P 
package, 65
Paper towel dispenser, 357
Parallel in/parallel out shift register, 215
Parallel in/serial out shift register, 215
Parameters, 89
Parity checker, 168–171
Parity generation, 167
Parity generator, 167–170
PCIe. See Peripheral component interconnect express (PCIe)
Pedometer, 360
Peripheral component interconnect express (PCIe), 14
Peripheral module connectors. See Pmod connectors
Peripherals, 249
Physical layer (PHY), 23
PIC24FJ128 chip, 315
PicoBlaze:

ALU, 250
application, 251
assembly language, 249
CPU, 249
functional block diagram, 250f
GPIO, 250



KCPSM6, 249
oscillator/clock module, 250
Scratchpad RAM, 250
Verilog, 250, 251
VHDL, 250–251, 252

Pixel clock, 308
Pixels, 308
Pmod connectors:

Arty board, 22
Basys3 board, 19, 19f

PMOD three-axis digital compass module, 295
PmodALS, 280
port, 61
Port list correspondence, 65
POS. See Product of sums (POS)
posedge, 204, 213
posedge clk, 190
Preparatory steps, 2
procedure, 65
process, 63
Product of sums (POS), 130
Program counter (PC), 248
“programming an FPGA,” 14
Project explorer window (Vivado HLS), 363f
Proximity sensor, 358, 359
Pulse width modulation (PWM), 246, 349
PWM. See Pulse width modulation (PWM)

 R 
radix, 89
RAM. See Random access memory (RAM)
Random access memory (RAM), 199–200, 201
Read-only memory (ROM), 196–199

block ROM, 199
distributed ROM, 199
IP blocks, 197–199
Verilog, 196–197, 199
VHDL, 197, 198

Reading analog values from internal temperature sensor, 327–328
Reading voltage level on alkaline battery, 328, 329



RealTerm, 264
Receive (RX) pin, 259
Reconfigurability, 15
Red, green, and blue (RGB) values, 308
References, 369–371
Refresh rate of display, 308
reg, 88
Register, 195, 195f
Relational operators:

Verilog, 151, 152t
VHDL, 154, 154t

Remainder (rem), 102
Remote controller–key pattern generator, 146
Replication operator, 98, 98f, 99f
RGB values. See Red, green, and blue (RGB) values
Rise delay, 54
rising_edge, 194
ROM. See Read-only memory (ROM)
RS-232 port, 264
RX pin. See Receive (RX) pin

 S 
Scale, body weight, 358
SCL. See Serial clock line (SCL)
Scratchpad RAM, 250
SDA. See Serial data line (SDA)
Sequential circuit, 205–246

asynchronous operation, 213
car park occupied slot counting system, 236–237
circuit diagram, 206f
common characteristic, 205
counter, 219–226
design, 226–227
digital clock, 240–243
digital safe system, 234–236
FPGA building blocks, 242
home alarm system, 227–234
Mealy model, 205, 207, 207f
Moore model, 205, 207, 207f
shift register, 213–219



state and output equations, 205–206
state diagram, 207–208
state representation (Verilog), 208–210
state representation (VHDL), 211–212
state table, 206, 207t
synchronous operation, 212–213
timing, 212–213
vending machine, 237–240

Sequential circuit analysis, 205–212
Serial clock line (SCL), 286
Serial communication protocols, 259
Serial data line (SDA), 286
Serial in/parallel out shift register, 215–217
Serial in/serial out shift register, 215, 215f, 217
Serial peripheral interface (SPI):

application, 280, 285–286, 287–288
connection diagram, 273, 273f
data format, 273
leader/follower (master/slave), 271
modes, 273, 274, 274t
receiver modules, 277–280, 283–285
synchronous communication protocol, 270
timing, 273, 274f
transmission and reception operations, 273
transmitter modules, 274–277, 280, 281–282
Verilog, 274–280
VHDL, 280, 281–285

Seven-input LUT, 12
Seven-segment display decoder, 145
Seven-segment display decoder module, 172, 173
Seven-segment display driver module, 229–232
Shared UART/JTAG USB port:

Arty board, 23
Basys3 board, 20

Shift register, 213–219
multiplication and division, 217–219
synthesization, 217f
types, 215
Verilog, 215
VHDL, 215, 216

Signal data type, 99, 100



signed, 99
Signed bit representation, 80
Simulating a project, 32–35
Simulation timings, 52–53
Simulation tools, 2
Single-ended pins, 9, 10
Slave, 271
SLICEL, 12
SLICEM, 12
Slices, 12
Snake game, 245–246
SoC. See System on chip (SoC)
Soft-core microcontroller:

ALU, 248
applications, 257
CPU, 248
FPGA building blocks, 257–258
GPIO, 249
memory, 248
MicroBlaze, 251–257
oscillator/clock, 248–249
peripherals, 249
PicoBlaze, 249–252

Solution configuration window (Vivado HLS), 363f
SOP. See Sum of products (SOP)
Spanish translation, 351–356
Spansion, 20
SPI. See Serial peripheral interface (SPI)
SPI communication timing diagram, 273, 274f
SR latch, 179–181

Verilog, 181–184
VHDL, 186–187

State, 205
State and output equations, 205–206
State diagram, 207–208
State table, 206, 207t
Status register, 248
std_logic, 99
std_logic_vector, 99
Stepper motor, 359
Stepper motor terminals, 340f



Strain gauge, 358
Structural modeling, 48–49
Subtraction, 85–86
Sum bit, 147, 148
Sum of products (SOP), 129
Supplement file, 65, 68
Supply voltage, 6
Switches to LEDs application, 42–44
Synchronous counter, 220, 220t, 221f
Synchronous frequency divider, 226, 227
Synchronous sequential circuit, 212–213
Synthesis completion window, 30f
Synthesization:

asynchronous up counter, 223f
car park occupied slot counting system, 142f
D latch, 185f
digital safe system, 140f
home alarm system, 138f
JK flip-flop, 192f
sequence detector in behavioral model, 210f
serial in/parallel out shift register, 217f
shift register, 217f
SR latch using behavioral model, 183f
SR latch using dataflow model, 183f
SR latch with control input, 184f
synchronous up counter, 222f
T flip-flop in behavioral model, 193f

Synthesizing a project, 30–32
System on chip (SoC), 258

 T 
T flip-flop, 189

characteristic table, 190t
Verilog, 191, 192, 193f
VHDL, 194, 195

Table tennis game, 359–360
Testbench formation:

Verilog, 56–60
VHDL, 65–70

Testbench module declaration, 57



Three-axis accelerometer sensor, 360
Three-bit even-parity checker, 170
Three-bit even-parity generator, 168, 168f, 168t, 169, 169f, 170
Three-input combinational circuit, 133–135
Three-to-eight decoder, 156, 158, 158f, 159
timescale, 58
Timing and delays in modeling:

Verilog, 52–55
VHDL, 64

Tracton, Phil, 251, 257
Traffic lights, 357–358
Transistor, 6, 6f
Translator, 351–356
Transmit (TX) pin, 259
Truth table, 118, 118t
Truth table-based implementation, 129–130
Turn-off delay, 54
Two-bit asynchronous up counter, 221f, 223f, 225
Two-bit synchronous up counter, 220, 220t, 221f, 222f, 223
Two-bit up counter, 219f
Two-input combinational circuit, 131–133
Two-to-four decoder, 156, 156f, 157, 159
Two-to-one multiplexer, 11, 11f

one-input combinational circuit, 130, 131f
three-input combination circuit, 134, 136f
two-input combinational circuit, 132

Two’s complement calculator, 144
Two’s complement representation, 80–81
TX pin. See Transmit (TX) pin

 U 
UART. See Universal asynchronous receiver/transmitter (UART)
Undefined logic level, 88, 99
Unit Under Test (UUT):

Verilog, 58, 59
VHDL, 68, 69

Universal asynchronous receiver/transmitter (UART):
applications, 264–270
data format, 259–260
data framing (eight-bit data), 260f



receiver module, 261, 263–264, 266–267
receiving data to Basys3 board from host PC, 270–272
reception operation, 260
RS-232 port, 264
timing, 260
transmission operation, 260
transmit (TX) pin/receive (RX) pin, 259
transmitter module, 261, 262, 264, 265
transmitting data from Basys3 board to host PC, 267–270
Verilog, 260–264, 268, 271
VHDL, 264–267, 269, 272

Universal serial bus (USB):
keyboard application, 315–321
Verilog, 315, 316, 318–319
VHDL, 315, 317, 320–321

unsigned, 99
Up-down counter, 244
UQ8.0 format, 84
UQ8.4 format, 84
Usage areas, 16
USB. See Universal serial bus (USB)
USB HID host, 315
use, 61, 65
Utilization report:

implementing the project, 37f
synthesizing the project, 31f

UUT. See Unit Under Test (UUT)

 V 
Variable data type, 88, 99, 100
Vector, 89, 90, 90f, 91f
Vector operations, 110, 111, 111f, 113
Vending machine, 237–240, 344, 345–346
Verilog, 1

adder, 148–149
adding existing IP, 70–75
adding two floating-point numbers, 329–331
AND gate, 122
arithmetic operators, 91–97
behavioral modeling, 50–52



binary to BCD converter module, 232
Boolean identity operations, 125
calculator, 332–334
car park occupied counting system, 141, 143, 170, 237, 342–344
case sensitive, 89
comparator, 151–153
concatenation operator, 98, 98f, 99f
conditional statements, 152–153
constants, 89
converting analog temperature value to digital form, 327
converting external voltage value to digital form, 329
counter, 220–222
D flip-flop, 190, 191f
D latch, 184–185
data types, 88–89
dataflow modeling, 49–50
decoder, 156–158
digital clock, 241–242, 243, 346–348
digital safe system, 139, 143, 235, 236, 338–339
edge detector, 245
encoder, 161–162
flip-flop, 190–193
frequency divider, 226
gate-level minimization, 128
hierarchical module representation, 55, 56, 57f
home alarm system, 138, 142, 173, 228, 234, 337
ILA usage, 326
inter-integrated circuit (I2 C), 289–295, 301–303
JK flip-flop, 191, 192f
keyboard keypad controller module, 335–336
latches, 181–185
LCD driver module, 351–352
MicroBlaze application, 254
MicroBlaze instantiation template, 253
module representation, 47–52
moving wave application, 350
multiplexer, 164–165
multiplication and division (shift register), 217, 218
NOT gate, 119
operators, 89–99
OR gate, 120



parameters, 89
parity generators and checkers, 168–170
PicoBlaze, 250, 251
PWM module, 349
random access memory (RAM), 200, 201
read-only memory (ROM), 196–197, 199
relational operators, 151, 152t
replication operator, 98, 98f, 99f
sequence detector, 208–210
serial peripheral interface (SPI), 274–280
seven-segment display driver module, 229–230
SR latch, 181–184
stepper motor driver module, 341–342
structural modeling, 48–49
synchronous sequential circuit, 213, 214
T flip-flop, 191, 192, 193f
testbench formation, 56–60
timing and delays in modeling, 52–55
translator, 353–355
UART, 260–264, 268, 271
universal serial bus (USB), 315, 316, 318–319
vectors, 89, 90, 90f, 91f
vending machine, 238–239, 240, 345–346
video graphics array (VGA), 308–310, 313
Vivado HLS, 366
XOR gate, 123

Verilog file, 28, 29
Verilog testbench file, 33–35, 56–60
VGA. See Video graphics array (VGA)
VHDL, 1

adder, 149–150
adding existing IP, 75
AND gate, 122
arithmetic operations, 102–109
arrays, 100–102
asynchronous sequential circuit, 213, 214
behavioral modeling, 63–64
binary to BCD converter module, 233
Boolean identity operations, 126
car park occupied counting system, 141
comparator, 154–156



concatenation operator, 105, 109, 110
conditional statements, 155–156
constants, 100
counter, 222–225
D flip-flop, 193–194
D latch, 187
data types, 99–102
dataflow modeling, 62, 63
decoder, 158–159
digital safe system, 140
encoder, 162–163
entity and architecture representations, 61–62
flip-flop, 193–195
frequency divider, 227
gate-level minimization, 128
hierarchical structural representation, 64–68
home alarm system, 138
inter-integrated circuit (I2 C), 295, 296–299, 304–307
JK flip-flop, 194
latches, 185–187
MicroBlaze instantiation template, 254
multiplexer, 166–167
multiplication and division (shift register), 218, 219
NOT gate, 119
operators, 102–110
OR gate, 121
parity generators and checkers, 170–171
PicoBlaze, 250–251, 252
read-only memory (ROM), 197, 198
relational operators, 154, 154t
sequence detector, 211–212
serial peripheral interface (SPI), 280, 281–285
seven-segment display driver module, 231
SR latch, 186–187
synchronous sequential circuit, 213
T flip-flop, 194, 195
testbench formation, 65–70
timing and delays in modeling, 64
UART, 264–267, 269, 272
universal serial bus (USB), 315, 317, 320–321
video graphics array (VGA), 310, 311–312, 313–314



Vivado HLS, 366
XOR gate, 123

VHDL file, 29, 30
VHDL testbench file, 35, 36, 65–70
Video graphics array (VGA):

application, 310, 312–314
front porch/back porch, 308
horizontal lines/frame, 308
pixels/pixel clock, 308
refresh rate of display, 308
RGB values, 308
Verilog, 308–310, 313
VHDL, 310, 311–312, 313–314
working principles, 308

Vivado design suite, 25–45
Arty board constraint file, 39–40
Basys3 board restraint file, 37–38
editions, 25
Hardware Manager, 39, 39f
hardware programming window, 40f
HL WebPACK edition, 25
implementation, 35–37
IP management, 40–42
new project, 25–30
programming the FPGA, 37–40
RTL schematic view of design, 32f
schematic view of design, 32f
simulating the project, 32–35
switches to LEDs application, 42–44
synthesizing the project, 30–32
utilization report, 31f, 37f
Verilog file, 28, 29
Verilog testbench file, 33–35
version, 25
VHDL file, 29, 30
VHDL testbench file, 35, 36
welcome screen, 26f

Vivado High-Level Synthesis (HLS), 361–367
create new project (generating an IP), 361–364
project explorer window, 363f
references, 361, 371



solution configuration window, 363f
using generated IP in Vivado, 364–366
Verilog, 366
VHDL, 366
welcome screen, 362f

Vivado HLS 2016.3, 361
Vivado HLS welcome screen, 362f
Vivado project main window, 28f
Vivado WebPACK, 25, 254, 361
Vivado welcome screen, 26f
Voltage divider circuit, 328
Voltage level, 6

 W 
Washing machine, 356–357
WebPACK, 25, 254, 361

 X 
x, 88
XADC block, 13–14
XADC block usage, 326–328
XADC Wizard, 327
XC7A35TCPG236-1, 9
XC7A35TICSG324-1L, 9
Xilinx Artix-7 XC7A35T FPGA, 9
Xilinx MicroBlaze microcontroller, 251–257. See also MicroBlaze
Xilinx PicoBlaze microcontroller, 249–251. See also PicoBlaze
Xilinx SDK new project window, 255f
Xilinx SDK project explorer window, 255f
Xilinx software development kit (SDK), 254
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