"f’f q» TEM DESIGN
FPGA

OG AND VHDL

CEM UNSALAN & BORA TAR

About the Authors
Cem Unsalan, Ph.D., established the DSP Laboratory at Yeditepe University in
Istanbul, Turkey, and is a microprocessor and digital signal processing professor there.

He is the coauthor of Programmable Microcontrollers with Applications: MSP430
LaunchPad with CCS and Grace.

Bora Tar, Ph.D., is a postdoctoral researcher at The Ohio State University. His main
research interests include analog and mixed-signal integrated-circuit design and energy
harvesting and sensor networking applications.

Digital System
Design with
FPGA

Implementation Using
Verilog and VHDL

Cem Unsalan
Yeditepe University

Bora Tar
The Qo State Liniversity

Mc
Graw

Education

New York Chicago San Francisco
Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto

Copyright © 2017 by McGraw-Hill Education. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database
or retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-25-983791-3
MHID: 1-25-983791-2.

The material in this eBook also appears in the print version of this title: ISBN: 978-1-
25-983790-6, MHID: 1-25-983790-4.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have
been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact a
representative, please visit the Contact Us page at www.mhprofessional.com.

Information contained in this work has been obtained by McGraw-Hill Education from
sources believed to be reliable. However, neither McGraw-Hill Education nor its
authors guarantee the accuracy or completeness of any information published herein,
and neither McGraw-Hill Education nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information. This work is published
with the understanding that McGraw-Hill Education and its authors are supplying
information but are not attempting to render engineering or other professional services.
If such services are required, the assistance of an appropriate professional should be
sought.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one copy
of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell,
publish or sublicense the work or any part of it without McGraw-Hill Education’s prior
consent. You may use the work for your own noncommercial and personal use; any
other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE

http://www.mhprofessional.com

ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION
THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-
Hill Education and its licensors do not warrant or guarantee that the functions
contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be
liable to you or anyone else for any inaccuracy, error or omission, regardless of cause,
in the work or for any damages resulting therefrom. McGraw-Hill Education has no
responsibility for the content of any information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or
cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

Contents

Preface
Acknowledgments

Introduction

1.1 Hardware Description Languages
1.2 FPGA Boards and Software Tools
1.3 Topics to Be Covered in the Book

Field-Programmable Gate Arrays
2.1 A Brief Introduction to Digital Electronics
2.1.1 Bit Values as Voltage Levels
2.1.2 Transistor as a Switch
2.1.3 Logic Gates from Switches
2.2 FPGA Building Blocks
2.2.1 Layout of the Xilinx Artix-7 XC7A35T FPGA
2.2.2 Input/Output Blocks
2.2.3 Configurable Logic Blocks
2.2.4 Interconnect Resources
2.2.5 Block RAM
2.2.6 DSP Slices
2.2.7 Clock Management
2.2.8 The XADC Block
2.2.9 High-Speed Serial I/O Transceivers
2.2.10 Peripheral Component Interconnect Express Interface
2.3 FPGA-Based Digital System Design Philosophy
2.3.1 How to Think While Using FPGAs
2.3.2 Advantages and Disadvantages of FPGAs
2.4 Usage Areas of FPGAs
2.5 Summary

2.6 Exercises

Basys3 and Arty FPGA Boards

3.1 The Basys3 Board
3.1.1 Powering the Board
3.1.2 Input/Output
3.1.3 Configuring the FPGA
3.1.4 Advanced Connectors
3.1.5 External Memory
3.1.6 Oscillator/Clock

3.2 The Arty Board
3.2.1 Powering the Board
3.2.2 Input/Output
3.2.3 Configuring the FPGA
3.2.4 Advanced Connectors
3.2.5 External Memory
3.2.6 Oscillator/Clock

3.3 Summary

3.4 Exercises

The Vivado Design Suite
4.1 Installation and the Welcome Screen
4.2 Creating a New Project
4.2.1 Adding a Verilog File
4.2.2 Adding a VHDL File
4.3 Synthesizing the Project
4.4 Simulating the Project
4.4.1 Adding a Verilog Testbench File
4.4.2 Adding a VHDL Testbench File
4.5 Implementing the Synthesized Project
4.6 Programming the FPGA
4.6.1 Adding the Basys3 Board Constraint File to the Project
4.6.2 Programming the FPGA on the Basys3 Board
4.6.3 Adding the Arty Board Constraint File to the Project
4.6.4 Programming the FPGA on the Arty Board
4.7 Vivado Design Suite IP Management
4.7.1 Existing IP Blocks in Vivado
4.7.2 Generating a Custom I[P
4.8 Application on the Vivado Design Suite
4.9 Summary
4.10 Exercises

S Introduction to Verilog and VHDL
5.1 Verilog Fundamentals
5.1.1 Module Representation
5.1.2 Timing and Delays in Modeling
5.1.3 Hierarchical Module Representation
5.2 Testbench Formation in Verilog
5.2.1 Structure of a Verilog Testbench File
5.2.2 Displaying Test Results
5.3 VHDL Fundamentals
5.3.1 Entity and Architecture Representations
5.3.2 Dataflow Modeling
5.3.3 Behavioral Modeling
5.3.4 Timing and Delays in Modeling
5.3.5 Hierarchical Structural Representation
5.4 Testbench Formation in VHDL
5.4.1 Structure of a VHDL Testbench File
5.4.2 Displaying Test Results
5.5 Adding an Existing IP to the Project
5.5.1 Adding an Existing IP in Verilog
5.5.2 Adding an Existing IP in VHDL
5.6 Summary
5.7 Exercises

6 Data Types and Operators
6.1 Number Representations
6.1.1 Binary Numbers
6.1.2 Octal Numbers
6.1.3 Hexadecimal Numbers
6.2 Negative Numbers
6.2.1 Signed Bit Representation
6.2.2 One’s Complement Representation
6.2.3 Two’s Complement Representation
6.3 Fixed- and Floating-Point Representations
6.3.1 Fixed-Point Representation
6.3.2 Floating-Point Representation
6.4 ASCII Code
6.5 Arithmetic Operations on Binary Numbers
6.5.1 Addition
6.5.2 Subtraction
6.5.3 Multiplication
6.5.4 Division

6.6 Data Types in Verilog
6.6.1 Net and Variable Data Types
6.6.2 Data Values
6.6.3 Naming a Net or Variable
6.6.4 Defining Constants and Parameters
6.6.5 Defining Vectors
6.7 Operators in Verilog
6.7.1 Arithmetic Operators
6.7.2 Concatenation and Replication Operators
6.8 Data Types in VHDL
6.8.1 Signal and Variable Data Types
6.8.2 Data Values
6.8.3 Naming a Signal or Variable
6.8.4 Defining Constants
6.8.5 Defining Arrays
6.9 Operators in VHDL
6.9.1 Arithmetic Operators
6.9.2 Concatenation Operator
6.10 Application on Data Types and Operators
6.11 FPGA Building Blocks Used in Data Types and Operators
6.11.1 Implementation Details of Vector Operations
6.11.2 Implementation Details of Arithmetic Operations
6.12 Summary
6.13 Exercises

7 Combinational Circuits

7.1 Basic Definitions
7.1.1 Binary Variable
7.1.2 Logic Function
7.1.3 Truth Table

7.2 Logic Gates
7.2.1 The NOT Gate
7.2.2 The OR Gate
7.2.3 The AND Gate
7.2.4 The XOR Gate

7.3 Combinational Circuit Analysis
7.3.1 Logic Function Formation between Input and Output
7.3.2 Boolean Algebra
7.3.3 Gate-Level Minimization

7.4 Combinational Circuit Implementation
7.4.1 Truth Table-Based Implementation

7.4.2 Implementing One-Input Combinational Circuits
7.4.3 Implementing Two-Input Combinational Circuits
7.4.4 Implementing Three-Input Combinational Circuits
7.5 Combinational Circuit Design
7.5.1 Analyzing the Problem to Be Solved
7.5.2 Selecting a Solution Method
7.5.3 Implementing the Solution
7.6 Sample Designs
7.6.1 Home Alarm System
7.6.2 Digital Safe System
7.6.3 Car Park Occupied Slot Counting System
7.7 Applications on Combinational Circuits
7.7.1 Implementing the Home Alarm System
7.7.2 Implementing the Digital Safe System
7.7.3 Implementing the Car Park Occupied Slot Counting System
7.8 FPGA Building Blocks Used in Combinational Circuits
7.9 Summary
7.10 Exercises

8 Combinational Circuit Blocks
8.1 Adders
8.1.1 Half Adder
8.1.2 Full Adder
8.1.3 Adders in Verilog
8.1.4 Adders in VHD
8.2 Comparators
8.2.1 Comparators in Verilog
8.2.2 Comparators in VHDL
8.3 Decoders
8.3.1 Decoders in Verilog
8.3.2 Decoders in VHDL
8.4 Encoders
8.4.1 Encoders in Verilog
8.4.2 Encoders in VHDL
8.5 Multiplexers
8.5.1 Multiplexers in Verilog
8.5.2 Multiplexers in VHDL
8.6 Parity Generators and Checkers
8.6.1 Parity Generators
8.6.2 Parity Checkers
8.6.3 Parity Generators and Checkers in Verilog

8.6.4 Parity Generators and Checkers in VHDL
8.7 Applications on Combinational Circuit Blocks

8.7.1 Improving the Calculator

8.7.2 Improving the Home Alarm System

8.7.3 Improving the Car Park Occupied Slot Counting System
8.8 FPGA Building Blocks Used in Combinational Circuit Blocks
8.9 Summary

8.10 Exercises

9 Data Storage Elements
9.1 Latches
9.1.1 SR Latch
9.1.2 D Latch
9.1.3 Latches in Verilog
9.1.4 Latches in VHDL
9.2 Flip-Flops
9.2.1 D Flip-Flop
9.2.2 JK Flip-Flop
9.2.3 T Flip-Flop
9.2.4 Flip-Flops in Verilog
9.2.5 Flip-Flops in VHDL
9.3 Register
9.4 Memory
9.5 Read-Only Memory
9.5.1 ROM in Verilog
9.5.2 ROM in VHDL
9.5.3 ROM Formation Using IP Blocks
9.6 Random Access Memory
9.7 Application on Data Storage Elements
9.8 FPGA Building Blocks Used in Data Storage Elements
9.9 Summary
9.10 Exercises

10 Sequential Circuits
10.1 Sequential Circuit Analysis

10.1.1 Definition of State
10.1.2 State and Output Equations
10.1.3 State Table
10.1.4 State Diagram
10.1.5 State Representation in Verilog
10.1.6 State Representation in VHDL

10.2 Timing in Sequential Circuits
10.2.1 Synchronous Operation
10.2.2 Asynchronous Operation
10.3 Shift Register as a Sequential Circuit
10.3.1 Shift Registers in Verilog
10.3.2 Shift Registers in VHDL
10.3.3 Multiplication and Division Using Shift Registers
10.4 Counter as a Sequential Circuit
10.4.1 Synchronous Counter
10.4.2 Asynchronous Counter
10.4.3 Counters in Verilog
10.4.4 Counters in VHDL
10.4.5 Frequency Division Using Counters
10.5 Sequential Circuit Design
10.6 Applications on Sequential Circuits
10.6.1 Improving the Home Alarm System
10.6.2 Improving the Digital Safe System
10.6.3 Improving the Car Park Occupied Slot Counting System
10.6.4 Vending Machine
10.6.5 Digital Clock
10.7 FPGA Building Blocks Used in Sequential Circuits
10.8 Summary
10.9 Exercises

11 Embedding a Soft-Core Microcontroller
11.1 Building Blocks of a Generic Microcontroller
11.1.1 Central Processing Unit
11.1.2 Arithmetic Logic Unit
11.1.3 Memory
11.1.4 Oscillator/Clock
11.1.5 General Purpose Input/Output
11.1.6 Other Blocks
11.2 Xilinx PicoBlaze Microcontroller
11.2.1 Functional Blocks of PicoBlaze
11.2.2 PicoBlaze in Verilog
11.2.3 PicoBlaze in VHDL
11.2.4 PicoBlaze Application on the Basys3 Board
11.3 Xilinx MicroBlaze Microcontroller
11.3.1 MicroBlaze as an IP Block in Vivado
11.3.2 MicroBlaze MCS Application on the Basys3 Board
11.4 Soft-Core Microcontroller Applications

11.5 FPGA Building Blocks Used in Soft-Core Microcontrollers
11.6 Summary
11.7 Exercises

12 Digital Interfacing

12.1 Universal Asynchronous Receiver/Transmitter
12.1.1 Working Principles of UART
12.1.2 UART in Verilog
12.1.3 UART in VHDL
12.1.4 UART Applications

12.2 Serial Peripheral Interface
12.2.1 Working Principles of SPI
12.2.2 SPI in Verilog
12.2.3 SPI in VHDL
12.2.4 SPI Application

12.3 Inter-Integrated Circuit

12.3.1 Working Principles of 12C
12.3.2 I2C in Verilog
12.3.3 IC in VHDL

12.3.412C Application
12.4 Video Graphics Array
12.4.1 Working Principles of VGA
12.4.2 VGA in Verilog
12.4.3 VGA in VHDL
12.4.4 VGA Application
12.5 Universal Serial Bus
12.5.1 USB-Receiving Module in Verilog
12.5.2 USB-Receiving Module in VHDL
12.5.3 USB Keyboard Application
12.6 Ethernet
12.7 FPGA Building Blocks Used in Digital Interfacing
12.8 Summary
12.9 Exercises

13 Advanced Applications
13.1 Integrated Logic Analyzer IP Core Usage
13.2 The XADC Block Usage
13.3 Adding Two Floating-Point Numbers
13.4 Calculator
13.5 Home Alarm System
13.6 Digital Safe System

13.7 Car Park Occupied Slot Counting System
13.8 Vending Machine
13.9 Digital Clock
13.10 Moving Wave via LEDs
13.11 Translator
13.12 Air Freshener Dispenser
13.13 Obstacle-Avoiding Tank
13.14 Intelligent Washing Machine
13.15 Non-Touch Paper Towel Dispenser
13.16 Traffic Lights
13.17 Car Parking Sensor System
13.18 Body Weight Scale
13.19 Intelligent Billboard
13.20 Elevator Cabin Control System
13.21 Digital Table Tennis Game
13.22 Customer Counter
13.23 Frequency Meter
13.24 Pedometer

14 What Is Next?
14.1 Vivado High-Level Synthesis Platform
14.2 Developing a Project in Vivado HLS to Generate [P
14.3 Using the Generated IP in Vivado
14.4 Summary
14.5 Exercises

References
Index

Preface

he world around us has become digital. Personal devices we use, houses we

live in, and cars we drive contain digital systems to simplify life for us.

Moreover, all these systems have started communicating with each other.

Since digital systems have become one of the most important tools of our

daily lives, besides engineers hobbyists have also started learning and using
them.

There are four ways to realize a digital system. The first one is using discrete
logicgates. This approach has become obsolete due to implementation issues. The
secon dway is using a microcontroller, which has very desirable properties such as
ease of programming and price. However, a microcontroller is static in terms of its
configuration. The third one is using an application-specific integrated circuit (ASIC).
For mass production, using ASICs is the solution. However, producing and testing an
ASIC chip needs time, which limits its modification after it is designed. The fourth
way is using a field-programmable gate array (FPGA). An FPGA can be configured
easily such that it can be tailored for a specific application.

Managing an FPGA and getting the best out of it are slightly harder than for a
microcontroller. However, if done appropriately the benefit will be enormous.
Therefore, this book aims to guide the reader to mastering FPGAs through digital
system design. While doing this, the main focus will be on implementation. Hence, the
reader will grasp theoretical digital design concepts via implementing real-life
applications. For this purpose, we pick two recent boards: Basys3 and Arty. Both
boards have a Xilinx Artix-7 FPGA on them. Baysy3 has most of the required
peripherals onboard. Hence, it is an excellent candidate for being used in digital design
education. Arty has Arduino-compatible pins. Since Arduino is widely accepted as a
microcontroller platform by hobbyists, it has a wide range of peripheral devices as
shields. Arty allows us to benefit from these. Moreover, the hobbyist can switch from
Arduino to Arty when a custom-made digital design is required. Throughout the book,
we will provide practical application examples mostly on the Basys3 board due to its
available resources onboard. However, these applications can be modified to work on
the Arty board as well. Besides, we will use simulation for almost all applications.
Hence, buying Basy3 or Arty is not a must to follow the book.

There are two popular hardware description languages (HDLs) used to implement a
digital system on an FPGA. These are Verilog and VHDL. Each HDL has its
advantages and disadvantages. Throughout the book, we will cover both HDLs in
parallel. This will allow readers to choose the HDL he or she likes. Note that this is not
a book on advanced Verilog or VHDL. We will focus only on important and necessary
topics. This way, we expect the beginner or hobbyist to benefit from the book.

Before diving into the fascinating world of digital systems, we would like to remind
the reader of one or two things. We did not intend to write a standard textbook for a
digital design course. Therefore, we did not cover theoretical concepts in depth.
Instead, we tried to explain all these concepts using real-life applications. This way,
we hope the reader will grasp digital design concepts better. Moreover, we do not
believe digital design is just a mandatory engineering course to be attended. It is a
talent every engineering student should gain for the job market. Besides, it is fun to
play with, as done by most hobbyists. So, let’s enjoy digital design with the FPGA
while mastering it.

Cem Unsalan
Bora Tar

Acknowledgments

e would like to thank Cathal McCabe from Xilinx for his guidance and
valuable comments. We would also like to thank Digilent Inc. for
allowing us to use Basys3 and Arty board images and sample projects.

Artix is a trademark of Xilinx Inc. Vivado Design Suite is a
trademark of Xilinx Inc. Basys3 is a trademark of Digilent Inc. Arty is
a trademark of Avnet and Digilent Inc.

CHAPTER 1

Introduction

he world around us has become digital. Hence, digital systems have become

the dominant part of our lives. Although most of us enjoy benefits offered by

digital systems, it is the duty of a candidate engineer to learn how to design

and analyze them. Besides, digital design concepts have become topics of

interest to a hobbyist and the maker community due to their power in
implementing systems. Therefore, we aim to introduce digital system design
techniques throughout this book.

Although there are several ways to implement a digital system, we will focus only
on implementation by field-programmable gate arrays (FPGAs) in this book. FPGA
can be taken as a generic platform such that a digital system can be implemented on it.
Recently, the price of a standard FPGA chip has become affordable. Moreover,
evaluation boards using such chips became widespread. Hence, a hobbyist or an
engineering student can implement his or her design on such a platform. The only
requirement left is how to do it. This book aims to fill this gap. Therefore, we will
guide the reader through the complex paths of FPGA usage for digital design. In doing
this, we aim for an introductory approach to form a background that may open up
ways to understand more advanced FPGA topics.

1.1 Hardware Description Languages

There are two popular hardware description languages (HDLs) to implement a digital
system design on an FPGA. These are Verilog and VHDL. In literature, it is clearly
emphasized that learning one HDL simplifies learning the other. Moreover, it is
indicated that learning both HDLs is important to become an expert in this discipline.
How-ever, most books on digital design pick either Verilog or VHDL alone and
explain the concepts using it. There is only a small group of books introducing both
HDLs together. We prefer this strategy in this book. However, we suggest the reader to

master one HDL first (possibly Verilog). Then, he or she can revisit the book to
understand the second HDL (possibly VHDL). This way, the same digital system
design concepts will be revisited twice. Hence, we expect repetition to make
perfection.

We should warn the reader at this step. This is not a comprehensive book on
Verilog or VHDL. Such a target is beyond our reach. However, we aim to introduce
digital system design techniques using HDLs. Therefore, we cover HDL concepts
falling in this area. In doing this, we provide practical applications. Afterward, the
reader can consult comprehensive books to master his or her knowledge on advanced
HDL topics.

1.2 FPGA Boards and Software Tools

Throughout the book, we will approach digital design concepts from a practical point
of view. Hence, we need appropriate hardware and software platforms. Fortunately,
there are several FPGA boards under different brands with various properties. In this
book, we pick two such boards: Basys3 and Arty. Both boards have a Xilinx Artix-7
FPGA on them. Basys3 has most digital peripherals on it. Therefore, it is suitable for
education purposes. On the other hand, Arty has Arduino compatible pins such that
Arduino shields can be used with it. Therefore, it is suitable for hobbyists and the
maker community. Throughout the book, we will provide practical application
examples mostly on the Basys3 board due to its available resources onboard. However,
these applications can be modified to work on the Arty board as well. Note that Basys3
and Arty boards have differences that are explored in detail in Chap. 3. In applications
where such differences matter, it is advisable to use the suitable board.

We will use simulation tools while explaining digital system design concepts.
There-fore, this book can also be of use without any FPGA board at hand. In the same
line, most concepts to be explained throughout the book do not depend on a specific
FPGA platform. Hence, a different FPGA platform can also be used to implement
them. However, there are some concepts that require a specific FPGA platform. For
these, minor modifications should be made by the reader for implementation. Bearing
this in mind, we should also mention the software to be used throughout the book. We
will use the Vivado design suite to implement the designed digital system on the
Xilinx Artix-7 FPGA. This design suite is supported by Xilinx. As of the writing of
this book, Vivado was available from Xilinx’s website free of charge.

1.3 Topics to Be Covered in the Book

An FPGA is itself a digital electronic system. Therefore, first we have to introduce the
basic digital electronics background. The second chapter of the book handles this.
However, digital system concepts will be explained briefly in this chapter. They will
be analyzed in detail in the following chapters. The third chapter of the book explores
properties of Basys3 and Arty boards. Here, the aim is getting familiar with physical
hardware to be used throughout the book. Related to this, the fourth chapter introduces

the Vivado design suite. Hence, the reader gets familiar with digital design
implementation issues. The first four chapters can be taken as preparatory steps for
digital system implementation. Starting from the fifth chapter, HDL concepts will be
the main focus of interest. Therefore, Chap. 5 introduces Verilog and VHDL. Then,
the sixth chapter deals with data types and operators on these. The reader should
remember these concepts since they will be extremely useful in the following chapters.
Chapters 5 and 6 can also be taken as preparatory steps for digital system
implementation on FPGA via HDL. Based on these, the seventh chapter focuses on
combinational circuits. Here, HDL will be used to implement basic combinational
circuits. The eighth chapter extends these concepts further such that more complex
digital systems can be constructed via HDL. The ninth chapter is on data storage
elements that are extensively used in constructing sequential circuits. As a follow-up,
the tenth chapter introduces sequential circuits. Here, standard sequential digital
systems such as counters and registers are evaluated. Therefore, Chaps. 7 to 10 can be
taken as the building blocks of a generic digital system such as a microcontroller. The
eleventh chapter introduces methods to embed a soft-core microcontroller on FPGA.
Chapter 12 focuses on digital interfacing tools. Here, HDL implementation details of
recent digital communication and interfacing methods are summarized. In all these
chapters, we provide relevant real-life applications. However, some applications may
cover more than one topic. Therefore, Chap. 13 provides such advanced applications
using FPGA. Finally, Chap. 14 provides the path to be followed to learn more
advanced topics on FPGA.

Sample Verilog and VHDL descriptions in this book and related testbench files are
available for the reader on a companion website,
www.mhprofessional.com/1259837904. For some real-life applications, we could not
include VHDL descriptions in the book due to page limitations. However, these are
available on the companion website, and we kindly ask the reader to download them.
Course slides for the reader and instructor and the solution manual for the instructor
are also available on this website.

http://www.mhprofessional.com/1259837904

CHAPTER 2

Field-Programmable Gate
Arrays

he aim of this book is explaining field-programmable gate array (FPGA)

usage for digital system implementation. Naturally, the first step in doing this

1s explaining what an FPGA is. An FPGA is itself a digital system composed

of basic building blocks. Therefore, some digital logic background is

necessary to understand the FPGA architecture. To do so, we adopt the
following strategy in this book. We start with the basics of digital electronics in this
chapter. Then, we explain the architecture of an FPGA using abstract building blocks.
As we overview the FPGA architecture in this chapter, we focus on the digital system
design and implementation philosophy using the FPGA next. Finally, we summarize
the usage areas of the FPGA to motivate the reader.

2.1 A Brief Introduction to Digital Electronics

There are two main approaches in explaining digital systems. The first one starts with
digital electronic representation and ends up with it. Here, all concepts are explained in
transistor level. Although this approach is reasonable, it is not suitable for us since the
reader does not need such a detailed explanation to use an FPGA. The second
approach is not mentioning any hardware representation and explaining all concepts
using binary representation and Boolean algebra. This approach is more refined and
allows a more theoretical background. Unfortunately, it does not invoke physical
device properties for implementation. Hence, all concepts will be in abstract level. We
believe that a third approach, mixing digital device representation with abstract
formalism, may be more helpful to the reader. Therefore, we briefly introduce digital
electronics in this chapter. In the following chapters, we will not represent digital

devices this way. However, we expect the reader to recall physical representations
mentioned in this chapter.

2.1.1 Bit Values as Voltage Levels

All digital devices are based on binary representation. In other words, everything in a
digital device 1s represented in terms of two logic levels as zero and one. At first, this
may seem unreasonable. How is it possible to represent data processing in all complex
digital devices (including computers, tablets, smart phones, etc.) in terms of zeros and
ones? Well, this is the case. Throughout the book, we will try to convince the reader
that all complex digital systems are composed of basic building blocks working on
binary logic levels. Moreover, we will show that most parts of these devices can be
implemented on an FPGA.

Next comes the second question. How is a binary digit (or a bit, in short)
represented in a digital device? The answer to this question leads to understanding
digital logic concepts in the physical level. In its basic sense, we have two voltage
levels to represent a binary digit (either as zero or one). Let’s call these ground (zero)
and supply voltage (VCC). These correspond to binary logic levels zero and one,
respectively. Therefore, whenever we talk about a bit value as zero or one, we actually
mean a voltage level as either ground or supply voltage.

2.1.2 Transistor as a Switch

A digital circuit can be constructed by transistors. A transistor is an active circuit
element used either as an amplifier or a digital switch. The latter property is extremely
important, since all binary logic operations can be performed this way. Instead of
dealing with physical properties of a transistor, we can simplify its characteristics as
follows.

Assume that there is a digital switch controlled by voltage Vin. When there is no
voltage applied to the switch, it acts as an open circuit. In other words, the switch does
not pass current on it as in Fig. 2.1a. Based on this setup, we can say that when Vin =
0, output voltage of the circuit will be Vout = 0. When the voltage V'CC 1s applied to
the switch, it acts as a short circuit. Therefore, the switch passes current on it as in Fig.
2.1b. Based on this setup, we can say that when Vin = VCC output voltage of the
circuit will be Vout = VCC. These two characteristics will lead to logic gates. Note that
R represents the resistor in Fig. 2.1 to limit current in the circuit.

Vin=0 Vin=Vee
Vcc .Y/. Vout Vcc Vout
; *v*
R R

(a) Open circuit (b) Closed circuit

FIGURE 2.1 Abstract representation of a transistor working as a switch.

2.1.3 Logic Gates from Switches

As mentioned in the previous section, by applying a suitable voltage level to the
switch, the current (hence output voltage) can be controlled. This leads to the
development of digital logic gates. Before exploring logic gates, let’s start with the
buffer.

2.1.3.1 The Buffer

The buffer can be taken as a logic gate which feeds its input to output without
changing it. Therefore, it does not perform any logical operation. However, the buffer
is extremely important in input/output ports of digital devices to minimize voltage
loading effects between different elements. In other words, the buffer acts as a
protective shield. We will see this usage extensively in the input/output ports of an
FPGA implementation in the following chapters. We can represent the buffer in
symbolic form as in Fig. 2.2. In this figure, in=out.

in out

FIGURE 2.2 The buffer symbol.

2.1.3.2 The NOT Gate

The NOT gate can be constructed by a switch with two input pins as in Fig. 2.3. In this
setup, when mput is equal to supply voltage (V;,, = V) the switch connects ground to

output. Hence, output voltage will be zero (V,,,; = 0). When input voltage equals to
ground (¥}, = 0), the switch connects supply voltage to output. Hence, V,,; = V.

Vin
«

Pl

FIGURE 2.3 The NOT gate formed by a switch.

Now, let’s represent VCC as logic level one and ground as logic level zero.
Furthermore, let’s call Vin as in and Vout as out. Based on these simplifications, we
can summarize working principle of the NOT gate as follows:

1 ifin=
out = ' z.n 0 (2.1)
0 ifin=1

As can be seen in Eq. (2.1), the NOT gate is a simple inverter in terms of binary logic.
When a logic level zero is applied to its input, output will be logic level one. When a
logic level one is applied to input of the NOT gate, output will be zero.

We can represent the NOT gate in symbolic form as in Fig. 2.4. In this figure, in
and out values are the ones in Eq. (2.1). Hence, the relation between them is satisfied

with this equation.
in Do out

FIGURE 2.4 The NOT gate symbol.

2.1.3.3 The OR Gate

The OR is the next logic gate to be considered. This gate can be constructed by two
switches connected in parallel as in Fig. 2.5. In this setup, when either the first or the
second input is equal to supply voltage (V;,,; = Voo or Vin = V), output equals to

supply voltage as well (V¢ = Vo). For all other cases, output voltage equals to
ground (V,,,; = 0).

Vinl

o

Vout
VCC | Vin2

X- R

FIGURE 2.5 The OR gate formed by two parallel switches.

As in NOT gate, we can simplify working principle of the OR gate. Let’s call Vinl
as inl, Vin2 as in2, and Vout as out. Based on these simplifications, we can summarize
working principle of the OR gate as follows:

(2.2)
0 otherwise

{ 1 if inl=1 or in2=1
out =
As can be seen in Eq. (2.2), the OR gate gives logic level one when any of the parallel
switches has input logic level one. Otherwise, output of the gate will be logic level
Zero.

We can represent the OR gate in symbolic form as in Fig. 2.6. In this figure, in1,
in2, and out values are the ones in Eq. (2.2). Hence, the relation between them is
satisfied with this equation.

inl
) out
in2 D

FIGURE 2.6 The OR gate symbol.

2.1.3.4 The AND Gate

The AND is the final logic gate to be considered in this chapter. This gate can be
constructed by two switches connected in series as in Fig. 2.7. In this setup, when both
inputs are equal to supply voltage (V;,,1 = Ve and V;,p = Vo), then output equals to

supply voltage as well (V,,,; = Vo). For all other cases, output voltage will be equal to
ground (V,,; = 0).
Vinl V\'n2
Vo — oo Jou
R

FIGURE 2.7 The AND gate formed by two series switches.

As in OR gate, we can simplify working principle of the AND gate. Let’s call Vi,
as inl, Vi as in2, and V,,; as out. Based on these simplifications, we can summarize
working principle of the AND gate as follows:

) (2.3)
0 otherwise

{ 1 if inl=1 and in2 =1
out =
As can be seen in Eq. (2.3), the AND gate gives logic level one when both serial
switches have input logic level one. Otherwise, the output of the gate will be logic
level zero.

We can represent the AND gate in symbolic form as in Fig. 2.8. In this figure, in1,
in2, and out values are the ones in Eq. (2.3). Hence, the relation between them is

satisfied with this equation.
inl —
— out
in2 —

We have introduced only basics of digital logic gates in this section. The aim is to

use these in explaining the FPGA architecture. We will analyze logic gates further in
Chap. 7.

FIGURE 2.8 The AND gate symbol.

2.2 FPGA Building Blocks

The architecture of the FPGA should be known by the reader to appreciate its working
principles. Although the reader will not directly interact with the architecture, this
knowledge will lead to better usage of the FPGA. Besides, design principles to be
applied in implementing a digital system on the FPGA will make sense. Therefore, we
will introduce basic building blocks of the FPGA (Xilinx Artix-7 XC7A35T) available
on the Basys3 and Arty boards in this section. These building blocks will be
represented in abstract form. Since we do not want to go into detail of digital
electronics, we believe this level is sufficient. We will start with layout of the Xilinx
Artix-7 XC7A35T FPGA next.

2.2.1 Layout of the Xilinx Artix-7 XC7A35T FPGA

Basys3 and Arty boards have their FPGA from the Xilinx Artix-7 XC7A35T family.
To be more specific, the FPGA on the Basys3 board is XC7A35TCPG236-1.
Similarly, the FPGA on the Arty board is XC7A35TICSG324-1L. These two FPGAs
share similar properties. Therefore, we will call them by their family name Xilinx
Artix-7 XC7A35T from this point on. If there is a difference in the FPGA, then we
specify it by the board name.

The Xilinx Artix-7 XC7A35T FPGA is basically composed of nine different
components. These are input/output blocks, configurable logic blocks (CLBs),
interconnect resources, block RAM, DSP slices, clock management block, XADC
block, high-speed serial I/O transceivers, and PCle interface. Layout of these blocks is
as in Fig. 2.9. Most of these blocks can also be observed via Vivado design suite to be
introduced in Chap. 4. Therefore, the reader will have chance to observe which of
them are used in his or her digital system design. Mentioned blocks (or their variants)
are almost standard in an FPGA. However, some of these may be missing or other
extra blocks may be available in different FPGA families. The reader should keep this
in mind while using another FPGA family.

FIGURE 2.9 Basic building blocks of the Artix-7 XC7A35T FPGA.

2.2.2 Input/Output Blocks

A digital device interacts with the outside world through its input and output pins. This
is also the case for the FPGA. Hence, data from the outside world is acquired through
input pins. Output is fed to the outside world using output pins. Moreover, these input
and output pins are located in input/output blocks within the FPGA.

The Artix-7 XC7A35T FPGA has input/output pins which can operate on standard
voltage levels from 1.2 to 3.3 V. The FPGA on the Basys3 board has 106 such
input/output pins. In a similar manner, the FPGA on the Arty board has 210 such pins.
These input/output pins can be used as input, output, and both. In the first case, data
will be taken from outside world through the pin. In the second case, voltage levels
will be fed to outside world through the pin. In the third case, the same pin can be used
for both input and output purposes.

Input/output pins are grouped into banks. Two pins in these banks are grouped as
positive (P) and negative (N) pairs. These can be used in two modes as single-ended
and differential. In the single-ended mode, input will be recognized as logic level zero

when input voltage is near ground. It will be recognized as logic level one when input
voltage is near VCC. In the differential mode, input will be recognized as logic level
zero when the voltage at pin P is lower than the voltage at pin N. When the voltage at
pin P is higher than the voltage at pin N, then input will be taken as logic level one.

Input/output pins can also be used in reference mode. Here, input will be taken as
logic level zero when input voltage is below reference voltage. When input voltage is
above reference voltage, it will be taken as logic level one.

Single-ended pins can also be used as output. When output is at logic level one, the
corresponding voltage value at the pin will be V'CC. When output is at logic level zero,
the corresponding voltage value at the pin will be ground.

Note that we are bound by input/output pins available on the Basys3 and Arty
boards. Therefore, please see Chap. 3 for the actual pin layout on these boards. For
more information on input/output blocks and their properties, please see [1].

2.2.3 Configurable Logic Blocks

Configurable logic blocks are the basic elements used to implement a digital system on
an FPGA [2]. At the heart of CLBs lies look-up tables (LUTs), flip-flops, and
multiplexers. We will try to explain working principles of these devices in generic
form. Therefore, they may not correspond to actual implementation on an FPGA. Let’s
start with the multiplexer.

2.2.3.1 Multiplexer

A multiplexer is, in fact, a selector with N select bits (pins), 2%V input pins, and one
output pin. One input pin at a time 1s connected to output. Hence, the value at that pin
will be seen at output. Via select pins, we decide on which input pin will be connected
to output.

We can form a two input multiplexer by digital logic gates in Sec. 2.1.3. Here, the
aim is to show basic layout of a multiplexer. We provide circuit diagram of the formed
multiplexer in Fig. 2.10. Since there are two inputs in this device, it is called a two-to-
one multiplexer.

sel

FIGURE 2.10 Circuit diagram of two-to-one multiplexer built from basic logic gates.

We can summarize working principles of the two-to-one multiplexer as follows:

out = (2.4)

inl if sel =0

in2 if sel =1
The select pin (labeled as se1 in Fig. 2.10) decides which input will be connected to
output.

The two-to-one multiplexer is the simplest device of its kind. Let’s consider a 32-

to-1 multiplexer. This device has five select pins to map 2° = 32 input pins. Assume
that select pins have value 10001. Then, 17th input will be connected to output.
Therefore, whatever the value of that pin is, it will be seen at output. We will explore
working principles of multiplexers in detail in Chap. 8.

2.2.3.2 Flip-Flop

Flip-flop is the basic memory element in FPGA. It can store one bit of data. Although
a flip-flop can be constructed by digital logic gates in Sec. 2.1.3, the layout will be
slightly complex. Therefore, we postpone this operation till Chap. 9. As for now, it is
important to remember that a flip-flop holds one bit of data which is fed to it. This data
will be stored in the flip-flop till it is changed by the user. Let’s represent the flip-flop
in abstract form as in Fig. 2.11. In this figure, bit value to be stored in the flip-flop is
set by in pin. The stored value in the flip-flop is obtained from out pin. Note that the
flip-flop can only save one bit as either logic level zero or one.

in —0/1— out

FIGURE 2.11 Abstract form of a flip-flop.

2.2.3.3 Look-Up Table

There is no detail on the actual implementation of a LUT in the Artix-7 XC7A35T
FPGA. Therefore, we will try to explain it using known digital devices. A LUT can be
thought of as a collection of flip-flops connected to input pins of a multiplexer. Select
pins of the multiplexer will be taken as address bits of the flip-flop to be reached. This
architecture can be used to implement any combinational logic function which has
total number of variables as select pins. We will see how this can be done in Chap. 7.
The important point here is that as the entry of flip-flops change, implemented logic
function will also change. This will lead to reconfigurability of the FPGA.

inl— 0/1

/

—— out

2 58 1.
multiplexer

in2V — 0/1

sell selN

FIGURE 2.12 Abstract form of an N input LUT.

A LUT will be called N input if it has 2 entries. Therefore, it needs %V select bits as
explained previously. We provide such an abstract LUT composed of flip-flops and a
multiplexer in Fig. 2.12. In the Artix-7 FPGA, two such five-input LUTs are
decoupled. Each couple can be used either to implement two five-input combinational
logic functions with the same input and different outputs or one six-input
combinational logic function. Two such six-input LUTs can be combined by another
multiplexer to form a seven-input LUT. Two such seven-input LUTs (hence four six-
input LUTs) can be combined by another multiplexer to form an eight-input LUT.
Hence, a combinational logic function with eight inputs can be formed by it.

2.2.3.4 Slices

LUTs, flip-flops, and multiplexers are grouped as slices in the CLB. Each slice has
four six-input LUTs, eight flip-flops, multiplexers, and other support circuitry. There
are two slice types as SLICEM and SLICEL. Both can be used to implement
combinational logic functions. SLICEM can also be used as a distributed memory
element. The Xilinx Artix-7 XC7A35T FPGA has a total of 5200 slices of which 3600
are SLICEL and 1600 are SLICEM. We will explore the usage of distributed memory
in a digital system in detail in Chap. 9. Each SLICEM can also be used as a 32-bit shift
register. We will explain working principles of this digital device in Chap. 10.

2.2.4 Interconnect Resources

What we mean by interconnect resources is a collection of wires and programmable
switches. These are responsible for connecting CLBs and other building blocks within
the FPGA. Interconnect is also called routing channels.

CLBs in the Artix-7 FPGA are placed in a grid structure which simplifies planning
of interconnection usage. Note that it is not necessary to know interconnect features to
use an FPGA at the beginner or intermediate level. The Vivado design suite to be
introduced in Chap. 4 1s responsible for efficient use of these resources.

2.2.5 Block RAM

Different from distributed memory elements composed of SLICEM blocks within
CLBs, the Artix-7 FPGA also has block RAM modules. These can be used to store
data. Moreover, they can form buffers, large LUTs, or shift registers. Usage of these
block RAMs will become mandatory when soft-core microcontrollers are considered
in Chap. 11.

A block RAM in the Artix-7 XC7A35T FPGA can be used to store one block of 36-
kbit or two blocks of 18-kbit data. There are 50 such blocks within the FPGA.
Therefore, the total block RAM capacity for the FPGA 1s 50 x 36 = 1800 kbits. We
will explore the usage of block RAM in a digital system in detail in Chap. 9.

Each 36-kbit block RAM can have 64-bit data width. Moreover, extra eight bits can
be used for single-bit error correction or double-bit error detection during data read
process. We will explain how error detection can be done in Chap. 8.

2.2.6 DSP Slices

There are dedicated blocks for arithmetic and logic operations in recent FPGAs. These
are called digital signal processing (DSP) slices. In the Artix-7 FPGA, these slices are
specifically called DSP48E1. There are a total of 90 such slices in the Artix-7
XC7A35T FPGA.

Each DSP slice can perform several arithmetic and logic operations. For our
purposes, following operations are the most important ones: multiplying two binary
numbers of length 25 and 18 bits; adding, subtracting, and accumulating two 48-bit
numbers; applying logic operations on two 48-bit numbers. These operations would
require complex algorithms for implementation unless a DSP slice was not available.
Therefore, DSP slices will be very effective in implementation. Related to this, we will
see how DSP slices can be used in arithmetic operations in Chap. 6. Vivado design
suite will be responsible to add these slices to our design whenever needed. For more
information on DSP48E1, please see [3].

2.2.7 Clock Management

Clock is basically a periodic square signal such that it stays at logic level zero and one
for certain time intervals. Most digital systems need a clock signal to operate in
synchronous manner. In such a setting, logic operations are done in the rising edge
(from logic zero to one transition) or falling edge (from logic one to zero transition) of
the clock signal. Hence, period of the clock signal indicates operation speed in the
digital system. We will see clock-based operations in Chap. 10.

The Artix-7 FPGA does not have internal clock-generating circuitry. Therefore, the
user should feed a clock signal to the FPGA. Some input/output pins are capable of
receiving such clock signals. As the clock signal is fed to the FPGA, it can be
processed by the clock management tile (CMT) and distributed through the FPGA.
Basys3 and Arty boards have external clock sources to feed the FPGA. We will see
their properties in Chap. 3.

The Artix-7 FPGA is divided into regions for clocking purposes. Each region
includes most or all FPGA building blocks. There are six such clock regions in the
Artix-7 XC7A35T FPGA. The user can observe these clock regions through the
Vivado design suite. More-over, Vivado is responsible to manage clock signals in the
FPGA. For more information on clock management, please see [4].

2.2.8 The XADC Block

An analog signal can be processed by a digital system after being sampled and
quantized. Module performing these operations is called the analog-to-digital
converter (ADC). Since recent advances in digital systems require processing analog
signals, the Artix-7 FPGA has a dedicated block called XADC.

The Artix-7 XC7A35T FPGA has one XADC block which consists of two ADC
modules. Each module can acquire one million samples per second (MSPS). Each
sample can be represented by 12 bits. Hence, a sample can be represented by a binary
number in the range 0 to 212 — 1. The two ADC modules in the XADC block can
process two different analog signals simultaneously.

Since we are using Basys3 and Arty boards, we are limited by analog input pins
provided by them. Please see Chap. 3 related to this issue. Moreover, for more
information on the XADC block and how it can be used in practical applications,
please see [5-7].

2.2.9 High-Speed Serial I/O Transceivers

High-speed serial I/O transceivers (HSSIOs) are specialized circuitry to transfer and
receive serial data. These transceivers are necessary to transfer data at speeds around
gigabits per second (Gb/s). The FPGA on the Basys3 board has two such transceiver
blocks which can transfer data up to speed of 3.75 Gb/s. Unfortunately, the FPGA on
the Arty board does not have such a block. For more information on transceiver
blocks, please see [8].

2.2.10 Peripheral Component Interconnect Express Interface

Peripheral component interconnect express (PCle) is a high-speed serial connection
bus standard. The Artix-7 XC7A35T FPGA has one integrated block for PCle
interfacing. For more information on PCle interfacing, please see [9].

2.3 FPGA-Based Digital System Design Philosophy

A digital system may be implemented by using different design strategies and
resources. This section deals with digital system design philosophy using FPGAs. In
other words, the aim of this section is emphasizing the usage of FPGAs in an effective
manner.

2.3.1 How to Think While Using FPGAs

The first important point to remember while using an FPGA for digital system design
is that the user is free to choose the design methodology. In other words, the same
digital system can be implemented in more than one way. Therefore, it is the
designer’s responsibility to pick the optimal or best design style for his or her needs.

The second important point to remember while using FPGAs is that in the
beginning there is no predefined block to do the job. The designer has a powerful and
unconstrained resource (within limits) to construct required design blocks. Therefore, a
strong digital logic knowledge is required to design efficient and optimized FPGA
designs. Vendors are also providing intellectual property (IP) blocks to simplify the
FPGA usage. These are valuable sources used extensively in practical applications. We
will introduce how to use them in Chap. 4.

The third important point to remember while using FPGAs is in terms of their
programming. There are hardware description languages (HDLs) for this purpose. We
will introduce two popular HDLs in Chap. 5. Although we can use the phrase
“programming an FPGA” in some parts of the book, the user should always bear in
mind that we are implementing a specific digital system. Therefore, a C like sequential
code will not be prepared in HDL. On the contrary, design philosophy should be based
on block-based digital system implementation. These blocks should be implemented in
parallel whenever possible to get the best performance from an FPGA.

The fourth important point to remember while using an FPGA 1is its
reconfigurability. Since an FPGA can be reconfigured after initial design has been
done, this property can be used whenever needed. Therefore, the user can benefit from
the reconfigurability property of the FPGA to improve and modify the design even
after it has been finalized and embedded on the device.

2.3.2 Advantages and Disadvantages of FPGAs

We can categorize digital system design and implementation resources into four
groups as discrete element, application-specific integrated circuit (ASIC), the FPGA,
and micro-controller based. The standard question arises. When should we use an
FPGA instead of other design options? Or, what are the advantages and disadvantages
of using the FPGA over other design options? Let’s try to answer this question by
comparing the FPGA with other design options.

A digital system can be implemented using discrete elements. This has been the
design strategy for a long time. The advantage here is that the designer only uses
needed logic gates or discrete elements. Moreover, using these does not require any
expertise besides basic logic knowledge. On the other hand, using discrete elements in
logic design is not feasible in most cases. First, physical space needed to implement
them may be limited. Second, wire connections between discrete elements may
become prohibitive in implementation. Third, the design will be static once
implemented. The FPGA provides a neat solution to these problems. Size of an FPGA
chip is fixed independent of logic elements inside it. Moreover, interconnection of
these elements is implicit in the FPGA. Therefore, wiring of logic elements is not an
issue. The most important advantage of the FPGA comes when design needs to be

reconfigured. Here, using the FPGA simplifies life for the designer. The design can be
reconfigured by altering the corresponding HDL section. The only issue here is the
need of expertise in HDL.

ASICs provide a good alternative to discrete implementation. They overcome the
space and wiring problems. When mass-produced, an ASIC chip becomes cheaper.
More-over, the ASIC chip will be specific to the design. Therefore, it will only use the
required number of digital logic elements. Note that an FPGA chip can also be taken
as ASIC. In this section, we specifically call a digital circuit as ASIC which 1s
designed for a specific purpose. Therefore, once designed the topology will be fixed.
This is the drawback of ASIC design. The biggest problem in using ASIC is its
fabrication time. FPGAs provide a clear advantage here. In fact, most ASIC designs
are prototyped and verified on the FPGA before mass production for this purpose.

A microcontroller can be used instead of FPGA in most cases. They share similar
characteristics such as reconfigurability, compactness, and cheapness. The first
difference between them is that the microcontroller has a unique set of commands
(instruction set) to perform an action. Therefore, the user should adjust his or her
design accordingly. This is not an issue to an FPGA user. As we have mentioned
previously, the FPGA can be taken as a free design environment within limits.
Therefore, an FPGA is more flexible compared to the microcontroller. However, we
should admit that programming a microcontroller is fairly easy compared to managing
an FPGA. The second difference between the microcontroller and FPGA is power
consumption in which the FPGA has a clear advantage. The third difference between
the microcontroller and FPGA is in the inherent parallel implementation capacity of
the FPGA. A microcontroller is a sequential device such that commands are performed
step by step. However, the FPGA can be reconfigured as a parallel device. Hence,
desired operations can be performed faster in orders of magnitude in the FPGA. Note
that a microcontroller can be implemented using an FPGA. We will introduce this
concept in Chap. 11.

2.4 Usage Areas of FPGAs

FPGAs can be used in almost all areas where digital systems are needed. To motivate
the reader and show why learning digital design using the FPGA is important, we list
possible usage areas as follows: aerospace, automotive, broadcast, consumer
electronics, defense, high-performance computing, industrial applications, medical
applications, and wireless and wired communications. These are not the only usage
areas of FPGAs. New applications may emerge in time.

2.5 Summary

An FPGA is a good alternative to implement a digital system. However, the reader
should understand what an FPGA is before using it in his or her design. This chapter
introduced key FPGA concepts for this purpose. Therefore, we started with digital
electronics and explored how basic digital logic gates can be constructed from these.

Then, we evaluated basic building blocks of an FPGA. Here, we focused on CLB since
it 1s the basic building block used in digital system implementation on an FPGA.
Finally, we considered the design philosophy to be followed while using an FPGA. We
believe these topics will be of great use in understanding concepts to be introduced in
the following chapters. Therefore, we suggest the reader to grasp them fully before
leaving this chapter.

2.6 Exercises

2.1

2.2

23

2.4

2.5

2.6

Besides the OR and AND logic gates, there are also NOR (NOT-OR) and NAND
(NOT-AND) gates. Use basic logic gate structures in Figs. 2.3, 2.5, and 2.7 to
construct them.

There is also an XOR gate used in some applications. Construct this gate using
OR and AND logic gates.

The FPGA is not the only device for digital system implementation. Make
research for similar devices developed in the past.

The Artix-7 FPGA is the family we consider in this book. However, Xilinx has
other FPGA families as well. Pick two such families and compare their
properties with the Artix-7 FPGA.

Xilinx is not the only FPGA producer in the market. Make research on other
producers.

a. Comment on market share of the FPGA developers.

b. Compare general properties of developed FPGAs by different producers, if
possible.

What is the main difference between a microcontroller and an FPGA?

CHAPTER 3

Basys3 and Arty FPGA Boards

hroughout the book, we will use two different field-programmable gate array

(FPGA) boards: Basys3 and Arty. Both boards have the Xilinx Artix-7 FPGA

on them. Although these boards have similar characteristics, Basys3 is more

suitable for education purposes since it has several input/output connections.

On the other hand, Arty is primarily developed for soft-core microcontrollers
to be introduced in Chap. 11. Moreover, it has Arduino compatible pins. Hence,
shields available for Arduino can be used with Arty.

In this chapter, we will briefly explore the properties of Basys3 and Arty boards.
We will also analyze peripheral devices and connectors on each board besides the
FPGA. While doing this, we will not go into the details of the connection diagrams and
pin correspondence between a device (or connector) and an FPGA. Since this
correspondence will be done by the Vivado design suite (to be introduced in Chap. 4),
it is not necessary to add extra complexity at this level. Note that we have introduced
general properties of FPGAs on the Basys3 and Arty boards in Chap. 2. Explanations
in this chapter will be closely related to information given there.

3.1 The Basys3 Board

The first board to be considered in this chapter is Basys3 developed by Digilent Inc.
[10]. As mentioned previously, this board is suitable for education purposes since it
has several input/output connections. Let’s start with the board layout in Fig. 3.1. In
this figure, each important block 1s labeled by a number. Explanation of each label is
given in Table 3.1. Since the SPI flash, power supply regulator, and the
oscillator/clock circuitry are not visible in Fig. 3.1, they are labeled B1, B2, and B3 in
the table.

FIGURE 3.1 The Basys3 board layout.

Label Explanation

1 Power LED

2 Three Pmod connectors

3 Analog signal Pmod connector
4 Four-digit seven-segment display
5] Sixteen slide switches

6 Sixteen LEDs

7 Five push buttons

8 FPGA programming done LED

9 FPGA configuration reset button
10 Programming mode jumper

11 USB host connector

12 VGA connector

13 Shared UART/JTAG USB port
14 External power connector

15 Power switch

16 Power source select jumper

1.4 Artix-7 FPGA

18 USB-UART bridge

19 Auxiliary function microcontroller
Bl SPI flash

B2 Power supply regulator

B3 Oscillator/clock

TABLE 3.1 Explanation of Labels in Fig. 3.1

Besides the Artix-7 FPGA (label 17), blocks in Table 3.1 can be categorized into
six groups. These are powering the board, input/output, configuring the FPGA,
advanced connectors, external memory, and oscillator/clock. Next, we explain each
category in detail.

3.1.1 Powering the Board

The Basys3 board can be powered either from the USB port (label 13) or from an
external power supply which should be connected to the external power connector
(label 14). If an external power supply is used, it should be able to deliver a DC
voltage between 4.5 and 5.5 V with at least 1-A current. The power source select
jumper (label 16) can be used to select the power source to be fed to the board. Input
voltage (either from the USB or external source) is regulated by power supply

regulators (label B2). The power switch (label 15) turns on and off the board. The
power LED (label 1) indicates that the board 1s turned on and operating normally.
Connection diagram between all these elements can be found in [10].

3.1.2 Input/Output

There are several digital input/output connections on the Basys3 board. These can be
summarized as peripheral module (Pmod) connectors, four-digit seven-segment
display, 16 slide switches, 16 LEDs, and five push buttons. Let’s explain these in
detail.

There are three Pmod connectors (label 2) for digital input/output. Pin layout of a
Pmod connector is as in Fig. 3.2. As can be seen in this figure, there are 2 x 10 female
pins in the connector. Among these, 2 % 1 pins are for ground and 2 x 1 pins are for
VCC supply voltage. The FPGA receives and transmits digital data through the
remaining Pmod pins. There is also an analog signal Pmod connector (label 3) on the
Basys3 board. Pins in this connector are connected to analog input pins of the FPGA.
The XADC block in the FPGA (introduced in Sec. 2.2.8) receives analog signals
through these pins. Pin assignments between four Pmod connector pins and the Artix-7
FPGA on the Basys3 board can be found in [10].

Vec | GND |Pin4 | Pin3|Pin2|Pinl

Vcec | GND [Pin 10| Pin 9 | Pin 8 | Pin 7

[-]

FIGURE 3.2 The Basys3 board Pmod connector pin layout.

There 1s a four-digit seven-segment display (label 4) on the Basys3 board. Each
digit in this display is composed of seven segments arranged in a squarish 8 form.
These segments are connected in common anode form [10]. Hence, when a logic level
zero 1s applied to a segment, it turns on. Pin connection between seven-segment
display and the FPGA can be found in [10].

There are 16 slide switches (label 5) on the Basys3 board. These are connected to
the FPGA through series resistors. These switches can be used as input to the FPGA.
Depending on the state of a switch, it can either generate constant input of logic level
zero or one to the FPGA. Pin connection between these switches and the FPGA can be
found in [10].

There are 16 LEDs (label 6) on the Basys3 board. These are connected to the FPGA
through resistors. These LEDs can be used as output from the FPGA. When a logic
level one is applied to an LED, it turns on. When a logic level zero is applied to an
LED, it turns off. Pin connection between these 16 LEDs and the FPGA can be found
in [10].

There are five push buttons (label 7) on the Basys3 board. These can be used as

input to the FPGA. Push buttons are arranged in active high setup such that when
pressed they provide logic level one. At rest, they provide logic level zero. Pin
connection between these push buttons and the FPGA can be found in [10].

To remind again, we will use the Vivado design suite to interact with all these
input/output connections in the following chapters. Therefore, it is not mandatory to
learn which FPGA pin is connected to which Basys3 block. We expect this abstraction
to simplify design steps.

3.1.3 Configuring the FPGA

The FPGA should be configured (programmed) to operate. The configuration file will
be generated by Vivado design suite to be explained in Chap. 4. The generated file can
be fed to the FPGA in three ways. The first method is using the shared UART/JITAG
USB port (label 13). We will use this method while configuring the FPGA through
Vivado. The second method is using the SPI flash (label 18). To do so, the
configuration file should have been stored in flash beforehand. The third method is
storing the configuration file in a USB stick and using it through the USB host
connector (label 11). By the help of an auxiliary function microcontroller,
programming can be done. On Basys3, there is a PIC24FJ128 microcontroller (label
19) for this purpose [11]. The programming mode jumper (label 10) can be used to set
the FPGA programming method. More information on the second and third methods
can be found in [10]. When the FPGA is successfully configured by any of the
mentioned three methods, the programming done LED (label 8) turns on. Note that the
“programming done” signal is fed by the FPGA. The FPGA configuration reset button
(label 9) can be used to reset the FPGA configuration.

3.1.4 Advanced Connectors

There are advanced connectors on the Basys3 board. These are the USB host
connector, VGA connector, and shared UART/JTAG USB port. Let’s briefly explain
them.

The USB host connector (label 11) can be used to transfer the configuration file to
the FPGA. The connector also has USB human interface device (HID) capability.
These two properties can be performed through the PIC24FJ128 microcontroller (label
19) connected to the connector. We will use the USB HID capability to connect
keyboard and mouse to the Basys3 board in Chap. 12. More information on the usage
of the USB host connector and PIC microcontroller can be found in [10].

There 1s a VGA connector (label 12) on the Basys3 board. This connector allows
12-bit data transfer (four bits for red, four bits for blue, four bits for green pins) to a
VGA display device. More information on VGA can be found in [10]. We will use the
VGA connector to display an image on a monitor in Chap. 12.

The shared UART/JITAG USB port (label 13) is mainly used to configure
(program) the FPGA via Vivado. We will explore how to do this in Chap. 4. The
shared UART/JITAG USB port also has a USB-UART bridge (label 18) connected to it
[12]. Therefore, it can also be used as a UART medium to communicate the FPGA

with PC or another device. We will explore how to use this property in Chap. 12. More
information on the usage of shared UART/JTAG USB port and USB-UART bridge
can be found in [10].

3.1.5 External Memory

The Basys3 board has a 32-Mbit non-volatile serial flash (label B1) as external
memory developed by Spansion [13]. This device is connected to Artix-7 FPGA
through a dedicated SPI bus. Pin connections between the FPGA and SPI flash can be
found in [10]. The FPGA configuration files can be saved in this flash memory.
Moreover, the FPGA can be set to read these files automatically at start up. The Artix-
7 FPGA configuration file needs over 16 Mbits of memory space. Therefore, the
remaining memory space (approximately 16 Mbits) will be available to the user.

3.1.6 Oscillator/Clock

The Basys3 board has an onboard oscillator/clock circuitry (label B3) working at 100
MHz. The clock signal generated by the oscillator is fed to the Artix-7 FPGA through
its pins. Therefore, this onboard oscillator allows user to generate a required clock
(within limits) in the design.

3.2 The Arty Board

The second board to be considered in this chapter is Arty. This evaluation kit is jointly
developed by Digilent Inc and Avnet [14]. As mentioned previously, this board is
more suitable for soft-core microcontrollers to be introduced in Chap. 11. Let’s start
with the board layout given in Fig. 3.3. In this figure, each important block is labeled
by a number. Explanation of each label is given in Table 3.2. Since the oscillator/clock
circuitry is not visible in Fig. 3.3, it is labeled as B1 in the table.

Label Explanation

1 FPGA programming done LED

2 Shared UART/JTAG USB port

3 Ethernet connector

4 Power source select jumper

5 Power jack

6 Power LED

7 Eight LEDs

8 Four slide switches

9 Four push buttons

10 Arduino/chipKIT shield connectors
11 SPI header (Arduino/chipKIT compatible)
12 chipKIT processor reset jumper
13 Programming mode jumper

14 chipKIT processor reset button
15 Four Pmod connectors

16 FPGA configuration reset button
1. SPI flash

18 Artix-7 FPGA

19 DDR3 memory

20 Power supply regulator

21 USB-UART bridge

22 Ethernet transceiver

B1 Oscillator/clock

TABLE 3.2 Explanation of Labels in Fig. 3.3

16 15| (17 15 15 @

- 14
1

- 13
Bl 10

{BE60EE BE5BBBEE
ADIGILENT' w12

. 11
19
¥Avnsr

EEE! gEgesBE
J5

——[10

FIGURE 3.3 The Arty board layout.

Besides the Artix-7 FPGA (label 18), blocks in Table 3.2 can be categorized into
six groups. These are powering the board, input/output, configuring the FPGA,
advanced connectors, external memory, and oscillator/clock. Next, we explain each
category in detail.

3.2.1 Powering the Board

The Arty board can be powered in three ways as using the shared UART/JTAG USB
port (label 2), external power jack, and Arduino/chipKIT connectors (label 10).
Throughout the book, we will assume that the shared UART/JTAG USB port is used
for powering the board. For external power usage, please see [14]. The power source
select jumper (label 4) can be used to select the power source to be fed to the board.
Input voltage (either from the USB or external source) is regulated by the power
supply regulator (label 20). The power LED (label 6) indicates that the board is turned

on and operating normally. Connection diagram between all these elements can be
found in [14].

3.2.2 Input/Output

There are several digital input/output connections on the Arty board. These can be
summarized as four Pmod connectors, Arduino/chipKIT shield connector, four tricolor
LEDs, four LEDs, four slide switches, four push buttons, and chipKIT processor reset
button and jumper. Let’s explain these in detail.

There are four Pmod connectors (label 15) for digital input/output. Pin layout of a
Pmod connector is the same as in Fig. 3.2. In other words, Pmod connectors used in
Arty are the same as in Basys3. However, Pmod connectors in the Arty board are
grouped into two categories as standard (labeled as JA and JD on the board) and high
speed (labeled as JB and JC on the board). Standard Pmod connectors are connected to
the FPGA via series resistors which prevent accidental short circuit. High-speed
connectors do not have such resistors. Hence, they should be used with care. More
information on Pmod connectors can be found in [14].

Different from Basys3, Arty has Arduino/chipKIT shield connectors (label 10).
These allow user to connect available Arduino and chipKIT shields. More information
on Arduino/chipKIT shield connectors can be found in [14].

There are four tricolor LEDs (labeled as LD0-LD3 on the board) and four standard
LEDs (labeled as LD4-LD7 on the board). All of these LEDs are indicated by label 4
in Fig. 3.3. Four standard LEDs operate as the ones on Basys3 board. Each tricolor
LED is composed of three LEDs with red, green, and blue colors. Each internal LED
can be turned on as if using the standard LED. However, Digilent suggests using pulse
width modulation (PWM) signals to use tricolor LEDs. More information on standard
and tricolor LEDs on the Arty board can be found in [14].

There are four slide switches (label 8) and four push buttons (label 9) on the Arty
board. They have the same characteristics as in the Basys3 board. Therefore, we direct
the reader to previous section. More information on slide switches and push buttons on
the Arty board can be found in [14].

The chipKIT processor reset jumper (label 12) and button (label 14) are available to
be used in soft-core microcontroller designs. Specifically, they can be used to reset the
designed microcontroller. Hence, these can be of use while designing a soft-core
microcontroller in Chap. 11.

To remind again, we will use the Vivado design suite to interact with all these
input/output connections in the following chapters. Therefore, it is not mandatory to
learn which FPGA pin is connected to which Arty block. We expect this abstraction to
simplify design steps.

3.2.3 Configuring the FPGA

Configuring the FPGA on the Arty board is similar to Basys3. Therefore, we only
explain the labels in Fig. 3.3 related to the FPGA configuration. The programming
mode jumper (label 13) can be used to set the FPGA programming method. When the
FPGA is successfully configured, the “programming done” LED (label 1) turns on.
Note that the “programming done” signal is fed by the FPGA. The FPGA
configuration reset button (label 16) can be used to reset the FPGA configuration.
More information on these can be found in [14].

3.2.4 Advanced Connectors

There are advanced connectors on the Arty board. These are the shared UART/JTAG
USB port, ethernet connector, and Arduino/chipKIT compatible SPI header. Let’s
briefly explain them.

The shared UART/JTAG USB port (label 2) is mainly used to configure (program)
the FPGA. We will explore how to do this in Chap. 4. The shared UART/JTAG USB
port also has a USB-UART bridge (label 21) connected to it [12]. Therefore, it can
also be used as a UART medium to communicate the FPGA with PC or another
device. We will explore how to use this property in Chap. 12. More information on the
usage of shared UART/JTAG USB port and USB-UART bridge can be found in [14].

The Arty board has an ethernet connector (label 3) and transceiver chip (label 22)
by Texas Instruments [15]. The transceiver chip is also called physical layer (PHY).
Through the connector and transceiver, ethernet communication can be done. We will
explore how to do this in Chap. 12. More information on the ethernet connector and
transceiver chip can be found in [14].

Arty also has an Arduino/chipKIT compatible SPI header (label 11). This header
can be used in connection with Arduino/chipKIT compatible shields. More
information on the SPI header can be found in [14].

3.2.5 External Memory

Arty has two different external memory blocks. The first one is a 128-Mbit non-
volatile serial flash memory (label 17) developed by Micron [16]. This device is
connected to the Artix-7 FPGA through a dedicated SPI bus. Pin connections between
the FPGA and SPI flash can be found in [14]. The FPGA configuration files can be
saved in this flash memory. Moreover, the FPGA can be set to read these files
automatically at start-up. The Artix-7 FPGA configuration file needs over 16 Mbits of
memory space. Therefore, remaining memory space (approximately 14 MB) will be
available to the user.

The second memory block on the Arty board is a 256-MB DDR3L SDRAM (label
19) developed by Micron [17]. More information on the DDR3 SDRAM and its
connection to the Artix-7 FPGA can be found in [14].

3.2.6 Oscillator/Clock

The Arty board has an onboard oscillator/clock circuitry (label B1) working at 100
MHz. Clock signal generated by the oscillator is fed to the Artix-7 FPGA through its
pins. Therefore, this onboard oscillator allows user to generate a required clock (within
limits) in the design.

3.3 Summary

Topics introduced in this chapter are specific to the FPGA boards to be used
throughout the book. Therefore, they will be needed when a real-life application is

developed. We did not provide detailed connection diagrams in this chapter. Instead,
we directed the reader to related references. However, the reader should bear in mind
that connection between the FPGA and peripherals on the Basys3 and Arty boards will
be done via the Vivado design suite. Therefore, it is not mandatory to memorize them.
Finally, the reader can consult information in this chapter while exploring the
following chapters of the book.

3.4 Exercises

3.1 We have two boards Basys3 and Arty. Compare properties of peripherals on
these boards.

3.2 When should we choose the Basys3 board? Why?
3.3 When should we choose the Arty board? Why?

CHAPTER 4

The Vivado Design Suite

ivado design suite is the software environment we will be using throughout

the book. Therefore, we will explain its properties starting from installation

step. Then, we will explain how to create a new project containing either

the Verilog or VHDL description of a simple digital system. Afterward, we

will introduce tools necessary to synthesize and implement the HDL

description. While doing this, we will emphasize how the FPGA building
blocks introduced in Sec. 2.2 can be observed in Vivado. This way, we aim to show
the reader to analyze his or her HDL design in detail. Then, we will explain how to
program the FPGA on the Basys3 and Arty boards through Vivado. Finally, we will
introduce [P management methods in Vivado.

4.1 Installation and the Welcome Screen

The Vivado design suite has several editions with different properties. For our
purposes, the free HL WebPACK edition is sufficient. Installing this edition is
straightforward. However, the reader should first create a Xilinx account for this
purpose. Then, Vivado can be installed following the commands on the screen. Here,
we assume that the reader uses Vivado on a PC with the Microsoft Windows operating
system. Please consult the user guide for using Vivado design suite on other operating
systems.

As of the writing of this book, the Vivado design suite available at Xilinx’s Web
page was version 2016.3. Therefore, we will use it throughout the book. After
installation, Vivado starts as in Fig. 4.1. This screen tells us that we are ready to go.

¢ Vivado 2016.3 - O X
Fle Flow Tools Window Help Q.- Quick Access

ADO/’ & XILINX
VIVADO .
HI.__\. Edi“o”"‘; ALL PROGRAMMABLE.
Quick Start Recent Projects
project_25
an £ . H: /Xilinx_projects...
t\ =l r project_24
Create New Project Open Project Open Example Project project_22
Tasks project_23
: p— project_21
Vi "-:/—, . H: /Xilinx_projects...
/ G i project_20
Manage IP Open Hardware Manager Xilinx Td Store :) tdliain
project_blockram
Information Center project_19
Q f‘: ii N\.w;i* i project_17
project_18
Documentation and Tutorials Quick Take Videos Release Notes Guide H:/Xilinx_projects...
/& Td Console

FIGURE 4.1 Vivado welcome screen.

4.2 Creating a New Project

Let’s create our first HDL project in Vivado. We can start by clicking on ‘Create New
Project’ on the start page of Vivado as in Fig. 4.1. Skip the first welcome popup
window by clicking Next. Now, you should see a page where you can set the name and
location of your new project as in Fig. 4.2.

¢ New Project X

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. ’

Project name: | first_project
Project location: | H:/Xilinx_projects
Create project subdirectory

Project will be created at: H:/Xilinx_projects/first_project

2 <pok Tl [o

FIGURE 4.2 Create a new project window.

Let’s call our project as first project. This project will be created under directory
.../Xilinx Projects. Click Next and select “RTL Project” in the upcoming
window. Afterward, “Add Sources” window will pop-up as in Fig. 4.3. At this point,
we will not add any sources to the project. However, we should select the “Target
language” as either Verilog or VHDL at the bottom of this window. In a similar
manner, we should also set the “Simulation language™ as Verilog, VHDL, or Mixed
here.

¢ New Project

Add Sources

Specify HDL and netlist files, or directories containing HDL and netiist files, to add to your project.
Create a new source file on disk and add it to your project. You can also add and create sources

+

Add Files Add Directories Create File

Target language: Verilog ~ @ Simulator language: Mixed ~

Cancel

FIGURE 4.3 Add sources window.

We can skip the following two optional selection windows (Add Existing IP and
Add Constraints) as for now. The next window will be on selecting the FPGA (called
the default part) as in Fig. 4.4. The Artix-7 FPGA on the Basys3 board has full name
“XCT7A35TCPG236-1”. The Artix-7 FPGA on the Arty board has full name
“XCT7A35TICS G324-1L”. Depending on the application, one of these FPGAs can be
picked. Note that the selection window in Fig. 4.4 also summarizes the FPGA
properties introduced in Sec. 2.2. Click Next and the project for dedicated device will

be created.

¢ New Project
Default Part

Choose a default Xilinx part or board for your project. This can be changed later.

Select: | & Parts | [Boards

4 Filter
Product category: Al v Speed grade: Al v
Eamily: Al - Temp grade: All >
Package: Al -
Reset All Filters
Search: | O~ xc7a35tcpg236-1 v | (1 match)
I/O Pin Block GTPE2 Gb Available LT
Part Count RAMs DSPs FipFlops Transceivers Transceivers I[0Bs Elements
@ xc7a35tcpg236-1 236 50 90 41600 2 2 106 20800
< >
? <gack fneh Cancel
FIGURE 4.4 FPGA selection window.
¢ first_project - [H:/Xilinx_projects/first_project/first_project.xpr] - Vivado 2016.3 — (m] X
File Edit Flow Tools Window Layout View Help Q
*oe Rl X P D XS K L (G S0efautLayout oK ® Ready
Flow Navigator ? & Project Manager - first_project ? X
Q:Z; =] Sources 1 = | e g ¥ Project Summary X R ETRIRE
‘ 2! = o m ot R E i A
4 Project Manager . Project Settings
5 i) Design Sources
@ Project Settings & Constraints Project name: first_project
B¥ Add Sources 5. Smulation Sources Project location: H: fiin_projects first_project
§/ Language Templates) sm_1 Product family: Artix-7
1F 1P Catalog Hierarchy | Libraries | Compile Order Project part: xc7a35tcpg236-1
T T— ” = Top module name: Not defined
oper - =
4 IP[nF:;.grator PR R Target language: verilog
I Design 9
ﬁ_” SR Bk < Simulator language: Mixed
¥ Open Blodk Design
@ Generate Block Design an ot t » properties Synthesis Implementation
v
4 Simulation < >
@ Simulation Settings Design Rirs Rl Bl
@ g L O\ Name Constraints Status WNS TNS WHS THS TPWS TotalPower FaledRoutes LUT FF
4 RTL Analysis o | 50 synth_1 constrs_1 Notstarted
Ay = impl_1 constrs_1 Not started
3 Elaboration Settings Lo
@ Open Elaborated Design »
4
4 Synthesis »
3 Synthesis Settings «
#® Run Synthesis 3
¥ Open Synthesized Design
< 2
4 Implementation < " [ETd Console | () Messages | [Log | 2 Reports 3 Design Runs

FIGURE 4.5 Vivado project main window.

Once the project is created, you should see the main window as in Fig. 4.5. On the

left-hand side of this window, there is Flow Navigator panel. Through it, the user can
control all processes related to the project. On the top of the window, the user can see
source files and their properties.

We can add a source file to the project by clicking on Flow Navigator — Project
Manager — Add Sources. Then, we should select “Add or create design sources” from
the popup menu as in Fig. 4.6a. As we click Next, a new popup window should appear
with the name “Add or Create Design Sources” as in Fig. 4.6b. Here, the user should
click on the Create File button. A small window should appear as in Fig. 4.6¢. Select
the file type as Verilog (or VHDL), name the file as first system. Choose the location
as <Local to Project>. Upcoming window asks for ports within the project. Do not
define any ports for now. Simply click OK to create your file. The generated file
should be available under Sources — Design Sources directory which can be found in
Vivado’s Project Manager window.

¢ Add Sources X ¢ Add Sources X

Add or Create Design Sources
Add Sources Specify HDL and netlist files, or directories containing HOL and netiist files, to add to your project. ’

y Create a new source file on disk and add it to your project.
VI \/ADO This guides you through the process of adding and creating sources for your project
HLx Edit

(O Add or greate constraints +
(®) Add or create design sources =
(O Add or create smulation sources

(O Add or create DSP sources

(O Add existing block design sources

O Add gxisting I? Add Files Add Drectories Create Fie

£ XILINX

To continue, dick Next

(A) Add sources (B) Add or create design sources

¢ Create Source File X

Create a new source file and add it to your project.

File type: ¥® Verilog v
File name: |first_system

File location: | &) <Local to Project> -

(C) Create source file

FIGURE 4.6 Adding a source file to the project.

4.2.1 Adding a Verilog File

Let’s pick Verilog as the working HDL at this point. Following the above steps, the
source file first system.v should be visible in the Sources window. Open this file by
double-clicking on it. Copy the Verilog description in Listing 4.1 to the opened file.

We will explain Verilog commands in this description in the following chapters. Here,
we will only use it to explain working principles of Vivado.

Listing 4.1 Verilog Description to be Used in Explaining Vivado

module first system(outl,out2,inl, in2);
/i Port definitions
input inl, in2;

output outl,out2;

// Description of the digital system
// Dataflow modeling

wire and out,or out;

inl & in2;

inl | in2;

and out “ or out;
~ 1n2;

assign and out
assign or out
assign outl
assign out2

endmodule

4.2.2 Adding a VHDL File

We can also pick VHDL as the working HDL. For this case, the source file

first system.vhd should have been created. As in the previous section, open this file by
double-clicking on it. Copy the VHDL description in Listing 4.2 to the opened file.
Again, we will explain VHDL commands in this description in the following chapters.

Listing 4.2 VHDL Description to be Used in Explaining Vivado

library ieee;
use ieee.std logic 1164.all;

entity first system is
port(inl : in std_logic;
in2 : in std logic;
outl : out std logic;
out2 : out std logic);
end first system;

architecture dataflow model of first system is
begin

outl <= (inl and in2) xor (inl or in2);

out2 <= not inl;

end dataflow model;

4.3 Synthesizing the Project

The first step in realizing a digital system on the FPGA is synthesizing it. This means
representing digital system’s HDL description via the FPGA elements introduced in
Sec. 2.2. In other words, this step transforms the system description from code to
physical device. Note that Vivado is responsible for this operation. Therefore,
synthesis steps are hidden to the user.

We can synthesize the HDL description added to the project by clicking on Flow
Navigator — Synthesis — Run Synthesis. During this process, we can monitor events
from the Log tab. Let’s pick the description in Listing 4.1 in this section. Once the
synthesis is finalized, a popup window will appear as in Fig. 4.7. Here, the user will
have two choices. The first option is “Run Implementation.” We will postpone it till
the next section. Instead, we will select the “Open Synthesized Design™ option.

Synthesis Completed X

o Synthesis successfully completed.
Next
(O Run Implementation
(® Dpen Synthesized Desigri

() View Reports

[[] Don't show this dialog again

OK Cancel

FIGURE 4.7 Synthesis completion window.

As the “Open Synthesized Design™ option is selected, Vivado subwindows will be
as in Fig. 4.8. In these, the reader can observe almost all design specifications in terms
of reports under Flow Navigator — Synthesis — Synthesized Design. The designed
device can also be seen in the Design window. Here, placement of the synthesized
design on the FPGA is provided. Unfortunately, it is not easy to see the layout of the
used FPGA blocks in this window.

¢ first_project - [H:/Xilinx_projects/first_project/first_projectxpr] - Vivado 2016.3 - O

File Edit Flow Tools Window Layout View Help

* A XHPDPYHGLOD XK L G Bijoraning ~ £) Synthesis Com)
Flow Navigator ? « Synthesized Design - xc7a35tcpg236-1 (active)
X * I 3
N g A Sources 082 X il Package X | Device X | @ first_systemv x| ? o
A @ 8 o = i_]
\ i &) e

4 Project Manager

Design Sources (1
& Project Settings %

2 first_system

(@Y Add Sources +- Constraints
) Language Templates Simulation Sources
¥ sim_1
iF [P Catalog

Hierarchy | Libraries | Compile Order
4 [P Integrator

5 ¢y Sources | [Netlist | @ Device Constraints
¥, Create Block Design

plete

? X

Clock Regions ? -0 1 X
Name Row Column IfOBanks
B X0Yo 0 014
4 Simulation A X0Y1 1 00
@ X0Y2 2 016
5 Simulation Settings -
@ ¢ 8 X1Y0 0 134
Wl Run Smulation @ X1Y1 1 135
EE X1Y2 2 1
4 RTL Analysis
&3 Elaboration Settings
fg* Open Elaborated Design J Propertes 24l Clock Regions
4 Synthesis 1/OPorts
(ﬁ) Synthesis Settings “N Name Direction Neg Diff Pair Package Pin Fixed Bank /O Std
D RunSynthesis <, | B Allports
4 [H synthesized Design =] - Q) Scalar ports -

---- v 5 Td Console Messages | (3] Log) Reports | 3» Design Runs | O Package Pins', [r 1/O Ports

FIGURE 4.8 Vivado after synthesizing the project.

Although all generated project reports are important after synthesization, we will
focus on the utilization report. This report will be as in Fig. 4.9 for the synthesized
design. As can be seen in this figure, one slice and four input/output pins are used
during synthesizing the HDL. The report also indicates that the LUT in the slice is
used as a logic element.

Utilization - utilization_1 it] o | 25
x 4 Hierarchy
] AT N ok Slice LUTs Bonded 10B
Summary e EalS (20800) (106)
= SI'CESILOQ'EL” e 2] first_system 1 <
—}-Slice LUTs =
LUT as Memory %
LUT as Logic X
-}-Slice Registers v
< >
utilization_1 4 b B

2 Td Console Messages = L Log | 2 Reports | 3» Design Runs) PackageP.. [rI/OPorts |5/ Utilization

FIGURE 4.9 Utilization report after synthesizing the project.

The reader can observe the synthesized design by selecting Flow Navigator —

Synthesis — Schematic. The result will be as in Fig. 4.10. As can be seen in this
figure, the Verilog description in Listing 4.1 1s realized by two LUTs (in the same
slice) after synthesis.

in1_IBUF_inst outl_OBUF_inst_i_1 outl_OBUF_inst
int [%>9 fo o LM [outt
IBUF —11 OBUF
in2_IBUF_inst LUT2
in2[> w out2_OBUF_inst_i_1 out2_OBUF_inst
IBUF —10 o W [> out2
LUT1 OBUF

FIGURE 4.10 Schematic view of the design.

or out i
outl i
. 0 0]
'”13 11 0 outd
. 11 >
in2| > RTL_OR
RTL_XOR
and_out_i
10,
0
E
RTL AND out2_i
10 0 | > out2
RTL_INV

FIGURE 4.11 RTL schematic view of the design.

Schematic view of the design can be observed via selecting Flow Navigator — RTL
Analysis — Elaborated Design — Schematic. The result will be as in Fig. 4.11. As can
be seen in this figure, the schematic view is given in terms of basic logic gates. To be
more specific, Verilog description of the first system in Listing 4.1 has two input ports
as inl and in2. The system has two output ports as outl and out2. Basic logic gates
AND, OR, NOT, and XOR are used to construct the system. Hence, schematic view
under the RTL analysis option summarizes the overall system fairly well. This may be
of great use in analyzing combinational and sequential digital systems to be introduced
in the following chapters.

4.4 Simulating the Project

Synthesizing the project results in the generated digital system from its HDL
description. To decide whether this system works as desired, we should test it. This
can be done by feeding input to the system and observing the corresponding output.
This is called simulating the system. The second step in realizing the project on the
FPGA is simulating it.

We have to create a testbench file to simulate the designed digital system.
Therefore, we should create and add a new file to the project. To do so, click on Flow
Navigator — Project Manager — Add Sources. Then, select “Add or create simulation
sources” from the popup menu as in Fig. 4.6a. As we click Next, a new popup window
should appear with the name “Add or Create Simulation Sources.” Here, the user
should click on the Create File button. A small window should appear as in Fig. 4.6c.
Select the file type as Verilog (or VHDL), name the file as first system_tb. Choose the
location as <Local to Project>. The upcoming window asks for ports within the
project. Do not define any ports for now. Simply click OK to create your file. The
generated file should be available under Sources — Simulation Sources — Sim_1
directory which can be observed in Vivado’s Project Manager window.

Vivado only creates an empty testbench file. The user should add all input, output,
and call function declarations to test the digital system under consideration.
Unfortunately, the testbench file is composed of HDL commands to be introduced in
Chap. 5. Therefore, we will provide sample testbench files for Verilog and VHDL
descriptions next.

4.4.1 Adding a Verilog Testbench File

We will first generate the Verilog testbench file for the description in Listing 4.1. To
do so, we will benefit from the file in Listing 4.3. As a brief explanation, this testbench
file generates input patterns changing at every 100 ns. These are fed to the digital
system under test and corresponding output is obtained. We will analyze the structure
of this testbench file in detail in Sec. 5.2.

Listing 4.3 Testbench File for the Given Verilog Description

'timescale 1ns / 1ps
module first system tb;

// Inputs
reg inlt, in2t;

// Outputs
wire outlt, out2t;

// Instantiate the Unit Under Test (UUT)
first system UUT (.outl(outlt),.out2(out2t), .inl(inlt),.in2(in2t));

//Providing input to the UUT
initial begin

// Initialize Inputs

inlt = 0;

in2t = 0;

// Wait 100 ns for global reset to finish
#100;

// Add stimulus here

repeat (4)

#100 {inlt,in2t} = {inlt,in2t} + 1'bl;
end

//Display the result on the Tcl console (Optional)
initial begin

Sdisplay (" inl in2 eutl out2");

$monitor ("\t%b \t%b \t%b \t%b",inlt, in2t,outlt,out2t);
end

endmodule

¢ Project Settings X

Simulation

@ Target simulator: Vivado Simulator v
General
;]J_ Simulator language: Mixed v
Simulation set: e Sim_1 v
Simulation - =t
\»}% N Simulation top module name: | first_system_tb
&
Blaboration Clean up simulation files
Compilation | Elaboration Simulation A Netlist | Advanced
Synthesis = = = = =
(sim, simulate.runbim 490ns
D xsim.simulate.log_all_signals O
Implementation xsim.simulate.wdb
3'} xsim, simulate. saif_scope
xsim.simulate. saif
Bitstream xsim.simulate.saif_all_signals O
_qu xsim.simulate, xsim.more_options
L F
IP xsim.simulate.runtime®
Specify simulation run time
? et | [vl

FIGURE 4.12 Setting simulation properties.

Just copy and paste all the lines in Listing 4.3 to the testbench file generated under
Vivado. Make sure that the third line in the description reads as module
first system tb;.In a similar manner, the module name under Unit Under Test
(UUT) section should be read as first system in this file. Now, the designed digital
system is ready for simulation. Before that, we should set the runtime for simulation.
To do so, click on Flow Navigator — Simulation — Simulation Settings — Simulation
and change the xsim.simulate.runtime™* to 490 ns as in Fig. 4.12. This runtime is
suitable to view all input and output values for this simulation. For other simulations,
the runtime should be set accordingly.

To start the simulation, click on Flow Navigator — Simulation — Run Simulation
— Run Behavioral Simulation. When the simulation ends, Vivado opens a waveform
window in the workspace named “Untitled1.” The reader can use zoom tools on the
left-hand side and fit waveforms in the window to check all input and output
combinations in time. The simulation result should appear as in Fig. 4.13 once it fits
into the window. Note that the default background color was set as black for this
window. We had to change it to white for ease of observation. The user can check the
simulation results to observe whether the designed system acts as desired.

Behavioral simulation is not the only option in observing results. Vivado also offers
post-synthesis functional, post-synthesis timing, post-implementation functional, and
post-implementation timing simulations. The reader can pick the most suitable one for

his or her needs. We will only use behavioral simulation throughout the book.

o first_system.v X | @ first_system_tb.v X BB Untitled1 X T O X
= 450,000 nsl
2 Name yauel o ns 200 ns 400 ns
\,.(— R

L inlt 1 |
=) in2t 1 |
it @ outit 0
Jout2t 0 |
§ < > £ >

FIGURE 4.13 Simulation results in terms of input and output waveforms in time.

Objects it [=] i] 2L
\)] n B)
A D@ e B W
Name Value Data Type
v in1t 1 Logic
v in2t 1 Logic
@ outlt 0 Logic
L@ out2t 0 Logic

FIGURE 4.14 Final simulation results in the Objects window.

The final simulation result (in the latest simulation time) can also be observed in
Vivado’s Objects window. We provide the final simulation result for the present
example in Fig. 4.14. This window will be extremely helpful in Chap. 6.

4.4.2 Adding a VHDL Testbench File

We will next generate the testbench file for the VHDL description in Listing 4.2. As in
previous section, we will benefit from the previously prepared file in Listing 4.4. We
will analyze the structure of this testbench file in detail in Sec. 5.4. Just copy and paste
all the lines in Listing 4.4 to the testbench file generated under Vivado as for now.
Afterward, follow the steps given in previous section for simulation. After simulation
ends, the same waveforms should be obtained as in Fig. 4.13.

4.5 Implementing the Synthesized Project

The third step in realizing the digital system on the FPGA is implementing it. Here, the
synthesized HDL design is prepared to be implemented to target the FPGA platform.

Besides, optimization and minimization tools are used on the synthesized design to
decrease the FPGA resource usage. Physical properties of the FPGA (such as
temperature in the device) are also taken into account at this step. We will talk about
minimization tools in Sec. 7.3.3. However, the actual optimization and minimization
tools working under Vivado are hidden to the user. Therefore, we are bound by Vivado
in these operations.

Listing 4.4 Testbench File for the Given VHDL Description

library ieee;
use ieee.std logic 1164.all;

entity first system tb is
end first system tb;

architecture dataflow of first system tb is

gignal inlt @ std logic := '"07;
gignal in2t : std logic := '0';
signal outlt : std logic := '0';
signal out2t : std logic := '0';

component first system
port (inl : in std logic;
in2 : in std logic;
outl : out std logic;
out2 : out std logic);
end component;

begin
UUT: first system port map (inl => inlt,in2 => in2t, outl =>outlt, out2
=3 outdt);

process
begin

wait for 100 ns;

inlt <= '0'; in2t <= '0';

wait for 100 ns;
inlt. «= "0': IN2E w= "L's

wait for 100 ns;
inlt <= '1'; in2t <= '0';

wait for 100 ns;

inlt <= '1'; in2t <= '1';
wait;

end process;

end dataflow;

To implement the design, click on Flow Navigator — Implementation — Run
Implementation. When the implementation ends, Vivado opens a window as in Fig.
4.15. As in the synthesis step, the reader can check all related reports from the Flow
Navigator — Implementation — Implemented Design section.

Although all generated project reports are important in the Flow Navigator —
Implementation — Implemented Design section, we will focus on the utilization report

as in the synthesis step. This report will be as in Fig. 4.16. As can be seen in this
figure, the utilization report after implementation is more detailed compared to the one
obtained after synthesis step. Here, the reader can observe that one SLICEL is used in

implementation.

¢ first_project - [H:/Xilinx_projects/first_project/first_projectxpr] - Vivado 20163 - O X
File Edt Flow Tools Window Layout View Help
*H (o3[X AP DPYHEGLUDR K L G Soefutlayut P & B N> Implementation Complete
Flow Navigator 2 & Implemented Design - xc7a35tcpg236-1 (actve) 7 X
¢ 0 g
"N nda Bl Nedtst ?-0e X I Project Summary X | i® first_systemuv X | i@ first_system_tb.v X ? 012 x
& Report Clock Interaction i) ol ﬂ L) H: Xilinx_projects/first_project/first_project.sres/sources_1/new ffirst_system.v
[+ ReportMethodology 5 first_system e kodule first system(outi,cuc2,inl,in2); ~H
@ ReportorC e i
Leaf Cels o 3
7 Report Noise =|s akand
- e 4 input inl,in2:
Bl ReportUthzation .| 5 | output outl,out2;
&) ReportPower
¥ schematic 7
4 x| e
4 Implementation P 9
@ Implementation Settings il tt wire and out,or_out;
=11
!? Run Implementation £ Sources - [}] Netlist & 12 assign and_out = inl & in2;
4 |4} Implemented Design ~ 113 | as r out = inl | in2;
= = Properties 7 _ [(2 X 14 - out ~ or out:
&, Constraints Wizard o |14 2ssign and_out * or_out:
= &= = P K W15 | assign = ~ in2;
{4, Edit Timing Constraints 16
:;} Report Timing Summary 17 { endmodule
- v
M, Report Clock Networks P2 e >
%] Report Clock Interaction
- Utiization - utiization_1 Al A X
[\ ReportMethodology = =0 Blatt
e 4
@ ReportDRC A & ==X 4 Hierarchy
TF Report Noke Hierarchy | T § . , SicelUTs Ske LUTaslogc Bonded [0B
= Summary - = (20800) (8150) (20800) (106)
& ReportUtlization 5 Shice Logic ey
= H Ay ¥ first_system 1 1 1 4
£ Report Power -} Slice LUTSs o
LUT as Memory (0% %
4 Program and Debug LUT as Logic (<1 v P8
£2 M vae J
@, Bitstream Settings >
¥ Generate Bitstream wtilization_1 4 v B
@® Open Hardware Manager " = Td Console Messages | 3 Log) Reports | 5 Package Pins | 3> Design Runs | £J Power | (3 Tming . (3] Utilization | & DRC

1:0 Insert Verilog
FIGURE 4.15 Vivado after implementing the project.
Utilization - utilization_1 e [] X
A ==X 4 Hierarchy
Hierarchy | AP Q - Sice LUTs Sice LUTaslogic Bonded IOB
Summary <2} = (20800) (8150) (20800) (106)
-)-Slice Logic e
g y fi -
L ca o 1UITs . o 2 first_system 1 1 1
LUT as Memory (0° %
LUT as Logic ;
EQ Mirvae e X
< >
wtilization_1.__ ' 4 b B
& Td Cons.. Messages | [Log | [2) Reports | SO Package.. | 3» Design.. | € Power | (5 Timing |5 Utilizat.. & DRC

FIGURE 4.16 Utilization report after implementing the project.

4.6 Programming the FPGA

The fourth and final step in realizing the digital system on the FPGA is programming
it to the target device. This can be done by clicking Flow Navigator — Program and
Debug — Generate Bitstream. This way, Vivado translates the implemented design to
the format (in terms of a bitstream) such that it can be fed to the FPGA. The FPGA on

the Basys3 or Arty board can be programmed this way as explained in Chap. 3.
However, the project should be altered beforehand such that input and output ports can
be assigned to appropriate devices on the target board. Therefore, let’s focus on this
issue first.

4.6.1 Adding the Basys3 Board Constraint File to the Project

If we want to realize the implemented digital system on the Basys3 board, we should
assign its peripheral devices as input and output ports first. As briefly explained in Sec.
3.1, the hardware—software interface between the Basys3 board and the implemented
design can be set up by a constraint file.

The constraint file Basys3 Master.xdc for the Basys3 board can be obtained from
[18]. There, the user should download the “Master Xilinx Design Constraint (XDC)”
file under “Docs & Designs”™ tab. As the downloaded zip file is extracted, the Basys3
Master.xdc should be recovered. This file has pin information about clock, switches,
LEDs, seven-segment display, buttons, Pmod headers, VGA connector, USB-RS232
interface, USB HID, and quad SPI flash on the Basys3 board.

To use the constraint file Basys3 Master.xdc, move it to your project directory.
Click on Add Sources under Project Manager and select “add or create constraint”
from the menu. Click Next. Then, click on Add Files in the opened window. Browse
and locate the constraint file added to the project folder. As this file 1s added to the
project, it can be seen in the Sources window under the Constraints — constrs 1
folder. Double-click on the Basys3 Master.xdc file to edit it. As can be seen, all the
lines are commented out by the # sign in the beginning. We will use switches sw[0] and
sw[1] as inputs inl and in2 in Listing 4.1. In the same description, we will use LEDs
led[0] and led[1] as outputs outl and out2. Therefore, uncomment these parts in the
constraint file and save it.

Since input and output ports are assigned to the Basys3 switches and LEDs, we
should also apply these changes to the description in Listing 4.1. The new description
file can be obtained by replacing in1 and in2 with sw[0] and sw[1], respectively. Also,
outl and out2 should be replaced by led[0] and led[1]. The modified description file will
be as in Listing 4.5. Apply these changes to the source file first system.v in the project.

4.6.2 Programming the FPGA on the Basys3 Board

Now, we have all the necessary files to realize the Verilog description in Listing 4.5 on
the FPGA of Basys3 board. To do so, synthesize and implement the HDL description
as explained in previous sections. As implementation is complete, click on Flow
Navigator — Program and Debug — Generate Bitstream. Select Open Hardware
Manager from the popup window as in Fig. 4.17 when the bitstream is generated.

Listing 4.5 Verilog Description of the First System with Switches and LEDs as Input
and Output

module first system(led, sw);

// Port definitions
input [1:0]sw;
output [1:0]1led;

// Description of the digital system
// Dataflow modeling

wire and out,or out;

assign and out sw[0] & sw[l];

assign or out = sw([0] | sw[l1];
assign led[0] = and out ” or out;
assgign led[1l] = ~ sw[l];

endmodule

Bitstream Generation Completed

'0 Bitstream Generation successfully completed.

Next

() View Reports

(O Generate Memory Configuration File

[] Don't show this dialog again

FIGURE 4.17 Generate bitstream completion window.

Hardware Manager - localhost/xilinx_tcf/Digilent/210183637269A

U) There are no debug cores. Program device Refresh device

Hardware e] i | 2
QAT SE R P E
Name Status
=I- § localhost (1 Connected
- @@ xilinx_tcf/Digilent/210183637269A (1) Open
-- @ xc7a35t_0 (1 Programmed
26 XADC Monit
< >

FIGURE 4.18 The Hardware Manager window after Basys3 board is automatically detected.

Hardware Manager window launches in the middle of the screen. By the way, this
window can also be opened by clicking on Flow Navigator — Program and Debug —
Hardware Manager. The title of the window appears as Hardware Manager -
unconnected. Beneath the title you will see a warning as No hardware target is open.
Open target. Click on Open target — Auto Connect after you connect the Basys3
board via USB port to the computer. Now, you should see
localhost/xilinx_tct/Digilent/21083637269A near the Hardware Manager title. If the
Basys3 board is automatically detected, the Hardware Manager window will be as in
Fig. 4.18.

Click on the program device link beneath the title and select xc7a35t 0. The popup
window in Fig. 4.19 should appear. Click Program to program the board. As this
operation finalizes successfully, implemented HDL description should be running on
the Basys3 board.

4.6.3 Adding the Arty Board Constraint File to the Project

The project in Sec. 4.6.2 can also be realized on the Arty board. To do so, we should
first add the constraint file for this board to the project instead of Basys3 board’s
constraint file. Besides, the same Verilog description in Listing 4.5 will be used here.

¢ Program Device X

Select a bitstream programming file and download it to your hardware device. You can optionally select a debug
probes file that corresponds to the debug cores contained in the bitstream programming file.

Bitstream file: H: MXilinx_projects/first_project/first_project.runs/fimpl_1/first_system.bit
Debug probes file:

Enable end of startup check

FIGURE 4.19 Hardware programming window.

The constraint file for the Arty board can be downloaded from [19]. After
extracting this zip file, rename the file Arty sw btn Demo.xdc as Arty Master.xdc
for consistency.

4.6.4 Programming the FPGA on the Arty Board

We will follow the same steps in Sec. 4.6.2 to program the FPGA on the Arty board. If
everything goes as expected while generating the bitstream, then the FPGA should be
programmed correctly.

There is one minor issue due to Vivado. Sometimes, programming the FPGA can-
not be done automatically. Then, the bitstream file location in Fig. 4.19 will be empty.
The reader should manually enter this location. For the present design, the location to
be entered will be as 1: /Xilinx Projects/first project/first project.
runs/impl 1/first system.bit. Project root folder is u:/ for our case. Then,
programming can be done as expected.

4.7 Vivado Design Suite IP Management

We can benefit from existing intellectual property (IP) blocks available in Vivado for
our design. We can also convert a Verilog or VHDL description to an IP block as well.
In this section, we will make a brief introduction to these topics. Then, we will
extensively use these options in the following chapters. For further information on IP
management in Vivado, please see [20-23].

4.7.1 Existing IP Blocks in Vivado

Vivado has extensive IP blocks available to be used in a project. These can be reached
from IP Catalog under Project Manager window. As we press the corresponding
button, a new window appears as in Fig. 4.20. The reader can select the desired IP
block from this list. In the following chapters, we will use these IP blocks in our
projects.

4.7.2 Generating a Custom IP

A Verilog or VHDL description can be converted to a custom IP block in Vivado. This
increases reusability of the description. Let’s take the first system in Listing 4.1 in
our first project. We can create a custom IP from this description. To do so, we should
first select “Create and Package IP...” option under the Tools section in Vivado. A new
window appears titled as “Create and Package New IP.” As we click Next, a new
window appears as in Fig. 4.21. Here, select the “Package your current project” under
the “Packaging Options.”

{F IP Catalog X i =] WK

A | = Vivado Repository

P + Alliance Partners

g + Automotive & Industrial
> +- = AXI Infrastructure
NS

B +-(=> BaselP
“a * Basic Elements
k + Communication & Networking
' +-[=7 Debug & Verification
n +-(=> Digital Signal Processing

W + Embedded Processing
+l-[=7 FPGA Features and Design

B 4
=
+

Math Functions
% + Memories & Storage Elements
- +-[- Partial Reconfiguration
E -5 SDAccel DSA Infrastructure

+

' Standard Bus Interfaces
» Video & Image Processing
+-[=7 Video Connectivity

+

FIGURE 4.20 IP Catalog window.

¢ Create and Package New IP pd

Create Peripheral, Package IP or Package a Block Design
Please select one of the following tasks. '

Packaging Options

Package your current project
Use the project as the source for creating a new IP Definition.

K design from the current project

Package a spedified directory
Choose a directory as the source for creating a new IP Definition.

Create AXI4 Peripheral

Create a new AXI4 peripheral
Create an AXI4 IP, driver, software test application, IP Integrator AXI4 BFM simulation and debug
demonstration design.

Cancel

FIGURE 4.21 Create and Package New IP window.

The next window summarizes location of the generated IP and include options.
Here, select “Include.xci files” option. As we press next, a new window appears
summarizing the IP block generation process. Pressing Finish in this window generates
a segment as in Fig. 4.22. Within this section, the reader can make necessary
adjustments related to the generated IP. To finalize IP generation, we should select the
Review and Package option. In default settings, the generated custom IP will not be
archived for future use. Only the current project can use it. To change this option, we
should select “edit packaging settings.” In the opened project settings window, we
should select the IP tab. Then, “create archive of IP” should be checked under the
“After Packaging” part. Within the window, we can also set the archive name and
location. This information will be important while using the generated IP in another
project. As we press OK, Package IP button appears. Pressing this button generates the
IP block for the first system.

% Project Summary X | Package IP - first_system X! 02 X

Packaging Steps « | Identification ?
V Identification Vendor: xilinx.com
v Compatibility Library: user
+/ File Groups Name: first_system
Customization Parameters Version: 1.0
+ Ports and Interfaces Display name: first_system_v1_0
Description: first_system_v1 0

Addressing and Memory

Vendor display name:
+/ Customization GUI

Company url:
Review and Package
Root directory: h: /xilinx_projects/first_project/first_project.srcs
Xml file name: h: /xilinx_projects/first_project/first_project.srcs/component.xml
Categories
+ [UserIP

=

FIGURE 4.22 Package IP - first system.

Generated IP block for the first system can be seen in IP catalog under the UserIP
section as in Fig. 4.23. We will show how to use this IP block in a description in Chap.
5.

4.8 Application on the Vivado Design Suite

We will introduce an application to get familiar with Basys3 and Arty boards in this
section. Moreover, topics introduced in this application will be of use in the following
chapters. Let’s start with the Basys3 board.

In Listing 4.6, we provide the Verilog description in which LEDs and switches on
the Basys3 board are connected. Therefore, the reader can turn on/off a LED by the
corresponding switch. To run this application, generate a new project as explained in
this chapter. Include the Verilog description in Listing 4.6 to the project. Do not forget
to include the Basys3 board XDC file to the project. Within this file, enable all LED
and switch-based lines.

M
X

3. Project Summary X |iF IP Catalog X 70

Cores Interfaces Search:

*[] Name 1 AXI4

- User Repository

- UserIP

- {F first_system_v1_0
N Vivado Repository

+ Alliance Partners

+ Automotive & Industrial

+ AXI Infrastructure

+ BaselP

+ Basic Elements

+ Communication & Networking
+ Debug & Verification

* Digital Signal Processing

+ Embedded Processing

+ FPGA Features and Design

+ Math Functions

+ Memories & Storage Elements
+ Partial Reconfiguration

+ SDAccel DSA Infrastructure

+ Standard Bus Interfaces

+ Video & Image Processing

+ Video Connectivity

FIGURE 4.23 Modified IP Catalog.

Listing 4.6 Switches to LEDs Application on the Basys3 Board in Verilog

module application(led, sw);

output [15:0] led;
input [15:0] sw;

assign led=sw;

endmodule

Listing 4.7 Switches to LEDs Application on the Basys3 Board in VHDL

library ieee;
use ieee.std logic 1164.all;

entity application is

port(sw : in std logic vector (15 downto 0);
led : out std logic vector (15 downto 0));

end application;

architecture dataflow model of application is
begin

led <= sw;

end dataflow model;

We can also generate the same project using the VHDL description in Listing 4.7.
Again, all steps for the Verilog description should be applied to this project as well.

The same project can be implemented on the Arty board as well. To do so, modified
Verilog and VHDL descriptions are as in Listings 4.8 and 4.9. As in the Basys3 board—
based application, do not forget to add the Arty XDC file to the project.

Listing 4.8 Switches to LEDs Application on the Arty Board in Verilog

module application(led, sw) ;

output [3:0] led;
input [3:0] sw;

assign led=sw;

endmodule

Listing 4.9 Switches to LEDs Application on the Arty Board in VHDL

library ieee;
use ieee.std logic 1164.all;

entity application is

port(sw : in std logic vector (3 downto 0);
led : out std logic vector (3 downto 0));

end application;

architecture dataflow model of application is
begin

led <= sw;

end dataflow model;

4.9 Summary

Vivado is a design platform to synthesize, simulate, and implement HDL descriptions.
It can also be used to program a target FPGA. This chapter introduced Vivado such
that it can be used in realizing digital systems in the following chapters. To do so, we
started from scratch and developed a project using provided Verilog and VHDL
descriptions. At this stage, the reader may not know the structure of the description
provided. Such a strategy was necessary to coherently explain the working principles
of Vivado. We will explain how these descriptions are constructed in detail in Chap. 5.
Therefore, we kindly ask the reader to focus on Vivado usage in this chapter. The final
stage here was realizing the given description on the Basys3 or Arty board. Afterward,
we also introduced methods on IP management in Vivado. We will also analyze these
in detail in the following chapters.

4.10 Exercises

4.1 Download the latest version of Vivado HL WebPACK edition to your computer
and install it.

4.2 Create an empty project;
a. add the Verilog description in Listing 4.1 to the project.
b. synthesize and simulate the project.
c. observe simulation results.

4.3 Create an empty project;
a. add the VHDL description in Listing 4.2 to the project.
b. synthesize and simulate the project.
c. observe simulation results.

4.4 Create an empty project. Use Basys3 as the target board;
a. add the Verilog description in Listing 4.5 to the project.
b. add the constraint file for the Basys3 board to the project.
c. implement the project and generate bitstream to program the FPGA.
d. run the project on the FPGA.

4.5 Repeat Exercise 4.4 using the Arty board.
4.6 Repeat Exercise 4.4 using the VHDL description in Listing 4.10.
4.7 Repeat Exercise 4.6 using the Arty board.

Listing 4.10 VHDL Description of the First System with Switches and LEDs as Input
and Output

library ieee;
use leee.std logic 1164.all;

entity first system is

port(sw : in std logic vector (1 downto 0);
led : out std logic vector (1 downto 0));

end first system;

architecture dataflow _model of first system is
begin

led(0) <= (sw(0) and sw(l)) xor (sw(0) or sw(l));
led (1) <= not sw(0);

end dataflow model;

CHAPTER 5

Introduction to Verilog and
VHDL

ardware description languages help us formalizing and representing a

digital system at hand. Hence, it can be implemented on a target FPGA

platform. Two popular HDLs are Verilog and VHDL. This chapter

introduces basics of both HDLs. We will explore these HDLs in detail in

representing digital systems in the following chapters. Although we

provide Verilog and VHDL in one chapter, we strongly suggest the reader
to master one HDL first, then learn the other. Throughout the book, we give
precedence to Verilog since it resembles C programming language. Therefore, we start
with Verilog fundamentals next. Then, we introduce testbench formation in Verilog.
Afterward, we handle VHDL concepts in the same order. We also consider adding an
IP block to a project.

5.1 Verilog Fundamentals

Verilog is the first HDL we will be using to describe a digital system. Therefore, we
will introduce Verilog fundamentals with basic keywords in this section.

5.1.1 Module Representation

module {module name} (port list);

// Port definitions

// Description of the digital system
statement 1
statement 2
statement 3

endmodule

Let’s analyze this structure in detail. First, the module should have a unique name
which should not be the same as any of the predefined Verilog keywords. In the above
description, we set the name as module name. Second, the module should have input
and output ports assigned to it. We represent these ports as port 1ist in the above
description. The port list does not have a specific order. Therefore, input and output
ports can be represented in any order within the list. For convenience, we suggest
representing output ports first. At this stage, definition of the module is done. Next
comes internal structure of the module. Here, we first define port elements within the
module. Each element can be input, output, or inout. As the name implies, the input
keyword declares that the related port will get data from outside world. The output
keyword declares that the related port will feed data to outside world. The inout
keyword declares that the related port can be used for both input and output purposes.
Then, we describe the digital system. This is indicated by statement 1, statement 2,
and statement 3 above. It is important to remember that order of statements is not
important in the description since they will be represented by hardware elements in the
FPGA. Afterward, we close the module by keyword endmodule. Note that we can use
the symbol // to add a comment to the Verilog description.

To understand the module definition, let’s consider the first Verilog description in
Listing 4.1. As a reminder, circuit diagram of this digital system has been given in Fig.
4.11. As can be seen 1n this figure, the digital system has two input ports in1 and in2.
It also has two output ports out1 and out2. Now, let’s focus on the first part of the
description in Listing 4.1 given below.

module first system(outl, out2, inl, in2);

// Port definitions
input inl, in2;
output outl, out2;

// Description of the digital system
statement 1
statement 2
statement 3

endmodule

As can be seen here, the module name for this description is first system. The

port list is composed of out1, out2, inl, in2.Ports in1 and in2 are defined as
input in the following line. Similarly, ports out1 and out2 are defined as output in
the next line.

The following part in Listing 4.1 is the description of digital system. There are three
different methods of modeling, such as structural, dataflow, and behavioral, in
describing a digital system in Verilog. We will introduce each modeling method next.

5.1.1.1 Structural Modeling

The first method in describing a digital system is using structural modeling. In this
method, each element to be used in the description statement should have been defined
under Verilog as a structure. Since logic gates are extensively used in Verilog
descriptions, they have been defined beforehand. Therefore, this description method is
also called gate-level modeling.

Each gate is represented by the following structure in this method. First, gate type is
defined by the corresponding Verilog keyword. Then, a name for the gate is assigned.
Note that name assignment is not mandatory. Finally, output and input ports for the
gate are defined within parenthesis. Therefore, the structural model of a logic gate will
be as gate keyword name (port list). The port list should be such that output of the
structure 1s defined first.

Let’s describe the digital system in Listing 4.1 using structural modeling. The
reader can also consult Fig. 4.11 for this purpose. As can be seen in this figure, four
gates are used in this system as AND, OR, NOT, and XOR. Corresponding Verilog
keywords for these are and, or, not, and xor, respectively. Let’s give a name to each
logic gate to be used in the description as gate and, gate or, gate not, and
gate xor, respectively. Using these, we can construct the structural model. There is
one issue to be solved in describing the digital system. Inputs of the XOR gate are
output of the AND and OR gates. We should define variables using the Verilog
keyword wire to make this connection. In fact, the user can remember this easily as if
we are adding a wire between logic gates. Based on these, we can form the structural
model of the digital system as in Listing 5.1. As can be seen in this description, the
first system is defined using only predefined logic elements. To emphasize again, these
elements can be defined in any order in Listing 5.1.

Listing 5.1 Structural Model of the First System in Verilog

module first system(outl,out2,inl, in2);

// Port definitions
input inl,in2;
output outl,out?2;

// Description of the digital system
// Structural modeling

wire and out,or out;

and gate and(and out,inl,in2);

oF gHtE OF(oF OUt,.iHl, IH2)

xor gate xor(outl,and out,or out);

not gate not (out2, in2) ;

endmodule

5.1.1.2 Dataflow Modeling

The second method in describing a digital system in Verilog is using dataflow
modeling. In this method, the relation between input and output ports is formed as a
function. Therefore, this description method is also called functional modeling.

The main keyword in dataflow modeling is assign. The syntax here is assign
output = function of inputs. Output in this representation must always be a scalar
or vector. Here, the function may be formed by logic gate representations. As in
structural modeling, we will only consider logic gates AND, OR, NOT, and XOR here.
Corresponding operators to be used in dataflow modeling are {&, |, ~, " } respectively.

In fact, the digital system in Listing 4.1 has been described by dataflow modeling
such that we represented each logic gate input and output as a function. Then, we
formed dataflow model of the digital system as in Listing 5.2. As in structural
modeling, we used the wire keyword in this description to connect input and output of
logic gates.

Dataflow modeling allows merging functions, which leads to a more compact
representation. Let’s reconsider the description in Listing 5.2. We provide the merged
form of this description in Listing 5.3. As can be seen here, output out1 is defined in
one merged line. Therefore, wire definitions are discarded from the description.

Listing 5.2 Dataflow Model of the First System in Verilog

module first system(outl,out2,inl, in2);

// Port definitions
input inl,in2;
output outl,out?2;

// Description of the digital system
// Dataflow modeling

wire and out,or out;

inl & in2;

inl | in2;

and out “ or out;
~ 1in2;

assign and out
assign or out
assign outl
assign out2

endmodule

Listing 5.3 Dataflow Model of the First System in Merged Form

module first system merged(ocutl,out2,inl, in2);

// Port definitions
input inl, in2;
output outl,out2;

// Description of the digital system
// Dataflow modeling in merged form

(inl & in2) * (inl | in2);
~ in2;

assign outl
assign out2

endmodule

5.1.1.3 Behavioral Modeling

The third method in describing a digital system in Verilog is using behavioral
modeling. In this method, digital system at hand is represented by its behavior. In other
words, Verilog keywords corresponding to conditional and recursive statements can be
used within the model.

In behavioral modeling, statement (or statements) to be executed should be
triggered by a signal (or signals) to operate. The keyword a1ways is used to indicate
this triggering operation. Once the signal changes its state, the statement is executed. If
there 1s more than one statement to be executed, then they should be encapsulated by
begin and end keywords. Hence, syntax for this representation becomes as follows:

always @ (sensitivity list)
begin
// behavioral description
statement 1

statement 2
statement 3

end

Here, sensitivity list stands for triggering signal(s). The sensitivity list can be
formed of signals separated by comma or combined by or keyword. If the behavioral
description is to be executed for any input changes, then * sign can be used instead of
the sensitivity list. Here, whenever one of the signals in the sensitivity list changes its
state, the behavioral description is executed. Again, order of statements is not
important in behavioral modeling.

One other important Verilog keyword for behavioral modeling is initial. Via this
keyword, an initial block can be formed which is executed at time zero. Syntax of the
initial block 1s as follows:

initial
begin
statements
end

Let’s describe the digital system in Listing 4.1 using behavioral modeling. Behavior
of the system will change when the first or second input changes. Therefore, at the
beginning of the always block, the sensitivity list will consist of inputs in1 and in2.
We can represent the relation between input and output of the system as in dataflow
modeling. However, the assign keyword will not be used in behavioral modeling.
Since there is more than one statement to be executed, they are encapsulated within
begin and end keywords. As a result, behavioral model of the first system will be as in
Listing 5.4.

Listing 5.4 Behavioral Model of the First System in Verilog

module first system(outl,out2,inl, in2);

// Port definitions
input inl, in2;
output outl,out2;

// Description of the digital system
// Behavioral modeling

reg outl,out2;

initial
begin
outl = 0;
out2 = 0
end

r

always @ (inl, in2)

begin

outl = (inl & in2) * (inl | in2);
out2 = ~ in2;

end

endmodule

We should take a closer look at the description in Listing 5.4. The aiways keyword
executes the beneath description block (encapsulated by begin and end keywords)
whenever in1 or in2 changes. If there is no change in these variables, output will not
be provided by the system. Therefore, we have to save previous output values. This
can be done by the Verilog keyword reg. We used this keyword to keep the previous
value of out1 and out2 in Listing 5.4. We also initialized these variables to logic level
zero using the initial keyword.

There are two assignment types in behavioral modeling. These are called blocking
and nonblocking. Statements having blocking assignment are executed one by one in
sequential order. Therefore, as the name implies, each assignment blocks the execution
of the next in hierarchy. Operator for the blocking assignment is =. Statements having
non-blocking assignment are executed concurrently. Therefore, they don’t block each
other. Operator for the nonblocking assignment is <=.

Let’s consider a simple example for blocking and nonblocking assignments.
Assume that there is a Verilog module with output array y having six elements. Input
of the module is represented by x. Within the always block, let’s describe assignments
as follows:

y[0] =x;

V1] =¥ [0];
vi[2] =yl[1];
v [3] <=x;

yv[4] <=yI[3];
y[5] <=yl[4];

Here, the first three assignments are of blocking type. Next three assignments are of
nonblocking type. When input x becomes logic level one, blocking assignments result
as y[0]=1, y[1]=1, and y[2]=1. In other words, input first affects output y[0]. Then,
outputs affect each other in sequential order. On the other hand, nonblocking
assignments will be as y[31=1, y[41=0, and y[5]=0. Hence, input only affects the first
out-put v[3]. Remaining outputs do not change their initial value. This is because of
the concurrent operation such that all output values are assigned at once. Hence, the
new value of output y[3] could not affect remaining outputs.

We provide the complete Verilog description of the above example in Listing 5.5.
Final simulation results for this description will be as in Fig. 5.1. Blocking and
nonblocking assignment results are clearly seen in this figure.

Objects ? O 2 X
A D) wsl Y6 é&
Name Value Data Type &
v dk O Logic
v X Logic
= PAy[5:0] :- Array
, [5] Logic
o [4] O Logic
e [3] 1 Logic
9 [2] 1 Logic
e [1] 1 Logic
¢ [0] 1 Logic
| v

FIGURE 5.1 Simulation results for blocking and nonblocking assignments.

It is strongly suggested in literature that blocking assignments should be used in
combinational circuits. Nonblocking assignments should be used in sequential circuits.
Hence, Verilog descriptions till Chap. 9 will only use blocking assignments in
behavioral models. Starting from Chap. 9, nonblocking assignments will be used in
behavioral models. There is also a good reference by Cummins [24] on the usage of
blocking and nonblocking assignments in Verilog. We strongly suggest the reader to

check this reference for in-depth understanding of this concept.

5.1.2 Timing and Delays in Modeling

Vivado allows adding simulation timings in Verilog descriptions. Moreover, if a blank
Verilog file is to be opened, Vivado adds the first line automatically as * timescale
ins / 1ps. These are the default timing values such that the first one(1ns) indicates
the reference time unit. Whenever a time value is added to the Verilog description, it
will be in the order of one nanosecond. The second timing value (1ps) indicates the
smallest precision that can be achieved. Hence, the default smallest precision in
simulation is one picosecond. Again, these values will be of use during simulation.
They will have no effect in the actual FPGA realization step.

Listing 5.5 An Example on Blocking and Nonblocking Assignments

module blocking nonblocking(y,x,clk) ;

input x,clk;
output reg [5:0] vy;

initial y=6'b000000;

always @ (posedge clk)

begin

y[0] = x;
y[1] = yl[0];
y[2] = yI[1];
Y[3] <= X;
y[4] <= yI[3];
y[5] <= yI[4];
end
endmodule

Up to this point, we did not take physical characteristics of logic gates into account
in simulation. In other words, we assumed all delay times to be zero within logic gates.
If the user wants to obtain accurate results (especially in timing diagrams) of the
implemented digital system, then delay values should be added to the Verilog
description. These can be done in connection with the reference time unit.

There are three delay types that can be added to a digital device in Verilog. These
are rise delay, fall delay, and turn-off delay. The rise delay indicates the transition time
needed from any logic value to logic level one. The fall delay indicates the transition
time needed from any logic value to logic level zero. The turn-off delay indicates the
transition time needed from any logic value to high impedance. Next, we provide an
example on the usage of these delay times in structural modeling.

and #(5) gate and(and out,inl,inl);
or #(3, 4) gate or(or out,inl, in2);
xor #(3, 4, 5) gate xor(outl,and out,or out);

In the first line, the delay value is specified as # (5). This indicates that all delay values
are five time units. If the default reference time is used, this corresponds to 5 ns. In the
second line, two delay values are specified as # (3, 4). Here, the rise delay is taken as
three time units. The fall delay is taken as four time units. The turn-off delay is taken
as the minimum of these two values. Hence, it becomes three time units. In terms of
the default reference time, these values become 3 ns, 4 ns, and 3 ns, respectively. In
the third line, three delay values are specified as # (3, 4, 5). Here, the rise delay is
taken as three time units. The fall delay is taken as four time units. The turn-off delay
is taken as five time units. Again, in terms of the reference time, these values will be as
3 ns, 4 ns, and 5 ns, respectively.

We can also apply delay values in dataflow modeling. Such an example is assign
#10 and out = inl & in2. Here, #10 indicates that the assignment will be performed
by a 10-time-unit delay. This will correspond to 10-ns delay with respect to the default
reference time.

Let’s apply delay to the dataflow model of the first system in Listing 5.3. Delay is
applied such that out2 is calculated with a 20 time-unit lag. We provide the modified
description in Listing 5.6.

We can simulate the Verilog description in Listing 5.6 using methods in Sec. 4.4.
Obtained simulation result will be as in Fig. 5.2. As can be seen in this figure, the
second output (out2) has a 20-ns delay.

@ first_system.v X | @ first_system_tb.v x |[B Untitled 2 "} T ENEEX
5] 50000 nslf
3 Name RSN o ne 200 ns 400 ns
Q¢ S

init 1 |
S in2t 1
. @ outit 1
I Wout2t o — l 1

FIGURE 5.2 Simulation results after adding a delay of 20 ns to the second output.

Listing 5.6 Verilog Description of the First System After Adding a Delay

'timescale 1ns / 1ps

module first system delay(outl,out2,inl, in2);
// Port definitions

input inl, in2;

output outl,out2;

// Description of the digital system
// Dataflow modeling

assign outl = inl & in2 * inl | in2;
assign #20 out2 = ~ in2;

endmodule

5.1.3 Hierarchical Module Representation

Projects we have considered up to this point contain only one module. In larger
projects, the number of modules may be more than one. In this section, we will show
how a project with more than one module can be handled.

Let’s reconsider dataflow model of the first system in Listing 5.2. We can represent
the same description as a combination of three modules such that AND and OR gates
are described in different modules. Let’s call these as and module and or module,
respectively. These should be formed as valid modules with their input/output ports
and descriptions. We should instantiate the and module and or module in the top
module first system. This can be done as if structural modeling is used. In other
words, the and module should be represented within the first system module as
and module instantiation name (port_list).

There are two options in forming port list correspondence between module to be
instantiated and the top module using it. The first one is using locations. Here, the port
list order in the top module and instantiation should be the same. The second method
in forming the port list correspondence is using the declaration . sub module name
(top module name). Here, port in the module to be instantiated is declared as
sub_module name. The corresponding port in the top module is declared as (top
module name). This operation should be done for all input/output ports. We will use
both declarations throughout the book, although the second one should be picked
whenever possible.

Based on the first port list declaration, hierarchical representation of the first system
will be as in Listing 5.7. Here, instantiation name for the and module and or module 1S
u1 and u2, respectively.

Schematic view of the modular design (under the RTL analysis option) in Listing
5.7 will be as in Fig. 5.3a. As can be seen in this figure, the and module and
or module are represented as black boxes. As the “+” sign is pressed on these boxes,
the RTL representation will be as in Fig. 5.35. In this figure, black boxes are

represented by the actual description of each module. Therefore, it becomes easy to
analyze the overall description.

outl_i

[0}
I 0]
or_out 11 DH > outl
A

U1
. D inl and_out
in2 D | in2
and_module
u2
inl]
| in2]
or_module

RTL_XOR

out? i

i >024D out2

RTL_INV

(A) Each module represented as a black box

U1
f= ™\
T 0 and _out i
inl D 1 " m \O and_out
in
in2[> L7
RTL_AND
(N Py
and_module .
outl_i
10 §
,= 2 11 D D outl
inl 0 or_out_i RTL_XOR
T - 0 or_out
in2 1 out2_i
10 0
RTL_OR —{>Of—D out2
.
or_module RTL_INV

(B) Each module represented as it is

FIGURE 5.3 RTL schematic view of the first system in hierarchical module representation.

Vivado allows hierarchical module representation to be composed of more than one
source file. Therefore, larger projects can be composed of smaller source files merged
in Vivado. We can show how this method works as follows. Let’s reconsider modular
description of the first system in Listing 5.7. This file can be partitioned into two parts

such that the first one holds the top module (first system). The second one holds

and module and or module. We can represent these two source files as in Listings 5.8
and 5.9. These two should be added to the project as source files. Then, Vivado merges
them and forms the final description.

Listing 5.7 Verilog Description of the First System in Hierarchical Module
Representation

module and module (and out,inl, in2);

input inl, in2;
output and out;

assign and out = inl & in2;
endmodule

module or module(or out,inl,in2);

input inl,in2;
output or_ out;

assign or out = inl | in2;
endmodule
module first system(outl,out2,inl, in2);

input inl, in2;
output outl,out2;

wire and out,or out;

and _module Ul (and out,inl, in2);
or module U2(or out,inl,in2);

and out ” or out;
~ 1in2;

assign outl
assign out2

endmodule

5.2 Testbench Formation in Verilog

Characteristics of a digital system can be analyzed in Vivado by using a testbench.
Here, we will explain the structure of a testbench file, taking the one in Listing 4.3 as
an example. Note that we provide the testbench file for each Verilog description
considered in this book on a companion website,
www.mhprofessional.com/1259837904. Therefore, we strongly suggest that the reader

http://www.mhprofessional.com/1259837904

visit this website. Finally, more information on Verilog testbench formation can be
found in [25].

5.2.1 Structure of a Verilog Testbench File

A Verilog testbench file is composed of five parts as follows:

* Testbench module declaration
* Input/output port declaration
* Instantiation of the unit under test (UUT)
* Providing input to the UUT
* Displaying test results
Let’s explain these parts taking the testbench file in Listing 4.3 as an example.

The testbench is itself a Verilog module. Therefore, it needs valid module and
input/output port declarations. This is the first step in testbench formation. These
declarations are done as follows in Listing 4.3.

'timescale 1lns / 1ps

module first system tb;

// Inputs
reg inlt, in2t;

// Outputs
wire outlt, out2t;

Listing 5.8 Verilog Description of the First System-the Top Module

module first system(outl,out2,inl,in2);

input inl, in2;
output outl,out2;

wire and out,or out;

and module Ul (and out,inl, in2);
or_module U2 (or_out,inl,in2);

assign outl
assign out2

and out * or out;
~ 1in2;

endmodule

Listing 5.9 Verilog Description of the First System—the Supplement File

module and module (and out,inl, in2);

input inl,in2;
output and out;

assign and out = inl & in2;
endmodule

module or module(or out,inl,in2);

input inl,in2;
output or out;

assign or out = inl | in2;
endmodule

Here, first the simulation timing value is declared by the timescale keyword. Then,
the testbench module is declared as module first system tb. We specifically
assigned such a name to the testbench module to associate it with the top module to be
tested. The reader is free to choose any valid name here. Next, input and output ports
of the test-bench module are declared as reg inlt, in2t and wire outlt, out2t.
Again, the reader can pick any valid name for each input or output port in the
testbench module.

The second step in testbench formation is associating the module to be tested (unit
under test) with the testbench module. This is done by instantiation. The related part in
Listing 4.3 is as follows:

// Instantiate the Unit Under Test (UUT)
first system UUT (.outl(outlt),.out2(out2t),.inl(inlt),.in2(in2t));

Here, as in hierarchical module declaration, the module to be tested (for our case
first system) is instantiated in the testbench module with the name vut. Then, each
port in the testbench module and the module to be tested are associated (or connected)
such as .out1 (outit). Here, the port in the module to be tested is declared as .out1.
The corresponding port in the testbench module is declared as (outit). This operation
is done for all input/output ports.

The third step in testbench formation is providing input to the UUT. The related
part in Listing 4.3 is as follows:

//Providing input to the UUT
initial begin

// Initialize Inputs

pdd. = 03

in2t = 0;

// Wait 100 ns for global reset to finish
#100;

// Add stimulus here

repeat (4)

#100 {inlt,in2t} = {inlt,in2t} + 1'bl;
end

Here, testbench input ports (ini1t and in2t) are initialized first. Then, a delay of 100
ns is added by the command #100. This delay is added such that the module to be
tested is reset properly. Otherwise, some undesired effects may occur during
simulation. Next, input values are fed to the UUT. In Listing 4.3, this is done in two
lines as follows. The first line contains the command repeat (4). This indicates that
the following line will be repeated four times. The second line contains the command
#100 { inlt,in2t } = { inlt, in2t } + 1’b1. This indicates that inputs will be
incremented one by one sweeping the pattern 0o, 01, 10, and 11. Transition between
each input combination is done after a 100-ns delay. We will explain Verilog data
formats in these lines in Chap. 6.

We can import input test signals from an existing text file. The testbench file in
Listing 4.3 should be modified as in Listing 5.10 for this purpose. Here, a text file is
opened by the attribute initial $readmemb. File entries are saved in ROM.
Afterward, file entries are read and processed line by line from ROM. We will provide
more information on this issue in Sec. 9.5.

5.2.2 Displaying Test Results

The testbench module is constructed following steps in previous section. The reader
has two options to observe simulation results in Vivado. The first one is through
input/output waveforms as explained in Sec. 4.4. This is a valid option and can be used
in most tests.

The second option in observing output of the test is adding specific display
commands such that output can be observed through Vivado’s Tcl console. The related
optional part in Listing 4.3 1s as follows:

//Display the result on the Tcl console (Optional)
initial begin

$display (" iml iR2 ouEl out3v);

Smonitor ("\t%b \t%b \t%b \t%b",inlt,in2t,outlt,out2t) ;
end

Here, the display function prints the string fed to it. The monitor function prints

variables fed to it. The first part of this function handles formatting. Hence, | t b
stands for “add tab and represent the value in binary form.” The corresponding
variable to be displayed is provided in the second part of the function as init. All
input and output ports are tabulated this way. Therefore, whenever a change in input
occurs, it 1s displayed on Vivado’s Tcl console. The console output will be as in Fig.
5.4 for the testbench in Listing 4.3.

Td Console
= # run 490ns
A inl in2 outl out2
== 0o 0 0 1
JJ 0 | 1 0
& 1 0 1 1

1 1 0 0

FIGURE 5.4 Simulation results observed in Vivado’s Tcl console.

Listing 5.10 The Testbench File Reading Input Signals from a Text File

'timescale 1ns / 1ps
module first system file read tb;

// Inputs
reg inlt, in2t;

// Outputs
wire outlt, out2t;

// Instantiate the Unit Under Test (UUT)
first system UUT (.outl(outlt),.out2(out2t),.inl(inlt),.in2(in2t));

reg [1:0] Testset [3:0];
integer count;

//load Testset content from file
initial $readmemb ("H:/Xilinx projects/first project/Testset entries bin
.Lxt", Testset);

//Providing input to the UUT
initial begin
#100;

count=0;

repeat (4)

begin

#50 {inlt,in2t}=Testset [count];
#50 count=count+1l;

end

end
//Display the result on the Tcl console (Optional)
initial begin

$display (" inl in2 outl out2");

Smonitor ("\t%b \t%b \t%b \t%b",inlt,in2t,outlt,out2t);
end

endmodule

5.3 VHDL Fundamentals

VHDL is the second HDL we will be using to describe a digital system. Therefore, we
will introduce VHDL fundamentals in this section. As in Verilog, we will introduce
the remaining VHDL keywords in connection with related digital design concepts in
the following chapters.

5.3.1 Entity and Architecture Representations

A digital system should be declared in two parts in VHDL. The first part includes the
entity declaration which defines input and output characteristics of the system to be
implemented. The structure of the entity part will be as follows:

library library name;
use library elements;

entity system name is

port (port name : port mode port type;
port name : port mode port type;
port name : port mode port type)

end system name;

Here, system name is the name assigned to the system to be described. The keyword
port defines actual ports of the device. Each port entry will have a unique name
indicated by port name. A port mode can be in, out, or inout. As the name implies,
the in keyword declares that the related port will get data from outside world. The out
keyword declares that the related port will feed data to outside world. The inout
keyword declares that the related port can be used for both input and output purposes.
VHDL requires variable and port types to be used in entity declaration to be strongly
defined. Therefore, port type should be declared within 1ibrary elements included
to the design by 1ibrary and use keywords.

Second part of digital system declaration defines its architecture. This is done as
follows:

architecture architecture name of system name is

--declarations part for
--variable, signal, constant, component

begin

-- Description of the digital system
statement 1
statement 2
statement 3

end architecture name;

Here, the user should give a specific name to architecture of the digital system as
architecture name. The system name defined in the entity part should also be used
in architecture definition. Then, variable, signal, constant, and component
declarations should be made. The first three of these are related to data definitions and
assignments within the design. These should have valid types defined in the included
library elements in the entity declaration. The component declaration allows
hierarchical structural representation definition to be considered in detail in Sec. 5.3.5.

Finally, system description is done within the architecture part. This is indicated by
statement 1, statement 2, and statement 3 above. It is important to remember that
the order of statements is not important in the description since they will be
represented by hardware elements in an FPGA. Note that we can use the symbol -- to
add comment to the VHDL description.

Next, we will consider the entity and architecture parts on an example. Therefore,
let’s revisit the VHDL description in Listing 4.2. The entity part of this declaration is
as follows:

library ieee;
use ieee.std logic 1164.all;

entity first system is
port(inl : in std logic;
in2 : in std logic;
outl : out std logic;
out2 : out std logic);
end first system;

Here, the system has two input ports as in1 and in2. It also has two outputs as out1
and out2. We deliberately set the names of input and output ports as in the Verilog
description in Listing 4.1. Hence, the reader can form a correspondence between them
easily. In Listing 4.2, the library used in operation is picked as ieee. Within this
library, all types defined under the icee.std logic 1164 subset are imported. This
allows using the std 1ogic type which can represent binary values such as logic level
zero and one. We will evaluate this operation in detail in Chap. 6. As for now, please
accept the provided representation as it is.

The only remaining part in the above VHDL description is representation of the
digital system. In this book, we will only consider dataflow and behavioral models in
VHDL. Note that some definitions in these models may overlap. We will introduce
each modeling method next.

5.3.2 Dataflow Modeling

The first method to be considered in describing a digital system in VHDL is using
dataflow modeling. In this method, the relation between input and output ports is
formed by a function as in Verilog. Syntax in this function representation is output <=
function of inputs.

The digital system described in Listing 4.2 has been formed in terms of dataflow
modeling. There, we named the architecture as dataflow model. The system name
defined in the entity declaration has also been used in the architecture definition as
first system. We used logic gates AND, OR, NOT, and XOR within the architecture
declaration. Corresponding VHDL keywords for these are and, or, not, xor,
respectively. For completeness, let’s provide the dataflow model of this system in
Listing 5.11.

Listing 5.11 Dataflow Model of the First System in VHDL

library ieee;
use ieee.std logic 1164.all;

entity first system is
port(inl : in std logic;
in2 : in std logic;
outl : out std logic;
out2 : out std logic);
end first system;

architecture dataflow model of first system is
begin

outl <= (inl and in2) xor (inl or in2);

out2 <= not inl;

end dataflow model;

5.3.3 Behavioral Modeling

The second method in describing a digital system in VHDL is using behavioral
modeling. As in Verilog, the digital system at hand is represented by its behavior in
this method. In other words, VHDL keywords corresponding to conditional and
recursive statements can be used within this model.

In behavioral modeling, statement(s) to be executed should be triggered by a signal
(or signals) to operate. The keyword process is used to indicate this triggering
operation. Once the signal changes its state, the statement(s) is executed. Syntax for
this representation becomes as follows:

process (sensitivity list)
-- process declarations
begin

-- system description
statement 1

statement 2

statement 3

end process;

Here, the sensitivity 1ist stands for the triggering signal(s). In VHDL, the
sensitivity list can be formed of signals separated by comma only. Whenever one of
the signals in the sensitivity list changes its state, the behavioral description is
executed. The process may have its own declarations which can be placed before the
begin keyword. Then, the behavioral model is encapsulated by begin and end
process keywords. To note again, the order of statements is not important in
behavioral modeling.

Let’s describe the digital system in Listing 4.2 using behavioral modeling. Behavior

of the system will change when the first or second input changes its value. Therefore,
the sensitivity list for the process will consist of inputs in1 and in2. We can represent
the relation between inputs and outputs of the system similar to dataflow modeling. As
a result, the behavioral model of the first system will be as in Listing 5.12. Here,
architecture of the digital system is named as behavioral model.

Dataflow and behavioral models share similar structures in VHDL. Their main
difference is the process keyword used in dataflow modeling. Therefore, we will
provide either the dataflow or behavioral model from this point based on its
appropriateness in describing the digital system at hand.

Listing 5.12 Behavioral Model of the First System in VHDL

library ieee;
use ieee.std logic 1164.all;

entity first system is
port(inl : in std_logic;
in2 : in std logic;
outl : out std logic;
out2 : out std_logic);
end first system;

architecture behavioral model of first system is
begin

process (inl,in2)

begin

outl <= (inl and in2) xor (inl or in2);

out2 <= not inl;

end process;

end behavioral model;

5.3.4 Timing and Delays in Modeling

As in Verilog, we can add delay times to descriptions in VHDL. This leads to precise
simulation results especially in timing diagrams. Again, these values will be of use
during simulation. They will have no effect in the actual FPGA realization step.

Different from Verilog, delay times can be added to a VHDL description using the
keyword after. Let’s assume that we want to add a 20-ns delay to the second output
(out2) in Listing 4.2. The modified description line will be out2 <= not inl after
20 ns. As this modification is done and simulation of the description is run, the same
waveform in Fig. 5.2 should be observed.

5.3.5 Hierarchical Structural Representation

VHDL allows structural hierarchical representation for large projects. As in Verilog,
the 1dea here is decomposing the project into subparts. Hence, it becomes manageable.

Let’s reconsider dataflow model of the first system in Listing 5.11. As in Sec. 5.1.6,
we can represent this description as a combination of three parts such that the AND
and OR gates are represented separately. Let’s call these as and module and
or module, respectively. These should be formed with their valid entity and
architecture descriptions. Then, we should instantiate the and module and or module
in the top (main) module first system. This can be done by using component
declarations.

The component declaration should be made in architecture part of the top module
with the following structure:

component component name
port (port list);
end component;

This definition should be made at the beginning of the architecture part. Then,
instantiation can be done by using the below structure:

instantiation name: component name port map (port list correspondence) ;

There are two options in forming the port list correspondence. The first one is using
locations. Here, the port list order in the main entity declaration and instantiation
should be the same. Although this is a valid option, it may cause problems in
implementation if the port order is not followed correctly. The second method in
forming the port list correspondence is using the declaration component port name =>
main port name. Here, a correspondence is formed between each port in the
component and main entity declarations. Based on these, hierarchical structural
representation of the first system will be as in Listing 5.13. Here, the instantiation
name for the and module and or module are u1l and u2, respectively. Schematic view
of this hierarchical representation (under the RTL analysis option) will be as in Fig.
5.3. Properties of this figure explained beforehand are also valid here.

Vivado allows hierarchical structural representation to be composed of more than
one source file. Therefore, larger projects can be composed of smaller source files
merged in Vivado. We can show how this method works as follows. Let’s reconsider
modular description of the first system in Listing 5.13. This file can be partitioned into
two parts such that the first one holds the top module (first system); the second one
holds the and module and or module. We can represent these two files as in Listings
5.14 and 5.15. These two should be added to the project as source files. Then, Vivado
merges them and forms the final description.

The supplement file in Listing 5.15 can be represented as a library in VHDL. This
can be done by the keyword package. Afterward, the library can be called in the main
file by the 1ibrary and use keywords. For more detail on this issue, please see [26].

There are two more methods which can be used in hierarchical structural
representation. These are function and procedure methods. For more information on
these methods, please see [27].

5.4 Testbench Formation in VHDL

A VHDL description can be analyzed via its testbench in Vivado. Therefore, we will
explore the structure of a testbench file, taking the one in Listing 4.4 as an example.
We provide the testbench file for each VHDL description (as in Verilog) considered in
this book on the companion website www.mhprofessional.com/1259837904.
Therefore, we strongly suggest that the reader visit it. Finally, more information on
VHDL testbench formation can be found in [25].

5.4.1 Structure of a VHDL Testbench File
A VHDL testbench file is composed of five parts as follows:

» Testbench entity and architecture declarations
* Input/output port declaration

* Instantiation of the unit under test (UUT)

* Providing input to the UUT

* Displaying test results

Listing 5.13 VHDL Description of the First System in Hierarchical Structural
Representation

http://www.mhprofessional.com/1259837904

library ieee;
use ieee.std logic 1164.all;

entity and module is
pert(ainl : in std logic;
ain2 : in std logic;
and out : out std logic);
end and module;

architecture dataflow model of and module is

begin
and_out <= (ainl and ain2);
end dataflow _model;

library ieee;
use ieee.std logic_1164.all;

entity or_module is

port(cinl : in std logic;
oin2 : in std logic;
or_out : out std _logic);

end or_mocdule;

architecture dataflow_model of or_ module is

begin
or out <= (oinl or oin2);
end dataflow_model;

library ieee;
use ieee.std logic_1164.all;

entity first system is
port(inl : in std logic;
in2 : in std_logic;
outl : out std logic;
out2 : out std logic);
end first_ system;

architecture dataflow model of first system is

signal and_out, or_out : std logic;

component and module
port(ainl : in std logic;
ain2 : in std logic;
and_out : out std_logic);
end component;

component or_ module

port(oinl : in std logic;
oin2 : in std logic;
or_out : out std _logic);

end component;

begin

Ul: and module port map(ainl =>inl,ain2
U2: or_module port map(oinl =>inl,oin2

outl <= and out xor or out;
out2 <= not inl;
end dataflow_model;

=>in2,and out =s>and out) ;
=>in2,or_out =>0r_out) ;

Listing 5.14 VHDL Description of the First System—the Top Module

library ieee;
use ieee.std logic 1164.all;

entity first system is
port(inl : in std logic;
in2 : in std_logic;
outl : out std logic;
out2 : out std logic);
end first system;

architecture dataflow model of first system is
signal and out, or out : std logic;

component and module
porti(ainl : in std logie;
ain2 : in std logic;
and out : out std logic);
end component;

component or module
port (oinl : in std logic;
oin2 : in std logic;
or out : out std logic);
end component;

begin

Ul: and module port map(ainl =>inl,ain2 =>in2,and out =>and out) ;
U2: or module port map(oinl =>inl,o0in2 =>in2,or out =>or out);

outl <= and out xor or_out;
out2 <= not inl;
end dataflow model;

These parts are almost the same as in Sec. 5.2. Let’s explain them taking the testbench
file in Listing 4.4 as an example.

The testbench is itself a VHDL description. Therefore, it needs valid entity and
architecture declarations. This is the first step in testbench formation. These
declarations are done as follows in Listing 4.4:

library ieee;
use ieee.std logic 1164.all;

entity first system tb is
end first system tb;

architecture dataflow of first system tb is

signal 1inlt : std logic := '0';
gignal in2t : std logic := '0';
gignal outlt : std logic := '0';
signal out2t : std logic := '0';

Listing 5.15 VHDL Description of the First System-the Supplement File

library ieee;
use ieee.std logic 1164.all;

entity and module is
port(ainl : in std logic;
ain2 : in std logic;
and out : out std logic);
end and module;

architecture dataflow model of and module is
begin

and out <= (ainl and ain2);

end dataflow model;

library ieee;
use ieee.std logic 1164.all;

entity or module is
port (oinl : in std logic;
oin2 : in std logic;
or out : out std logic);
end or module;

architecture dataflow model of or module is
begin

or out <= (oinl or oin2);

end dataflow model;

Here, the testbench is declared as first system tb. We specifically assigned such a
name to associate it with the architecture to be tested. The reader is free to choose any
valid VHDL name here. Entity declaration of the testbench is empty since it will not
get any input or feed output. Signals to be used within the testbench file are declared
next. These are init, in2t, out1t, and out2t. Note that these signals are initialized
while being declared. More information on this operation can be found in Chap. 6.

The second step in testbench formation is associating the description to be tested
(unit under test) with the testbench module. This is done by instantiation. The related
part in Listing 4.4 is as follows:

component first system
port (inl : in std logic;
in2 : in std_logic;
eutl ¢ ouk std. logig;
out2 : out std logic);
end component;

begin
UUT: first system port map (inl => inlt, in2 => in2t, outl => outlt,
out2 => out2t);

Here, as in hierarchical structural representation, unit to be tested (for our case
first system) 18 instantiated in testbench with the name vuT. Then, each port in the
testbench and the unit to be tested are associated (or connected) such as in1 => init.
Here, the port in unit to be tested is declared as in1. The corresponding port in the
testbench is declared as in1t. This is done for all input/output ports.

The third step in testbench formation is providing input to the UUT. The related
part in Listing 4.4 is as follows:

process
begin

wait for 100 ns;

pll = 107 Anit as WOy

wait for 100 ns;
inlt <= '0'; in2t <= '1';

wait for 100 ns;
TRl 2= "1v: dpit 2= WPte

wait for 100 ns;

IR1E <= V1%; Lifi2% <= ¥lr0;
wait;

end process;

end dataflow;

Here, testbench input ports (init and in2t) are set to zero first. Then, a delay of 100
ns is applied by the command line wait for 100 ns. This delay is added such that the
description to be tested is reset properly. Otherwise, some undesired effects may occur
during simulation. Afterward, different input combinations are fed to UUT. Transition
between each input combination is done after a 100-ns delay. We will explain VHDL
data formats in these lines in detail in Chap. 6.

VHDL allows receiving input signals from an existing text file. The testbench file

in Listing 4.4 should be modified as in Listing 5.16 for this purpose. Here, a text file 1s
opened by file file input: text open read mode is. Afterward, file entries are
read line by line.

5.4.2 Displaying Test Results

The testbench in VHDL is constructed using steps in the previous section. The reader
can observe simulation results through input/output waveforms as explained in Sec.
4.4. Waveforms for the testbench in Listing 4.4 will be as in Fig. 4.13.

Similar to Verilog, VHDL provides an explicit method to display results on
Vivado’s Tcl console. The related optional part in Listing 4.4 will be as follows:

//Display the result on the Tcl console (Optional)

process

begin

wait for 100 ns;

inlt <= "0'; in2t <= '0';

report "Outputs are "& std logic'image (outlt) & std logic'image (out2t) ;
wait for 100 ns;

inlt <= '0'; in2t <= '1';

report "Outputs are "& std logic'image (outlt) & std logic'image (out2t);
wait for 100 ns;

inlt <= 1Y in2t <= QL

report "Outputs are "& std logic'image (outlt) & std logic'image (out2t) ;
wait for 100 ns;

inle == '1LY%; imdt e= Tl'g

report "Outputs are "& std logic'image (outlt) & std logic'image (out2t) ;
wait;

end process;

Here, the report attribute prints the string fed to it. The std 1logic’ image function
prints the variable (in standard logic form) fed to it.

VHDL also allows writing simulation results to a text file. The testbench file in
Listing 4.4 should be modified as in Listing 5.17 for this purpose. Operations here are
similar to the ones in reading input data from a text file.

5.5 Adding an Existing IP to the Project

We can add an existing IP block to the project. The beauty of using IP blocks is that
the HDL used for generating the IP is not important. In other words, we can use an [P
generated by VHDL in a Verilog project or vice versa. Therefore, this option allows us
merging Verilog and VHDL descriptions in the same project. Let’s analyze how this
can be done next.

5.5.1 Adding an Existing IP in Verilog

Let’s start with the custom-generated IP block in Sec. 4.7. There, we have generated

the IP block for the first system in Verilog. Now, let’s add this IP to a new project. The
first step here is adding the previously generated custom IP to IP catalog of the current
project. To do so, we should first locate the custom IP files. Then, we should select the
Interfaces tab in the IP Catalog. We should press the IP settings button (the last one)
there. In the opened window, we should select the Repository Manager in the IP tab.
Here, we should add the IP repository by pressing the green + sign. Here, we should
use location of the custom IP to be added. Then, the window should look like as in Fig.
5.5.

P
General” Repository Manager | Packager

General (i) Add directories to the list of repositories. You may then add additional IP to a selected
repository. If an IP is disabled then a tool-tip will alert you to the reason.

IP Repositories

Simulation BN h: Xilinx_projects/first_project/first_project.srcs/sources_1/new (Project)

¢ Add Repository X

@ o 1 repository was added to the project

Synthesis

Repository
‘) g =)-h: fXilinx_projects/first_project/first_project.srcs/sources_1/new

Implementation rdg =+1Ps (1
-j} S {F first_system_v1_0 (xilinx

Bitstream

Refresh All

? OK Cancel Apply

FIGURE 5.5 Adding a custom IP to the repository.

After adding the custom IP to the repository, it will be available in the IP catalog as
in Fig. 4.23. To add it to the project, we should double click on it. A new window
appears as in Fig. 5.6. Here, the first system is actually shown as a black box with
input and output ports. As the OK button is pressed in Fig. 5.6, a new window appears
summarizing which files will be generated. Here, we should select the “Synthesis
Option™ as “out of context per IP.” As we press the Generate button in this window,
the IP block will be added to the project.

1F Customize IP X
first_system_v1_0 (1.0) ¢

i Documentation [IP Location (3 Switch to Defaults

[] Show disabled ports Component Name | first_system_0

inl outl
N2 out2

oK Cancel

FIGURE 5.6 IP block representation of the first system.

We can observe the included files to the project from the sources — IP sources
section as in Fig. 5.7. Here, there are two files of interest under the Instantiation
Template section. These are first system 0.vho and first system 0.veo. These
are instantiation blocks to be used in the top module. The first file is for use in a
Verilog description. The second file is for use in a VHDL description.

Sources e [u] i) A
QA X |23 |E
=& TP (1
=Lk first_system_0 (11
--{c2 Instantiation Template (:

3 first_system_0.vho
5 first_system_0.veo
+ Synthesis (.
+ Simulation (-
g first_system_0.dcp
&b first_system_0_sim_netlist.vhdl
¥® first_system_0_sim_netlist.v
@b first_system_0_stub.vhdl
¥® first_system_0_stub.v

Hierarchy | IP Sources Libraries Compile Order

FIGURE 5.7 IP block representation in the IP sources section.

The important step here is adding the IP to the top module of the project by
instantiating it. Assume that we have generated a top module in Verilog and added it to
the project. Then, we can add the instantiation template to the top module as in Listing

5.18.
The RTL schematic of this description will be as in Fig. 5.8. As can be seen in this
figure, the IP block is represented by a black box in the RTL schematic.

x1_IBUF inst FS y1_OBUF_inst

xt[iDQ lDQ Oyt
IBUF n1] i out? OBUF
x2_IBUF_inst InZ g outZ y2_OBUF inst

x2[> _'w first_system_O LDQ [y
IBUF OBUF

FIGURE 5.8 RTL schematic of the top module after adding the IP block.

Listing 5.16 The Testbench File Reading Input Signals from a Text File

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic_arith.all;
use ieee.std logic unsigned.all;
use ieee.std logic_textio.all;
use std.textio.all;

entity first system file read tb is
end first system file read tb;

architecture dataflow of first system file read tb is

signal inlt : std logic := '0';
signal 1in2t : std logic := '0';
signal outlt : std logic := '0';
signal out2t : std logic := '0';

component first system
port (inl : in std logic;
in2 : in std logic;
outl : out std logic;
out2 : out std logic);
end component;

begin
UUT: first system port map (inl => inlt, in2 => in2t, outl => outlt,
out2 => out2t);

file read : process

variable rdline : line;

variable r data : std _logic_vector (0 to 1);

file file input : text open read mode is "H:\Xilinx Projects)\
first project\SimInputFile.txt";

begin

while not endfile(file_input) loop
readline(file input, rdline);
read (rdline, r data);
inlt <= r data(0);
in2t <= r data(l);
wait for 5 ns;

end loop;
wait;

end process;

end dataflow;

Listing 5.17 The Testbench File Reading Input Signals from a Text File and Writing
Simulation Results to Another Text File

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;
use ieee.std logic_textio.all;
use std.textio.all;

entity first system file read write tb is
end first system file read write tb;

architecture dataflow of first system file read write tb is

signal inlt : std logic := '0';
signal in2t : std logic := '0';
signal outlt : std logic := '0';

signal out2t : std logic := '0';
signal clk : std logic;

component first system
port(inl : in std logic;
in2 : in std logic;
outl : out std logic;
out2 : out std logic);
end component;

begin
UUT: first system port map (inl => inlt, in2 => in2t, outl => outlt,
out2 => out2t) ;

file read : process

variable rdline : line;

variable r data : std logic vector(0 to 1);

file file input : text open read mode is "H:\Xilinx Projects\
first project\SimInputFile.txt";

begin

while not endfile(file input) loop
readline (file input, rdline);
read (rdline, r data);
inlt <= r data(0);
in2t <= r data(l);
wait for 5 ns;

end loop;
wait;

end process;

file write : process(clk)
variable cnt : integer := 0;
variable wrline : line;

variable w _data : std logic vector(0 te 1) := "00";
file file output: text open write mode is "H:\Xilinx Projects\
first project\SimOutputFile.txt";

begin
if (rising edge(clk)) then
w_data(0) := outlt;
w_data(l) := out2t;

write(wrline,w data);
writeline(file output,wrline);
end if;
end process;

clock: process

begin
2l == "0'p
wait for 1 ns;
pll, = Tlta

wait for 1 ns;
end process;

end dataflow;

Listing 5.18 Adding the IP Block of the First System to the Top Module in Verilog

module top module IP(yl,y2,x1,x2);
// Port definitions

input x1,x2;

output y1l,v2;

// Generated IP block

first _system 0 EB[.outl({yl),.eut2(y2},.anl (xl);.in2 [x2)) ;

endmodule

Listing 5.19 Adding the IP Block of the First System to the Top Module in VHDL

library ieee;
use ieee.std logic 1164.all;

entity top module IP is

port (x1 : in std logic;
x2 : in std logic;
vyl : out std logic;
yZ : out std logid);

end top module IP;
architecture dataflow model of top module IP is
component first system 0
port (outl : out std logic;
out2 : out std logic;

inl : in std logic;

in2 : in std logic) ;
end component;

begin

FS : first system 0 port map (outl => yl, out2 => y2, inl => x1, in2 =>
x2);

end dataflow model;

5.5.2 Adding an Existing IP in VHDL

Next, we add the IP block of the first system to a VHDL description. We will follow
the same steps as in the previous section. The new top module in VHDL will be as in
Listing 5.19. As can be seen here, the IP block generated in Verilog can be directly
used in the VHDL description.

5.6 Summary

Verilog and VHDL are the HDLs to be used throughout the book. We explored the
fundamental properties of both HDLs through examples in this chapter. Basically, we
explored the module representation in Verilog. Then, we introduced three modeling
methods related to it. Afterward, we considered the effect of timing and delays in
modeling. We also considered hierarchical module representation in Verilog. We
finally analyzed how a testbench can be formed in Verilog. We followed the same
methodology in exploring VHDL fundamentals next. We also considered adding an IP
block to a Verilog and VHDL project. Here, we benefit from the generated IP block
for the first system in Sec. 4.7. In all these sections, we benefit from examples
introduced in Chap. 4. In the following chapters, we will expand our knowledge on
Verilog and VHDL with digital system properties to be introduced. However, using

fundamentals introduced in this chapter is a must to implement them. Therefore, topics
in this chapter can be taken as basis for the following chapters.

5.7 Exercises

5.1 Check whether the structural, dataflow, and behavioral Verilog modeling of the
first system evaluated in Sec. 5.1 require similar (or same) FPGA building
blocks in Vivado.

5.2 Repeat Exercise 5.1 when VHDL is used in describing the first system evaluated
in Sec. 5.3.

5.3 Does hierarchical module representations in Secs. 5.1 and 5.3 add any extra
FPGA building blocks in implementation? Check in Vivado.

5.4 Does adding the first system as an IP block add any extra FPGA building blocks
in implementation? Check in Vivado.

CHAPTER 6

Data Types and Operators

his chapter is on basic data types and operators in digital systems. We will

explore these concepts in two parts. In the first part of the chapter, we will

handle data types and operators from a generic point of view without using

any HDL description. Therefore, we will first consider binary, octal, and

hexadecimal number representations. Then, we will explore methods to
represent a negative number in a digital system. We will next introduce methods to
represent a binary number with fractional parts. Here, we will use fixed-and floating-
point representations. We will also consider the ASCII code to represent characters in
a digital system. Then, we will evaluate arithmetic operations on binary numbers. In
the second part of the chapter, we will explore data types and operators defined in
Verilog and VHDL. Therefore, we will review most of the concepts introduced in the
first part of the chapter using HDLs. Moreover, we will also refer to data types used in
previous chapters. Finally, we will analyze how all these concepts can be realized in an
FPGA.

6.1 Number Representations

We use the decimal number system in our daily life. This representation provides
weights (powers of 10 here) of a digit with respect to its location. Here, the least
significant integer digit gets weight 109, the next one gets 10!, and so on. Using this
form, we can represent an entity in a systematic way. Therefore, a decimal number 255
in fact means 2 x 102+ 5 x 10! + 5 x 109, A decimal number with fractional part can
also be represented in a similar way. Now, weight of the digits in fractional part
become 1071, 1072, and so on starting from the dot (separating integer and fractional
parts) from left to right. As an example, the decimal number 1.25 corresponds to 1 X

100+2x 1071 +5x%x 1072

6.1.1 Binary Numbers

A digit in binary number system (called bit) can take two values as 0 or 1. This
perfectly matches with the digital system having two voltage levels as explained in
Chap. 2. Therefore, binary numbers are used in digital systems instead of decimal
representation.

Binary number representation has weights in powers of two as 20, 21, 22, - .- 2N,

For the fractional part, weights become 2-1,272 273 and so on starting from the dot
separating integer and fractional parts. In a binary number, bits with the highest and
lowest weight are specifically called the most significant bit (MSB) and least
significant bit (LSB), respectively. Binary digits are grouped slightly different than
decimal numbers. Eight bits correspond to one byte; 1024 bytes to one kilobyte (kB);
1024 kilobytes to one megabyte (MB); and 1024 megabytes to one gigabyte (GB).

6.1.1.1 Decimal to Binary Conversion

Integer part of a decimal number can be converted to binary form by iteratively
dividing it by two. Iteration ends either when the dividend becomes less than two or
number of iterations reach a predefined limit. Let’s give a simple example on this
operation. If we want to convert the decimal number 14 to binary, we divide it by two
iteratively till we reach the remainder o or 1. This operation is tabulated in Table 6.1.
As can be seen in this table, the division operation reaches remainder 1 after three
iterations. We can construct the binary number by forming an array starting from this
remainder and going backwards from the last division to the first in the list. Therefore,
binary representation of the decimal number 14 will be 1110.

Iteration | Number Division @ Remainder
i 14 7 0
ii 7 3 1
ii 3 1 1

TABLE 6.1 Decimal to Binary Conversion Example, Integer Part

Fractional part of a decimal number can be converted to binary form by iteratively
multiplying it by two. After each multiplication, integer part of the product is separated
and multiplication continues from the fractional part. Iteration ends either when the
fractional part becomes zero or number of iterations reach a predefined limit. Let’s
give a simple example on this operation. If we want to convert the decimal number
0.125 to binary, we multiply it iteratively till we reach the product 1.00. This operation
is tabulated in Table 6.2. As can be seen in this table, the multiplication operation
reaches the product 1.00 after three iterations. Since the fractional part becomes zero,
iteration ends.

Iteration = Number Product | Integer Part
i 0.125 .25 0
i 0.250 0.50 0
ii 0.500 1.00 1

TABLE 6.2 Decimal to Binary Conversion Example, Fractional
Part

We can construct the binary number by forming an array starting from the integer
part of the first product to the last in the list. Therefore, binary representation of the
decimal number 0.125 will be 0.001.

6.1.1.2 Binary to Decimal Conversion

We can convert a decimal number with integer and fractional parts by applying the
above procedures separately to the number. As an example, binary representation of
the decimal number 14.125 will be 1110.001.

6.1.1.2 Binary to Decimal Conversion

We can convert a binary number to decimal by weighting each digit by its value and
summing the result. Let’s explain this operation on an example. To convert the binary

number 1110.001 to decimal form, we apply the following operation: 1 x 23 +1 x 22

+1 x 21 +0 x 20 +0 x 271 40 x 272 +1 x 273, Summing these, we will obtain 14.125 in
decimal form.

6.1.2 Octal Numbers

Although binary numbers are suitable for digital systems, their representation may not
be compact. Octal numbers can be used instead to have a more compact representation.
Here, there are eight digits as (0, 1, 2, 3, 4, 5, 6, 7). Next, we consider how
conversions can be made between binary and octal numbers.

6.1.2.1 Binary to Octal Conversion

We can convert a binary number to octal by grouping bits in blocks of three. Then,
each group can be represented by the corresponding octal digit. As a result, we will
obtain the octal representation. If the number groups do not form blocks of three, then
we append zeros to the integer part as a prefix and fractional part as a suffix.

Let’s convert the binary number 1110.001 to octal. Since the total number of bits in
the integer part of number is not a multiple of three, we should represent it by
appending zeros as 001110.001. Then, we can group these digits as 001=1, 110=6, and
001=1. As a result, octal representation of the binary number 1110.001 will be 16.1.
As can be seen in this example, the octal number is more compact compared to its

binary counterpart.

6.1.2.2 Octal to Binary Conversion

We can convert an octal number to binary by applying the reverse operation. Hence,
we represent each octal digit by three bits and form the final binary number. Let’s take
the octal number 16.1. We can represent each octal digit by three binary digits as
1=001, 6=110, and 1=001. As a result, binary representation of the octal number 16.1
will be 001110.001. Since the two leftmost zero bits do not change the value of
number, it can be represented as 1110.001.

6.1.3 Hexadecimal Numbers

While representing binary numbers in compact form, hexadecimal numbers will be
more useful compared to octal numbers. A hexadecimal number has 16 digits as (0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, ¢, D, E, F). Next, we consider how
conversions can be made between binary and hexadecimal numbers.

6.1.3.1 Binary to Hexadecimal Conversion

We can convert a binary number to hexadecimal by grouping bits in blocks of four.
Then, each group can be represented by the corresponding hexadecimal digit. If bit
groups do not form blocks of four, then we append zeros to the integer part of the
binary number as a prefix and fractional part as a suffix. As a result, we will obtain the
hexadecimal representation.

Let’s convert the binary number 1110.001 to hexadecimal form. Since the total
number of bits in the fractional part of the number is not a multiple of four, we should
represent it by appending zero as a suffix as 1110.0010. Then, we can group these
digits as 1110=k and 0010=2. As a result, hexadecimal representation of the binary
number 1110.001 will be £.2. As can be seen in this example, the hexadecimal
number i1s more compact compared to its binary (and octal) form.

6.1.3.2 Hexadecimal to Binary Conversion

We can convert a hexadecimal number to binary by applying the reverse operation.
Hence, we represent each hexadecimal digit by four bits and form the final binary
number. Let’s take the hexadecimal number £.2. We can represent each hexadecimal
digit by four binary digits as E=1110 and 2=0010. As a result, binary representation of
the hexadecimal number £.2 will be 1110.0010. Since the rightmost zero bit does not
affect the value of the number, it can also be represented as 1110.001.

6.2 Negative Numbers

There may be negative binary numbers in operation. Although in daily life we put a
negative sign in front of the number, this is not the case in a digital system. Instead,
there are three methods to represent both positive and negative binary numbers. These

are the signed bit, one’s complement, and two’s complement representation.

6.2.1 Signed Bit Representation

The first representation mimics the daily life practice (negative sign in front of
number) by a sign bit in the MSB of number. In this representation, a positive number
will have the sign bit as zero. A negative number will have the sign bit as one. Hence,
the name signed bit representation. Although this method seems straightforward, it is
not very effective since addition and subtraction may need extra operations as will be
seen in Sec. 6.5.

Let’s give two examples on signed bit representation. Assume that we have decimal
number 14. We know that binary representation of this number is 1110. As can be seen
here, the MSB represents the number value. Therefore, it is not possible to assign it as
the sign bit. To overcome this problem, let’s append four more zeroes to the number.
Then, it becomes 0000 1110. In this representation, we can use the MSB as sign bit.
Remaining bits will serve as value bits. Since the number 14 is positive, its sign bit
representation will be 0000 1110. Now, let’s represent the decimal number —14 using
signed bit. Corresponding binary number will become 1000 1110. Therefore, only the
MSB has changed to show that the number is negative.

6.2.2 One’s Complement Representation

The second representation is based on the bit complement (NOT) operation. Here, the
negative number is represented by the bit complement of the corresponding positive
number. Therefore, this representation is called one’s complement. In this
representation, no extra bit is assigned to sign. However, arithmetic operations are not
straightforward in this representation.

Let’s give two examples on one’s complement representation. As in the previous
section, let’s first take the decimal number 14. Based on the previous format, it will be
represented as 0000 1110. Now, let’s represent the decimal number —14 in one’s
complement form. To do so, we take the complement of each bit and obtain 1111
0001.

6.2.3 Two’s Complement Representation

The third representation is based on two’s complement. Here, the negative number is
first represented in one’s complement form. Then, the result is incremented by one.
Two’s complement has a major advantage compared to the previous representations.
Subtracting two binary numbers can be formulated as adding the first number with
two’s complement of the second. The result also keeps the sign information.
Therefore, need for an extra sign bit is eliminated. We will see this operation in Sec.
6.5.

Let’s continue with the example given in one’s complement form. There, the
decimal number —14 was represented as 1111 0001 in one’s complement form. To
obtain the two’s complement form of —14, we should add one to the LSB of one’s

complement representation. Hence, we obtain 1111 0010 as the two’s complement
representation of decimal number —14.

6.3 Fixed- and Floating-Point Representations

Binary number to be processed in a digital system may have a fractional part. We
distinguished the integer and fractional parts of such numbers by a dot in the previous
section. This is not possible in a digital system. Instead, there are two methods to
represent a binary number with integer and fractional parts. These are fixed-and
floating-point representations.

6.3.1 Fixed-Point Representation

The number of bits assigned to the integer and fractional parts is fixed in this
representation. Hence the name fixed-point representation. This method is easy to
implement since the number of bits assigned to the integer and fractional parts is fixed.

We can show an unsigned fixed-point number (without a sign bit) as UQp.q. Here,
U indicates the unsigned bit notation; pq represents the number, p being the integer
and q being the fractional part. We provide some fixed-point representation formats in
Table 6.3. Note that we are not limited by these formats in an FPGA implementation
since the user is free to assign any number of bits to the integer and fractional parts.
We will see such examples in Secs. 6.7 and 6.9.

Format = Minimum Maximum Resolution # bits forp # bits forq # total bits
UQ16. 0 216-1 1 16 0 16
UQ.16 0 1-2-16 g=lo 0 16 16
UQ16.16 | 0 2161 g=lo 16 16 32

TABLE 6.3 Fixed-Point Unsigned Number Representation Formats

Let’s reconsider the decimal number 14.125. We know that binary representation of
this number is 1110.001. Assume that we would like to represent this number in
UQ16. form. Therefore, there will be no fractional part. The number of bits to be
assigned to the integer part will be 16. Hence, the resulting number in hexadecimal
form will be 000E. Zeros appended to the left of the number will not affect its value.
They will only satisfy the fixed-point representation format. If the UQ16.16 fixed-
point representation is used for the same number, then the integer part of 14.125 will
be the same in hexadecimal form as 000E. The fractional part will be in hexadecimal
form as 0200. Here, zeros are appended to the right of the number. Therefore, the value
of the fractional part will not be affected. As a result, fixed-point representation of the
number will be 000£0200. As can be seen here, there is no separator between the
integer and fractional parts of the number. Knowing that the number is in UQ16.16
form, we can easily extract the integer and fractional parts (since we know the number
of bits assigned to each).

In a similar way, we can represent signed numbers. In this form, the MSB is
reserved for the sign bit. Therefore, we use the sign bit representation here. We
provide three signed bit formats for the fixed-point representation in Table 6.4. Similar
to the unsigned bit representation, fixed-point number will be in the form Qp.q.

Format = Minimum Maximum Resolution = # bits forp = # hits forq # total bits
Q15. -2b 25 -1 1 il}7 0 16
Q.15 -1 1-271% | 270 0 15 16
Q15.16 | -2 215 2% | =16 15 16 32

TABLE 6.4 Fixed-Point Signed Number Representation Formats

Let’s consider the decimal number —14.125. Assume that we would like to
represent this number in Q15. form. The resulting number in hexadecimal form will be
800E. Here, the MSB is set to 1 as the sign bit to represent that the number is negative.
If the Q15.16 fixed-point representation is used for the same number, then
hexadecimal form of the number will be 800E0200. Again, the MSB is kept as the sign
bit in this representation.

6.3.2 Floating-Point Representation

Fixed-point representation is easy to implement and process. However, it has a major
drawback. The number of bits assigned to integer and fractional parts is always fixed
in this representation. This causes limitations both in the range of numbers to be
represented and their resolution. Floating-point representation can be used to overcome
these problems. As the name implies, the number of bits assigned to integer and
fractional parts is not fixed in this representation. Instead, the assigned number of bits
differ for each number depending on its significant digits. Therefore, a much wider
range of values can be represented in this form.

In floating-point representation, a binary number with fractional part will be shown

as N=(—1)% x 2E x F. Here, S stands for the sign bit, E represents the exponent value,
and F stands for the fractional part. Then, floating-point number N is kept in memory
as X = SEF.

To represent a floating-point number as N = (—1)° x 2£ x F, the number should be
normalized such that the integer part will have one digit. For ease of binary

representation, the exponent will be biased by 2(¢~/) —1, where e is the number of bits
to be used for E in the given format. Finally, certain number of bits will be assigned to
S, E, and F' depending on the standard format used for representation. The IEEE 754
standard is used by most digital systems in floating-point representation. This standard
is summarized in Table 6.5.

Format | Exponent bias | # bits for S # bits for E = # bits for F = # total bits
Half 15 1 B 10 16
Single 127 1 8 23 32
Double | 1023 1 11 52 64
Quad 16383 1 15 112 128

TABLE 6.5 The IEEE 754 Standard for Floating-Point
Representation

Let’s take the decimal number 14.125 and represent it in floating-point form. We
will follow the below itemized procedure for this purpose:

* Decide on the format: Let’s pick the “half” format for this example.

» Represent the integer and fractional parts of the decimal number in binary form:
The number becomes 1110.001.

« Decide on the sign bit S: Since the number is positive, (—1)° = 1, s=o0.

* Normalize the number such that the integer part will have one digit: The number
becomes 1.110001x23.

* Find the exponent value: For the half format, the exponent bias is 15. Therefore,
the exponent will become £ = 15 + 3 = 18 with bias. Or, in binary form E=10010.

* Find the fractional part: The fractional part (after normalization) was 110001.
Since 10 bits should be used to represent the fractional part of the number in half
format, F=1100010000. Remember, since this is the fractional part, we append
extra zeros to its right so that the value of the number is not affected.

* Construct X = SEF: Finally, x = 0 10010 1100010000. Or in hexadecimal form,
X=4B10.

Next, let’s represent the decimal number —14.125 in floating-point form. As in the
previous example, let’s use the half format. Then, the only change will be in the sign
bit. As a result, the number will become x = 1 10010 1100010000. Or in hexadecimal
form, x=cB10.

6.4 ASCII Code

We do not only process numbers in digital systems. For some applications, we may
need to handle characters and symbols as well. We know that everything in a digital
system is represented in binary form. Therefore, characters and symbols should also be
represented as such. One way of representing characters and symbols in binary form is
using the ASCII code. ASCII stands for the American Standard Code for Information
Interchange. The ASCII code for characters and symbols are given in Table 6.6. In this
table, LSB stands for least significant byte and MSB stands for most significant byte.
To represent a specific character (or symbol), its corresponding code should be given.

Let’s assume that we would like to represent the @ symbol. Using Table 6.6, the
corresponding ASCII code in hexadecimal form will be 4o0.

LSB
01 2 3 4 5 6 7 8 9 A B CDIE F
O NUL SOH|STX ETX EOT |ENQ|ACK BEL|BS |HT LF VT |FF CR SO SI
1 DLE |DC1 DC2|DC3 DC4 | NAK | SYN ETB CAN EM SUB ESC|FS|GS|RS US
2 Lo 4 08 % (& | () |x |+ | /
M|3(0 |2 (2 |3 (4 |5 |6 |7 |8 |9 |: |; |<]|= ?
Ss4@ (A B C D |E |F |G H |I |[J K |[L|MIN|O
BI5|P |Q (R (S T (U |V W X Y |Z |[[\NI[] [|-
6" a |b (¢ |d e [(f (g [h |i |j kK (I 'm|n |o
flp (g |r |s |t (u (v |w |x |y |z [{ || |} |~ |DEL

TABLE 6.6 ASCII Code Table

6.5 Arithmetic Operations on Binary Numbers

We will consider arithmetic operations on binary numbers from a generic point of
view in this section. Therefore, we will first analyze each arithmetic operation based
on binary numbers having only integer part. Then, we will consider arithmetic
operations on numbers with fractional part (represented by fixed-and floating-point
forms).

6.5.1 Addition

Adding two binary numbers is not different than adding two decimal numbers. The
only condition the reader should remember is that a binary number can take only two
values as zero or one. Therefore, adding two binary digits will produce a carry bit
whenever two digits with value one are added.

Let’s give an example on adding two binary numbers represented by eight bits as
0000 1110 and 0010 0111. We can also call these numbers as fixed-point with format
UQ8.0. The sum will be 0011 0101.

There may be cases where adding two N bit numbers result in a N + 1 bit number.
For such cases, the MSB (N+1th bit) is called overflow. This bit should be handled
separately if the number of bits assigned to the sum is V.

Adding two binary numbers with fractional part is also the same as in its decimal
counterpart. Here, the important point is that the two numbers should be represented in
the same format. If this is not the case, the first step is making formats the same. Next,
let’s consider the binary addition operation on fixed- and floating-point numbers.

6.5.1.1 Fixed-Point Addition

Let’s start with adding two binary numbers represented by the same unsigned fixed-
point format. Since both numbers will have the same number of integer and fractional
bits, addition will be straightforward for this case. As an example, let’s take two binary
numbers represented in UQ8.4 format as 0000 1110 0010 and 0010 0111 0110. The
sum will be 0011 0101 1000. The first and second numbers are 14.125 and 39.375 in
decimal form with the sum 53.5. The sum obtained in UQS8.4 format is also the same
as this number is in binary form.

Adding two fixed-point signed numbers with common format is the same as adding
two numbers with unsigned fixed-point format. The only difference is that the sign bit
in each number should not be taken into account in the addition operation. At this step,
we assume that the two fixed-point signed numbers have the same sign. We will see
adding two numbers with different sign bits in the next section under subtraction.

6.5.1.2 Floating-Point Addition

Adding two binary numbers represented by floating-point format is more complicated.

As a reminder, a binary number is represented as N = (1) x2E x Fin floating-point
form. Moreover, the number is saved as X = SEF. To make the addition operation, the
first constraint is that the two numbers should have the same floating-point format
such as half, single, double, or quad. Moreover, the exponent value (£) should be the
same for both numbers. If they are not the same, then fractional parts should be
adjusted accordingly. Then, addition can be done. After addition, the fractional part
and exponent should be adjusted such that a valid floating-point representation is
obtained. Here, we assume that the sign bit of two numbers to be added are the same.
We will handle adding two numbers with different sign bits in the next section under
subtraction.

Let’s give an example on adding two decimal numbers 14.125 and 39.375. Assume
that the half floating-point form is selected such that first and second numbers are
represented as X1 =0100 1011 0001 0000 and X, =0101 0000 1110 1100. These

numbers can be represented as 1.110001 x23 and 1.00111011%2° after discarding the
exponent bias. We can equate the exponential value for these such that the second
number becomes 100.111011x23. Then, we can add these two numbers as (1.110001
+ 100.111011) x23. Here, the addition operation on two numbers can be done as if
they are in a fixed-point form. The result becomes 110.101100x23. This number can

be represented as 1.10101100x2°. Hence, half floating-point representation of the
result becomes X3 =0101 0010 1011 0000. As can be seen in this example, adding

two floating-point numbers require format changes and condition checks. There-fore,
it is not straightforward to add two numbers represented in floating-point form.

6.5.2 Subtraction

Two binary numbers can be subtracted in two different ways. The first method is plain
subtraction as in decimal numbers. There is nothing specific about this operation. The

second method 1s using two’s complement representation. Here, the negative number
is represented in two’s complement form. This provides a clear advantage such that
subtraction is performed by addition. Hence, no second circuitry is needed for the
subtraction operation. Moreover, if the result of subtraction is negative it is
automatically represented in two’s complement form as well. Therefore, this method is
used in most digital systems.

Let’s give two examples on subtracting two binary numbers using two’s
complement representation. In the first example, let’s subtract 0000 1110 from 0010
0111. First, we obtain the two’s complement of 0000 1110as 1111 0010. Adding
11110010 t0 0010 0111 gives 1 0001 1001. As can be seen, the result is represented
by nine bits. In other words, an overflow occurred. If overflow occurs, we should
discard it and the result is final. In other words, subtraction results in 0001 1001. In the
second example, let’s subtract 0010 0111 from 0000 1110. Here, we obtain the two’s
complement of 0010 0111 and add it to 0000 1110. The result becomes 1110 0111. In
this operation, no overflow occurs. This indicates that the result is negative and
represented in two’s complement form. We can check it by obtaining the two’s
complement of the first subtraction result which gives 1110 0111. As can be seen here,
two’s complement representation handles sign of the result after operation.

Subtraction operation can also be applied to two binary numbers with fractional
part. As in addition, the important point here is that the two numbers should be
represented in the same format. If this is not the case, the first step is making formats
the same. Next, let’s consider binary subtraction operation on fixed-and floating-point
numbers.

6.5.2.1 Fixed-Point Subtraction

Let’s start with subtracting two binary numbers represented by the same unsigned
fixed-point format. To explain subtraction, let’s take two binary numbers represented
in UQ8.4 format as 0000 1110 0010 and 0010 0111 0110. In the first example, let’s
subtract 0000 1110 0010 from 0010 0111 0110. We can apply two’s complement
method as in the previous example. Therefore, we first obtain the two’s complement of
0000 1110 0010 as 1111 0001 1110. Adding 1111 0001 1110t0 0010 0111 0110
gives 1 0001 1001 0100. As can be seen here, the result should be represented by 13
bits but the original format had 12 bits. Since overflow occurred, we discard the MSB
and obtain the final result as 0001 1001 0100. Here, the first and second numbers were
14.125 and 39.375, respectively in decimal form. Subtracting 14.125 from 39.375
results in 25.25. Binary subtraction result obtained in UQ8.4 form is also the same as
this number. In the second example, let’s subtract 0010 0111 0110 from 0000 1110
0010. Applying the same steps as in the previous example, we will obtain the
subtraction result as 1110 0110 1100. In this operation, no overflow occurs. This
indicates that the result is negative and represented in two’s complement form.
Subtracting two fixed-point signed numbers with the same format is the same as in
subtracting two numbers with unsigned fixed-point format. The only difference is that
the sign bit should be taken into account such that if the number is negative, it should

be represented as such in the subtraction operation.

6.5.2.2 Floating-Point Subtraction

As in addition, subtracting two binary numbers represented by floating-point format is
more complicated. To subtract numbers, the first constraint is their having the same
floating-point format as half, single, double, or quad. Moreover, exponent (£) should
be the same for both numbers. If they are not the same, then fractional parts should be
adjusted accordingly. Then, subtraction can be done. Afterward, the fractional part,
exponent, and sign bit should be adjusted such that a valid floating-point
representation is obtained. While subtracting numbers, the sign bit should be taken into
account such that if the number is negative, it should be represented as such in
operations.

Let’s take two examples on subtracting two floating-point numbers. For these let’s
pick two decimal numbers as 14.125 and 39.375 (which we have been using up to
now). Assume that the half floating-point form is selected. Hence, the first and second
numbers are represented as X7 = 0100 1011 0001 0000 and X, =0101 0000 1110

1100. These numbers can be represented as 1.110001x23 and 1.00111011x2° after
discarding the exponent bias. We can equate the exponential value for these such that
the second number becomes 100.111011x23. As first example, let’s subtract

1.110001x23 from 100.111011%23. We can represent the subtraction as
(100.111011-1.110001) x23. Here, subtraction can be done as if they are in fixed-
point form. The result becomes 11.001010%23. This number can be represented as

1.1001010%x2%. Hence, the half floating-point form of the result becomes X3 =0100

1110 0101 0000. As second example, let’s subtract 100.111011x23 from
1.110001x23 which can be shown as (1.110001-100.111011) x23. The result of this

operation becomes —1.1001010x2% Hence, the half floating-point form of the result
becomes X3 =1100 1110 0101 0000.

6.5.3 Multiplication

Multiplying two binary numbers is also the same as multiplying two decimal numbers.
The reader should be aware that the product term requires more bits for representation
compared to multiplied numbers. Let’s give an example on multiplying two binary
numbers represented by eight bits as 0000 1110 and 0010 0111. Their product will be
10 0010 0010. As can be seen here, the product term requires 10 bits for
representation. The multiplication operation can also be applied on two binary
numbers with fractional part. Next, let’s consider the binary multiplication operation
on fixed-and floating-point numbers.

6.5.3.1 Fixed-Point Multiplication

Let’s start with multiplying two binary numbers represented by the same unsigned

fixed-point format. To explain the multiplication operation, let’s take two binary
numbers represented in UQS8.4 format as 0000 1110 0010 and 0010 0111 0110. Here,

the reader can represent these two numbers as 11100010%x2 % and 1001110110%2™ %,
Product of these two numbers will be 11100010% 1001110110%275, Hence, the result

becomes 100010110000101100%2~ 3. We can represent this number in UQ8.4 format as
0010 1100 0010. As can be seen in this example, an overflow with two and four bits
occurred in integer and fractional parts, respectively. Therefore, a larger format should
be used in representing the result. Multiplying two fixed-point signed numbers is the
same as in unsigned numbers. However, the sign bit should be taken into account in
deciding the sign of the product.

6.5.3.2 Floating-Point Multiplication

Multiplying two binary numbers represented by floating-point format is more
complicated as in addition and subtraction. Let’s give an example on multiplying two
decimal numbers 14.125 and 39.375. Assume that these numbers are represented by
the half floating-point form. From previous examples we know that these numbers can

be represented as 1.110001%23 and 1.00111011%2° or in simplified form as
1110001%2 3 and 100111011%2 73, respectively. Hence, their product will be 1110001
100111011%27%. The result becomes 1000101100001011%2~%. This number can be

represented as 1.000101100001011 x2°. Hence, half floating-point form of the result
will be X3 =0110 0000 0101 1000. In this representation, least significant five bits are

discarded due to the half floating-point format. However, the effect of these bits are
minor compared to the overflow in fixed-point representation. In this example, the two
floating-point numbers had the same sign bit as positive. For floating-point numbers
having negative sign bit, this should be taken into account in operations.

6.5.4 Division

Dividing two binary numbers is also the same as dividing two decimal numbers. The
reader should be aware that the division of two integer numbers may result in a
number with extra fractional part. Let’s give an example on dividing two binary
numbers represented by eight bits as 0010 0111 and 0000 1110. Let’s divide the first
number by the second. Integer part of the division will be 10. Besides, there is also a
fractional part of the division. For ease of demonstration, we can represent this
fractional part by four bits as 1100. The division operation can also be applied on two
binary numbers with fractional part. Next, let’s consider the binary division operation
on fixed-and floating-point numbers.

6.5.4.1 Fixed-Point Division

To explain the division operation, let’s take two binary numbers in UQS8.4 format as
0000 1110 0010 and 0010 0111 0110. Here, the reader can represent these two

numbers as 11100010x2 % and 1001110110x% %, Let’s divide the second number by

the first which can be represented as 1001110110+ 11100010 =20, The division results
in a fractional number with overflow. Therefore, it should be truncated. Then, the

result becomes 101100x2~4. We can represent this number in UQS8.4 format as 0000
0010 1100.

6.5.4.2 Floating-Point Division

Let’s finally give an example on dividing the decimal number 39.375 by 14.125
represented by half floating-point form. We know that these numbers can be

represented as 1.00111011x2° and 1.110001%23, respectively, from previous sections.
We can represent these numbers as 100111011x2 7> and 11100011 x273. Therefore,
their division can be represented as 100111011 = 1110001 %29, The result of division

will be 1.0110010011 x2!. Hence, half floating-point form of the result becomes
X3=01000001 1001 0011. In this representation, least significant bits lower than digit

10 are discarded due to half floating-point format. However, effect of these bits are
minor compared to the overflow in fixed-point representation. In this example, two
floating-point numbers had the same sign bit as positive. For floating-point numbers
having negative sign bit, this should be taken into account in operations.

6.6 Data Types in Verilog

We introduced number representations and related concepts from a generic point of
view in previous sections. Starting from this section, we will handle these concepts
using HDLs. Therefore, we will start exploring data types in Verilog in this section.
Then, we will consider constants and parameters. Afterward, we will introduce
vectors. We will analyze the FPGA implementation details of these in Sec. 6.11.

6.6.1 Net and Variable Data Types

A value in a digital system can basically be represented either as net or variable in
Verilog. The net data type is specific for connecting two elements. For us, the most
important net data type is wire. As the name implies, this data type acts simply as a
wire connecting two elements. The variable data type can be used to represent a
generated data till it changes. Useful variable data types are reg and integer in
Verilog. A reg variable can be used to represent one-bit data. An integer variable
typically represents 32-bit long data. We can define a net or variable data type in
Verilog by the structure data type data name. For example, we can define wire ini
to indicate a variable in1 of type wire.

6.6.2 Data Values

A net or variable data type can get one of four predefined values. These are as follows:

0 corresponds to logic level zero.

1 corresponds to logic level one.
x represents the undefined logic level.
z represents high impedance.

We are familiar with logic level zero and one from previous chapters. The
undefined logic level x is used in logical operations when the corresponding value is
unknown or it does not affect the operation. For the second case, x is most of the times
called “don’t care” condition. The high impedance value z indicates that connection at
that point is disabled. In other words, it indicates an open circuit at the given location.

6.6.3 Naming a Net or Variable

While describing a digital system in Verilog, one may want to name a net or variable.
Here, the reader is free to choose among many options. The only constraint here 1s that
the name should not begin with a digit and it should not be any of Verilog keywords.
Besides, Verilog is case sensitive. Hence, an uppercase and lowercase character is not
the same. This should be taken into account while assigning a name. More
importantly, meaningful and representative names should be picked for assignment to
increase the readability of Verilog description.

6.6.4 Defining Constants and Parameters

We can represent binary, octal, hexadecimal, and decimal constant values (besides
others) in Verilog. General structure of representing a constant for these types is

bit width ’radix constant value. Here, bit width indicates the number of bits to
represent the constant value. If this is not set, the default value is 16 bits. The radix
can be binary (b), octal (o), hexadecimal (n), or decimal (d). The constant value is
the actual constant to be represented.

Let’s give some examples on constants. 1’ b0 indicates the binary number 0. 2/ b10
indicates the binary number 10. 4’ b10 indicates the binary number 0010. 6’ 075
indicates the octal number 75. 8’ hca indicates the hexadecimal number ca. Finally,

8’ d251 indicates the decimal number 251 which can be represented by eight bits.

6.6.5 Defining Vectors

A net or variable need not be composed of one bit in Verilog. Instead, it can be
represented as a vector. This allows us to represent data in compact form. The vector
format for representation will be the same as a net or variable definition with an extra
[N-1:0] prefix which indicates that there will be n net variable entries packed as a
vector. Here, MSB and LSB are located at the n-1th and zeroth entries, respectively.

As an example, we can define wire[7:0] in1 to indicate a variable in1 of type
wire with eight entries. Here, in1 represents all eight-bit values at once. in1[7]
represents the most significant entry. in1[0] represents the least significant entry. We
can select a subpart of the vector as in1[5:3] such that the fourth, fifth, and sixth
entries are selected.

We can also change the order of bits in representing a vector. Continuing from the
above representation, we can redefine wire[0:7] inl to indicate a variable in1 of
type wire with eight entries. Now, the most significant bit will be represented by
in1[0]. The least significant entry will be represented by in1(7].

We next provide Verilog description as an example of vector operations in Listing
6.1. Here, first a specific vector entry is selected. Then, subpart of the vector is
selected. Finally, the vector bit order is reversed. We provide the RTL schematic of
these vector operations in Fig. 6.1. As can be seen in this figure, vector operations are
performed by wiring input and output ports only.

resl_OBUF inst
num4[7:0]_IBUF_inst - e

Aum1[7:0] [D>—] g 4 SEIE L [res1

IBUF res2[3:0]_OBUF _inst
I 0

I @ L res2[3:0]

OBUF

res3[7:0]_OBUF_inst
I] 0

> [res3[0:7]

OBUF

FIGURE 6.1 RTL schematic of basic vector operations.

To explain working principles of vector operations, we provide a testbench file in
Listing 6.2. Here, the input vector to be processed is taken as ra. We provide the
results obtained from the testbench file in Fig. 6.2. These results indicate that vector
entries can be processed as desired in Verilog.

Objects O =]] 2
1] n
A 30| wsl 'l B W
Name Value Data Type
+-#4in1[7:0] fa Array

L@ outl 0 Logic
+- 8§ out2[3:0] f Array

+- &g out3[0:7] fa Array

-

FIGURE 6.2 Basic Vector Operation Results in Verilog.

6.7 Operators in Verilog

There are basically six operator groups in Verilog. These are logical, arithmetic, shift,
concatenate, replicate, and condition. We will introduce arithmetic, concatenation, and
replication operators in this chapter. The rest will be introduced in the following
chapters. We will analyze the FPGA implementation details of operations considered
here in Sec. 6.11.

Listing 6.1 Basic Vector Operations in Verilog

module vector defn(numl,resl,res2,res3);

input [7:0] numl;
output resl;

output [3:0] res2;
output [0:7] res3;

//selecting a specific vector entry
assign resl=numl[2];

//selecting specific vector entries
assign res2=numl[7:4];

//changing the order of bits
assign res3=numl;

endmodule

Listing 6.2 Testbench File for Basic Vector Operations in Verilog

'timescale 1lns / 1lps
module vector defn tb;

reg [7:0] inl;
wire outl;

wire [3:0] out2;
wire [0:7] out3;

vector defn UUT(.numl{inl), .resl(outl), .res2(out2),.res3d({outl));
initial begin

inl = 8'hFA;

#100;

end

endmodule

6.7.1 Arithmetic Operators

Verilog has five arithmetic operations as addition (+), subtraction (-), multiplication
(), division (/), and modulus (%). All these operations can be performed on vectors
with user-defined size. Hence, these can be called fixed-point operations with user-
defined format. When result of an operation becomes negative, it is represented in
two’s complement form.

Let’s give basic examples on the usage of arithmetic operations. The first example
is on arithmetic operations by using a vector input and constant defined as a parameter.
We provide the corresponding Verilog description in Listing 6.3. Here, five arithmetic
operations (addition, subtraction, multiplication, division, and modulus) are applied on
the constant coef=8’h02 and input vector num. Dataflow modeling is used in
describing these operations. We provide the RTL schematic of the description in Fig.
6.3. As can be seen in this figure, constant values are taken as fixed voltage levels in
the schematic.

resl_i

V=B"10" 10[1:0]
/—\o 7:0] |
num[7:0] D » 11{7:0] (\/ :> res1[7:0]

RTL_ADD

10[7:0]
| V=B"10" 11[1:0] (QO L7 [res2[7:0]

RTL_SUB
V=B"10" 10[L:0] ™
S : QO[T:O]
11(7:0]([res3[7:0]
® \/
RTL_MULT
12 resd_i

L 10L7:0] &[7:0] D res4[7:0]
V=B"01" |1[1:0]U

RTL_RSHIFT
j0[7:0] _res>-
N\0[7:0] _
| V=B"00000001" 11[7:0] [res5(7:0]
RTL_AND

FIGURE 6.3 RTL schematic of arithmetic operations on a constant and vector.

To explain working principles of arithmetic operations including a constant, we
provide the testbench file in Listing 6.4. Here, input vector to be processed is taken as
8’ h07. Arithmetic operation results are provided (in hexadecimal form) in Fig. 6.4. As
can be seen in this figure, only the integer part of the division operation is kept.
Besides, obtained results are as expected.

Objects it [=]
T | » ‘ | i “‘ i

Q, [chlcals1%8e
Name Value Data Type £
©9in1[7:0] 07 Array

&% out1[7:0] 09 Array

<% out2[7:0] 05 Array

&% out3[7:0] Oe Array

&% out4[7:0] 03 Array
<% out5[7:0] 01 Array

* X

+

+

+

+

+

+

FIGURE 6.4 Result of arithmetic operations on a constant and vector in Verilog.

The second example on arithmetic operations is based on examples (on two eight-
bit numbers) in Sec. 6.5. Here, again five arithmetic operations are applied on two
eightbit input vectors num1 and num2. We provide the corresponding Verilog
description in Listing 6.5. Dataflow modeling is used in describing these operations.
Note that the multiplication result is represented by a 14-bit vector in the description.
The reader can also use a 16-bit vector as well. We provide the RTL schematic of the
description in Fig. 6.5. As can be seen in this figure, all arithmetic operations are
represented as basic blocks.

resl i

10[7:0]
num1[7:0] [7~ Noir:o) [res1[7:0]

num2[7:0] [_>—= Il[T:O](Q
RTL_ADD
0[7:0] res2_i
' 0[7:0
! |1[7:0]/:\[: [res2[7:0]
RTL_SUB
10[7:0] res3_i
' 0[7:0]
|1[7:0]\:I [res3[7:0]
| |
RTL_SUB
10[7:0] res4_j
| |1[7;0]U* \0113:01 [> res4[13:0]
RTL_MULT
10[7:0] resb j
: 0[7:0
! 11[7:0] //\[] [res5(7:0]
RTL_DIV
10[7:0] rest_i
' 0[7:0
I1[7:O](/°\A}[L S resor70]

RTL_MOD

FIGURE 6.5 RTL schematic of arithmetic operations on two vectors in Verilog.

To be consistent with the examples in Sec. 6.5, we construct the testbench file in
Listing 6.6. Here, the two vectors are taken as 8’ 00001110 and 8’b00100111.
Arithmetic operation results are provided in Fig. 6.6. As can be seen in this figure, the
negative result is represented in two’s complement form. Also, only integer part of the
division operation is given. Besides, the reader can observe that results obtained here
are the same as in Sec. 6.5.

Objects 2 _ 0O X
o\ CBlEBla 6l

Name Value Data Type 2.
+)- ¥4 in2[7:0] 00100111 Array
+-@§ out1[7:0] 00110101 Array
+- 9§ out2[7:0] 00011001 Array
+-9§ out3[7:0] 11100111 Array
+)- 9§ out4[13:0] 00001000100010 Array
+- &g out5[7:0] 00000010 Array
+-dg out6[7:0] 00001011 Array 9

FIGURE 6.6 Result of arithmetic operations on two eight-bit vectors in Verilog.

The third example on arithmetic operations is based on examples (on fixed-point
numbers with UQ8.4 format) in Sec. 6.5. Here, fixed-point numbers are represented by
two 12-bit input vectors num1 and num2. We provide the corresponding Verilog
description in Listing 6.7. Note that the multiplication result is represented by a 24-bit
vector in the description. The RTL schematic of this description is the same as in Fig.
6.5. Only the number of wires used in operations differ.

Listing 6.3 Arithmetic Operations on a Constant and Vector in Verilog

module arithmetic_constant (num,resl,res2,res3,res4, res5) ;

input [7:0] num;

output [7:0] resl;
output [7:0] res2;
output [7:0] res3;
output [7:0] res4;
output [7:0] resh;

parameter coef=8'h02;

//addition
assign resl=coef+num;

//subtraction
assign res2=num-coef;

//multiplication
assign res3=coef*num;

//division
assign res4=num/coef;

//modulus
assign resS5=num%coef;

endmodule

To be consistent with the fixed-point arithmetic examples in Sec. 6.5, we construct
the testbench file in Listing 6.8. Here, the two vectors are taken as 12/ b000011100010
and 12"001001110110. Arithmetic operation results are provided in Fig. 6.7. As in the

previous example, the reader can observe that results obtained here are the same as in
Sec. 6.5.

Objects N UL
. : \
X [hich| e 16/ 8%
Value Data Type 2
1000011100010
#-#§in2[11:0] 001001110110 Array
&) @§ out1[11:0] 001101011000 Array
) @§ out2[11:0] 000110010100 Array
i) @§ out3[11:0] 111001101100 Array
)@ out4[23:0] 000000100010110000101100 Array
)@ outS[11:0] 000000000010 Array
)@ out6[11:0] 000010110010 Array G

FIGURE 6.7 Result of arithmetic operations on two 12-bit vectors in Verilog.

As can be seen in all these examples, arithmetic operations can be performed
without any difficulty in Verilog. Therefore, we will not explore dedicated arithmetic
operation circuits in the following chapters. We should warn the reader about
multiplication and division operations at this point. Although these operations can be
performed, they heavily dissipate the FPGA resources. We will see this resource
dissipation by actual examples in Sec. 6.11. Therefore, multiplication and division
operations should be avoided whenever possible.

6.7.2 Concatenation and Replication Operators

The concatenation operator in Verilog allows merging two or more vectors. This is
done by the curly bracket. Let’s give an example. Assume that we want to merge two
vectors numl and num2. We can do this by {num1, num2}. The replication operation can
be used to copy a vector multiple times to generate a new vector. This can be done by
n{num1} where n is the duplication number.

Listing 6.4 Testbench File for Arithmetic Operations on a Constant and Vector in
Verilog

'timescale 1lns / 1ps
module arithmetic constant tb;
reg [7:0] inl;

wire [7:0] outl;
wire [7:0] out2;

wire [7:0] out3;
wire [7:0] out4;
wire [7:0] outh5;

arithmetic constant UUT (.num(inl),.resl(outl), .res2(out2), .res3
(out3), .res4 (out4d), .res5(outh)) ;

initial begin

inl = 8'h07;
#100;

end
endmodule

Listing 6.5 Arithmetic Operations on Two Eight-bit Vectors in Verilog

module arithmetic_operations(numl,num2,resl,res2,resB,res4,re85,res6);

input [7:0] numl;
input [7:0] num2;
output [7:0] resl;
output [7:0] res2;
output [7:0] res3;
output [13:0] res4;
output [7:0] res5;
output [7:0] resé6;
//addition

assign resl=numl+num2;

//subtraction
assign res2=num2-numl;

assign res3=numl-num2;

J/multiplication
assign res4=numl*num2;

//division
assign resS=num2/numl;

//modulus
assign res6=num2%numl;

endmodule

Listing 6.6 Testbench File for Arithmetic Operations on Two Eight-bit Vectors in
Verilog

module arithmetic operations tb;

reg [7:0] inl;
reg [7:0] inZ:
wire [7:0] outl;
wire [7:0] out2;
wire [7:0] out3;

wire [13:0] out4;
wire [7:0] outh;
wire [7:0] outé;

arithmetic_operations UUT (.numl(inl), .num2(in2),.resl(outl),.res2
(out2), .res3 (out3), .res4 (out4), .res5 (outh), .res6 (outh)) ;

initial begin
inl = &§'b00001110;
in2 = 8'b00100111;

#100;
end

endmodule

Listing 6.7 Arithmetic Operations on Two 12-bit Vectors in Verilog

module arithmetic_operations UQ8 4 (numl,num2,resl,res2,res3,res4,res5,

resé6) ;
input [11:0] numl;
input [11:0] num2;
output [11:0] resl;
output [11:0] res2;
output [11:0] res3;
output [23:0] res4;
output [11:0] res5;
output [11:0] resé6;
//addition

assign resl=numl+num2;

//subtraction
assign res2=num2-numl;

assign res3=numl-num2;

//multiplication
assign res4=numl*num2;

//division
assign resS5=num2/numl;

//modulus
assign resé6=num2%numl;

endmodule

We provide dataflow model of concatenation and replication operations on vectors
in Listing 6.9. Here, first two vectors num1 and num2 are concatenated. Then, the
replicate of the vector num1 1s generated twice. The RTL schematic of these operations
are as in Fig. 6.8. As can be seen in this figure, concatenation and replication
operations are implemented by using wiring between input and output ports.

| numlg:O]_lBUF_inst | resi[lg:O]_OBUF_inst

|

numi[7:01D— = ([= L res1[15:0]
IBUF OBUF
num2[7:0]_IBUF_inst res2[15:0]_OBUF_inst

num2(7:0] [D— > Q I—l[@o D res2[15:0]
IBUF OBUF

FIGURE 6.8 RTL schematic of concatenation and replication operations.

Listing 6.8 Testbench File for Arithmetic Operations on Two 12-bit Vectors in
Verilog

module arithmetic operations UQ8 4 tb;

reg [11:0] inl;

reg [11:0] in2;

wire [11:0] outl;
wire [11:0] out2;
wire [11:0] out3;
wire [23:0] out4;
wire [11:0] outs;
wire [11:0] outé;

arithmetic_operations UQ8 4 UUT (.numl(inl), .num2(in2), .resl(outl), .
res2 (out2), .res3 (out3), .res4 (outd), .res5(outh), .res6 (out6)) ;

initial begin

inl = 12'b000011100010;
in2 = 12'b001001110110;
#100;

end

endmodule

We provide the testbench file in Listing 6.10 to explain concatenation and
replication operations on an example. Here, the two vectors are taken as 8’ nhra and
8’ nhor. Concatenation and replication operation results are provided in Fig. 6.9. The
reader can see how both operations resulted there.

Objects it [=] | 2LadC
=

A D0 el 6l W

Name Value Data Type o
+)- 4 in1[7:0] fa Array

+- 49 in2[7:0] of Array

+- &g out1[15:0] faof Array
+- 4§ out2[15:0] fafa Array

FIGURE 6.9 Result of concatenation and replication operations in Verilog.

6.8 Data Types in VHDL

As in Verilog, we should know data types in VHDL. Hence, they can be used in
processing data in digital systems. In this section, we will introduce data types and
their usage for this purpose.

Listing 6.9 Concatenation and Replication Operations in Verilog

module concatenate replicate (numl,num2,resl,res2);

input [7:0] numl;
input [7:0] num2;
output [15:0] resl;
output [15:0] res2;

//concatenate
assign resl={numl,num2};

//replicate
assign res2={2{numi}};

endmodule

Listing 6.10 Testbench File for Concatenation and Replication Operations in Verilog

'timescale 1lns / 1ps
module concatenate replicate tb;

reg [7:0] inl;
reg [7:0] in2;
wire [15:0] outl;
wire [15:0] out2;

goncgtenate replicate UUT(.muml (inl), .num2 (in2) : vesl (oukl); sres2 (out2)

X

initial begin
inl = 8'hFA;

in2 = 8'hOF;
#100;

end
endmodule

6.8.1 Signal and Variable Data Types

A value in a digital system can be basically represented either as a signal or variable
in VHDL. The signal data type is similar to the wire in Verilog. Hence, it can be used

to connect two elements. The signal (with its assigned type) can be defined as signal
signal name : signal type. The variable data type in VHDL is similar to the one
in Verilog. However, it is generally used in storing intermediate values and loop
counters. Therefore, we will provide its usage in the following chapters when needed.

The signal should have an associated type which defines values that can be taken by
it. Although there are several signal types in VHDL, we will use four of them at this
level as std logic, std logic vector, signed, and unsigned. We may introduce
new types in the following chapters if needed.

The std_logic type is for bitwise representations. Related to it, the std logic
vector type 1s for an array of bits to be explored in detail in Sec. 6.8.5. To use
std logic and std logic vector types, we should include the ieee library in the
description. We should also add the use ieee.std logic 1164.all line to the
description.

signed and unsigned types have the same properties as std_logic vector.
However, they are specifically used in arithmetic operations to be introduced in Sec.
6.9. To use signed and unsigned types, we should include the iecee library in the
description. We should also add the use ieee.numeric std.all line to the
description.

6.8.2 Data Values

std logic data type has nine different values. We will use the following four values
throughout the book:

0 corresponds to logic level zero.

1 corresponds to logic level one.

- represents the undefined logic level.
z represents high impedance.

We are familiar with logic level zero and one from previous chapters. The
undefined logic level, -, is used in logical operations when the corresponding value is
unknown or it does not affect the operation. For the second case, - is most of the times
called “don’t care” condition. The high impedance value z indicates that connection at
that point is disabled. In other words, an open circuit is present at that location.
std logic vector, signed, and unsigned types also use the mentioned data values.

6.8.3 Naming a Signal or Variable

As in Verilog, the user can select a wide range of names for a signal or variable in
VHDL. However, a VHDL keyword cannot be used as a name. Besides, the name
should begin with a letter. It cannot end with an underscore or it cannot have two
successive underscores. Unlike Verilog, VHDL is not case sensitive. Therefore, the
reader should take this into account while defining a name. Meaningful and
representative names should be picked for assignment to increase the readability of a
VHDL description.

6.8.4 Defining Constants

A constant can be defined to represent a value in VHDL. This is done to improve the
readability of description. Structure of a constant declaration is constant constant
name : type name := value. Here, if the value is one bit, then it should be
represented between apostrophes as “0’ or “1’. If the value has more than one bit,
then it should be represented between double quotes as “0101”. Moreover, we can use
the format x“value” or o“value” to represent the hexadecimal and octal values,
respectively. For example, the binary value “0101~ can also be represented as x“5” as
hexadecimal.

6.8.5 Defining Arrays

In VHDL, we can use std logic vector, signed, and unsigned types to represent bit
arrays. The signal array (with its assigned type) can be defined as signal array
name : array type (low to high) Or signal array name : array type (high
downto low). Here, 1ow and high values indicate the array’s first and last index
values.

Each array entry can be reached in VHDL. Let’s give an example for this operation.
Assume we define an array inl1 as signal inl : std logic vector (7 downto 0).
Here, in1 represents all eight bits at once. in1 (7) represents the MSB. in1 (0)
represents the LSB. We can also change the order of bits in representing an array. To
do so, we should redefine the array in1 as signal inl : std logic vector (0 to
7). Now, the MSB will be represented by in1 (0). The LSB will be represented by
inl (7).

We next provide the VHDL description as an example of array operations in Listing
6.11. Here, first a specific array entry is selected. Then, subpart of the array is selected.
Finally, the array bit order is reversed. Dataflow modeling is used in describing these
operations. The RTL schematic of this description is the same as in Fig. 6.1. As can be
seen in this figure, array operations are performed by wiring input and output ports
only.

To explain working principles of array operations, we provide the testbench file in
Listing 6.12. Here, input array to be processed is taken as “11111010”. Array operation
results will be as in Fig. 6.2. These results indicate that array entries can be processed
as desired in VHDL.

Listing 6.11 Basic Array Operations in VHDL

library ieee;
use ieee.std logic 1164.all;

entity vector defn is

port (numl : in std logic vector (7 downto 0);
resl : out std logic;
res2 : out std logic_vector (3 downto 0);

res3 : out std logic weector (0 to 7)};
end vector defn;

architecture dataflow model of vector defn is
begin

--gelecting a specific vector entry
resl <= numl(2);

--selecting specific vector entries
res2<= numl (7 downto 4) ;

--changing the order of bits
res3 <= numl;

end dataflow model;

Listing 6.12 Testbench File for Basic Array Operations in VHDL

library ieee;
use ieee.std logic 1164.all;

entity vector defn tb is
end vector defn tb;

architecture dataflow of vector defn tb is

component vector defn

port(numl : in std logic vector (7 downto 0);
resl : out std logic;
res2 : out std logic vector (3 downto 0);
res3 : out std logic vector (0 to 7));

end component;

signal 1inl : std logic vector (7 downto 0);
signal outl : std logic;

signal out2 : std logic vector (3 downto 0);
signal out3 : std logic vector (0 to 7);

begin
UUT: vector defn port map (numl => inl,resl => outl,res2 => out2,
res3 => out3);

process
begin
wait for 5 ns;

inl <= "11111010";

--wait;
end process;

end dataflow;

6.9 Operators in VHDL

There are basically five operator groups in VHDL. These are arithmetic, relational,
shift and rotate, concatenation, and logical operators. We will introduce arithmetic and
concatenation operators in this chapter. The rest will be introduced in the following
chapters.

6.9.1 Arithmetic Operators

We will use seven arithmetic operators in VHDL throughout the book. These are
absolute value (abs), multiplication (*), division (/), modulus (mod), remainder (rem),
addition (+), and subtraction (-). Except abs, all arithmetic operations are performed

on signed or unsigned numbers. Obtained result from these operations will also be
either a signed or unsigned number. The abs needs a signed number to operate. As in
Verilog, when the result of an operation is negative, it is represented in two’s
complement form in VHDL. Note that addition and subtraction operations can also be
applied to signals defined by std 1ogic vector.

Let’s give three examples on the usage of arithmetic operations. The first example
is on arithmetic operations using an array input and constant. We provide the VHDL
description in Listing 6.13. Here, three arithmetic operations (addition, subtraction,
and multiplication) are applied on a constant coef and input array num. Here, the
constant is defined as “00000010~. Dataflow modeling is used in describing these
operations. This description is the VDHL version of the one given in Listing 6.3.

Listing 6.13 Arithmetic Operations on a Constant and Array in VHDL

library ieee;
use ieee.numeric_std.all;

entity arithmetic constant is

port (num : in signed (7 downto 0);
resl : out signed (7 downto 0);
res2 : out signed (7 downto 0);
res3 : out signed (15 downto 0));

constant coef : signed (7 downto 0) :="00000010";
end arithmetic constant;

architecture dataflow model of arithmetic constant is
begin

--addition
resl <= num + coef;

--gsubtraction
res2 <= num - coef;

--multiplication
res3 <= coef * num;

end dataflow model;

To explain working principles of arithmetic operations including a constant, we
provide the testbench file in Listing 6.14. Here, the input array to be processed is taken
as “0000111”. Arithmetic operation results obtained will be the same as in Fig. 6.4.

The second example is arithmetic operations based on examples (on two eight-bit
numbers) in Sec. 6.5. Here, six arithmetic operations (addition, subtraction,
multiplication, division, modulus, and remainder) are applied on two eight-bit input
arrays numl and num2. We provide the corresponding VHDL description in Listing

6.15. Dataflow modeling is used in describing these operations. This description is the
VDHL version of the one given in Listing 6.5. We provide the RTL schematic of the
VHDL description in Fig. 6.10. As can be seen in this figure, all arithmetic operations
are represented as basic blocks.

resl_i
10[7:0] -
num1[7:01[7 0[7:0] ,
. res1[7:0]
num2[7:O]D 'y llw% D
RTL_ADD
0[7:0] res2_i
[|1[7:0]J—N3[7:O] [res2[7:0]
RTL_SUB
10[7:0] res3_i
-——(’ \0[7:0]
| |1[7:0]J [res3[7:0]
RTL_SUB
10[7:0] res4_i
-ﬁ/' \ 0[15:0] _
| Il[?:()i*/ [res4[15:0]
RTL_MULT
10[7:0] resb_i
1 : 0[7:0
|1[7:0]//\[] [res5[7:0]
RTL_DIV
o[7:0] 26 res6[7:0]
11[7:0(% O7:0] res7[7:0]
RTL_MOD

FIGURE 6.10 RTL schematic of arithmetic operations on two arrays.

Listing 6.14 Testbench File for Arithmetic Operations on a Constant and Array in
VHDL

library ieee;
use ieee.numeric_std.all;

entity arithmetic constant tb is
end arithmetic_constant_tb;

architecture dataflow of arithmetic constant tb is

component arithmetic constant

port (num : in signed (7 downto 0);
resl : out signed(7 downto 0);
res2 : out signed (7 downto O0);
res3 : out signed (15 downto 0));

end component;

!

signal inl : signed (7 downto 0)
signal outl : signed (7 downto 0)
signal out2 : signed (7 downto 0)
signal out3 : signed (15 downto 0

)i
begin

UUT: arithmetic constant port map (num => inl,resl => outl,res2 =>
out2,res3 => out3);

process
begin
wait for 5 ns;

inl <= "00000111";

--wait;
end process;

end dataflow;

Listing 6.15 Arithmetic Operations on Two Eight-bit Arrays in VHDL

library ieee;
use ieee.numeric std.all;

entity arithmetic operations is

port (numl : in unsigned (7 downto 0);
num2 : in unsigned (7 downto 0);
resl : out unsigned (7 downto 0);
res2 : out unsigned (7 downto 0);
res3 : out unsigned (7 downto 0);
res4 : out unsigned (15 downto 0);
res5 : out unsigned (7 downto 0);
res6 : out unsigned (7 downto 0);
res7 : out unsigned (7 downto 0));

end arithmetic operations;

architecture dataflow model of arithmetic operations is
begin

--addition
resl <= numl + num2;

--subtraction
res2 <= num2 - numl;

res3 <= numl - num2;

--multiplication
res4 <= numl * num2;

--division
res5 <= num2 / numl;

--modulus
res6é <= num2 mod numl;

--remainder
res7 <= numZ rem numl;

end dataflow_model;

To be consistent with examples in Sec. 6.5, we construct the testbench file in
Listing 6.16. Here, the two eight-bit arrays are taken as 00001110~ and ~00100111".
Arithmetic operation results are provided in Fig. 6.11. These are the same as in Fig.
6.6. Besides, the reader can observe that results obtained here are the same as in Sec.
6.5.

Objects it [o]] Z X

O\Cf!l@[' m

Value Data Type <
:0] 00001110 JAray
+ J@ in2[7:0] 00100111 Array
+-9§ out1[7:0] 00110101 Array
+-9§ out2[7:0] 00011001 Array
+-9§ out3[7:0] 11100111 Array
(+- 9§ out4[15:0] 0000001000100010 Array
(+- 9§ out5[7:0] 00000010 Array
+-4g out6[7:0] 00001011 Array
(+-9§ out7[7:0] 00001011 Array v

FIGURE 6.11 Result of arithmetic operations on two eight-bit arrays in VHDL.

The third example is arithmetic operations based on examples (on fixed-point
numbers with UQ8.4 format) in Sec. 6.5. Here, fixed-point numbers are represented by
two 12-bit input arrays num1 and num2. We provide the corresponding VHDL
description in Listing 6.17. This description is VDHL version of the one in Listing 6.7.
The RTL schematic of this description is the same as in Fig. 6.10. Only number of
wires used in operations differ.

To be consistent with fixed-point arithmetic operation examples in Sec. 6.5, we
construct the testbench file in Listing 6.18. Here, two arrays are taken as
“000011100010” and *001001110110~. Arithmetic operation results are provided in
Fig. 6.12. As in the previous example, the reader can observe that results obtained here
are the same as in Sec. 6.5.

Objects e =]) A
1 n
« [chlcalas e 8l
Value Data Type S
*#in1[11:0] 000011100010 Aray
+ Abln2[11 0] 001001110110 Array
+-8§ out1[11:0] 001101011000 Array
+-9§ out2[11:0] 000110010100 Array
+- 8§ out3[11:0] 111001101100 Array
+- 9§ out4[23:0] 000000100010110000101100 Array
+- 8§ outS[11:0] 000000000010 Array
+-4&g out6[11:0] 000010110010 Array
+- 4§ out7[11:0] 000010110010 Array v

FIGURE 6.12 Result of arithmetic operations on two 12-bit arrays in VHDL.

Similar to Verilog, all arithmetic operations can be performed without any difficulty
in VHDL as can be seen in Listing 6.15. Therefore, we will not explore dedicated

arithmetic operation circuits in the following chapters. We should warn the reader
about multiplication and division operations at this point. Although these operations
can be performed, they heavily dissipate the FPGA resources. Therefore,
multiplication and division operations should be avoided whenever possible.

6.9.2 Concatenation Operator

The concatenation operator in VHDL allows merging two or more arrays. This is done
by the & operator. Let’s give an example. Assume that we want to merge two arrays
numl and num2. We can do this by num1&num2.

We provide dataflow model of concatenation operation on arrays in Listing 6.19.
Here, two arrays num1 and num2 are concatenated. The RTL schematic of this
description is a part of Fig. 6.8.

Listing 6.16 Testbench File for Arithmetic Operations on Two Eight-bit Arrays in
VHDL

library ieee;
use leee.numeric_std.all;

entity arithmetic operations tb is
end arithmetic_operations_tb;

architecture dataflow of arithmetic operations tb is

component arithmetic operations

port (numl in unsigned (7 downto 0);
num2 in unsigned (7 downto 0);
resl : out unsigned (7 downto 0);
res? out unsigned (7 downto 0);
res3 out unsigned (7 downto 0);
res4 out unsigned (15 downto 0);
resb out unsigned (7 downto 0);
resé out unsigned (7 downto 0);
res7 : out unsigned (7 downto 0));

end component;

gsignal
signal
signal
signal

ind
in2
outl
out2

: unsigned
: unsigned
: unsigned
: unsigned

7 downto
7 downto
7 downto
7 downto

0);
0);
0);
0);

out3
out4
out5s
outé
out?

signal
signal
signal
signal
signal

: unsigned
: unsigned
: unsigned
: unsigned
: unsigned

(

(

(

(

(7 downto 0) ;

(15 downto O0);

(7 downto 0) ;

(7 downto 0) ;

(7 downto 0) ;

begin

UUT: arithmetic operations port map (numl => inl, num2 => in2, resl =>
outl, res2 => out2, res3 => out3, res4 => out4, resb5 =>

out5, resé => outé, res7 => out7);

process
begin
wait for 5 ns;

inl <= *00001110";
in2 == "g01003111";
--wait;

end process;

end dataflow;

Listing 6.17 Arithmetic Operations on Two 12-bit Arrays in VHDL

library ieee;
use leee.numeric std.all;

entity arithmetic operations UQ8 4 is
port (numl : in unsigned (11 downto 0);
num2 : in unsigned (11 downto 0);
resl : out unsigned (11 downto
res2 : out unsigned (11 downto
res3 : out unsigned (11 downto
res4 : out unsigned (23 downto
(
(
(

-

. =

res5 : out unsigned (11 downto

res6 : out unsigned (11 downto

res7 : out unsigned (11 downto
end arithmetic operations UQ8 4;

O O O O O o o
T St St St St S Sy

architecture dataflow model of arithmetic operations UQ8 4 is
begin

--addition
resl <= numl + num2;

--gubtraction
res2 <= num2 - numl;

res3 <= numl - num2;

--multiplication
res4 <= numl * num2;

--division
res5 <= num2 / numl;

--modulus
res6 <= num2 mod numl;

--remainder
res7 <= num2 rem numl;

end dataflow _model;

Listing 6.18 Testbench File for Arithmetic Operations on Two 12-bit Arrays in VHDL

library ieee;
use ieee.numeric_std.all;

entity arithmetic operations UQ8 4 tb is
end arithmetic_operations UQ8 4 tb;

architecture dataflow of arithmetic operations UQ8 4 tb is

component arithmetic operations UQ8 4

port (numl : in unsigned (11 downto 0);
num2 : in unsigned (11 downto 0);
resl : out unsigned (11 downto 0);
res2 : out unsigned (11 downto 0);
res3 : out unsigned (11 downto 0);
res4 : out unsigned (23 downto 0);
res5 : out unsigned (11 downto 0);
res6 : out unsigned (11 downto 0);
res7 : out unsigned (11 downto 0));

end component;

signal inl : unsigned (11 downto 0);
gignal 1in2 : unsigned (11 downto 0);
signal outl : unsigned (11 downto 0) ;
signal out2 : unsigned (11 downto 0);

0 .

gsignal out4 : unsigned
signal out5 : unsigned
signal outé : unsigned

(
(
(
(
signal out3 : unsigned (11 downto
(
(
(
signal out7 : unsigned (

begin

UUT: arithmetic operations UQ8 4 port map (numl => inl, num2 => in2,
resl => outl, res2 => out2, res3d => out3, res4 => out4,
resS5 => outh5, res6 => outh, res7 => out?);

process

begin

wait for 5 ns;

inl <= "000011100010";
in2 <= "001001110110";

--wait;
end process;

end dataflow;

Listing 6.19 Concatenation Operation in VHDL

library ieee;
use ieee.std logic 1164.all;

entity concatenate is

port (numl : in std logic vector (7 downto 0);
num2 : in std logic_vector (7 downto 0);
resl : out std logic vector (15 downto 0));

end concatenate;

architecture dataflow model of concatenate is
begin

resl <= numl & num2;

end dataflow model;

We provide the testbench file in Listing 6.20 to explain the concatenation operation
on an example. Here, two arrays are taken as *11111010” and *00001111”. The
obtained result will be the same as in Fig. 6.9.

6.10 Application on Data Types and Operators

In this section, we will construct a primitive calculator to add, subtract, multiply, and
divide two four-bit numbers on the Basys3 board. Input bits and the operation type is
represented by switches on the board. Output bit values are represented by LEDs on
the board. The reader can consult Sec. 4.8 related to this setup. In Listing 6.21, we
provide Verilog description of the calculator.

6.11 FPGA Building Blocks Used in Data Types and Operators

We introduced several operators to process data in this chapter. The aim here is trying
to show the reader how these are implemented in an FPGA. Therefore, he or she can
grasp the fundamental idea in using this device. Note that the FPGA implementations
provided in this section are not unique. They are the ones provided by Vivado. In other
words, we are bound by Vivado’s optimization tools in generating these
implementations.

Listing 6.20 Testbench File for Concatenation Operation in VHDL

library ieee;
use ieee.std logic 1164.all;

entity concatenate tb is
end concatenate tb;

architecture dataflow of concatenate tb is

component concatenate

port (numl : in std logic vector (7 downto 0);
num2 : in std logic vector (7 downto 0);
resl : out std logic vector (15 downto 0));

end component;

signal 1inl : std logic vector (7 downto 0);
signal in2 : std logic vector (7 downto 0);
signal outl : std logic vector (15 downto 0);

begin

UUT: concatenate port map (numl => inl, num2 => in2, resl => outl);

process
begin

walit for 5 ns;

inl <= "11111010";
in2 <= "00001111";

end process;

end dataflow;

In this section, we picked Verilog descriptions used in the chapter. The reader may
also test VHDL descriptions. However, we do not expect them to be totally different
than the ones given here.

6.11.1 Implementation Details of Vector Operations

We first focus on vector operations in Listing 6.1. To show implementation details on
this description, let’s set the input vector length to four as input [3:0] numl. With
this new form, a specific vector entry is selected (assign resl=numl[2]), subpart of a
vector is selected (assign res2=numl[3:2]), and vector bit order is reversed. After
synthesizing the modified description in Vivado, its schematic will be as in Fig. 6.13.

resl_OBUF inst

II g [> resl
OBUF
res2_OBUF[O]_inst
I £ res2[1:0]
OBUF
res2_OBUF[1]_inst
I 0 1
OBUF
res3_OBUF[0]_inst
U % res3(0:3]
OBUF
numl_IBUF[O]_inst res3_OBUF[1]_inst
num1[3:O]D—»O—'| 0 'I 0 S
IBUF OBUF
numi_IBUF[1]_inst res3_OBUF[2]_inst
bi—L 0 | 0 2‘
IBUF OBUF
numi1_IBUF[2]_inst res3_OBUF[3]_inst
»2_|_ 0 I 0 34
IBUF OBUF
num2_IBUF[3] inst
3 | 0
IBUF

FIGURE 6.13 FPGA implementation of vector operations.

As can be seen in Fig. 6.13, 11 input/output ports are used in the implementation.
Besides, each input or output port has an associated buffer with it. Moreover, only
wiring is done between input and output ports. Therefore, this implementation only
uses input/output blocks and interconnect resources from the FPGA building blocks
introduced in Sec. 2.2.

Listing 6.21 Calculator Implemented on the Basys3 Board in Verilog

module calculator(led, sw) ;

//sw([7:4] and sw[3:0] represent numbers,

//sw[9:8] represents the arithmetic operation (+, - , *, /)
input [9:0] sw;

output [7:0] led;

wire [7:0] addition;

wire [7:0] subtraction;
wire [7:0] multiplication;
wire [7:0] division;

assign addition = sw([7:4] + sw[3:0];
assign subtraction = sw([7:4] - sw([3:0];
assign multiplication = sw[7:4] * sw([3:0];
assign division = swl[7:4] / sw[3:0];

assign led = ({8{~sw[8]}} & {8{~sw[9]}} & addition) +
({8{sw([8]}} & {8{~sw[9]}} & subtraction) +
({8{~sw(8]}} & {8{sw[9]}} & multiplication) +
({8{sw(8]}} & {8{sw[9]}} & division);

endmodule

Listing 6.22 Enforcing Vivado to Use DSP Block in Arithmetic Operations in Verilog

(* use dsp48="yes" *)

module addition operation dsp48(numl,num2,resl);
input [7:0] numl;

input [7:0] num2;

output [7:0] resl;

assign resl=numl+num2;

endmodule

Listing 6.23 Enforcing Vivado to Use DSP Block in Arithmetic Operations in VHDL

library ieee;
use leee.numeric_std.all;

entity addition operation dsp48 is

port (numl : in unsigned (7 downto 0)
num2 : in unsigned (7 downto 0)
resl : out unsigned (7 downto 0

)3}
attribute use dsp48 : string;
attribute use dsp48 of addition operation dsp48 : entity is "yes'";

end addition operation dsp48;

architecture dataflow model of addition operation dsp48 is
begin

resl <= numl + num2;

end dataflow model;

Implementation schematic should emphasize that no variable or memory element is
used in the design as in a programming language. Only wires and ports are used. This
is also the case for concatenation and replication operations in Listing 6.9.

6.11.2 Implementation Details of Arithmetic Operations

Implementing arithmetic operations in the FPGA is an important topic by itself.
Therefore, let’s closely analyze implementation details of the description in Listing
6.5. To understand how Vivado implements arithmetic operations, let’s first focus on
the addition operation. As in the previous section, let’s apply addition on two two-bit
vectors. Schematic of the description after synthesis will be as in Fig. 6.14. As can be
seen in this figure, the addition operation is implemented by two LUTs in the FPGA.

numi_IBUF[O]_inst res1_OBUF[O]_inst_i_1 res1 OBUF[O]_inst
numa(1:0) D—p>>9 (G >0 %D res1[1:0]
IBUF 11 OBUF
num1_IBUF[1]_inst LUT2 res1_OBUF[1]_inst
»1_l[>0 res1_OBUF[1]inst i 1 > -
IBUF 10 OBUF
num2_IBUF[O]_inst 1 0
num2[1:0] D—»O—'{>O 12
IBUF 13
1 InwﬁngUFUJJnst LUT4

IBUF

FIGURE 6.14 FPGA implementation of addition operation.

The architecture in Fig. 6.14 is kept when subtraction, multiplication, and division
operations are implemented. However, the reader should remember that these

operations are done on two vectors each having two bits. If the vector length is
increased, resource usage difference between arithmetic operations become more
apparent. For example, when eight-bit addition, subtraction, multiplication, and
division operations in Listing 6.5 are implemented separately, addition and subtraction
operations will need eight LUTs. However, multiplication and division operations will
need 67 and 69 LUTs, respectively. Moreover, if the bit length is increased to 12 as in
Listing 6.7, then addition and subtraction operations will need 12 LUTs. The
multiplication operation will need one DSP block. The division operation will need
155 LUTs. Hence, the multiplication and division operation implementations need
extensive number of LUTs or DSP blocks. Note that LUT and DSP usage numbers are
obtained using tools in Sec. 4.3.

We can enforce Vivado to synthesize arithmetic operations using DSP blocks. The
way to do this in Verilog is adding attribute (* use dsp48=“yes” *) in front of the
module to be handled this way. We provide such an example in Listing 6.22. Here, the
addition operation is implemented using the DSP block. In VHDL, the same operation
can be done by adding an attribute in the port definition part. We provide such an
addition example in Listing 6.23. More information on this topic can be found in [28].

We can summarize basic findings in this section as follows. Arithmetic operations
are implemented either using CLBs or DSP blocks in the FPGA. Besides, interconnect
resources and input/output blocks are needed during implementation. There is one
important issue. Size of data to be processed directly affects the resource usage.
Related to this, multiplication and division operations may require heavy resource
usage when data size increases.

6.12 Summary

We introduced key data type and operator concepts in this chapter. While doing this,
we first explored number representations, negative numbers, and fixed- and floating-
point numbers from a generic point of view. Then, we explored binary arithmetic
operations. We next explored all of these concepts using HDLs. We postponed
floating-point operation implementation in HDL descriptions till Chap. 13 since it
requires advanced tools. We also analyzed HDL descriptions introduced in this chapter
from an FPGA implementation perspective. The idea here was to give an insight how
these descriptions are implemented in the FPGA. We will also apply the same
methodology in the following chapters.

6.13 Exercises

6.1 Find the fixed-point representation of number 315.2342 in formats a. UQ16.
b. UQ.16
c. UQI16.16

6.2 Find the fixed-point representation of numbers —315.2342 and 315.2342 in
formats a. Q15.

6.3

6.4

6.5

6.6

6.7
6.8

6.9

310

3.11

5.12

b. Q.15
c. Q15.16.

You have four numbers as 13.25, 15.50, 17.50, and 19.25. Find the hexadecimal
representation of these numbers in fixed-point UQ16.16 format.

Find the floating-point representation of numbers —315.2342 and 315.2342 in
formats

a. half
b. single
c. double

We will only have an approximation in representing the number 8751.135 in half
floating-point form. What is the difference between the actual number and this
approximation?

Find the floating-point representation of the number 8751.135 in single form.
Will there be an approximation here?

Find the floating-point representation of 7 in half form.

The ASCII codes given in Table 6.6 are called regular. What happens if we want
to represent regional characters like 1, i and ¢?

Two 16-bit numbers are taken as rrrrF and 0005 in hexadecimal form. Write a
Verilog or VHDL description and its testbench to implement and simulate below
operations.

a. FFFF+0005
b. FFFF-0005
C. 0005-FFFF

We know that only lowercase characters enter a system. Write a Verilog or
VHDL module to convert each entry to uppercase form. Simulate the result by
forming a testbench file.

Vivado offers an IP block called Adder/Subtracter in its IP Catalog. Use it to

implement addition and subtraction operations in previous exercises in Verilog
or VHDL.

What will be the value of y2, y1, v0 when the below Verilog description is
simulated? The input is set as x=8h’ 4F for simulation.

module questionl2(y2, yl, vy0, X);

output reg [7:0] y2, y1, v0;
input [7:0] x;

initial
begin
y0=8"'h00;
y1=8"h00Q ;
y2=8'h00;
end

always @ (x)
begin

y0 <= %/2;

vyl <= y0 + x;
Y2 <= y1 + xX*2;
end

endmodule

513 Form a Verilog description in behavioral modeling to calculate cube of a given
number. Only one multiplication operation can be used at once.

a. use nonblocking assignments b. use blocking assignments

5.14 (Joystick application.)A two-axis joystick provides analog voltage values
corresponding to its horizontal (x-axis) and vertical (y-axis) position when an
analog interfacing is done. These analog voltage values can be converted to
digital form by an analog-to-digital converter (ADC) module. Assume that the
analog interfacing is done and the ADC module is set to work. Hence, you get
two vectors as xp and yp each with 12 bits each. We will take the most
significant eight bits for xp and yp. Hence, sample hexadecimal values of these
vectors with respect to joystick position are as in Fig. 6.15.

FF |-

7F [

00 [

0 7F fr> P

FIGURE 6.15 Sample readings from the joystick.

We will use LEDs and switches on the Basys3 board for our operation.
Therefore, LEDs and switches 15 to 8 are assigned to the vertical position (yp
array) reading. LEDs and switches 7 to 0 are assigned to the horizontal position
(xp array) reading.

a. Form a Verilog or VHDL description to display the values of joystick axes
directly via designated LEDs.

b. Let’s design a simple game using our setup. The first user forms a 16-bit
pattern with setting each switch as on or off. The second user (without seeing
this pattern) tries to match this pattern by moving the joystick in x- and y-
axes. When the second user matches the pattern with the joystick position, all
LEDs will turn off. Form a Verilog or VHDL description to realize this
game.

CHAPTER 7

Combinational Circuits

digital system can be implemented in two forms. In the first one, output

depends on current input only. This form can be realized by combinational

circuits, which is the main topic of this chapter. In the second form, output

depends on past input or output values besides the current input. This form

can be realized by sequential circuits, which will be introduced in Chap. 10.

A combinational circuit is composed of logic gates to perform a specific

task. To understand the working principles of a combinational circuit, we will start
with basic definitions. Then, we will review logic gates from a combinational circuit
perspective. Afterward, we will introduce tools to analyze combinational circuits.
Related to this, we will explore how a combinational circuit can be implemented in an
field-programmable gate array (FPGA). Then, we will evaluate combinational circuit
design steps. We will also provide sample designs so that the reader can grasp the idea
in designing such a circuit. We will finally summarize how FPGA building blocks are
used in combinational circuit implementation.

7.1 Basic Definitions

Before going further, we should make basic definitions which will be used throughout
the book. Let’s start with defining binary variable.

7.1.1 Binary Variable

While analyzing or designing a combinational circuit, logic level at certain location
may be needed. To represent this value in generic form, we will assign a binary
variable at that location. This variable can only take either logic level zero or one by its
definition. Since we will be extensively using these logic levels for binary variables,
we will call them as 0 and 1 from this point on.

The customary way to represent a binary variable 1s using characters. Throughout
the book, we will adopt the same methodology by using characters such as x, y, and z
for this purpose. Therefore, we can represent value of a binary variable as x =1 or x =
0.

7.1.2 Logic Function

A logic function by its definition is formed of logic gates operating on binary
variables. To be more specific, inputs of a logic function are defined as binary
variables. Then, logic gates operating on these produce output, again as a binary
variable. This will allow us to represent a combinational circuit in formal way.

We will represent a logic function by capital letter throughout the book. One such
example 1s z = F{(x, y). Here, the logic function F'is defined on two binary variables x
and y. Output of the function is another binary variable z. Depending on the definition
of the logic function F, z will be represented in terms of binary variables x and y.

7.1.3 Truth Table

One way of describing input/output characteristics of a logic function is by forming its
truth table which will tabulate all input combinations on its left-hand side. For each
input combination, corresponding output will be provided on the right-hand side of the
table. Hence, a generic truth table will be as in Table 7.1.

Inputs Outputs
Binary variables Binary variables
Input Corresponding
combinations outputs

TABLE 7.1 Generic Truth Table

Let’s assume that the logic function (or corresponding combinational circuit) has N
input variables. Since each binary variable can take two values, total number of input
combinations will be 2N. The truth table should tabulate all these combinations.
Output of the logic function for each input combination is either 0 or 1. Therefore, the
truth table describes combinational circuit characteristics precisely. In other words, we
know how the combinational circuit behaves for any given input. Hence, the truth table
will be our main tool in analyzing and designing combinational circuits.

7.2 Logic Gates

We have introduced logic gates as digital electronic devices in Sec. 2.1. Here, we
review them by focusing on their combinational characteristics. Moreover, we provide
hard-ware description language (HDL) description of all logic gates considered here.

7.2.1 The NOT Gate

NOT is the first logic gate to be considered. It is actually an inverter with single input
and output. Let’s assume that input to the NOT gate is represented by binary variable
x; and let output of the gate be binary variable y. Then, the NOT gate can be
represented by the logic function y = x. Truth table of the NOT gate based on this logic
function will be as in Table 7.2. Symbol of the NOT gate for this logic function is as in
Fig. 7.1.

Input Output
X Z=X
0 1

1 0

TABLE 7.2 Truth Table of the NOT Gate
x~{>ﬁ% X

7.2.1.1 The NOT Gate in Verilog

The NOT gate has a specific keyword not for structural modeling in Verilog. For
dataflow and behavioral modeling, operator for the NOT gate is “ ~ *“. Using these, we
can describe the logic function y = x in Verilog as follows:

FIGURE 7.1 Symbol of the NOT gate.

// Structural modeling
not not gate(y,x);

// Dataflow modeling
assign y = ~X;

// Behavioral modeling

Y = ~%;

Here, y and x correspond to output and input of the NOT gate, respectively. We named
the NOT gate as not gate in structural modeling.

7.2.1.2 The NOT Gate in VHDL

The VHDL keyword for the NOT gate is not. Using it, we can describe the logic
function y = ¥ as follows:

library ieee;
use ieee.std logic 1164.all;

entity not gate is
port (x : in std logic;

y : out std logic);
end not gate;

architecture dataflow model of not gate is
begin

y<= not x;

end dataflow model;

7.2.2 The OR Gate

OR is the second logic gate to be considered. It may have two or more inputs.
However, the gate has one output. The working principles of the OR gate are as
follows. Whenever any of its inputs has value 1, output will be 1. Output will be 0 if
and only if all inputs have value 0. To represent the input/output characteristics of the
OR gate, let’s assume it has two inputs as binary variables x and y; and let output of
the gate be binary variable z. The operator to represent the OR gate is “ + . Based on
these, the two-input OR gate can be represented by the logic function z=x + y. The
truth table of the OR gate based on this logic function will be as in Table 7.3. The
symbol of the OR gate for this logic function is as in Fig. 7.2.

Inputs Output
X y Z=X+Yy
0 0 0
0 | 1
‘| 0 1
| | 1

TABLE 7.3 Truth Table of the

X
X+
yj} y

FIGURE 7.2 Symbol of the OR gate.

o
y y

FIGURE 7.3 Symbol of the NOR gate.

A NOT gate can be connected to output of the OR gate. This combination forms the
NOR (NOT-OR) gate. As in the OR gate, let’s assume inputs of this gate be
represented by binary variables x and y; and let output of the gate be binary variable z.
Then, the two-input NOR gate can be represented by the logic function z=x + y. The
truth table of the NOR gate based on this logic function will be as in Table 7.3. Only
out-put values will be inverted. The symbol of the NOR gate for this logic function is
as in Fig. 7.3.

7.2.2.1 The OR Gate in Verilog

The OR gate has a specific keyword or for structural modeling in Verilog. For
dataflow and behavioral modeling, the operator of the OR gate is *“ | *“. Using these, we
can describe the logic function z = x + y in Verilog as follows:

// Structural modeling
or or gate(z, x, y);

// Dataflow modeling
assign z = x | y;

// Behavioral modeling
z=x | v

Here, z corresponds to output of the OR gate. x and y correspond to inputs of the gate.
Note that we can increase the number of inputs as we like. In structural modeling, we
named the OR gate as or gate.

7.2.2.2 The OR Gate in VHDL

The VHDL keyword for OR gate is or. Using it, we can describe the logic function z =
x + y as follows:

library ieee;
use ieee.std logic 1164.all;

entity or gate is
port (x : in std logic;

y : in std logic;

z : out std logic);
end or gate;

architecture dataflow model of or gate is
begin

Z <= X OF 5

end dataflow model;

7.2.3 The AND Gate

AND is the third logic gate to be considered. As in the OR gate, it may have two or
more inputs. However, it has one output. The working principles of the AND gate are
as follows. Whenever all of its inputs have value 1, output will be 1. Output will be O if
any of the inputs has value 0. To represent input/output characteristics of the AND
gate, let’s assume two inputs as binary variables x and y; and let output of the gate be
binary variable z. Operator to represent the AND gate is “ - ““. Based on these, the two-
input AND gate can be represented by the logic function z = x - y. The truth table of
the AND gate based on this logic function will be as in Table 7.4. The symbol of the
AND gate for this logic function is as in Fig. 7.4.

X — ‘-
y — y

FIGURE 7.4 Symbol of the AND gate.

A NOT gate can be connected to output of the AND gate. This combination forms
the NAND gate. As in the AND gate, let’s assume input to this gate be binary
variables x and y; and output of the gate be binary variable z. Then, the two-input
NAND gate can be represented by the logic function z = x - y. The truth table of the
NAND gate based on this logic function will be as in Table 7.4. Only output values
will be inverted. The symbol of the NAND gate for this logic function is as in Fig. 7.5.

Inputs Output
X y Z=X-Yy
0 0 0
0 1 0
1 0 0
1 1 1

TABLE 7.4 Truth Table of the AND Gate

S
y — y

FIGURE 7.5 Symbol of the NAND gate.

7.2.3.1 The AND Gate in Verilog

The AND gate has a specific keyword and for structural modeling in Verilog. For
dataflow and behavioral modeling, the operator for the AND gate is “ & *“. Using
these, we can describe the logic function z =x - y in Verilog as follows:

// Structural modeling
and and gate(z, x, Vy);

// Dataflow modeling
assign z = X & y;

// Behavioral modeling
Z =X & YV;

Here, z corresponds to output of the AND gate. x and y correspond to inputs of the
gate. Note that we can increase the number of inputs as we like. In structural modeling,
we named the AND gate as and gate.

7.2.3.2 The AND Gate in VHDL

The VHDL keyword for the AND gate is and. Using it, we can describe the logic
function z = x - y as follows:

library ieee;
use ieee.std logic 1164.all;

entity and gate is
port (x : in std logic;

y : in std logic;

z : out std logic);
end and gate;

architecture dataflow model of and gate is
begin

z <= X and vy;

end dataflow model;

7.2.4 The XOR Gate

The fourth and final logic gate to be considered is XOR (Exclusive-OR). This gate can
be constructed by using AND, OR, and NOT gates. Therefore, it may or may not be
taken as a fundamental logic gate. However, XOR is used in combinational circuit
representation. Therefore, we explore it in this section. The working principles of the
XOR gate are as follows. When two inputs of the gate have the same logic level (either
0 or 1), its output will be 0. Whenever the two inputs of the gate have different logic
levels, its output will be 1. To represent input/output characteristics of the XOR gate
based on this definition, let’s assume two inputs as binary variables x and y. Let output
of the gate be binary variable z. Then, two-input XOR gate can be represented by the
logic function z = (x - i) + (¥ - y). This logic function can be simplified by using the “
¢ “ operator to represent the XOR gate as z = x 43 y. The truth table of the XOR gate

based on this logic function will be as in Table 7.5. The symbol of the XOR gate for
this logic function is as in Fig. 7.6.

Inputs Output
X y Z=X®PYy
0 0 0
0 1 1
| 0 1
‘| 1 0

TABLE 7.5 Truth Table of the XOR Gate

;ij@y

FIGURE 7.6 Symbol of the XOR gate.

7.2.4.1 The XOR Gate in Verilog

The XOR gate has a specific keyword xor for structural modeling in Verilog. For
dataflow and behavioral modeling, the operator for the XOR gate is “ ™ ““. Using these,

// Structural modeling
xor xor gate(z, x, y);

// Dataflow modeling
assign z = x " y;

// Behavioral modeling
z =x " y;

Here, z corresponds to output of the XOR gate. x and y correspond to inputs of the
gate. In structural modeling, we named the XOR gate as xor gate.

7.2.4.2 The XOR Gate in VHDL
The VHDL keyword for the XOR gate is xor. Using it, we can describe the logic

library ieee;
use ieee.std logic 1164.all;

entity xor gate is
port (x : in std logic;

y : in std logic;

z : out std logic);
end xor gate;

architecture dataflow model of xor gate is
begin

Z <= X XOT ¥;

end dataflow model;

7.3 Combinational Circuit Analysis

Logic gates introduced in the previous section can be used to construct combinational
circuits. To understand the working principles of a combinational circuit, we should
analyze it. Therefore, we should first form a logic function between its inputs and
output(s). If needed, we can also form the truth table of combinational circuit based on
this representation. The final step in analysis is representing the combinational circuit
by less (or simpler) elements, which is called gate-level minimization.

7.3.1 Logic Function Formation between Input and Output

The first step in analyzing a combinational circuit is forming the logic function
between its inputs and output(s). Here, we assume that the corresponding circuit
diagram is at hand. Then, we should “read” this diagram. Let’s give a simple example.
Assume that a combinational circuit has been designed beforehand by discrete logic
gates as in Fig. 7.7. We would like to form the corresponding logic function.

y . ; DZ5
B
>

74

FIGURE 7.7 Circuit diagram of a combinational circuit.

In Fig. 7.7, we specifically labeled output of each logic gate by a binary variable.
Based on these, we can represent input/output characteristics of the combinational
circuit. To do so, we first obtain output of each logic gate separately as follows:

Z22=x4y
23=%XY
z4 =7y
z5=z1¢z2

2= 2323 74

These lead to input/output characteristics of the combinational circuit as follows:

z=((x-y)ex+y)+XY+Yy

This logic function can be implemented by an HDL in an FPGA. However, some
simplifications can be done on it before its implementation. Next, we will consider
how this can be done.

7.3.2 Boolean Algebra

We can benefit from Boolean algebra for gate-level minimization. Boolean algebra is
the framework to represent and analyze logic functions formed by binary variables and
logic gates. Boolean algebra can be explained in a rigorous way using mathematical
definitions. However, we will take a simpler approach in this book. The idea is to
cover basic definitions of Boolean algebra necessary for our purposes.

First, we will review basic identities by Boolean algebra. Let’s assume two binary
variables x and y. We can define identities on AND and OR gates as in Table 7.6.
Although these identities can be justified by using a truth table, the reader can consult
the mentioned reference for more rigorous proof [29].

We can describe Boolean algebra identities in Verilog as in Listing 7.1. Here, the
out-put of identities are represented by two arrays y or[3:0] and y and[3:0].
Corresponding VHDL description will be as in Listing 7.2. Synthesis result of the
Verilog description is as in Fig. 7.8. As can be seen in this figure, Vivado’s
optimization tool actually applied Boolean identities such that outputs are simplified
accordingly. Note that ground and supply voltage levels are represented by special
signs in this figure.

y_and_OBUF[0]_inst
I] 0 0

I
OBUF LD y_and[3:0]

y_and_OBUF[1]_inst

I

*x_IBUF_inst 1] 0 1
D> |
I OBUF
IBUF
y_and_OBUF[2]_inst
If 0 2
OBUF
y_and_OBUF[3]_inst
I] 0 3
OBUF

—

y_or_OBUF[O]_inst

'} 0 0 D y_or[3:0]
OBUF
y_or_OBUF[1]_inst
| 0 1i
OBUF
y_or_OBUF[2]_inst
| 0 2
OBUF
y_or_OBUF3]_inst
| 0 3
OBUF

FIGURE 7.8 Synthesis result of Boolean identities.

Next, we will review basic Boolean algebra properties on AND, OR, and NOT
gates (or operations corresponding to them). These are involution, commutative,
associative, distributive, and absorption properties and DeMorgan’s theorem as
summarized in Table 7.7. Involution property tells us that applying NOT on a binary
variable twice gives its original value. Commutative property tells us that the order of
variables in logic gates is not important. Associative property tells us that if more than
one operation is done, then the order is not important. Distributive property tells us
that AND and OR operations are distributive on each other. As the name implies,
absorption property discards unnecessary variables. The reader can remember
DeMorgan’s theorem as follows. If the NOT operation is applied on an AND or OR
operation, inputs will be inverted. More-over, the operation will be changed from
AND to OR or vice versa. Again, rigorous proof of these properties can be found in
[29].

The OR gate The AND gate
x+0=x x-0=0
x+1=1 x-1l=x
X+x=x X-x=x
x+x=1 =X =

TABLE 7.6 Boolean Algebra Identities

Listing 7.1 Boolean Identity Operations in Verilog

module Boolean identity(y or,y and,x);

parameter one=1'bl;
parameter zero=1'Db0;

input x;
[3:0] y or;
[3:0] y _and;

output
output

assign
assign
assign
assign

assign
assign
assign
assign

endmodule

MmN

| zero;
| one;
|
|

MoK X
R R
»

Listing 7.2 Boolean Identity Operations in VHDL

library ieee;
use ieee.std logic 1164.all;

entity Boolean identity is
port(x : in std logic;
y or : out std logic vector (3 downto 0);
y _and : out std logic vector (3 downto 0));
end Boolean identity;

architecture dataflow model of Boolean identity is

constant one : std logic :='l"';
constant zero : std logic :='0';
begin

y or{l} <= X or Zero;

y or(l) <= x or one;

y_or(2) <= x or X;

y or(3) <= x or not x;

y and(0) <= x and zero;

y and(l) <= x and one;

y and(2) <= x and x;

y and(3) <= x and not x;

end dataflow model;

Property

Involution T=2x

Commutative xty=y+x Xy=y-x

Associative x+W+z=x+y) +2 X-y-z)=(x-y)-z
Distributive x-W+z)=@-Y+&x-2) | x+Wy-2)=x+y) (x+2)
Absorption X+ (x-y)=x x-(x+y)=x

DeMorgan's theorem | x+y=X-¥ Ty=x+y

TABLE 7.7 Boolean Algebra Properties on AND, OR, and NOT

Operations

Inputs Output

RO O]
Rlo|lr| o]|=
rlolo|lo

TABLE 7.8 Truth Table of the Combinational Circuit in Fig. 7.7

7.3.3 Gate-Level Minimization

Gate-level minimization aims to simplify input/output characteristics of a
combinational circuit. The idea here is obtaining the same truth table with less number
of logic gates. This operation can be done using Boolean algebra identities and
properties introduced in the previous section. However, this requires expertise. There
are also very effective methods for gate-level minimization. In this book, we will
depend on Vivado’s optimization tool for gate-level minimization since it can handle
most cases very effectively. This does not mean that the reader should not know basics
of gate-level minimization.

Let’s see how gate-level minimization can be done on two examples. The first
combinational circuit to be minimized is the one in Fig. 7.7. As can be seen there, the
circuit is composed of six logic gates. The truth table of this combinational circuit is as
in Table 7.8. This truth table corresponds to the AND gate. Hence, the combinational
circuit can be represented by the logic function z = x - y. Therefore, one logic gate is
sufficient to implement it instead of using six gates.

As second example, let’s take the combinational circuit with the logic function z = x
-y +x - y. Boolean algebra 1dentity and properties given in Tables 7.6 and 7.7 can be
used to simplify this logic function such that the end result will be z = y. In other
words, input x does not have any effect on the output of the combinational circuit. We
provide Verilog and VHDL descriptions of this combinational circuit in Listings 7.3
and 7.4.

Let’s take the Verilog description in Listing 7.3. We provide initial form of the
combinational circuit in Vivado (the RTL design) in Fig. 7.9a. As can be seen in this
figure, the combinational circuit is constructed exactly as represented by the Verilog
description. We also provide the synthesization result in Fig. 7.95. As can be seen in
this figure, input x is not connected to any logic block. Therefore, Vivado’s
optimization tool worked as expected.

zO i

0.
A
11

4———I_____—_hTL_AND

!

9

RTL_OR
IOzO_i__O
(]
11
RTL_AND
(a) RTL design
y_IBUF_inst Z_OBUF_inst
| 0 1 0 B
y ’ z
X > IBUF OBUF

(b) After synthesis

FIGURE 7.9 Gate-level minimization example in Vivado.

Listing 7.3 Verilog Description of the Combinational Circuit to be Minimized

module minimization example(z,x,y);

input x,y;
output z;

assign z=(~x&y) | (x&Y) ;

endmodule

Listing 7.4 VHDL Description of the Combinational Circuit to be Minimized

library ieee;
use ieee.std logic 1164.all;

entity minimization example is
port(x : in std logic;

y : in std logic;

z : out std logic);
end minimization example;

architecture dataflow model of minimization example is
begin

z <= (not x and y) or (x and vy);

end dataflow model;

7.4 Combinational Circuit Implementation

We can implement a combinational circuit using several methods as explained in Sec.
2.3. Since the main focus of this book is on the FPGA-based implementation, we will
use the look-up table (LUT) representation for combinational circuits here. To do so,
we will start with the truth table-based implementation next. Then, we will consider
implementing combinational circuits with different number of inputs.

7.4.1 Truth Table-Based Implementation

A combinational circuit can be implemented when its truth table is available. The idea
here is focusing on input combinations producing output O or 1 separately. Each input
combination can be represented by a standard logic function. This leads to the overall
logic function of the combinational circuit.

To explain the truth table—based implementation methodology, let’s first focus on
input combinations producing output 1. Assume that the truth table of a two-input
combinational circuit is as in Table 7.9. As can be seen in this table, the output z will
be 1 whenx=0and y=1orx=1 and y = 1. This helps us forming the logic function
for the combinational circuit as follows. First, z should be 1 whenx=0and y=1. We
can satisfy this constraint by the logic function z = ¥ - y. Second, z should be 1 when x
=1 and y = 1. Using the same reasoning, we can form the logic functionz=7x - y.
Now, z will be 1 when either the first or second constraint is satisfied. Therefore, we
can form the final logic functionasz=x -y +x - y.

Inputs Output
X y z
0 0 0
0 1 1
1 0 0
1 1 1

TABLE 7.9 Truth Table of the Example Two-Input Combinational
Circuit

The logic function z =¥ - y + x - y can be described by only mentioning which input
combinations produce output 1. This representation is called sum of products (SOP).
As the name implies, each constraint is represented by an AND gate. The final logic
function is formed by applying OR gate to all constraints. Hence, the name sum of
products. For our example, the SOP form will be as z =) (1, 3). Here, the sum sign
represents the SOP form. The numbers within the parentheses stand for which input
combinations produce the output 1.

The truth table—based implementation can also be done by focusing on input
combinations producing the output 0 as the second case. Here, we can modify the truth

table by taking the inverse of the output. Then, it becomes as in Table 7.10. We can
form the logic function for = using the SOP representation as = = > (0, 2). Or, as a
logic function it becomes = =¥ - § + x - . Using Boolean algebra properties in Table
7.7,wecanobtainz = x-y+x- y., This logic function can be represented in the
simplified form as z= (x +) - (¥ + »). This representation is called product of sums
(POS). Different from SOP, here each constraint is represented by an OR gate. The
final logic function is formed by applying AND gate to all constraints. Hence, the
name product of sums. The above example can be represented in POS form as z = [](O0,
2). Here, the product sign represents the POS form. Numbers within the parentheses
stand for which input combinations produce the output 0.

Inputs Output

R RO O] X
R Ok | O|x
O | O k| N

TABLE 7.10 Modified Truth Table of the Example Two-Input
Combinational Circuit

Input Output
X y

0 F(O)
1 F(1)

TABLE 7.11 Generic Truth Table of a One-Input Combinational
Circuit

The reader is free to choose the SOP or POS form in implementation. However, it is
advisable to choose the one which requires the less number of logic operations (gates)
in implementation. Next, we will focus on the multiplexer-based implementation
methodology for SOP and POS forms.

7.4.2 Implementing One-Input Combinational Circuits

Combinational circuits are implemented by LUTs in an FPGA. As explained in Sec.
2.2.3, a generic LUT is composed of a multiplexer and memory elements in its basic
form. Therefore, we will explore how a logic function (corresponding to a
combinational circuit) can be implemented by memory elements and multiplexers in
this and the following sections.

The first group of combinational circuits to be explored has one input. We can

represent a generic logic function for such a combinational circuit as y = F(x). Here, x
and y are the input and output variables, respectively. To implement this logic function
by a multiplexer, we should first form its truth table. The generic truth table will be as
in Table 7.11.

Based on the truth table in Table 7.11, we can construct an implementation using a
two-to-one multiplexer and memory elements as in Fig. 7.10. Here, the select pin of
the multiplexer is set as the input variable x. The multiplexer input pins are connected
to memory elements which are set according to output values of the logic function to
be implemented as indicated in its truth table. The multiplexer output corresponds to
the output of the logic function y.

y=F(x)

X

FIGURE 7.10 Generic implementation of a one-input combinational circuit.

Inputs Output
X y z
0 0 F(0,0)
0 1 F(0,1)
1 0 F(1,0)
1 1 F(1,1)

TABLE 7.12 Generic Truth Table of a Two-Input Combinational
Circuit

We can take the NOT gate as an example of one-input combinational circuit. Based
on its truth table in Table 7.2, implementation of this gate will be as in Fig. 7.11. As
can be seen in this figure, characteristics of the setup can be changed just by changing
input values of the multiplexer (set as memory elements).

FIGURE 7.11 NOT gate implemented by a two-to-one multiplexer.

7.4.3 Implementing Two-Input Combinational Circuits

The second group of combinational circuits to be explored has two inputs. We can
form a generic logic function to represent such a combinational circuit as z = F(x, y).
Here, x and y are input variables and z is the output of the logic function. The truth
table of this function will be as in Table 7.12.

We can implement the logic function z = F(x, y) in two different ways. First, the
truth table in Table 7.12 leads to the structure in Fig. 7.12 as in the previous section.
Here, a four-to-one multiplexer and memory elements are used. The select pins of the
multiplexer are set as input variables x and y. The multiplexer input pins are connected
to memory elements which are set according to output values of the logic function to
be implemented as indicated in its truth table. The multiplexer output corresponds to
the output of the logic function z.

Let’s consider the two-input OR, AND, and XOR gates as examples. These can be
implemented using the structure in Fig. 7.12 by their truth table as in Fig. 7.13.

b,
2
e

z=F(x,y)

AT
==
cle

g
L
=

Xy

FIGURE 7.12 Generic implementation of a two-input combinational circuit.

[0 +— 0 0
£ = 0 Z=X L 7=X®
1 2y 0 XY 1 —Xey
1 0
X'y Xy Xy
(a) OR gate (b) AND gate (c) XOR gate

FIGURE 7.13 OR, AND, and XOR gates implemented by a four-to-one multiplexer.

Inputs Output
X y Z
0 0 F(0,0) first
0 1 F(0,1) part
1 0 F(1,0) second
1 1 F(1,1) part

TABLE 7.13 Generic Truth Table of a Two-Input Combinational
Circuit in Decomposed Form

The second implementation method for the logic function z = F(x, y) is by using
three separate two-to-one multiplexers. To explain this structure, let’s closely look at
Table 7.12. As can be seen in this table, the variable x will have the value 0 for the first
two input combinations. It will have the value 1 for the last two input combinations.
This allows us to decompose the truth table into two parts as in Table 7.13.

Let’s consider a hierarchical implementation strategy based on Table 7.13. To do
so, we should initially handle the first and second parts. Since the binary variable x is
fixed for each subpart, we will consider only the binary variable y. Therefore, the first
and second parts can be implemented by two two-to-one multiplexers. Input values of
the first multiplexer will be F(0, 0) and F(0, 1). Input values of the second multiplexer
will be F(1, 0) and F(1, 1). The select pin of these multiplexers will be set as the
binary variable y. The output of these multiplexers is fed to another two-to-one
multiplexer as input. The select pin of this multiplexer will be connected to the binary
variable x. The output of this multiplexer corresponds to the output of the logic
function F(x, y). Therefore, this multi-plexer will decide which part in Table 7.13 will
be connected to the output. Generic structure of this hierarchical implementation will
be as in Fig. 7.14. Logic gates in Fig. 7.13 can also be implemented this way.

As can be seen in Fig. 7.14, the hierarchical implementation is more complex
compared to the one in Fig. 7.12. However, it has one main advantage. This structure
allows implementing two different one-input combinational circuits with the same
input. Let’s assume that we have two such logic functions as y1 = F1(x) and y2 =
F2(x). We can implement these using the hierarchical structure as in Fig. 7.15. Here,
the binary variable s decides on which logic function is active.

F(0,0)

0,1

1,0 \

F(1,1) F

y X

z=F(x,y)

FII FII

FIGURE 7.14 Generic implementation of a two-input combinational circuit using hierarchical
structure.

_n
=
=

=
=
L

F2(0) \

X S

FIGURE 7.15 Generic implementation of two one-input combinational circuits using
hierarchical structure.

Inputs Output
X y z w
0 0 0 F0,0,0)
0 0 1 F0,0,1)
0 1 0 F(0,1,0)
0 1 1 F(0,1,1)
1 0 0 F(1,0,0)
1 0 1 F(1,0,1)
1 1 0 F(1,1,0)
1 1 1 F(1,1,1)

TABLE 7.14 Generic Truth Table of a Three-Input Combinational
Circuit

7.4.4 Implementing Three-Input Combinational Circuits

The third and final group of combinational circuits to be explored has three inputs. We
can form a generic logic function to represent such a combinational circuit as w = F(x,
y, z). Here, x, y, and z are the input variables and w is the output of the logic function.
The truth table of this function will be as in Table 7.14.

F(0,0,0) \
F0,0,1

0,1,0
0,1,1
1,0,0

i

T

— w=F(X,y,2)

i

N
L
S
=

iy
l_\
(n
L=

_n
=
&
L
e

il

Xy z

FIGURE 7.16 Generic implementation of a three-input combinational circuit.

Inputs Output

=

first
part

second
part

R PP RPrPO O OC O
R B O O|lkr kB OO
P O Fr Ol O r O|N

TABLE 7.15 Generic Truth Table of a Three-Input Combinational
Circuit Decomposed into Two Parts

We can implement the logic function w = F(x, y, z) in three different ways. The first
implementation method is based on a single eight-to-one multiplexer as in Fig. 7.16.
This is the straightforward method as introduced in the previous sections.

The second and third implementation methods for the logic function w = F(x, y, z)
are based on the hierarchical structure introduced in the previous section. Let’s start
with the second implementation method by decomposing the truth table of the logic
function w = F(x, y, z) into two parts as in Table 7.15. We can implement the first and
second parts separately using four-to-one multiplexers. The final form of this
implementation will be as in Fig. 7.17. Similar to the previous section, this structure
can also be used to implement two different two-input combinational circuits as z1 =
F1(x, y) and z2 = F2(x, y). We can implement these using the hierarchical structure as
in Fig. 7.18. Here, the binary variable s decides on which logic function is active.

The third implementation method for the logic function w = F(x, y, z) is based on
the hierarchical structure using two-to-one multiplexers. To do so, we should

decompose the truth table of the logic function w = F(x, y, z) into four parts as in Table
7.16. This leads to the implementation as in Fig. 7.19. This structure can also be used
to implement three one-input combinational circuits.

A

)
i

FIGURE 7.17 Generic implementation of a three-input combinational circuit using four-to-one
multiplexers.

By
o
o
=

J
=
S

a3

Ellel=

ofe
PP

j— w=F(x,y,z)

1

.
-
e
=

o
[N
o

e
Loy |1
L b
=

A
oy
=
s

X

_n
H
S|

=2le

-
=

Z1

=
=
=
=

_n
B
=
=

=

\

L
S
dl

_n
»
L
)

-
N

Ll | RS
=] N

_n
N
==
= || —

z2

-11
Lo
=
=

S

FIGURE 7.18 Generic implementation of two two-input combinational circuits using
hierarchical structure.

Inputs Output

X y z w

0 0 0 F(0,0,0) first
0 0 i F(0,0,1) part
0 1 0 F(0,1,0) second
0 1 il FO.1.1) part
1 0 0 F(1,0,0) third
1 0 1 F(1,0,1) part
i\ i 0 FlA,1,0) fourth
il 1 i | Fd.d.1) part

TABLE 7.16 Generic Truth Table of a Three-Input Combinational
Circuit Decomposed into Four Parts

F(0,0,0)
F(0,0,1) AN
F(0,1,0) \ {
[Fo.LDF—1¢
w=F(x,y,z)
F(1.0.0) \ %
F(1,0,1) (\
F(1,1,0) \ /)
.—
F(1,1,1) ﬁ
X y z

FIGURE 7.19 Generic implementation of a three-input combinational circuit using two-to-one
multiplexers.

The hierarchical implementation strategy can be generalized to combinational
circuits with more than three inputs. In fact, a similar idea has been applied to the LUT
formation in FPGAs as mentioned in Sec. 2.2.3. There, it is mentioned that in the
Artix-7
FPGA, each CLB slice has four six-input LUTs. This allows two seven-input LUT or

one eight-input LUT formation.

7.5 Combinational Circuit Design

Designing a combinational circuit requires expertise. Moreover, this is a topic of its
own. On the other hand, there are some standard steps to be followed for any design.

In this section, we will introduce these steps such that they can be applied throughout
the book.

7.5.1 Analyzing the Problem to Be Solved

The first and most important step in designing a combinational circuit is understanding
the problem to be solved. In other words, the problem to be solved should be well-
defined. This leads to forming the solution. At this step, design constraints should also
be taken into account. Related to this, the input data to be processed and the output to
be fed by the circuit should be set. This will allow defining input and output binary
variables to be processed. Here, the reader should remember that a combinational
circuit gets input as logic levels 0 or 1 (or voltage values corresponding to these).
Therefore, if an input is to be received from a sensor, it should be adjusted
accordingly. The output of the combinational circuit will also be in the form of logic
levels 0 or 1. Therefore, if an actuator is to be driven by output of the combinational
circuit, a suitable interface should be established between the combinational circuit
and actuator.

7.5.2 Selecting a Solution Method

After analyzing the problem, the next step is forming a method or algorithm to solve it.
Since we are dealing with combinational circuits, the solution will be in terms of a
logic function between the inputs and output of the circuit. The formed logic function
should satisfy all design constraints specified in the previous step.

7.5.3 Implementing the Solution

The final step in the design process is the implementation. Since the main focus of this
book is on the FPGA, we will implement the design on it. Therefore, the
corresponding HDL for the designed combinational circuit should be formed first.
Afterward, we can benefit from the Vivado’s optimization tool for gate-level
minimization. It is also advisable to simulate the designed system before
implementation. If it satisfies all design constraints, then the corresponding bitstream
can be generated and embedded on the FPGA chip. Hence, the design is concluded.

7.6 Sample Designs

We can apply the previous design steps on designing combinational circuits to solve
real-life problems. Here, we pick three such cases as home alarm, digital safe, and car
park occupied slot counting system. We will discuss each design next.

7.6.1 Home Alarm System

We can design a basic home alarm system using tools introduced in this and previous
chapters. To do so, let’s first define the problem. Assume that the alarm system to be
designed is to be applied on three windows and a door. Each window and the door has
a sensor such that when it is opened, it will give logic level 1. There should be an
on/off switch for the alarm. If we want to activate the alarm, the switch will give logic
level 1. Otherwise, it will give logic level 0. At this point, the problem is defined and
design constraints are set.

To implement the combinational circuit for the design, let’s assign binary variables
50, 51, 52, and s3 to each sensor output. Let the on/off switch be represented by the
binary variable m. Let’s define the binary variable a as an output. This variable will
have logic value 1 when an intruder triggers the alarm. Otherwise, the output of the
system will be logic level 0. Based on all these constraints, the logic function between
the input and output will be a = (s0 + s1 + 52 + 53) - m. The corresponding circuit
diagram will be as in Fig. 7.20.

We can form Verilog description of the circuit in Fig. 7.20 as in Listing 7.5. The
VHDL description of the same circuit will be as in Listing 7.6. Vivado synthesizes the
Verilog or VHDL description as in Fig. 7.21. As can be seen in this figure, one five-
input LUT is sufficient for implementation.

sO

sl

s2)
s3 8

m

FIGURE 7.20 Circuit diagram of the home alarm system.

Listing 7.5 Verilog Description of the Home Alarm System

module home alarm(a,s,m);
input [3:0] s;

input m;

output a;

assign a=(s[0] |s[1]|s[2]|s[3])é&m;

endmodule

Listing 7.6 VHDL Description of the Home Alarm System

library ieee;
use ieee.std logic 1164.all;

entity home alarm is

port(s : in std logic vector (3 downto 0);
m : in std logic;
a : out std logic);

end home alarm;

architecture dataflow model of home alarm is
begin

a <= (s8(0) or g(1) or s(2) or s(3)) and m;
end dataflow model;

m_IBUF_inst a_OBUF_inst_i_1
o || 0 0
IBUF 11 a_OBUF_inst
s_IBUF[0] inst 12 0 'I & [>a
S[S:O]M D 13 OBUF
IBUF 14
s_IBUF[1]_inst LUT5
i1 IS0
IBUF
s_IBUF[2]_inst
’2*| 0
IBUF
s_IBUF[3]_inst
3 | 0
IBUF

FIGURE 7.21 Synthesization result of the home alarm system.

7.6.2 Digital Safe System

We can design a simple digital safe using combinational circuits. Assume that the
system has a four-bit predefined password. We will use four switches as the input to
the system. If the input matches the predefined password, then the first output will
have logic level 1. Otherwise, the second output will have logic level 1.

We can implement the corresponding combinational circuit using an XOR gate
followed by a NOT gate for each bit to be tested. Therefore, if input bit matches the
corresponding password bit, then the XOR gate followed by NOT will give logic level
1. If all input bits match corresponding predefined password bits this way, the first
output will have logic level 1 and the second output will have logic level 0. The second
output will simply be inverse of the first output.

To implement the combinational circuit for the design, let’s assign binary variables

50, 51, 52, and s3 as input. Predefined password can be represented as p[0] - - - p[3].
Let’s define the first and second outputs as binary variables /1 and /2, respectively.
The logic function between the inputs and first output variable will be

10 = s0® p[0] - s1 @ p[l] -s2 @ p[2]-s3 @ p[3]. The second output will be /1 =7j. The
corresponding circuit diagram will be as in Fig. 7.22.

We can form Verilog description of the circuit in Fig. 7.22 as in Listing 7.7. The
VHDL description of the same circuit will be as in Listing 7.8. Vivado synthesizes the
Verilog description as in Fig. 7.23. As can be seen in this figure, two four-input LUTs
are sufficient for implementation.

o)) >

p[sil] jD*>O_I_

o) O ’
) >

FIGURE 7.22 Circuit diagram of the digital safe system.

Listing 7.7 Verilog Description of the Digital Safe System

module digital safe(l,s);

input [3:0] s;
output [1:0] 1;

parameter p=4'b0101;

assign 1[0] = ~(s[0]1"p[0]) & ~(s[1]1”p[1]) & ~(s[2]1"p[2]) & ~(s([3]1"p[3])

assign 1[1] =1L [0] 5

endmodule

Listing 7.8 VHDL Description of the Digital Safe System

library ieee;
use ieee.std logic 1164.all;

entity digital safe is
port(s : in std logic vector (3 downto 0);
10 : inout std logic;
11 : out std logic);
constant p : std logic_vector (0 to 3) :="0101";

end digital safe;

architecture dataflow model of digital safe is
begin

10 <= not (s(0) xor p(0)) and not (s(l) xor p(l)) and not (s(2) xor p
(2)) and not (s(3) xor p(3));
11 <= not 10;

end dataflow model;

" s_IBUF[O]_inst |_OBUF[0]_inst_i_1
IP~_0 i
s[3:0 10 |_OBUF[O]_inst
[3:0 O— I~ 0 0 .
IBUF 1 O | <+ 1[1:0]
s_IBUF[1]_inst & 12 OBUF
b0 13
IBUF LUT4
s_IBUF[2]_inst |_OBUF[1]_inst_i_1
2 I~_0 | 0 I_OBUF[i]_inStl
IBUF 11 0 II 0 <
s_IBUF[3]_inst 12 OBUF
B3 I~ 0 . 13
IBUF LUT4

FIGURE 7.23 Synthesization result of the digital safe system.

7.6.3 Car Park Occupied Slot Counting System

Our last real-life problem is as follows. There is a car park with three slots and we
would like to know how many of its slots are occupied at a given time. Within the
design, occupied slot locations are not important. We can design a combinational
circuit for this purpose. Assume that we placed a sensor over each slot which gives
output logic level 1 when the slot is occupied. If the slot is empty, sensor gives output
logic level 0. Let’s label output of sensors as binary variables s0, s1, and s2. The
designed combinational circuit will provide the output as a two-bit binary number c1
(MSB) and c0 (LSB). Therefore, we should cover all input combinations in terms of a
truth table as in Table 7.17.

Using Table 7.17, we can form logic functions for c0 and c1 in the SOP form as
follows:

c0=50-51-52+50-s1-524+50-51-52450-51-52
c1=50-s1-52+50-51-524+80-51-52+50-s1-s2

Inputs Outputs
sl cl c0

w
o
(7]
N

Rilr| RIrR o|lo|lo|lo
Rlkr|lo|lo|kr|r|lo|lo
Rlo|Rr|lOo|kr|O|R|O
PRk krlokr|lolo|lo
plo|lo|lr|o|lr|kr|o

TABLE 7.17 Truth Table of the Car Park Occupied Slot Counting
System

Listing 7.9 Verilog Description of the Car Park Occupied Slot Counting System

module car park(c,s);

input [0:2] s;
output [1:0] c;

assign c[0]=(~s[0]&~s[1l]&s[2])+(~s[0]&s[1] &~s[2])+(s[0]&~s[1l]l&~s[2])+
(s[0]&s[1]&s[2]);

assign c[l]=(~s[0]&s[l]&s[2])+(s[0]&~s[1]&s[2])+(s[0]&s[1l]&~s([2])+
(s[0]l&s([1ll&s([2]);

endmodule

Listing 7.10 VHDL Description of the Car Park Occupied Slot Counting System

library ieee;
use ieee.std logic 1164.all;

entity car park is
port(s : in std logic vector (0 to 2);

c : out std logic vector (1 downto 0));
end car park;

architecture dataflow model of car park is
begin

c(0)<=(not s(0) and not s(1) and s(2)) or (not s(0) and s(1) and not
s(2)) or (s(0) and not s(1l) and not s(2)) or (s(0) and s (1)
and s(2));

c¢(l)<=(not g¢(0) and s(1) and s(2)) or (s(0) and not s(1) and s(2)) or
(s(0) and s(1) and not s(2)) or (s(0) and s(1) and s(2));

end dataflow model;

s_IBUF[O]_inst ¢_OBUF[O]_inst_i_1
s[0:2][D—p2IP>.0 " 0 ¢_OBUF(OLinst
IBUF 1 0 | <+ c[1:0]
s_IBUF[1]_inst |2 OBUF
L 10 : LUT3
IBUF c_OBUF[1]_inst_i_1
s_IBUF[2] inst 0 c_OBUF[1]_inst
)2 IS0 1 o I~0 <
T |
IBUF 12 OBUF
LUT3

FIGURE 7.24 Synthesization result of the car park occupied slot counting system.

Listing 7.11 Home Alarm System Implemented on the Basys3 Board in Verilog

module topmodule(sw,led) ;

input [4:0] sw;
output [0:0] led;

// Generated IP block
home alarm 0 HA(.a(led),.s(sw[3:0]),.m(sw[4]));

endmodule

We can implement these logic functions in Verilog and VHDL as in Listings 7.9 and
7.10. Vivado synthesizes the Verilog description as in Fig. 7.24. As can be seen in this
figure, two LUTSs each with three inputs are sufficient for implementation.

7.7 Applications on Combinational Circuits

In this section, we will implement sample designs in Sec. 7.6 on the Basys3 board.
There-fore, we will cover home alarm, digital safe, and car park occupied slot counting
systems. For all three applications, we will get input bit values from switches on the
board. Out-put bit values are represented by LEDs on the board. The reader can
consult Sec. 4.8 related to this setup.

7.7.1 Implementing the Home Alarm System

We can implement the home alarm system on the Basys3 board. Therefore, we provide
the Verilog description in which LEDs and switches on the board are connected as the
input and output in Listing 7.11. Here, we use the Verilog description of the system in
Listing 7.5 as an IP block. Therefore, we expect the reader has generated the
corresponding IP block.

7.7.2 Implementing the Digital Safe System

As in previous application, we can implement the digital safe system on the Basys3
board. In Listing 7.12, we provide the Verilog description in which LEDs and switches
on the board are connected as the input and output. Here, we use the Verilog
description of the system in Listing 7.7 as an IP block. Therefore, we expect the reader
has generated the corresponding IP block.

Listing 7.12 Digital Safe System Implemented on the Basys3 Board in Verilog

module topmodule (sw,led) ;

input [3:0] sw;
output [1:0] led;

// Generated IP block
digital safe 0 DS(.1l(led), .s(sw));

endmodule

Listing 7.13 Car Park Occupied Slot Counting System Implemented on the Basys3
Board in Verilog

module topmodule (sw,led) ;

input [2:0] sw;
output [1:0] led;

// Generated IP block
car park 0 CP(.c(led),.s(sw));

endmodule

7.7.3 Implementing the Car Park Occupied Slot Counting System

We can also implement the car park occupied slot counting system on Basys3 board.
As in previous applications, we provide Verilog description in which LEDs and
switches on the board are connected in Listing 7.13. Here, we use Verilog description
of the system in Listing 7.9 as an IP block. Therefore, we expect the reader has
generated the corresponding IP block.

7.8 FPGA Building Blocks Used in Combinational Circuits

LUTs are extensively used in the combinational circuit implementation as explained in
detail in Sec. 7.4. Hence, CLBs will be the main blocks to be used in this chapter.
Besides, interconnect resources and input/output blocks are needed while
implementing a combinational circuit.

7.9 Summary

Combinational circuits and their properties were the main focus of this chapter. There-
fore, we started with analyzing basic logic gates NOT, OR, AND, and XOR. Then, we
introduced tools to analyze combinational circuits formed by these basic logic gates.
At this step, we benefited from Vivado extensively. Hence, we did not cover
mathematical derivations and methods. Instead, we directed the reader to related
references. We then explored how combinational circuits can be designed. Related to
this, we provided sample designs to show how real-life problems can be solved using
combinational circuits. We also provided sample designs on real-life problems in
exercises. We believe that solving these will let the reader grasp digital design
principles at least from the combinational circuit perspective.

7.10 Exercises

7.1 Form the truth table of a three-input
a. AND gate.
b. OR gate.

7.2 Construct three- and four-input AND gates using two-input AND gates.

7.3 Construct three- and four-input OR gates using two-input OR gates.

7.4 A combinational circuit is represented by logic function F(x, y, z)=x -y +y -z +
z - x. Implement this circuit using

a. an eight-to-one multiplexer.
b. four-to-one and two-to-one multiplexers.
c. two-to-one multiplexers.

7.5 Describe the combinational circuit in Exercise 7.4 in Verilog or VHDL.

7.6 A combinational circuit is represented by logic function F(x, y, z) =x -z +x - y.
Implement this circuit using

a. an eight-to-one multiplexer.
b. four-to-one and two-to-one multiplexers.
c. two-to-one multiplexers.

7.7 Describe the combinational circuit in Exercise 7.6 in Verilog or VHDL.

7.8 A combinational circuit is represented in the SOP form F(x, y, z) = > (0, 2, 4, 6).
a. Describe this circuit in Verilog or VHDL using dataflow modeling.
b. Obtain the simplest form of this circuit.

7.9 Construct the truth table of a three-input XOR gate. Describe the POS form of
this gate in Verilog or VHDL using the dataflow modeling.

7.10 (Two’s complement calculator.) Design a combinational circuit with the
following specifications. Input to the circuit is a three-bit unsigned number.
Output of the circuit is two’s complement of input. Implement the designed
combinational circuit either in Verilog or VHDL.

7.11 (Two’s complement calculator with sign bit.) Design a combinational circuit
with the following specifications. Input to the circuit is a four-bit signed
number. Output of the circuit is the three value bits. If the number is negative,
then it is represented in two’s complement form at output. Implement the
designed combinational circuit either in Verilog or VHDL.

7.12 (Arithmetic operations.) Arithmetic operations introduced in Chap. 6 can be
implemented by combinational circuits. Let’s take two two-bit numbers x[1]x[0]
and y[1]y[0].

a. Design combinational circuits for arithmetic operations on these numbers as
addition, subtraction, multiplication, and division.

b. Implement the designed combinational circuits either in Verilog or VHDL.

c. Compare the implemented design with the ones provided in Chap. 6 in terms
of the FPGA resource usage.

7.13 (Fire alarm system.) Design a fire alarm system with the following
specifications. The system has an on/off switch. The system works only if the
switch is on. There is a smoke detector giving the output in three bits. When the
smoke density is maximum, the output of the sensor is seven in the binary form.

When there is no smoke detected, the output of the sensor is zero in the binary
form. The alarm will be active if the output of the smoke detector exceeds four
in the binary form. Implement the designed combinational circuit either in
Verilog or VHDL.

7.14 (Seven-segment display decoder.) In digital systems, seven-segment displays
are used extensively. The display has seven independent segments (A, B, C, D,
E, F, G) as in Fig. 7.25.

FIGURE 7.25 Seven-segment display.

Design a decoder circuitry with a four-bit input representing a decimal
number. The decoder converts this number to corresponding seven-segment pin
pattern as in Table 7.18. Implement the designed combinational circuit either in
Verilog or VHDL.

Displayed Segment
number D

o

©W o~ o O A wWN R
o|lo|lo|o|lo|r|o|o|r|o|>
o|lo|o|r|r|O|lO|OC|C|O|m
clolocl ol g alr|lclae
o|lo|lr|o|lo|r|O|O|r]|O
Rrlo|lr|lOolRr|Rr|IR| O|lR|[O|m
o|lo|lr|o|lo|olr|Rr|rR|[O|m
O O|RP|IO|O|IOC|O|OC|FR|FLP|®D

TABLE 7.18 Seven-Segment Display Patterns

7.15 (Keypad decoder.) A simple keypad can be represented as in Fig. 7.26. As can
be seen in this figure, the keypad has seven output lines, three for row and four
for column locations, respectively. When a key is pressed, corresponding row
and column lines will produce logic level 1. Design a combinational circuit
working as a keypad decoder. The input of the circuit will be the output lines of

the keypad. The output of the circuit will be the corresponding binary number in
three bits. If * or # key is pressed, the output of the circuit will be zero.
Implement the designed combinational circuit either in Verilog or VHDL.

0123*r1
415(6[7Fr,
8|9 *|#}rs
1T T 1
Cq1 Cy C3Cy

FIGURE 7.26 Simple keypad.

7.16 Merge the designs in Exercises 7.14 and 7.15 such that when a number is
pressed on the keypad, it is shown in the seven-segment display. Implement the
designed combinational circuit either in Verilog or VHDL.

7.17 (Remote controller—Kkey pattern generator.) Design a simple remote
controller key pattern generator system with the following specifications. Only
the key pattern part is handled in the design. There are three buttons on the
controller. When the first one is pressed, the combinational circuit should
produce pattern 001. For the second and third buttons, this pattern will become
010 and 100, respectively. When more than one button is pressed, the output of
the combinational circuit will be the pattern 000. This pattern will also be used
when no button is pressed. Implement the designed combinational circuit either
in Verilog or VHDL.

7.18 (Even/odd number detector.) Design an even/odd number detector with the
following specifications. Input to the system is a four-bit number. If the number
is even, the first output will be logic level 1. Otherwise, the second output will
be logic level 1. Implement the designed combinational circuit either in Verilog
or VHDL.

7.19 (Simple safety belt alarm system for cars.) Design a simple safety belt alarm
system for cars. Only the front seat safety belts are of focus. The alarm system
works as follows. If the car engine has started, the passenger has seated, and the
passenger has not plugged in the belt, then alarm signal starts till the belt has
been plugged in. The engine status (started or not) is provided by a digital
signal. If the engine has started and operating, logic level 1 is fed. Otherwise,
logic level 0 is fed. Pressure sensor attached to the driver and passenger seats
provide a digital signal with logic level 1 when a mass produces pressure.
Otherwise, the sensor provides logic level 0. The safety belt plug-in apparatus
has a digital sensor such that when the belt is plugged in, it produces logic level
1. Otherwise, it produces logic level 0. Although an audio alarm signal is
desirable, in this question we will use two LEDs to indicate the alarm. If the
driver has seated, started the engine, and not plugged the belt, the alarm will
turn on till the belt is plugged in. The same settings in the driver seat apply to
the passenger seat. Please note that the two seat alarms operate independently.

Implement the designed combinational circuit either in Verilog or VHDL.

7.20 (Joystick application.) Use the joystick setup in Exercise 6.14 to form a new
Verilog or VHDL description. Here, when the joystick goes to its four limits
(two for x-axis and two for y-axis) four separate LEDs on the Basys3 board
(led[0], led[3], led[6], and led[9]) will turn on separately. Otherwise, all LEDs
will turn off.

CHAPTER 8

Combinational Circuit Blocks

e have introduced combinational circuits in the previous chapter.
There, the focus was on general characteristics of these circuits. There
are also well-known combinational circuit blocks used in digital
systems. These can be counted as adders, comparators, decoders,
encoders, multiplexers, parity generators, and checkers. This chapter
discusses these combinational circuit blocks.

8.1 Adders

Although addition is performed using a different method in an FPGA, the basic adder
circuit is still worth analyzing. Therefore, we will consider it in this section. There are
two basic adder types: half and full.

8.1.1 Half Adder

The half adder (for one-bit addition) has two inputs and two outputs. It adds input bits
and gives sum and carry-out bits as the output. The truth table of the one-bit half adder
is presented in Table 8.1. In this table, binary variables x and y stand for input bits to
be added. Binary variables s and co represent sum and carry-out values, respectively.

Inputs Outputs
X y s co
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

TABLE 8.1 Truth Table of the Half Adder (for One-Bit Addition)

As can be seen in Table 8.1, the carry-out bit has logic level 1 when both input bits
are at logic level 1. This corresponds to the AND operation. The sum bit (s) has logic
level 1 when input bits have different logic levels. This corresponds to the XOR
operation. Based on these observations, the half adder can be constructed as in Fig.

i o
g L

FIGURE 8.1 Circuit diagram of half adder.

8.1.2 Full Adder

The half adder does not take the input carry-in bit into account in operation. This
causes problems when adding binary numbers with more than one digit. The full adder
is introduced to overcome this problem. Besides having two input pins, the full adder
also has a carry-in pin. The truth table of this device is presented in Table 8.2. In this
table, binary variables x and y stand for input bits to be added. Binary variable ci
stands for the carry-in bit. Binary variables s and co represent sum and carry-out bits,
respectively. As in half adder, circuit diagram of full adder can be constructed by

analyzing Table 8.2. The final constructed circuit diagram of the full adder is shown in
Fig. 8.2.

Inputs Outputs
X y ci s co
0 0 0 0 0
0 i | 0 1 0
1 0 0 1 0
1 il 0 0 1
0 0 1 1 0
0 i 1 0 1
1 0 1 0 1
1 q 1 1 1

TABLE 8.2 Truth Table of Full Adder (for One-Bit

O :

ci

co

FIGURE 8.2 Circuit diagram of full adder.

8.1.3 Adders in Verilog

As mentioned in Chap. 6, addition is handled differently in an FPGA: either the DSP
block is used for this operation or a LUT structure is formed. We have introduced the
addition operation in Verilog in Sec. 6.7. Here, we will only provide half and full
adders in the gate level. Let’s start with the one-bit half adder. We provide the Verilog
description for this circuit in Listing 8.1. Here, x and y represent input bits to be added.
s and co stand for sum and carry-out bits, respectively.

We next provide the Verilog description of the one-bit full adder in Listing 8.2. The
only difference here is that the device has an extra carry-in bit represented as ci.

8.1.4 Adders in VHDL

We have introduced the addition operation in VHDL in Sec. 6.9. Here, we will only
provide half and full adders in the gate level. Let’s start with the one-bit half adder.

Listing 8.1 Verilog Description of One-Bit Half Adder

module one bit half adder(s,co,x,y);

// Port definitions
input x,y;
output s, co;

// Structural modeling
and gl(co,Xx,V);
xor g2(s,Xx,Vy);

// Dataflow modeling
assign co = x & v;

assign s = x * vy;

endmodule

Listing 8.2 Verilog Description of One-Bit Full Adder

module one bit full adder(s,co,x,y,ci);

// Port definitions

input. x,y.ci;

// for structural and functional modeling
output s,co;

// for structural modeling
wire 01,02,03;

// Structural modeling
and gl(ol,x,v);
xor g2 (62,3, ¥) ;
xor g3{s,ol,ei);
and g4(03,0l1,ci);
By gbleu,/e8,03) §

// Dataflow modeling
assign co = (x & y) | (ci & (xy));

] A A '
assign s = x'y ci;

endmodule

Listing 8.3 VHDL Description of One-Bit Half Adder

library ieee;
use ieee.std logic 1164.all;

entity one bit half adder is
port(x : in std logic;
y : in std logic;
s : out std logic;
co : out std logic);
end one bit half adder;

architecture dataflow of one bit half adder is
begin
B <= X XOr ¥;
co <= X and vy;
end dataflow;

Listing 8.4 VHDL Description of One-Bit Full Adder

library ieee;
use ieee.std logic 1164.all;

entity one bit full adder is
porti{x » in std logics
y : in std logic;
ci : out std logic);
s : out std logic;
¢o = out std logic);
end one bit full adder;

architecture dataflow of one bit full adder is
begin

B «= X Xor Yy xor ¢i;

co <= (x and y) or (x and ci) or (y or ci);
end dataflow;

We provide the VHDL description for this circuit in Listing 8.3. Binary variables used
in this description are the same as in the previous section.

We next provide the VHDL description of the one-bit full adder in Listing 8.4. As
in the Verilog description, the only difference here is that the circuit has an extra carry-
in bit represented as ci.

8.2 Comparators

We may need to compare the magnitude of two binary numbers to obtain their status.
Here, the first number may be greater than the second. The two numbers may be equal.
Or, the first number may be less than the second. To achieve this goal, we will need a
comparator. We can explain the comparison operation on two binary variables x and y
(each being one bit) using the truth table presented in Table 8.3. Here, g, e, and [stand
for greater, equal, and less, respectively.

Inputs Outputs
X y g e |
0 0 0 0
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0

TABLE 8.3 Truth Table of the One-Bit Comparator

Based on Table 8.3, we can obtain logic functions between inputs and outputs of
the one-bit comparator as follows:

T— o QQ
LI
=l o= =

e D
- =

Obtained logic functions lead to the circuit diagram of the one-bit comparator as in
Fig. 8.3.

8.2.1 Comparators in Verilog

We provide the Verilog description of the one-bit comparator in terms of structural
and dataflow modeling forms in Listing 8.5. Here, we implemented the circuit in Fig.
8.3. Therefore, input bits to be compared are represented by binary variables x and y.
Output values are represented by binary variables g, e, and 1.

X

y [

D
) >
D

g

o

FIGURE 8.3 Circuit diagram of one-bit comparator.

The Verilog description of an N-bit comparator to compare two N-bit numbers
using dataflow and structural modeling will be complex. Therefore, behavioral
modeling will be more appropriate for this case. To do so, we need to introduce
relational operators and conditional statements in Verilog. Let’s start with relational
operators.

8.2.1.1 Relational Operators in Verilogs

While constructing a Verilog description, we may need to compare two variables or
vectors. Verilog has specific operators for this purpose. We provide operators to be
used in this book and their explanation in Table 8.4 using two binary variables x and y.
As these operations are executed, their result will be either logic level 0 or 1 based on
whether the given condition is satisfied or not.

Listing 8.5 Verilog Description of One-Bit Comparator

module one bit comparator(g,e,l,x,y);

// Port definitions
input x,y;

// for structural and functional modeling

output g,e,1;

// for structural modeling

wire 0l,02,03;

// Structural modeling

not gl(ol,y);

and g2(g,0l,x);

xor g3(o2,x,¥);

not g4 (e,02);
(
(

not g5 (o3 ,%x} ;
and g6(1,03,v);

// Dataflow modeling

assign g = X & ~Vy;
assign e = ~(x " y);
assign 1 = ~x & y;
endmodule
Operation | Explanation
X==y X is equal to y
xl=y x is not equal to y
X>Y x is greater than y
Ry x is less than y
X>=y x is greater than or equal to y
BE= x is less than or equal to y

TABLE 8.4 Relational Operators in Verilog

8.2.1.2 Conditional Statements in Verilog

Verilog allows forming conditional statements using i f keyword under behavioral
modeling. Via this keyword, given statements can be executed if the condition is
satisfied. The condition can be formed by a single variable, two or more variables
combined with logical operators, or relational operators. The syntax of a conditional

statement using the i f keyword is as follows:

if (condition)
statements;

The if keyword also allows using e1se if and else keywords. The syntax for their
usage is as follows. The e1se if keyword allows adding a new condition (in a
sequential manner). The e1se keyword is executed if none of the above conditions are
satisfied.

if (condition)
statements;

else if (condition)
statements;

else
statements;

An N-bit comparator can be constructed by the i f keyword. We provide such a
Verilog description only for behavioral modeling in Listing 8.6. Here, two vectors
each with four-bits (x and y) are compared and the result is written to another vector
comp. If the first vector i1s greater than the second one, then comp[2]=1. If the second
vector 1s greater than the first one, then comp [0]=1. Finally, if the two vectors are
equal, then comp[11=1. We provide the RTL schematic of the four-bit comparator in
Fig. 8.4. As can be seen in this figure, equality operators and multiplexers are used in
synthesizing the Verilog description. We will analyze how the comparator is
implemented in an FPGA 1n Sec. 8.8.

Listing 8.6 Verilog Description of Four-Bit Comparator Using i f Keyword

module N bit comparator (comp,x,y) ;
parameter N = 4;

input [N-1:0] x, vy;
output reg [2:0] comp;

initial
comp = 3'b0;

always @ (x or vy)

af X 5 y) Comp = 351003

else if (x == y) comp = 3'b010;
else if (x < y) comp = 3'b001;
else comp = 3'b1l1l1;

endmodule
T - \ oy =
comp_i comp_i__0 comp_i__1
V=8"001", S=1'b1 10[2:0] 0[2:0] V=B"010", S=1'b1 I0[2:0]| 0[2:0] V=B"100", $=1'b1 10[2:0) | 0[2:0]
S=default 11[2:0] S=default 11]2:0] - S=default 112:0] - comp[2:0]
5| RTL_MUX 5| RTL_MUX S| RTL_MUX
D
10[3:0] comopl_! = = =
11{3:0]{ < compl_i_0
o 10[3:0] g**
ikl \1[3:0](9— ‘
lofa:0} 2Pt
RTL_EQ FENED

RTL_GT

FIGURE 8.4 RTL schematic of four-bit comparator.

8.2.2 Comparators in VHDL

We next provide the VHDL description of the one-bit comparator in terms of the
dataflow modeling in Listing 8.7. As in the Verilog description in Listing 8.5, we
directly implement the circuit in Fig. 8.3. Hence, input bits to be compared are
represented by binary variables x and y. Output values are represented by binary
variables g, eq, and 1.

The VHDL description of an N-bit comparator using dataflow modeling will be
complex. Therefore, behavioral modeling will be more appropriate for this case. To do
so, we will introduce relational operators and conditional statements in VHDL. Let’s
start with relational operators.

8.2.2.1 Relational Operators in VHDL

While constructing a VHDL description, we may need to compare two variables or
arrays. As in Verilog, VHDL has specific operators for this purpose. We provide the
operators to be used in this book and their explanation using two binary variables x
and y in Table 8.5. As these operations are executed, their result will be either logic

level O or 1 based on whether the given condition is satisfied or not.

Listing 8.7 VHDL Description of One-Bit Comparator

library ieee;
use ieee.std logic_1164.all;

entity one bit comparator is
port (x : in std logic;
y : in std logic;
g : out std logic;
1l ; out std logic;
eq : out std logic);
end one bit comparator;

architecture dataflow of one bit comparator is
begin
g <= x and not y;
eq <= not(x xor v);
l <= not x and vy;
end dataflow;

Operation | Explanation

By x is equal to y

xf =y x is not equal to y

X>Y x is greater than y

X<y x is less than y

X>=y X is greater than or equal to y
X<=y x is less than or equal to y

TABLE 8.5 Relational Operators in VHDL

8.2.2.2 Conditional Statements in VHDL

As in Verilog, VHDL allows adding conditional statements to a behavioral description
using if keyword. Via this keyword, given statements can be executed if the condition
is satisfied. The condition can be formed by a single signal, two or more signals
combined with logical operators, or relational operators. The syntax of a conditional
statement using the i f keyword is as follows:

if (condition) then statements;
end if;

The it keyword also allows using e1sif and else keywords. The syntax for their

usage is as follows. The e1sif keyword allows adding a new condition (in a sequential
manner). The e1se keyword is executed if none of the above conditions are satisfied.

if (condition) then statements;
elsif (condition) then statements;

else statements;
end if;

An N-bit comparator can be constructed by the i f keyword. We provide such a
VHDL description only for behavioral modeling in Listing 8.8. Here, two arrays each
being four-bits (x and y) are compared and the result is written to another array comp.
If the first array is greater than the second one, then comp (2) =1. If the second array is
greater than the first one, then comp (0) =1. Finally, if the two arrays are equal, then
comp (1) =1. The RTL schematic of the VHDL description will be as in Fig. 8.4.

Listing 8.8 VHDL Description of Four-Bit Comparator Using the i f Keyword

library ieee;
use ieee.std logic 1164.all;

entity N bit comparator is
port(x : in std logic vector (3 downto 0);
y : in std logic_vector (3 downto 0);
comp : out std logic vector (2 downto 0));
end N bit comparator;

architecture behavioral of N bit comparator is
begin

process (x,Vy)

begin
comp <="000";
iE (x>y) then comp<="100";

elsif (x=y) then comp<="010";
elsif (x<y) then comp<="001";
else

compe="111";

end if;

end process;

end behavioral;

SO|lRr| OO
Bl O O O

ol NeNRGRE

TABLE 8.6 Truth Table of Two-to-Four Decoder

8.3 Decoders

Basic usage of a decoder is to decode its input and give specific output corresponding
to it. In general, the decoder has N inputs and 2N outputs to cover all input
combinations. Let’s focus on the two-to-four decoder with the truth table presented in
Table 8.6. As can be seen in this table, there are two inputs and four (22) outputs. The
output corresponding to a given input will be at logic level 1. For this combination, all
other outputs will be at logic level 0. Hence, the input is decoded.

The decoder can be constructed by AND and NOT gates. The circuit diagram of the
two-to-four decoder will be as in Fig. 8.5. As can be seen in this figure, the decoder is
constructed by two NOT and four AND gates. If we consider)0, it gives logic level 1
only when x0 and x1 are at logic level 0. Therefore, zeroth input sets output y0. This
input combination sets all other outputs to logic level 0.

[

D— yO

T L
} y2

” D

FIGURE 8.5 Circuit diagram of two-to-four decoder.

8.3.1 Decoders in Verilog

We provide the Verilog description of the two-to-four decoder in Listing 8.9. Here, we
implemented the circuit in Fig. 8.5. Therefore, input to the decoder is represented by
the two-element vector x. The output of the decoder is represented by the four-element
vector vy.

The Verilog description of the three-to-eight decoder using dataflow and structural
modeling will be complex. Behavioral modeling will be more appropriate for this case.
Here, we can use the i f keyword to construct conditional statements. However,

Verilog

Listing 8.9 Verilog Description of Two-to-Four Decoder

module two to four decoder (y,x);

// Port definitions

input [1:0] x;

// for structural and functional modeling
output [3:0] vy;

// for structural modeling
wire 0l1,02;

// Structural modeling

not gl(ol,x[0]);

not gz (o2,x[1]);

and g3(y[0],01,02);

and g4 (y[1
(
(

], x[0] ,02)
and g5(y[2],01, X[l]),
and g6 (y[3],x[0],x[1]);

// Dataflow modeling

assign out [0] ~x[0] & ~x[1];
assign out [1] x[0] & ~x[1];
assign out [2] ~x[0] & xI[1];
assign out [3] x[0] & x[1];

endmodule

also has another keyword which is more appropriate for the decoder structure. This
keyword is case with the syntax as follows:

case (variable)
value 1 : statement;
value 2 : statement;
value 3 : statement;
value 4, value 5 : statement;

default : statements;
endcase

As can be seen here, the variable to be used in the case statement is defined in
parentheses just after the keyword. For each value of this variable, a statement is
assigned. If we have more than one statement for a variable, then we should use block
keywords (begin and end) to encapsulate them. Note that variable values need not be
exhaustive. We can only define values of interest. Then, we can define a default value

for the rest. Moreover, we can group variable values by adding a comma in between.
This way, we can eliminate duplicates. We provided such an example on the fourth
and fifth values above.

The three-to-eight decoder can be constructed by the case keyword. We provide
such a Verilog description only for behavioral modeling in Listing 8.10. In this
description, the input to the decoder is represented by the three-element vector x. The
output of the decoder is represented by the eight-element vector y. We provide the
RTL schematic of the three-to-eight decoder in Fig. 8.6. As can be seen in this figure,
only a block memory element (ROM, to be explored in Sec. 9.5) is used in
synthesizing the Verilog description. We will analyze how the decoder 1s implemented
in an FPGA in Sec. 8.8.

%[2:0] > — A[2:0] O[7:0] — > y[7:0]

RTL_ROM

FIGURE 8.6 RTL schematic of three-to-eight decoder.

Listing 8.10 Verilog Description of Three-to-Eight Decoder Using case Keyword

module three to eight decoder(y,x);

input [2:0] x;
output reg [7:0] v;

initial
y = 8'b0;

always @ (x)

case (x)
3'b000 : ¥y = 8'b00000001;
3'B00l 2 ¥ = 800000010 ;
3'b010 : y = 8'b00000100;
F1R01YL 2 » = B'EOOGHLDON
3'h1D0 « y = B3'bO0OTODOO;
3'bl101 : y = 8'b00100000;
3'b110 ¢ ¥ = 8b01000D00;
3'b111 : y = 8'b10000000;

endcase

endmodule

8.3.2 Decoders in VHDL

We next provide the VHDL description of the two-to-four decoder in terms of
dataflow modeling in Listing 8.11. As in the Verilog description in Listing 8.9, we
directly implement the circuit in Fig. 8.5. Therefore, the input to the decoder is
represented by a two-element array x. The output of the decoder is represented by a
four-element array vy.

As in Verilog, the VHDL description of the three-to-eight decoder using dataflow
and structural modeling will be complex. Behavioral modeling will be more
appropriate for this case. Here, we can use the if keyword to construct conditional
statements. However, VHDL also has another keyword which is more appropriate for
the decoder structure. This keyword is case with the syntax as follows:

case variable is
when value 1 => statement;
when value 2 => gtatement;
when value 3 => statement;

when others => statement;
end case

Listing 8.11 VHDL Description of Two-to-Four Decoder

library ieee;
use ieee.std logic 1164.all;

entity two to four decoder is

port(x : in std logic_vector (1 downto 0);
y : out std logic vector (3 downto 0));

end two to four decoder;

architecture dataflow of two to four decoder is
begin
y(0) <= not x(0) and not x(1);
) <= x(0) and not x(1);
y(2) <= not x(0) and x(1);
) <= x(0) and x(1);
end dataflow;

Listing 8.12 VHDL Description of Three-to-Eight Decoder Using case Keyword

library ieee;
use ieee.std logic 1164.all;

entity three to eight decoder is

port(x : in std logic vector (2 downto 0);
y : out std logic_vector (7 downto 0));

end three to eight decoder;

architecture behavioral of three to eight decoder is

begin

process (x)

begin

case x is
when "000" => y<="00000001";
when "001" => vy<="00000010";
when "010" => vy<="00000100";
when "011" => vy<="00001000";
when "100" => y<="00010000";
when "101" => vy<="00100000";
when "110" => y<="01000000";
when others => y<="10000000";

end case;

end process;

end behavioral;

As can be seen here, the variable to be used in the case statement is defined just
after the keyword. For each value of this variable, a statement is assigned. The reader
can use the others keyword to define the default case.

The three-to-eight decoder can be constructed by the case keyword. We provide
such a VHDL description only for behavioral modeling in Listing 8.12. In this
description, the input to the decoder is represented by a three-element array x. The
output of the decoder is represented by an eight-element array y. The RTL schematic
of the VHDL description will be as in Fig. 8.6.

8.4 Encoders

The encoder works just as the opposite of the decoder. Its function is to encode a given
input and provide encoded output. In general, an encoder has at most 2N inputs and N
outputs. Let’s focus on the four-to-two encoder with the truth table presented in Table
8.7.

oo |0
OOk O
ROl O O

TABLE 8.7 Truth Table of the Four-to-Two Encoder

As can be seen in Table 8.7, the output of the encoder is the binary representation
of the input. While constructing the truth table, we assumed that no two inputs will
have logic level 1 at the same time. If such a case occurs, then the output of the
decoder becomes unpredictable. To overcome this problem, we can add priority to
inputs such that the output is the one with the higher precedence. Based on this form,
the new truth table becomes as in Table 8.8. Here, don’t care conditions are
represented by “ - “ sign. Within the priority encoder, we still assume that all inputs
will not be zero at the same time. To check whether such an input comes, we can add a
valid signal, v, to the output. This will indicate that the obtained output is either valid
or not.

Inputs Outputs
x0 x1 X2 x3 yo yl v
0 0 0 0 0
1 0 0 0 0 0 |
- 1 0 0 0 1 i|
- - 1 0 1 0 i |
- - - 1 1 1 |

TABLE 8.8 Truth Table of Four-to-Two Priority Encoder

Based on Table 8.8, we can construct the combinational circuit of the four-to-two
priority encoder as follows:
Y0 = x2 + x3
yl =x3 +x1-x2
v=x04+x1+x2+x3

The above input—output relations lead to the circuit diagram of the four-to-two
priority encoder as in Fig. 8.7.

*3 —>-

AL
D %

%0 4D7 v

FIGURE 8.7 Circuit diagram of four-to-two priority encoder.

yl

8.4.1 Encoders in Verilog

We provide the Verilog description of the four-to-two priority encoder in Listing 8.13.
Here, we directly implement the circuit in Fig. 8.7. Therefore, the input of the encoder
is represented by a four-element vector x. The output of the encoder is represented by a
two-element vector y and a binary variable v.

We next focus on an eight-to-three priority encoder. Unfortunately, the dataflow
and structural models will be complex for this device. Therefore, we will provide only
the behavioral model in Verilog. Here, we will again benefit from the case keyword.
How-ever, since we have don’t care conditions in operation, we will use the casex
keyword instead. We provide the Verilog description in Listing 8.14. In this
description, the input to the encoder is represented by an eight-element vector x. The
output of the encoder is represented by a three-element vector y. Within this
description, we discarded the valid (v) output. Instead, we set the output to high
impedance (z) for such cases. We provide the RTL schematic of the eight-to-three
priority encoder in Fig. 8.8. As can be seen in this figure, two block memory elements
(ROM) are used in synthesizing the Verilog description. We will analyze how priority
encoder is implemented in an FPGA 1n Sec. 8.8.

y_i y_reg
X[7:0] [D—s—— A[7:0] 0[2:0] |- 112:0] .0[2-:0] T y(2:0]
RTL ROM OE[2:0] RTL_TRISTATE
yO_i
— A[7:0] 0[2:0] |-
RTL_ROM

FIGURE 8.8 RTL schematic of an eight-to-three priority encoder.

Listing 8.13 Verilog Description of Four-to-Two Priority Encoder

module four to two encoder(y,v,x);

// Port definitions

input [3:0] x;

// for structural and functional modeling
output [1:0] vy;

output v;

// for structural modeling
wire o0l,02;

// Structural modeling

or gl(y[0],x[2],x[3]);

not g2 (ol,x[2]);

and g3 (02,0l,x[1]);

or g4(yl[1],x[3],02);

or g5(v,x[3],x[2],x[1],x[0]);

// Dataflow modeling

assign y[0] = x[2] | x[3];
assign y[1] = x[3] | (x[1] & ~x[2]);
assign v = x[0] | x[1] | x[2] | xI[3];

endmodule

Listing 8.14 Verilog Description of Eight-to-Three Priority Encoder Using casex
Keyword

module eight to three encoder(y,x);

input [7:0] x;
output reg [2:0] vy;
initial

Y = 3'bzzz;

always @ (x)
casex (x)

8'blxxxxxxx : y = 3'blll;
8'HUTHRXERE | ¥ = 2YD110;
BrhE00laew ¢ V = 3'B101;
8'h0001lxxmr ¢ w = 3'1B100;
8'b00001scee ¢ ¥y = 3"HOLL;
8'b000001xx : yv = 3'b010;
8'b0000001x : y = 3'b001;
8'b00000001 : y = 3'b000;
default : v = AVhzee;

endcase

endmodule

8.4.2 Encoders in VHDL

We next provide the VHDL description of the four-to-two priority encoder in terms of
the dataflow modeling in Listing 8.15. As in the Verilog description in Listing 8.9, we
directly implement the circuit in Fig. 8.7. Therefore, the input to the encoder is
represented by a four-element array x. The output of the encoder is represented by a
two-element array y and a binary variable v.

As in Verilog, the dataflow modeling of an eight-to-three encoder in VHDL will be
complex. Therefore, we consider only the behavioral model of this device in VHDL.
We next provide this description in Listing 8.16. Here, the input to the encoder is
represented by an eight-element array x. The output of the encoder is represented by a
three-element array y. The RTL schematic of the VHDL description will be as in Fig.
8.8.

Listing 8.15 VHDL Description of Four-to-Two Priority Encoder

library ieee;
use ieee.std logic 1164.all;

entity four to two_encoder is

port(x : in std logic_vector (3 downto 0);
y : out std logic vector (1 downto 0)
v : out std logic);

end four to two encoder;

architecture dataflow of four to two encoder is
begin

v(0) <= x(2) or x(3);

yv(1l) <= x(3) or (x(1) and not x(2));

v <= x(0) or x(1) or x(2) or x(3);

end dataflow;

Listing 8.16 VHDL Description of Eight-to-Three Priority Encoder

library ieee;
use ieee.std logic 1164.all;

entity eight to three encoder is

port(x : in std logic vector (7 downto 0);
y : out std logic vector (2 downto 0));

end eight to three encoder;

architecture behavioral of eight to three encoder is
begin
process (x)

begin
Y<:"000";
if = '1l'" then y<="001"; end if;

xdd)
if x(2) = '1' then y<="010"; end if;
if x(3) = '1l' then y<="011"; end if;
if x(4) = '1l'" then y<="100"; end if;
if x(5) 'l' then y<="101"; end if;
if x(6) '1'" then y<="110"; end if;
if x(7) '"l' then y<="111"; end if;

end process;
end behavioral;

8.5 Multiplexers

We have introduced the multiplexer in Sec. 2.2.3. Moreover, we have used it in the
combinational circuit implementation in Chap. 7. For completeness, let’s review its

fundamental properties. The multiplexer is a combinational circuit that transfers data
coming from several inputs to single output. Therefore, it can be used to select a
specific input from a group of inputs and feed it to the output. To perform this task, the

multiplexer has N select pins, 2V input pins, and one output pin.

Select pins | Output
sl sO y

0 0 x0

0 1 x1

1 0 x2

1 1 x3

TABLE 8.9 Truth Table of Four-to-One Multiplexer

Let’s focus on a four-to-one multiplexer. This device has four inputs, two select
pins, and one output with the truth table presented in Table 8.9. In this table, select
pins are represented by binary variables s0 and s1. Inputs are labeled as x0, - - -, x3.
The output of the multiplexer is represented by binary variable y.

x0

%1

=ps

x2

X3

JOUU

313

sl sO

FIGURE 8.9 Circuit diagram of a four-to-one multiplexer.

We can implement a four-to-one multiplexer as in Fig. 8.9. As can be seen in this
figure, only one AND gate is enabled for each select input sequence. For instance, the
first AND gate is enabled when s1 and s0 are at logic level 0. All other AND gates are
disabled for this sequence. Hence, only input x0 appears at output y.

8.5.1 Multiplexers in Verilog

We provide the Verilog description of a four-to-one multiplexer in Listing 8.17. Here,
we directly implemented the circuit in Fig. 8.9. Therefore, select values are

represented by a two-element vector s; inputs are represented by a four-element vector
x; and the output is represented by binary variable y.

For the eight-to-one multiplexer, the dataflow and structural representations in
Verilog will be complex. On the other hand, the behavioral model in Verilog will be
neat. We next provide such a description in Listing 8.18. As in a four-to-one
multiplexer, select pins are represented by a three-element vector s; inputs are
represented by an eightelement vector x; and the output is represented by a binary
variable y in this description. We provide the RTL schematic of an eight-to-one
multiplexer in Fig. 8.10. As can be seen in this figure, the multiplexer is used in
synthesizing the Verilog description as it 1s.

y_i
\(7:0] 3 »0 $=3'b000 Q\
’1 S=3'p001 11
}2 $=3'0010 12|
>3 S=3'b011 I3
pi 5=310014 ° D
>5 $=3'0101 15
>6 $=3'0110 16
>7 S=3'b111 17
RTL_MUX
S[2:0]

s[2:0] 3

FIGURE 8.10 RTL schematic of eight-to-one multiplexer.

Listing 8.17 Verilog Description of Four-to-One Multiplexer

module four to one multiplexer(y,x,s);

// Port definitions
input [1:0] s;
input [3:0] x;

// for structural and functional modeling
output vy;

// for structural modeling
wire wl,w2,w3,wd,w5,w6,w7,w8;

// Structural modeling
or gl(y,wl,w2,w3,wd);

and g2 (wl,w5,w6,x[0]);
and g3 (w2,sel[0],w7,x[1]);
and g4 (w3,w8,sel[1],x[2]);

2 (
3
4 (
and g5(w4,s[0],s[1],x[3]);
6 (
7
8 (
9 (

not w5,s[0]);
not w6,s[1]),
not w7,s[1]);
not w8,s[0]);

// Dataflow modeling

assign y = (x[0] & ~s[1] & ~s[0]) | (x[1] & ~s[1] & s[0]) | (x[2] & s
[1] & ~s[0]) | (x[3] & s[1] & s[0]);
endmodule

Listing 8.18 Verilog Description of Eight-to-One Multiplexer

module eight to one multiplexer (y,x,s);
input [2:0] s;
input [7:0] x;
output reg v;

always @ (s or x)

case(s)
3'h000 : y = x[0];
3'b001 : y = x[1];
3ib010 : ¥y = x[2]:
3'b011 : y = x[3];
3'b100 : y = x[4];
BrELEl : ¥ = HE[5];
3'hillld : v = &[6];
3'b111 : y = x[7];

endcase

endmodule

Listing 8.19 VHDL Description of Four-to-One Multiplexer

library ieee;
use ieee.std logic 1164.all;

entity four to one multiplexer is

port(s : in std logic vector (1 downto 0);
X : in std logic vector (3 downto 0)
y : out std logic);

end four to one multiplexer;

architecture dataflow of four to one multiplexer is

begin

y = (x(0) and not s(1) and not s(0)) or (x(1) and not s(1) and s(0)) or
(x(2) and s(1) and not s(0)) or (x(3) and s(1) and s(0));

end dataflow;

8.5.2 Multiplexers in VHDL

We next provide the VHDL description of a four-to-one multiplexer in Listing 8.19.
As in the Verilog description, here we directly implemented the circuit in Fig. 8.9.
Therefore, select pins are represented by a two-element array s; inputs are represented
by a four-element array x; and the output is represented by a binary variable y.

As in Verilog, the dataflow model of an eight-to-one multiplexer in VHDL will be
complex. Therefore, we consider only the behavioral model for this device. We next
provide this description in Listing 8.20. As in a four-to-one multiplexer, select pins are
represented by a three-element array s; inputs are represented by an eight-element

array x; and the output is represented by a binary variable vy in this description. The
RTL schematic of the VHDL description will be as in Fig. 8.10.

Data bits Parity bit
b1l

(=3
o
(=2
)
S
®

PRrRPrIPRPOCOIO| O
PP, O O, RL|[OCNOC
RO IO|Pr|I OO
R OO OO

TABLE 8.10 Truth Table of Three-Bit Even-Parity Generator

Listing 8.20 VHDL Description of Eight-to-One Multiplexer

library ieee;
use ieee.std logic 1164.all;

entity eight to one multiplexer is

port(s : in std logic_vector (2 downto 0);
x : in std logic_vector (7 downto 0);
y : out std logic);

end eight to one multiplexer;

architecture behavioral of eight to one multiplexer is

begin

process (x)

begin

case sel 1is
when "000" => y<=x(
when "001" => vy<=Xx(
when "010" => y<=x(
when "011" => vy<=x/(
when "100" => y<=x(
when "101" => vy<=X(
when "110" => vy<=x(
when others => y<=x(

end case;

end process;

end behavioral;

8.6 Parity Generators and Checkers

While transferring or storing binary data, some bit values may change because of a
physical effect or an unpredicted disturbance. To check whether such an undesired
change has occurred or not, extra bits can be added to the data. This is called parity
generation. The idea here is setting standard characteristics to data such that when a
change occurs, it can be detected easily.

8.6.1 Parity Generators

One simple method in parity generation is adding an extra bit to set the total number of
bits in a binary data block as even or odd. The idea here is as follows. If a bit value
changes from logic level 1 to 0 (or vice versa) by an undesired effect, the total number
of even (or odd) bits will not satisfy the initial condition. Therefore, the change can be
detected easily. There are two options here. The first option is setting the total number
of ones to be even. This is called even parity. The second option is setting the total
number of ones to be odd. This is called odd parity.

Let’s assume three-bit data. Furthermore, assume that even parity will be applied to
it. We can form a truth table to generate the parity bit for each input data combination
as in Table 8.10. Here, the three-bit data is represented by binary variables 50, b1, and
b2. The generated even-parity bit is represented by binary variable pe.

Based on Table 8.10, the even-parity bit can be generated by the logic function pe =
b0 @ b1 ® 2. Therefore, the even-parity generator can be composed of two XOR gates
with two inputs. The corresponding circuit diagram will be as in Fig. 8.11.

T
b1
e
b2 y i
po

FIGURE 8.11 Circuit diagram of three-bit even-parity generator.

If odd parity is required, the only change needed will be inverting the generated
parity bit. Therefore, for the above example, the odd-parity bit will be po = pe. An N-
bit parity generator can be constructed in the same way. Here, we will need N — 1
XOR gates. Besides, the architecture will be the same.

8.6.2 Parity Checkers

After adding a parity bit, we can construct a combinational circuit to check whether an
undesired change has occurred in the data during transmission or storage. To do so, we
can use the same circuitry as in the parity generator with an additional parity bit. This
is called parity checker. Let’s continue with the previous example having even parity
for three bits of data. Parity checker circuitry can be constructed by logic function ¢ =

circuit diagram for this setup will be as in Fig. 8.12. An N-bit parity checker can be

constructed in the same way. Here, we will need N XOR gates. Besides, the
architecture will be the same.

= |
.) >

pe

FIGURE 8.12 Circuit diagram of three-bit even-parity checker.

8.6.3 Parity Generators and Checkers in Verilog

We provide the Verilog description of a three-bit even-parity generator in Listing 8.21.
Here, we directly implement the circuit in Fig. 8.11. Therefore, the input is represented
by a three-bit vector b. The generated parity bit is represented by binary variable pe.
We provide the RTL schematic of a three-bit even-parity generator in Fig. 8.13. As can
be seen in this figure, two XOR gates are used in synthesizing the Verilog description.

peO_i :
0
br2:0] [:%i)DQ o P O
e o
RTL_XOR >

RTL_XOR

FIGURE 8.13 RTL schematic of three-bit even-parity generator.

Listing 8.21 Verilog Description of Three-Bit Even-Parity Generator

module three bit even parity generator (pe,b);

// Port definitions
input [2:0] b;
output pe;

// for structural modeling
wire wl;

// Structural modeling
xor gl(wl,b[0],b[1]);
xor g2 (pe,wl,b[2]);

// Dataflow modeling
assign pe = b[0] * b[1] * b[2];

endmodule

Listing 8.22 Verilog Description of Three-Bit Even-Parity Checker

module three bit even parity checker(c,pe,b);

// Port definitions
input [2:0] b;
input pe;

output c;

// for structural modeling
wire wl,w2;

// Structural modeling
xor gl(wl,b[0],b[1]);
xor g2 (w2,pe,bl[2]);
xor g3 (c,wl,w2);

// Dataflow modeling
assign ¢ = b[0] © b[1] © b[2] * pe;

endmodule

We next provide the Verilog description of a three-bit even-parity checker in
Listing 8.22. Here, we directly implement the circuit in Fig. 8.12. Different from the
three-bit parity generator, this description has pe bit as input. The output of the parity
checker is c in the description. We provide the RTL schematic of a three-bit even-
parity checker in Fig. 8.14. As can be seen in this figure, three XOR gates are used in
synthesizing the Verilog description.

cl i

0 |
b[2:0] & 5 0
1 1 BE— 10 = -
RTL_XOR PZ—IQ% 10 S
RTL_XOR 0 B
e Il/)é A

RTL_XOR

FIGURE 8.14 RTL schematic of three-bit even-parity checker.

8.6.4 Parity Generators and Checkers in VHDL

We next provide the VHDL description of the three-bit even parity generator in
Listing 8.23. As in Verilog, we directly implement the circuit in Fig. 8.11. Hence, the
input is represented by the three-bit array b. The generated parity bit is represented by
binary variable pe. The RTL schematic of the VHDL description will be as in Fig.
8.13.

We finally provide the VHDL description of a three-bit even-parity checker in
Listing 8.24. As in Verilog, we directly implement the circuit in Fig. 8.12. Different
from the three-bit parity generator, this description has the pe bit as an input. The

output of the parity checker is c in the description. The RTL schematic of the VHDL
description will be as in Fig. 8.14.

Listing 8.23 VHDL Description of Three-Bit Even-Parity Generator

library ieee;
use leee.std logic_1164.all;

entity three bit even parity generator is

port(b : in std logic vector (2 downto 0);
pe : out std logic);

end three bit even parity generator;

architecture dataflow of three bit_even parity_ generator is
begin

pe <= b(0) xor b(l) xor b(2);

end dataflow;

Listing 8.24 VHDL Description of Three-Bit Even-Parity Checker

library ieee;
use ieee.std logic 1164.all;

entity three bit even parity checker is
port(b : in std logic vector (2 downto 0);
pe : in std logic;
c : out std logic);
end three bit_even parity checker;

architecture dataflow of three bit even parity checker is
begin

c <= b(0) xor b(l) xor b(2) xor pe;

end dataflow;

8.7 Applications on Combinational Circuit Blocks

We can improve applications in previous chapters using combinational circuit blocks.
Therefore, we will reconsider calculator, home alarm, and car park occupied slot
counting systems in this section.

8.7.1 Improving the Calculator

We can improve the calculator introduced in Sec. 6.10 using the case keyword. The
modified Verilog description for the calculator will be as in Listing 8.25. As can be
seen in this description, the case keyword improved the readability of the description.
We represent this module as an IP block and provide a modified top module for the
calculator in Listing 8.26. Here, the calculator IP is represented as calculator 0.

8.7.2 Improving the Home Alarm System

We can improve the home alarm system using a seven-segment display. When the
system is active, the display will show character . When it is closed, the display will
show character o. To do so, we should add a seven-segment display decoder module to
the system. This module converts the provided hexadecimal number to the
corresponding seven-segment display pattern as introduced in Exercise 7.14. We
provide the Verilog description of the seven-segment display decoder module in
Listing 8.27. We should form an IP block for this module to be used in the application.
The VHDL version of the seven-segment display decoder module is also available in
Listing 8.28.

Listing 8.25 Modified Calculator Using the case Keyword in Verilog

module calculator(a,b,op, result) ;

parameter number length=4;
input [number length-1:0] a;
input [number length-1:0] b;
input [2:0] op;

output reg [15:0] result;

always @ (*)
case (op)

2'b00 : result <= a + b;
2'b01 : result <= a - b;
2'bl0 : result <= a * b;
2'bll : result <= a / b;
endcase
endmodule

Listing 8.26 Improved Calculator Implemented on the Basys3 Board in Verilog

module calculator topmodule (sw,led);

input [9:0] sw; //sw([7:4],sw[3:0] numbers, sw[9:8] operation
output [15:0] led;

calculator 0 calcl(sw([7:4],sw[3:0],sw[9:8],1led);

endmodule

Listing 8.27 Verilog Description of the Seven-Segment Display Decoder Module

module decoder 7seg(inl,outl);

input [3:0] inl;
output reg [6:0] outl;

always @ (inl)

case (inl)
4'b0000 : outl=7'b1000000; //0
4'b0001 : outl=7'b1111001; //1
4'b0010 : outl=7'b0100100; //2
4'b0011 : outl=7'b0110000; //3
4'b0100 : outl=7'b0011001; //4
4'b0101 : outl=7'b0010010; //5
4'b0110 : outl=7'b0000010; //6
41'pbOL1I = outl=7"BLL1L1000: J/7
4'b1000 : outl=7'b0000000; //8
4'p1001 : outl=7'b0010000; //9
4'b1010 : outl=7'b0001000; //A
4'b1011 : outl=7'b0000011; //B
4'b1100 : outl=7'b1000110; //C
4'b1101 : outl=7'b0100001; //D
4'1110 : outl=7'b0000110; //E
4'b1111 : outl=7'b0001110; //F

endcase

endmodule

We provide the modified Verilog description for the application in Listing 8.29.
Here, the home alarm system in Listing 7.5 is taken as an IP block. Therefore, we
assume that the reader has converted it to an IP block and added it to the project.

8.7.3 Improving the Car Park Occupied Slot Counting System

We can improve the car park occupied slot counting system in two ways. First, we can
extend the number of slots to be examined to nine. We provide the modified Verilog
description for the car park occupied slot counting system in Listing 8.30. We should
form an IP block for this part to be used in the project.

Second, we can display the number of occupied slots on the rightmost seven-
segment display of the Basys3 board. To do so, we should add the seven-segment
display decoder module in Listing 8.27. Based on these modifications, the Verilog

description of the top module for car park occupied slot counting system will be as in
Listing 8.31.

Listing 8.28 VHDL Description of the Seven-Segment Display Decoder Module

library ieee;
use ieee.std logic_1164.all;

entity decoder 7seg is

port(inl : in std logic vector (3 downto 0);
outl : out std logic vector (6 downto 0));

end decoder 7seg;

architecture behavioral of decoder 7seg is

begin

process (inl)

begin

case inl is
when "0000" => outl <= "1000000";
when "0001" => outl <= "1111001";
when "0010" => outl <= "0100100";
when "0011" => outl <= "0110000";
when "0100" => outl <= "0011001";
when "0101" => outl <= "0010010";
when "0110" => outl <= "0000010";
when "0111" => outl <= "1111000";
when "1000" => outl <= "000000QO0";
when "1001" => outl <= "0010000";
when "1010" => outl <= "0001000";
when "1011" => outl <= "0000011";
when "1100" => outl <= "1000110";
when "1101" => outl <= "0100001";
when "1110" => outl <= "0000110";
when "1111" => outl <= "0001110";

end case;

end process;

end behavioral;

Listing 8.29 Improved Home Alarm System Implemented on the Basys3 Board in
Verilog

module home alarm topmodule (sw,led, seg,an) ;
input [4:0] sw;

output [0:0] led;

output [6:0] seg;

output [3:0] an;

wire [3:0] act;

//rightmost seven-segment display digit is selected
assign an = 4'b1110;

//set 0 and A patterns to be displayed based on sw/[4]
assign act = {sw[4],1'b0,sw[4],1'b0};

decoder 7seg ss(act,seq);
home alarm 0 HA(.a(led),.s(sw[3:0]),.m(sw[4]));

endmodule

Listing 8.30 Verilog Description of the Car Park Occupied Slot Counting System for
Nine Cars

module car park(c,s);

input [8:0] s;
output reg [3:0] c;

always @(g)
c = s8[8]+s[7]+s[6]+s[5]+s[4]+s[3]+s[2]+s[1]+s][0];
endmodule

Listing 8.31 Improved Car Park Occupied Slot Counting System Implemented on the
Basys3 Board in Verilog

module car park topmodule (led, sw, seg,an) ;

input [8:0] sw;
output [3:0] led;
output [6:0] seg;
output [3:0] an;

//use the righmost seven segment display digit.
assign an = 4'bl1110;

car park 0 parkl(.c(led),.s(sw));
decoder_ 7seg ss(led, seg);

endmodule

8.8 FPGA Building Blocks Used in Combinational Circuit
Blocks

We have provided the RTL schematic of combinational circuit blocks considered in
previous sections. The reader can observe that different RTL building blocks are used
in implementing the comparator, decoder, encoder, multiplexer, parity generators, and
checkers. In fact, all these combinational circuit blocks are implemented by LUTs on
an FPGA. To be more specific, four-bit comparator requires five LUTs. An eight-to-
three decoder needs four LUTs. In a similar manner, a three-to-eight encoder needs
four LUTs. An eight-to-one multiplexer needs two LUTs. Finally, a three-bit parity
generator and checker requires one LUT for each. Hence, CLBs will be the main block
to be used in this chapter. Besides, interconnect resources and input/output blocks are
needed while implementing combinational circuit blocks considered in this chapter.

8.9 Summary

This chapter discussed the combinational circuit blocks extensively used in digital
design. We specifically focused on adders, comparators, decoders, encoders,
multiplexers, parity generators, and checkers. We provided Verilog and VHDL
descriptions of each building block. We also introduced conditional statements and
relational operators while constructing implementations. These will be extensively
used in the following chapters. Therefore, the reader should practice using these.

8.10 Exercises

8.1 Use the full adder block in Sec. 8.1.2 to add two four-bit numbers.
a. Implement this device in Verilog or VHDL.
b. Compare this implementation with the one realized by the *“ + * operator
introduced in Chap. 6.

8.2 Implement a four-bit full adder/subtractor. The user decides on operation type by
a control input. When the control input is logic level 1, subtraction will be done.
When the control input is logic level 0, addition is done. Implement this device
in Verilog or VHDL.

8.3 Design an eight-bit comparator for unsigned numbers. Implement this device in
Verilog or VHDL.

8.4 Repeat Exercise 8.3 for eight-bit signed numbers.

8.5 Design an eight-bit comparator for unsigned numbers. The output of the
comparator will be the larger number. Implement this device in Verilog or
VHDL.

8.6 Repeat Exercise 8.5 for eight-bit signed numbers.

8.7 Implement the two-to-four decoder in Verilog or VHDL using
d. case keyword.
b. i f keyword.

8.8 How can we realize a two-input logic function z = F(x, y) using a two-to-four
decoder and four-input OR gate.

8.9 A combinational circuit is represented in a SOP form F(x, y, z) = > (0, 2, 4).
Implement this circuit using one decoder and one three-input OR gate.

3.10 Implement the four-to-two encoder in Verilog or VHDL using
a. case/casex keyword.
b. i f keyword.

3.11 Represent logic function of the four-to-one multiplexer in Fig. 8.9
a. in SOP form.
b. in POS form.

3.12 Implement the four-to-one multiplexer in Verilog or VHDL using
a. case/casex keyword.
b. i f keyword.

3.13 Find the SOP form of three-bit even
a. parity generator.
b. parity checker.

3.14 Use multiplexers and memory elements to realize a three-bit even
a. parity generator.
b. parity checker.

3.15 (Arithmetic operations on signed numbers.) Use conditional statements to
apply arithmetic operations on fixed-point signed numbers introduced in Chap.
6. Implement these operations in Verilog or VHDL.

3.16 (Car park occupied slot counting system.) Redesign the car park occupied slot

3.17

3.18

3.19
3.20

3.21

3.22
3.23

3.24

counting system in Sec. 7.6.3 using conditional statements and arithmetic
operations in Verilog or VHDL. The new park has 16 slots.

(Fire alarm system.) Redesign the fire alarm system in Exercise 7.13 using
conditional statements in Verilog or VHDL.

(Keypad decoder.) Redesign the keypad decoder system in Exercise 7.15 using
conditional statements in Verilog or VHDL.

Repeat the Exercise 7.16 using conditional statements in Verilog or VHDL.

(Even/odd number detector.) Design a combinational circuit to detect whether
a given N-bit number is even or odd. Implement the designed circuit using
arithmetic operations and conditional statements in Verilog or VHDL.

(ASCII lowercase/uppercase converter.) Design a combinational circuit to
detect whether a given ASCII code corresponds to a character in lowercase
form. If this 1s the case, then the circuit converts the character to uppercase
form. Implement the designed circuit using arithmetic operations and
conditional statements in Verilog or VHDL.

(Joystick application.) Repeat Exercise 7.20 using conditional statements.

(Moving LEDs.) Write a complete Verilog or VHDL description for the
following operation. Four switches on the Basys3 board (sw[0], sw[1], sw[14],
sw[15]) will control the pattern of 16 LEDs (from led[0] to led[15]). Here

* led[7] and led[8] will turn on when all switches are in off condition (initial
condition).

* led[0] and led[1] will turn on when only sw[0] is on.

e led[1] and led[2] will turn on when only sw[1] is on.

* led[13] and led[14] will turn on when only sw[14] is on.

* led[14] and led[15] will turn on when only sw[15] is on.

* led[7] and led[8] will turn on for all other combinations of these switches.

Also each pattern has a condition number which will be displayed on the
leftmost seven-segment display digit as follows. The seven-segment display
shows 0 for initial condition, 1 when sw[0] 1s on, 2 when sw[1] is on, 3 when
sw[14] is on, 4 when sw[15] is on, and O for all other conditions.

(Car door alarm system.) In this application, we will design a car door alarm
system. The system should allow checking all four doors and the trunk (back).
We will use five buttons on the Basys3 board. In our application, btnL and btnr
represent front doors. btnu and btnD represent back doors. btnC represents the
trunk door. We will show whether a door 1s open or closed by the rightmost
seven-segment display digit on the Basys3 board. Based on the label of
segments in Fig. 7.25, segments r and B will show status of front doors.
Segments E and ¢ will show status of back doors. Segment b will show status of

the trunk door. When a segment is on, it indicates that the corresponding door is
open. When all the doors are closed, led[0] on the Basys3 board should turn on.
Write a complete Verilog or VHDL description to realize this application.

3.25 (Displaying numbers.) Write a complete Verilog or VHDL description on the
Basys3 board which will take four-bit input from switches (from sw0 to sw3)
and show it on the seven-segment display as a decimal number. Conditions for
displaying the number is given below:

* [f btnL 1s pressed, the number will be displayed only on the first seven-
segment display digit.

* [f btnD 1s pressed, the number will be displayed only on the second seven-
segment display digit.

* [f btnR 1s pressed, the number will be displayed only on the third seven-
segment display digit.

* [f btnu 1s pressed, the number will be displayed only on the fourth seven-
segment display digit.

* [f btnc 1s pressed, the number will be displayed on all seven-segment display
digits at the same time.

* [f more than one button is pressed at the same time, the number should be
displayed on the corresponding display digit according to the conditions given
above.

* [f none of the buttons are pressed, all display digits should be turned off.
« [f the number to be displayed is greater than 9, character £ should be displayed.

CHAPTER 9

Data Storage Elements

ata storage in a digital system can be made in two ways. First, the system

can be designed as a sequential circuit, which will be introduced in the next

chapter. In such a circuit, the output depends on past input or output besides

current input values. Hence, the data should be stored within the system.

This operation is generally performed by flip-flops. Second, the data can be

stored in a memory block associated with the system. The memory block
can also be constructed by flip-flops. Therefore, we will introduce data storage
elements starting from latches as basic building block of flip-flops in this chapter.
Then, we will introduce different flip-flop types. Flip-flops can be used to form
registers as basic elements of memory blocks. Therefore, we will evaluate register
formation next. Afterward, we will focus on read-only memory (ROM) and random
access memory (RAM). In constructing ROM and RAM, we will extensively use IP
blocks provided by Xilinx.

9.1 Latches

A latch is a basic data storage element that can store one bit of data. Next, we
introduce SR and D latches.

9.1.1 SR Latch

An SR latch is the simplest data storage element composed of either two cross-coupled
NAND or NOR gates. Let’s look at an SR latch composed of two NOR gates with
circuit diagram in Fig. 9.1. As can be seen in this figure, an SR latch has two inputs as
set (s) and reset (r). It has two outputs as g and § which are inverse of each other.

S q

FIGURE 9.1 Circuit diagram of SR latch.

We can represent input/output characteristics of an SR latch in tabular form in a
characteristic table. The difference between this table and the truth table is that it can
also represent previous and future output values. The characteristic table of an SR
latch 1s presented in Table 9.1. As can be seen in this table, when inputs s and have
logic levels 0 and 1, respectively, the output g will be at logic level 0. In other words,
the SR latch is reset. When inputs s and » have logic levels 1 and 0, respectively, the
output g will be at logic level 1. We can call this as setting the SR latch. When both s
and » have logic level 0, the SR latch stays in its previous state gprev. Hence, it stores
the previous output value. When s and r are at logic level 1, we can call this input as
both setting and resetting (SR) latch at the same time. Here, a contradiction occurs
such that both § and g should be at logic level 1. However, ¢ i1s the inverse of g. The
output cannot be predicted due to race conditions in transistor level for such a
condition. Hence, this input combination should be avoided while using the SR latch.
The output at this stage is represented by the undefined symbol (U) in Table 9.1.

Inputs Output
q

-

prev
0
1

U

PR, OlO|®

R O | O

TABLE 9.1 Characteristic Table of Latch with Control Input

We can add a control input to the SR latch. Via this input, we can control when to

operate the device. The circuit diagram of the SR latch with control input is shown in
Fig. 9.2.

FIGURE 9.2 Circuit diagram of SR latch with control input.

The characteristic table of the SR latch with control input is presented in Table 9.2.
Here, the only difference from the SR latch is control input c. When this input is at
logic level 0, the output of the SR latch will be kept in its previous value independent
of inputs applied to it. Therefore, inputs are represented by the don’t care symbol in
Table 9.2 when c is at logic level 0. The SR latch becomes active when c is set to logic
level 1. Afterward, its output can be changed by s and r inputs.

Inputs Output
s r c q
- - 0 Gprev
0 0 1 Gprev
0 1 1 0
1 0 1 1
1 1 i U

TABLE 9.2 Characteristic Table of SR Latch with Control Input

9.1.2 D Latch

One way to avoid setting and resetting the SR latch at the same time is always feeding
inverse inputs to s and ». We can achieve this by adding a NOT gate between them.
We call the new structure a D (or data) latch since it saves one bit of data. The circuit
diagram of a D latch is depicted in Fig. 9.3.

>

d

FIGURE 9.3 Circuit diagram of D latch.

The characteristic table of the D latch (with control input) is presented in Table 9.3.
As can be seen in this table, when the control input is at logic level 0, the D latch keeps
its previous output value. We can save the data in the D latch by providing logic level
1 to its control input. Afterward, the bit value at the input d will be saved in the latch.
Hence, when d has logic level 0, g will be at logic level 0. When d has logic level 1, ¢
will be at logic level 1. Therefore, the D latch simply stores one bit of the data. The
symbol of the D latch (with control input) is presented in Fig. 9.4.

—C C_l_

FIGURE 9.4 Symbol of D latch with control input.

Inputs Output
d c q
- 0 Gprev
0 1 0
1 1 |

TABLE 9.3 Characteristic Table of D Latch with Control Input

9.1.3 Latches in Verilog

We can form the latch description in two different ways in Verilog. The first one is by
using the circuit diagram of the latch and forming the corresponding structural or
dataflow model. We will form such a description only for an SR latch. The second way
of describing a latch is by using a behavioral model. This will be the form we will be
using extensively in describing latches.

9.1.3.1 SR Latch

We provide the Verilog description of the SR latch in Listing 9.1. Here, we have
structural and dataflow models of the latch based on the circuit diagram in Fig. 9.1.
Besides, the behavioral model of the SR latch is available in the description. The
reader should enable the model to be implemented while disabling other models. In all
three models, inputs of the SR latch are represented by s and r. Outputs of the latch
are denoted by g and gn. Please note the nonblocking assignment usage in behavioral
modeling. As explained in Sec. 5.1.4, we will be using nonblocking assignments in the
behavioral model of sequential circuits.

Listing 9.1 Verilog Description of SR Latch

module SR latch(s,r,q,qn);

// Port definitions
input s, r;

// for structural and dataflow modeling
//output q,qn;

// for behavioral modeling
output reg g;
output reg gn;

// Structural modeling
finor (g, v, qn) ;
/{nor{gn, g, ;

// Dataflow modeling
//assign q = ~(r | qn);
//assign gqn = ~(s | q);

// Behavioral modeling
always @ (s or r)

if (s) {g,gn} <= 2'b10;

else if (r) {g,an} <= 2'b01;

endmodule

We provide the RTL schematic of the SR latch using the dataflow model in Fig.
9.5. As can be seen in this figure, the RTL schematic is the same as the circuit diagram
in Fig. 9.1. Vivado synthesizes the SR latch description in the dataflow model as in
Fig. 9.6. Here, three-input and two-input look-up tables (LUTs) are used in
implementation. There is a feedback loop between the output and input of the three-
input LUT which establishes the data storage capability of the module. Remember that
feedback loops from the out-put to input are general characteristics of latches.

0 qO_i q_i 1 >an
r>— 0 10 0
11 q
RTL_OR RTL_INV
agnO_i ;
10 an_l
s >— m 0 10 0
RTL OR RTL_INV

FIGURE 9.5 RTL schematic of SR latch described using dataflow model.

s_IBUF_inst q_OBUF_inst

s 'I g o_OBUF_inst_i_1 '| 0 g
IBUF 0 OBUF
r IBUF inst 11 0 gn_OBUF_inst_i_1 an_OBUF _inst
(D '| 0 12 0 0 '| 0 S an
IBUF LUT3 11 OBUF
LUT2

FIGURE 9.6 Synthesization result of SR latch described using dataflow model.

q_reg

D

D —a, L

PRE
RTL_LATCH

qn_reg
CLR
o | Do
e e

G

RTL_LATCH

FIGURE 9.7 RTL schematic of SR latch described using behavioral model.

We next provide the RTL schematic of the SR latch using the behavioral model in
Fig. 9.7. As can be seen 1n this figure, the RTL schematic is composed of two latches.
Therefore, the RTL schematic and circuit diagram in Fig. 9.1 is not the same. Further-
more, Vivado synthesizes the SR latch description in the behavioral model as in Fig.
9.8. As can be seen in this figure, two flip-flops are used in implementation. Therefore,
dataflow and behavioral models of the same SR latch are implemented in different
ways in Vivado. We will analyze the difference between these two implementations in
detail in Sec. 9.8.

q_reg
r_IBUF_inst r IBUF_BUFG_inst D q_OBUF_inst
IS0 IS0 I~_0
r
— | G Q | [a
IBUF BUFG GE OBUF
s_IBUF inst PRE
s[> 'I g LDPE
IBUF L
Cfgjeg qn_OBUF _inst
I~_0
5 0 | [>an
OBUF
G
GE
LDCE

FIGURE 9.8 Synthesization result of SR latch described using behavioral model.

Listing 9.2 Verilog Description of SR Latch with Control Input

module SR latch control(s,r,c,q,qn);

input s,r,c;
output reg qg;
output reg gn;

always @ (s or r or c)
if (¢ & s) {g,an} <= 2'b10;
else if (c & r) {qg,gn} <= 2'b01;

endmodule

9.1.3.2 SR Latch with Control Input

We next provide the Verilog description of the SR latch with control input in Listing
9.2. Here, we have only the behavioral model of the circuit in Fig. 9.2. As in the SR
latch description in Listing 9.1, inputs of the SR latch are represented as s and r with
an extra control input c. When the control input c is at logic level 0, the SR latch does
not respond to other inputs. Outputs of the latch are denoted by ¢ and gn.

The synthesization result of the SR latch with control input is as in Fig. 9.9 which is
almost the same as Fig. 9.8. The only difference is the control input. Therefore, the
behavioral model of the SR latch with and without control input is implemented in a
similar way in Vivado.

r_IBUF_inst q_reg_i_1 . q_reg .
inst
I = 0 0 . s -
IBUF 11 Q | q
: GE OBUF
c_IBUF_inst LUT2 o
| 0
L LDPE
IBUF
s_IBUF _inst g_reg i 2 =
s[> '| g 0 o Cﬁ;—reg qn_OBUF inst
IBUF 11 |I 0 an
LUT2 b Q OBUF
&
GE
LDCE

FIGURE 9.9 Synthesization result of SR latch with control input.

9.1.3.3 D Latch

We finally provide the Verilog description of the D latch using the behavioral model in
Listing 9.3. In this description, inputs of the latch are represented as d and c. As in the
SR latch with control input, when c is at logic level 0, the D latch does not respond to
d input. Outputs of the latch are denoted by g and gn in the description.

We provide the RTL schematic of a D latch in Fig. 9.10. As can be seen in this
figure, the RTL schematic consists of two D latches (one for each output). In fact, if
we had only one output as g, then the RTL schematic would consist of one D latch. We
will see in Sec. 9.8 why this is the case. The synthesization result of the D latch
description will be as in Fig. 9.11. As can be seen in this figure, one-input LUT and
two flip-flops are used in implementation. We will analyze this implementation in
detail in Sec. 9.8.

g_reg

d[> D
CD * G

RTL_LATCH
gnO_i an_reg
10 0 D
—| >gn
RTL_INV & Q g
RTL LATCH

FIGURE 9.10 RTL schematic of D latch.

q_reg
d_IBUF_inst CLR g_OBUF_inst
0 [0
d[>—] D Q] D
IBUF G OBUF
GE
LDCE
qn_reg
gn_reg i_1 CLR gn_OBUF_inst
—fo__of 0 o[>0 Dan
LUT1 G OBUF
c_IBUF_inst c_IBUF_BUFG-inst GE
cO— > ™0 LDCE
IBUF BUFG —

FIGURE 9.11 Synthesization result of D latch.

Listing 9.3 Verilog Description of D Latch

module D latch(d,c,q,qn);
input d,c;

output reg qg;
output reg gn;

always @ (d or c)
if (¢) {g,an} <= {4,~d};

endmodule

9.1.4 Latches in VHDL

As in Verilog, we can form the latch description in two different ways in VHDL. The
first one is using circuit diagram of the latch and forming the corresponding dataflow
model. We provide this description only for an SR latch. The second way of describing
the latch is by using a behavioral model as it is easier to interpret. We do not provide
the RTL schematic and synthesization results in this section since these will be almost
the same as in Sec. 9.1.3. However, we suggest the reader to observe them in Vivado.

Listing 9.4 VHDL Description of SR Latch

library ieee;
use ieee.std logic 1164.all;

entity SR latch is
port(s : in std logic;
r : in std logic;
g : inout std logic;
gn : inout std logic);
end SR latch;

architecture dataflow of SR latch is
begin

g <= ¥ HoE gu;

gn<= S nor d;

end dataflow;

architecture behavioral of SR latch is

begin

process (s, r)

begin

if ((s='0') and (r='1"')) then g<='0'; gn<='1"';
elsif ((s='1') and (r='0')) then g<='1l'; gn<='0"';
elsif ((s='1') and (r='1l')) then g<='-'; gn<='-"';
end if;

end process;
end behavioral;

9.1.4.1 SR Latch

We provide the VHDL description of the SR latch in dataflow and behavioral models
in Listing 9.4. Here, the dataflow model of the SR latch is based on the circuit diagram
in Fig. 9.1. As in the corresponding Verilog description, inputs of the SR latch are
represented as s and r. Outputs of the latch are denoted by g and gn. In the behavioral
model, the undefined output when s = 1 and » = 1 1s represented by don’t care symbol
in Listing 9.4.

9.1.4.2 SR Latch with Control Input

We provide the VHDL description of the SR latch with control input in Listing 9.5. As
in the SR latch description in Listing 9.4, inputs of the latch are represented as s and r
with extra control input c. When control input c is at logic level 0, the SR latch does
not respond to other inputs. Outputs of the latch are denoted by g and gn. Again, the
undefined output when s = 1 and » = 1 is represented by don’t care symbol in Listing
9.5 as in the SR latch description.

Listing 9.5 VHDL Description of SR Latch with Control Input

library ieee;
use ieee.std logic 1164.all;

entity SR latch control is
port(s : in std logic;
r : in std logic;
c : in std logic;
g + out std logic :='0"';
an = out std legic #='1')};
end SR latch control;

architecture behavioral of SR latch control is
begin

process (s, r,c)

begin
1€ [o=!
if (
elsif (
elsif (
end if;
end if;
end process;
end behavioral;

') then

='O‘) and (r='1')) then g<='0'; gn<='1";
') and (r='0')) then g<='1l'; gn<='0";

'1‘) and (r='1')) then g<='-'; gne<='-"';

1
(
(
(

S
S
S=

Listing 9.6 VHDL Description of D Latch

library ieee;
use leee.std logic 1164.all;

entity D latch is
port{d @ im std Jlogics
¢ & In std logic;
g : out std logic :='0';
gn : out std logic :='1');
end D latch;

architecture behavioral of D latch is
begin

process (d, c)

begin

if (c='1") then g<=d; gn<=not d;

end if;

end process;
end behavioral;

9.1.4.3 D Latch

We finally provide the VHDL description of the D latch with control input in Listing
9.6. In this description, inputs of the latch are represented as d and c. As in the SR
latch with control input, when c is at logic level 0, the D latch does not respond to d
input. Outputs of the latch are denoted by g and gn in the description.

9.2 Flip-Flops

A latch may change its output whenever its input changes. This may cause
inconsistency in the operation of a sequential circuit. To overcome this problem, the
clock signal introduced in Sec. 2.2.7 may be used. Therefore, the change at the output
of a circuit may occur on either the rising or falling edge of the clock signal. To
distinguish such devices from the latches introduced in the previous section, we will
call them flip-flops. There are basically three flip-flop types: D, JK, and T.

9.2.1 D Flip-Flop

The D flip-flop can be constructed by connecting two D latches with control input as
in Fig. 9.12. In this setup, let’s call the two latches a leader and a follower,
respectively. We can explain the working principles of the D flip-flop as follows. The
control input of both the leader and follower latches are connected to the same clock
signal. However, the follower latch receives the inverted clock signal. Therefore, when
the clock signal reaches logic level 1 from 0 (rising edge of the clock), the leader latch
is enabled and the follower latch is disabled. At this time, the output of the leader latch
can be changed by its input (hence the input of the flip-flop). The output of the
follower latch (hence the output of the flip-flop) does not change during this time
interval since its control input is at logic level 0. When the clock signal reaches logic
level 0 from 1 (falling edge of the clock), the control input of the leader latch will be at
logic level 0. Hence, its output will be kept in its previous value. In other words, the
output of the leader latch will reflect its input when the clock signal was at logic level
1. As can be seen in Fig. 9.12, the output of the leader latch is connected to the input of
the follower latch. Since the control input of the follower latch is at logic level 1, its
output is set to its input. Therefore, the output of the D flip-flop changes. This
operation is specifically called edge-triggered since flip-flop changes its output during
rising (or falling) edge of the clock signal.

d d ¢ d q—q[n+1]

FC a ’—% C
clock 14

FIGURE 9.12 Constructing D flip-flop from two latches.

o]

The symbol of the D flip-flop is presented in Fig. 9.13. Here, the control input is
specifically represented by a triangle to indicate that this device changes its output on

the rising edge of the clock signal.

clock —>

o
l

FIGURE 9.13 Symbol of D flip-flop.

The characteristic table of the D flip-flop is presented in Table 9.4. Here, we
represent the output of the flip-flop as g[n + 1] to indicate the value at the next clock
cycle. We implicitly assume the present clock cycle as n. Within the characteristic
table, the clock operation is not explicitly shown.

Input Output
d q[n+1]
0 0
1 1

TABLE 9.4 Characteristic Table of D Flip-Flop

Inputs Output
J k q[n+1]
0 0 qln]
0 1 0
i 0 1
1 1 gln]

TABLE 9.5 Characteristic Table of JK Flip-Flop

9.2.2 JK Flip-Flop

The D flip-flop provides a good option to save one bit of data. We can form a more
general flip-flop structure using it. The new device will act similar to the SR latch
while eliminating its undeterminate state. We call this device the JK flip-flop. The
circuit diagram of the JK flip-flop constructed by a D flip-flop is shown in Fig. 9.14.

e

—
-

q[n+1]

(o
o

clock -

ol
|

FIGURE 9.14 Circuit diagram of JK flip-flop.

The characteristic table of the JK flip-flop is presented in Table 9.5. As can be seen
in this table, the JK flip-flop acts similar to the SR latch. However, there is no
undetermined output here. We can assume the j input as set, the & input as reset. As in
the D flip-flop, the output at the next clock cycle is represented by g[n + 1]. The output
at the present clock cycle is represented by g[n]. When both j and & inputs are at logic
level 1, the output of the JK flip-flop toggles.

9.2.3 T Flip-Flop

We can obtain a specific structure called a T (toggle) flip-flop by connecting input pins
of a JK flip-flop. Although this new structure may seem redundant, it will be of great
use in counters to be introduced in Sec. 10.4. The characteristic table of the T flip-flop
is presented in Table 9.6. As can be seen in this table, the T flip-flop is, in fact, a
limited version of a JK flip-flop such that it either gets input of logic level 0 or 1.
When the input is at logic level 0, the output of the flip-flop does not change. When
the input is at logic level 1, the output of the flip-flop toggles.

Input Output
t q[n+1]
0 qln]
1 qln]

TABLE 9.6 Characteristic Table of T Flip-Flop

Listing 9.7 Verilog Description of D Flip-Flop

module D flip flop(d,clk,clr,q,qn);
input d,clk,clr;

output reg g;
output reg gn;

always @ (posedge clk, negedge clr)
if (clr == 0) begin

q <= 0;

aqn <= 1;

end

else begin

q <= d;

aqn <= ~d;

end
endmodule

9.2.4 Flip-Flops in Verilog

Flip-flops introduced in the previous section can be described in Verilog. Behavioral
modeling is the most suitable form to describe a flip-flop since it operates on clock
cycles. Let’s start with the D flip-flop.

9.2.4.1 D Flip-Flop

The D flip-flop can be described by using behavioral modeling as in Listing 9.7. In
this description, inputs of the flip-flop are d (data), c1k (clock), and c1r (clear). The
data input is for a bit value to be saved in the flip-flop. The clock input is for the clock-
based operation. The clear input resets the flip-flop output independent of its input.
Outputs of the flip-flop are denoted by g and gn in the description. The flip-flop is
reset when a negative edge of the clear signal comes. This is achieved by the Verilog
keyword negedge. The flip-flop operates whenever a positive edge of the clock signal
comes. Again, this is achieved by the Verilog keyword posedge. As a result, the
sensitivity list in behavioral modeling becomes posedge clk, negedge clr.

We provide the RTL schematic of a D flip-flop in Fig. 9.15. As can be seen in this
figure, the RTL schematic consists of two D flip-flops (one for each output). In fact, if
we had only one output as g, then the RTL schematic would consist of one D flip-flop.
We will see in Sec. 9.8 why this is the case. The synthesization result of the D flip-flop
description will be as in Fig. 9.16. As can be seen in this figure, two one-input LUTs
and D flip-flops are used in implementation. We will analyze this implementation in
detail in Sec. 9.8.

glr [> L—lq_reg

clk [- >CCLR -
4D p © a

RTL_REG_ASYNC
gn_reg

qnO_i >C
|0>Oo D Q (>an
PRE

RTL_INV] RTL_REG_ASYNC

FIGURE 9.15 RTL schematic of D flip-flop.

clk_IBUF_inst clk_IBUF_BUFG_inst =
0

clk ['I IE g e
IBUF BUFG) >E qn_OBUF _inst
qn,|, C Il O
o I -
LUT1 PRE
clr_IBUF_inst q_i_1 FDPE
! 0 Fro—
clr
[10 O q_reg
IBUF LUT1
d_IBUF _inst >C i
I 5 0q_OBUF _inst
IO > = o2 D
IBUF CLR l ’
OBUF
D
FDCE

FIGURE 9.16 Synthesization result of D flip-flop.

9.2.4.2 JK Flip-Flop

We next provide the Verilog description of a JK flip-flop in Listing 9.8. In this
description, inputs are represented as j (set), k (reset), c1r (clear), and c1k (clock).
Outputs of the flip-flop are denoted by g and gn in the description. The working
principles of a JK flip-flop are similar to those of a D flip-flop. The only difference is
that the JK flip-flop has two inputs to set and reset output.

Vivado synthesizes the JK flip-flop description as in Fig. 9.17. As can be seen in
this figure, four LUTs and two D flip-flops are used in implementation. This is in line
with the circuit diagram of the JK flip-flop constructed from the D flip-flop in Fig.
9.14. In other words, the JK flip-flop is implemented by D flip-flops in Vivado. We
will analyze this implementation in detail in Sec. 9.8.

j_IBUF_inst

; | 0 qn_reg qn_OBUF_inst
JD——D%- I~_0
. -
IBUF gn_i_1 (@ ,
k_IBUF_inst 00 cE .§_L1 OBUF
I~_0 - [
kD—>2 1 D |
IBUF T2 PRE _é e P
gn_i_2 FDPE LUT3 c 0_OBUF_inst
0 E IO
0 e q
1 0 - OBUF
12
LUT3 FDCE
clr_IBUF_inst an.i 3
clr .0 0 0
IBUF LUTL
clk_IBUF_inst clk_IBUF_BUFG_inst
ok [ID 0 ”1>0
IBUF BUFG

FIGURE 9.17 Synthesization result of JK flip-flop.

9.2.4.3 T Flip-Flop
We finally provide the Verilog description of a T flip-flop in Listing 9.9. In this

description, inputs are represented as t (toggle), c1r (clear), and c1k (clock). Outputs
of the flip-flop are denoted by g and gn in the description. As explained in Sec. 9.2.3, a
T flip-flop is a special type of a JK flip-flop. Therefore, the reader can deduce the

working principles of a T flip-flop by referring to a JK flip-flop.

Vivado synthesizes the T flip-flop description in Verilog as in Fig. 9.18. Similar to
the synthesis result of the JK flip-flop in Fig. 9.17, three LUTs and two D flip-flops are
used in implementation. This is expected since the T flip-flop is a special case of a JK

flip-flop.
clk_IBUF _inst clk_IBUF_BUFG_inst
| 0 I~_0 e
clk >—| > = q_reg
IBUF BUFG g_OBUF_inst
>C | 0
- CE 2 & (>a
t_IBUF_inst == clrR qn_reg OBUF
JBUF_inst g ol——y -
tD—I>0 11 L LC :
L gn_OBUF_inst
IBUF LUT2 FDCE CE 0 | 0 an
clr_IBUF_inst Qi 2 RE OBUF
o D—>2 0 0 qn_i_1 e
IBUF LUT1 r_ 10 o—
11

LUT2

FIGURE 9.18 Synthesization result of T flip-flop in behavioral model.

Listing 9.8 Verilog Description of JK Flip-Flop

module JK flip flop(j,k,clr,clk,q,qn);

input j,k,clr,clk;
output reg g;
output reg gn;

always @ (posedge clk, negedge clr)

if (clr == 0)

begin

q <= 0;

aqn<= 1;

end

else

case ({j,k})
2'b01 : begin g<=1'b0; gn<=1'bl;end
2'bl0 : begin g<=1'bl; gn<=1'b0;end
2'bll : begin g<=gn; gn<=q;end

endcase

endmodule

Listing 9.9 Verilog Description of T Flip-Flop

module T flip flop(t,clk,clr,qg,qn);

input t,clk,clr;
output reg g;
output reg gn;

always @ (posedge clk, negedge clr)
if (clr == 0) begin
q <= 0;
gn &= g
end
else begin
g d= @ By
gn<= ~(g *
end
endmodule

£}z

Listing 9.10 VHDL Description of D Flip-Flop

library ieee;
use ieee.std logic 1164.all;

entity D flip flop is
port (d : in std logic;
clk : in std logic;
¢lr : in std logie;
d : inout std logic;
gn : out std logic);
end D flip flop;

architecture behavioral of D flip flop is
begin

process (clk)

begin

if clr='1' then g<='0"';

elsif rising edge(clk) then g<=d;

end if;

end process;

gn <= not qg;

end behavioral;

9.2.5 Flip-Flops in VHDL

We next provide the VHDL description of D, JK, and T flip-flops. As in the previous
section, we consider behavioral modeling here. We did not provide the RTL schematic
and synthesization results in this section since these will be almost the same as in Sec.
9.2.4. However, the reader can observe them in Vivado if needed.

9.2.5.1 D Flip-Flop

We provide the VHDL description of a D flip-flop in Listing 9.10. As in the
corresponding Verilog description, the inputs of the flip-flop are d (data), c1x (clock),
and c1r (clear). The data input is for the bit value to be saved in flip-flop. The clock
input is for clock-based operation. The clear input resets the flip-flop output
independent of its input. The outputs of the flip-flop are denoted by g and gn in the
description. The sensitivity list of the process in behavioral modeling contains only the
clock signal. The flip-flop is reset when a clear signal comes and the clock is at logic
level 1. The flip-flop operates when-ever the rising edge of the clock signal comes.
This is achieved by the VHDL keyword rising edge. If the falling edge of the clock
was required as the triggering signal, then the corresponding VHDL keyword would be
falling edge.

Listing 9.11 VHDL Description of JK Flip-Flop

library ieee;
use ieee.std logic 1164.all;

entity JK flip flop is
port(j : in std logic;
k : in std logic;
clk : in std logic;
el = 1in std logis;
g : inout std logic :='0';
an : inout std logic :='1"');
end JK flip flop;

architecture behavioral of JK flip flop is
signal jk : std logic_vector (1 downto 0);

begin
process (clk)
begin

jk w= &k

if clr='1'" then g<='0"';

elsif rising edge(clk) then

case jk is
when "01" => g<='0"';
when "10" => g<='1l"';
when "11" => g<=not g;
when others => null;

end case;

end if;

end process;

gn <= not qg;

end behavioral;

9.2.5.2 JK Flip-Flop

We next provide the VHDL description of a JK flip-flop in Listing 9.11. In this
description, inputs are represented as 5 (set), k (reset), c1r (clear), and c1k (clock).
Outputs of the flip-flop are denoted by g and gn in the description. The working
principles of the JK flip-flop are similar to those of a D flip-flop. The only difference
is that the JK flip-flop has two inputs to set and reset output.

9.2.5.3 T Flip-Flop

We finally provide the VHDL description of a T flip-flop in Listing 9.12. In this
description, inputs are represented as t (toggle), c1r (clear), and c1k (clock). Outputs
of the flip-flop are denoted by g and gn in the description. As explained in Sec. 9.2.3,

the T flip-flop is a special type of a JK flip-flop. Therefore, the reader can deduce the
working principles of the T flip-flop by referring to the JK flip-flop.

Listing 9.12 VHDL Description of T Flip-Flop

library ieee;
use ieee.std logic 1164.all;

entity T flip flop is
port{t : in std logig;
clk : in std logic;
gl « 18 std loglic;
g = inout std legie := "07';
gn @ out std legie = '1");
end T flip flop;

architecture behavioral of T flip flop is
begin

process (clk)

begin

if clr='1' then g<='0"';

elsif rising edge(clk) then g<=t xor g;
end if;

end process;

gn <= not g;

end behavioral;

9.3 Register

A register is an N-bit data storage element constructed by N flip-flops. In forming a
register, flip-flops are connected in parallel in such a way that data can be processed
all at once. We provide the block diagram of a four-bit register constructed by four D
flip-flops in Fig. 9.19. As can be seen in this figure, flip-flops share the same clock.
Besides, the input to each flip-flop is independent of the other. Hence, four bits can be
stored to the register in a parallel manner. In the same way, the output of each flip-flop
is independent of the other. Therefore, stored N-bit data can be observed in a parallel
manner. The symbol of a four-bit register is provided in Fig. 9.20.

d3 2 1 do
L e s La
[—> q [—> q [—> q (—> a
clock —e | . | > |
q3 q2 gl q0

FIGURE 9.19 Block diagram of four-bit register.

[1 |
d3 d2 di1 do
clock
g3 g2 gl qO
[]

]

FIGURE 9.20 Symbol of four-bit register.

9.4 Memory

The memory is a data storage element constructed by registers. Within memory, a
specific register should be reached. This is achieved by its address. More generally, the
wires holding the address data are called address bus. We should be able to write or
read the data from a specific register. The wires used for this operation are called data
bus. We provide a sample memory implementation by using two four-bit registers in
Fig. 9.21. As can be seen in this figure, the data input to two separate registers are
done in parallel. An input register is selected by a one-to-two encoder in such a way
that the selected register gets the clock signal. The other register not receive the clock.
Hence, it will be disabled. The data output from registers are selected by multiplexers.
Both data input and output locations are selected by the address bit. Although this is a
simple setup, it shows how the memory works.

dout3

dout2 Lg

doutl LQ

doutO Li
ZamY

d3 d2 di1 dO d3 d2 di1 dO

address } g3 g2 g1 q0 }>q3 g2 ql qO

clock
din3
din2
dinl
din0

FIGURE 9.21 Circuit diagram of 2 x 4 bit memory.

9.5 Read-Only Memory

The stored data may be taken as static during operation of a digital system. In other
words, the data in a specific memory location should not be altered within the system.
Such a location is called read-only memory (ROM). We can represent ROM both in

Verilog and VHDL.

9.5.1 ROM in Verilog

We provide the Verilog description of a 4 x8 bit ROM in Listing 9.13. One can think
of this module as composed of four registers each holding eight bits. The input of the
module is address. The output of the module is data. The roM content can be loaded
either in a binary or a hexadecimal form. To use the binary form, the command
$readmemb should be used. Entries of the rom are saved in the text file

ROM entries bin.txt for this case. To use the hexadecimal form, the command
sreadmemh should be used. Here, entries of the roM are saved in the text file

ROM entries hex.txt for this case.

Listing 9.13 Verilog Description of 4 x 8 bit ROM Module

module Eight bit ROM(data,address) ;

input [1:0] address;
output [7:0] data;

reg [7:0] ROM [3:0];
asgign data=ROM[address];

//load binary ROM content from ROM entries bin.txt file

initial $readmemb("H:/Xilinx projects/project ROM/ROM entries bin.txt",
ROM) ;

//load hexadecimal ROM content from ROM entries hex.txt file

//initial S$Sreadmemh ("H:/Xilinx projects/project ROM/ROM entries hex

SExE", ROM) -
endmodule
9.5.2 ROM in VHDL

We provide the VHDL description of a 4 x 8 bit ROM in Listing 9.14. This module
has the same naming convention as the corresponding Verilog description. The rom
content is loaded from the text file RoM entries hex.txt similar to the application in
Sec. 5.4. The only difference is using the for keyword and to_integer implicit
function. The for keyword is used to form a loop. The to_integer function converts a
given value to an integer form. Besides, the file reading operation is the same.

9.5.3 ROM Formation Using IP Blocks

Xilinx offers IP blocks for memory construction, with two options: distributed and
block memory formation. Distributed memory is composed of LUTs. In fact, the ROM
descriptions in the previous section are good examples of distributed memory

formation. Block memory uses the FPGA parts dedicated for this operation as
explained in Chap. 2.

Let’s start with distributed ROM generation using IP. Here, we will explain the
concept using the Verilog description. The same idea applies to the VHDL description
as well. Assume that a Vivado project is opened as explained in Chap. 4. We can add
the distributed ROM by selecting it under IP catalog following Memories & Storage
Elements — RAMs & ROMs — Distributed Memory Generator. Then the customized
[P window appears. In this window, the user can configure the memory element at
hand. Since we plan to generate the distributed ROM, we should apply the following
steps. First, we should set the depth and data width of the memory block in the
“memory config” tab. Assume that we need a 16-element ROM, each element with
eight bits. Hence, the depth will be 16 and data width will be eight. Next, we should
select the memory type. Here, we will select the ROM. We can set input and output
port properties in the “port config” tab. Finally, we can add an initialization file from
the “RS & initialization” tab. We can add the text file RoM entries hex.txt here with
little modification. The IP accepts files in coe format which is easy to construct [30].
The modified file (to be added) will be RoM entries hex.coe. As we add the
modified IP block to the project, we can form a top module as in Listing 9.15.
Afterward, we can reach a specific ROM content by providing its address. For more
information on the distributed ROM, please see [30].

Listing 9.14 VHDL Description of 4 x 8 bit ROM Module

library ieee;

use ieee.std logic 1164.all;
use ieee.numeric std.all;

use std.textio.all;

use ieee.std logic textio.all;

entity Eight bit ROM is
port (clk : in std logic;
address : in std_logic_vector (1 downto 0);
data : out std logic vector (7 downto 0));
end Eight bit ROM;

architecture behavioral of Eight bit ROM is

type ROM type is array (0 to 3) of std logic vector (7 downto 0);
shared variable ROM : ROM type;

begin

process

variable rdline : line;
file file input : text open read mode is "H:/Xilinx projects/project 19
/ROM entries hex.txt";

begin

for i in ROM type'range loop
readline(file input, rdline);
hread(rdline, ROM(1));
wait for 5 ns;

end loop;

wait;

end process;

process (clk) begin

if rising edge(clk) then

data<= ROM(to_integer (unsigned (address)));
end if;

end process;
end behavioral;

We can also use the block memory IP to construct a ROM module. As in the
distributed ROM formation example, we will only handle the Verilog description here.
Assume that a Vivado project is opened as explained in Chap. 4. We can add a block
ROM by selecting it under the IP catalog following Memories & Storage Elements —
RAMs & ROMs & BRAMs — Block Memory Generator. Then, customized IP

window appears. In this window, the user can configure the memory element at hand.
Since we plan to generate a block ROM, we should apply the following steps. First, we
should set the interface type as “Native” and the memory type as “Single Port ROM”
from the “Basic” tab. Then, we should switch to the “Port A Options™ tab and set the
“Port A Width” and “Port A Depth.” Assume that we need a 16-element ROM, each
element with eight bits. Hence, the width will be eight and depth will be 16. Finally,
we can add an initialization file from the “Other Options” tab. We can add the file

ROM entries hex.coe here. As we add the modified IP block to the project, we can
form a top module as in Listing 9.16. Afterward, we can reach a specific ROM content
by providing its address. For more information on block ROM, please see [31].

Listing 9.15 Verilog Description of Distributed ROM Using IP

'timescale 1ns / 1ps
module distributed ROM(data,address) ;

input [3:0] address;
output [7:0] data;

dist mem gen 0 ROM(.a(address),.spo(data));

endmodule

Listing 9.16 Verilog Description of Block ROM Using IP

'timescale 1ns / 1ps

module block ROM(data,address,clk);
input [3:0] address;

output [7:0] data;

input clk;

blk mem gen 0 ROM(.clka(clk), .addra(address), .douta(data)) ;

endmodule

9.6 Random Access Memory

The stored data may be taken as dynamic during operation of a digital system. In other
words, the data in a specific memory location can be altered within the system. Such a
location is called random access memory (RAM). We can represent the RAM both in
Verilog and VHDL by modifying ROM descriptions in Sec. 9.5. The only difference
will be adding a data write option to descriptions. Instead, we will directly use IP
blocks introduced in the previous section to construct the RAM.

Let’s start with the distributed RAM generation using IP. We will follow the steps
in forming the distributed ROM in the previous section. Different from there, we
should select the memory type as “Single Port RAM.” In the “Port Config” tab, we can
also set output options as “registered.” We can add the initial RAM content by
including the file RaM _entries hex.coe. As we add the modified IP block to the
project, we can form a top module as in Listing 9.17. The top module writes numbers
to specific memory locations when the write enable value is at logic level 1. When this
value goes to logic level 0, the user can read a specific memory location. For more
information on the distributed RAM, please see [30].

Listing 9.17 Verilog Description of Distributed RAM Using IP

'timescale 1ns / 1ps
module distributed RAM(data out,clk,we,addr out);

reg [3:0] address=4'b0000;
reg [7:0] data in;

output [7:0] data out;
input clk, we;

output reg [3:0] addr out;

dist mem gen 0 RAM(.a(address),.d(data in), .clk(clk), .we(we), .gspo
(data out)) ;

always @ (posedge clk)

begin
address<=address+4'b0001;
if (we==1'bl)

data in<={address,address};

addr out <=address;

end
endmodule

We can modify the distributed RAM application by using the block RAM. Here, we
will follow the steps in forming the block ROM in the previous section. Different from
there, we should set the memory type as “Single Port RAM” from the “Basic” tab.
Then, we should switch to “Port A Options” tab and set the Memory Size as “Write
Width” to eight bits, “Read Width” to eight bits, and “Write Depth” to 16 bits. “Read
Depth” will be set automatically based on this value. As we add the modified IP block
to the project, we can form a top module as in Listing 9.18. Similar to Listing 9.17, the
top module writes numbers to specific memory locations when the write enable value
is at logic level 1. When this value goes to logic level 0, the user can read a specific
memory location. For more information on block RAM, please see [31].

9.7 Application on Data Storage Elements

We can improve the calculator by adding memory to it. We provide the top module for
the improved calculator in Listing 9.19. Here, the calculator IP is represented as
calculator 0. To keep the result of an operation in memory, the user should press
btnC button on the Basys3 board. If the user wants to add a number to the one in
memory, he or she should press btn1 button on the Basys3 board. If subtraction is
required, then the user should press btnr button on the Basys3 board. If the user wants
to turn back to normal operation (without using the value in memory) then he or she
should press btnp button on the Basys3 board.

Listing 9.18 Verilog Description of Block RAM Using IP

'timescale 1ns / 1ps
module block RAM(data out,clk,we,addr out,en);

reg [3:0] address=4'b0000;
reg [7:0] data in;

output [7:0] data out;
input clk, we, en;

output reg [3:0] addr out;

blk mem gen 0 RAM(.clka(clk), .ena(en), .wea(we), .addra(address), .dina
(data_in), .douta(data out));

always @ (posedge clk)

begin
address<=address+4'b0001;
if (we==1'bl)

data in<={address,address};

addr out <=address;
end

endmodule

Since buttons are used in all operations, we should eliminate their malfunction
known as “debouncing.” This problem occurs when physical properties of the button
result in more than one button press effect when it is actually pressed once. There are
two ways to eliminate debouncing. One is using the physical resistor and capacitor
circuitry [32]. Although this is a good solution, we should avoid adding discrete circuit
elements at this step. Therefore, the second solution is adding a delay element to the
button press port. We provide the Verilog module performing this operation in Listing
9.20.

In Listing 9.20, the inputs to the debounce module are btn (representing button
press) and c1k (representing clock signal). The output of the module is btn_c1r which

indicates the button press signal without any (possible) debouncing effect. The module
works as follows. The delay parameter is set as 650000. Assume that we feed the
Basys3 clock with a frequency 100 MHz that corresponds to 10-ns clock period.
Hence, the delay parameter corresponds to 6.5-ms time duration. The module provides
clean button press output if it stays unchanged in this time interval.

9.8 FPGA Building Blocks Used in Data Storage Elements

Data storage elements require different FPGA building blocks compared to the ones
used in previous chapters. Let’s start with the FPGA building blocks used in latch
implementation. As indicated in Sec. 9.1.3, while implementing the SR latch the model
used affects the FPGA building blocks used. To be more specific, the dataflow model
of the SR latch in Listing 9.1 needs two LUTs used as logic elements. Here, the data
storage is performed by a feedback loop as in Fig. 9.6. On the other hand, the
behavioral model of the SR latch requires one LUT and two D latches. Therefore,
dataflow and behavioral model implementations require different FPGA building
blocks. Moreover, elements used in implementing behavioral model of the SR latch
are formed of D latches. This may seem contradictory since we need D latches to
construct the SR latch. However, the reader should remember that there are only D
latches in the Artix-7 XC7A35T FPGA. Therefore, this is the main latch structure to
be used in Vivado. We can confirm this by looking at Figs. 9.10 and 9.11.

Listing 9.19 Improved Calculator Implemented on the Basys3 Board in Verilog

module calculator topmodule (clk,sw,btnL,btnC,btnR,btnD, led) ;

input clk;

input [9:0] sw;

input btnL,btnC,btnR,btnD;
output [15:0] led;

reg [7:0] numberl;
reg [7:0] number2;
reg [1:0] op;

reg [7:0] mem;
wire [15:0] result;

wire btnCclr,btnLclr,btnReclr,btnDeclr;
reg btnCclr prev,btnLclr prev,btnRclr prev,btnDclr prev;

debounce_0 dbc(clk,btnC,btnCclr) ;
debounce 0 dbl (clk,btnL, btnLclr) ;
debounce 0 dbr (clk,btnR, btnRclr) ;
debounce 0 dbd(clk,btnD,btnDclr) ;

calculator 0 calc(numberl,number2,op,result);

always @ (posedge clk) begin
btnCclr prev <= btnCclr;
btnLeclr prev <= btnLclr;
btnRclr prev <= btnRclr;
btnDclr prev <= btnDclr;

if (btnCclr prev == 0 && btnCclr == 1) mem <= result[7:0];
else if (btnLclr prev == 0 && btnLclr == 1) begin

numberl <= result[7:0];

number2 <= mem;

op <= 2'b00;
end
else if (btnRclr prev == 0 && btnRclr == 1) begin

numberl <= result[7:0];
number2 <= mem;
op <= 2'b01;
end
else if (btnDclr prev == 0 && btnDclr == 1) begin
numberl <= {4'b0000,sw[7:4]};
number2 <= {4'b0000,sw[3:0]};
op <= sw([9:8];
end
end

assign led = result;

endmodule

Listing 9.20 Verilog Description of Debounce Module

module debounce (clk,btn,btn clr);

input clk;
input btn;
output reg btn clr;

parameter delay = 650000; //6.5ms delay
integer count=0;

reg xnew=0;

always @ (posedge clk)
if (btn != xnew)
begin
Xxnew <= btn;
count <= 0;
end
else if (count == delay) btn clr <= xnew;
else count <= count + 1;

endmodule

Next, let’s focus on the flip-flop implementation details. Again, here the main
building block used in the FPGA implementation is the D flip-flop independent of flip-
flop type considered. This is also because of the fact that there are only D flip-flops in
the Artix-7 XC7A35T FPGA. Therefore, these are the main building blocks in
operation. Let’s focus on the D, JK, and T flip-flop implementation details. The D flip-
flop requires two LUTs used as logic elements, two slices, and one LUT flip-flop pairs
in implementation. The JK flip-flop, on the other hand, requires four LUTs (two being
used as logic elements), two slices, and one LUT flip-flop pairs in implementation.
Finally, the T flip-flop requires three LUTs used as logic elements, two slices, and two
LUT flip-flop pairs in implementation.

Since a register is composed of flip-flops, it is implemented in a similar way. The
distributed ROM and RAM will also be based on flip-flop and LUTs. However, as the
name implies the block ROM and RAM is specifically based on the block RAM in the
FPGA as explained in Chap. 2. The reader can check this property while implementing
these elements in Secs. 9.5 and 9.6. There, the block RAM i1s used to construct
memory elements.

We can summarize the fundamental results while implementing data storage
elements in the FPGA as follows. Since D latches and flip-flops reside in CLBs in the
FPGA, basically they are used in implementation. The distributed ROM and RAM is
also constructed in the same way. The block ROM and RAM will be based on specific
FPGA blocks for implementation. Besides, interconnect resources and input/output

blocks are also needed while implementing data storage elements, as considered in this
chapter.

We should warn the reader about one important implementation detail of latches
and flip-flops. The provided Verilog and VHDL descriptions work without any
problem in the simulation level. However, they may not work as expected (or the
corresponding bitstream cannot be generated) when implemented on the Basys3 or
Arty board. The reason for this shortcoming is as follows. Vivado specifically asks for
any sensitivity list entry labeled by posedge or nededge to be a clock signal. If this is
not satisfied, then a bitstream cannot be generated. To overcome this problem, an edge
detector circuit should be used in the description. We provide such an edge detector for
Verilog in Listing 10.33.

9.9 Summary

Data storage is a necessary property for most digital systems. A latch can be taken as
the basic data storage element to be used for this purpose. However, its usage in an
actual FPGA implementation is not desired since a latch lacks a synchronization
signal. On the other hand, flip-flops can be constructed by using latches. Therefore,
exploring the latch structure was necessary. We will be using flip-flops extensively in
constructing sequential circuits. The specific type to be used in implementation will be
the D flip-flop because of its availability in the Artix-7 XC7A35T FPGA. Therefore,
the reader should understand its working principles. D flip-flops lead to registers and
they lead to memory blocks. If the block data is to be saved in an FPGA, these should
be used in implementation.

9.10 Exercises

9.1 Construct the SR latch in Sec. 9.1.1 using NAND gates.

9.2 Describe the SR latch with control input in Verilog using
a. structural modeling.
b. dataflow modeling.

9.3 Describe the D latch with control input in Verilog using
a. structural modeling.
b. dataflow modeling.

9.4 Describe the SR latch with control input in VHDL using dataflow modeling.
9.5 Describe the D latch with control input in VHDL using dataflow modeling.

9.6 Obtain the RTL schematic of SR and D latches in Sec. 9.1.4. Compare the
obtained results with the ones in Sec. 9.1.3.

9.7 How would the FPGA building block usage change if only the g output of the D
flip-flop 1s required?

9.8 Use a button and a LED on the Basys3 (or Arty) board such that when the button

1s pressed once, the LED turns on. When it is pressed twice, the LED turns off.
Use a suitable flip-flop description for this operation in Verilog or VHDL.

CHAPTER 1 O

Sequential Circuits

lip-flops introduced in the previous chapter allow us to design sequential

circuits. The common characteristic of these circuits is that they have

memory. Hence, their behavior depend not only on the current input but also

on the past input and output. Flip-flops serve as memory elements for this

purpose. In this chapter, we will extensively use the D flip-flop since it is

available in the Artix-7 XC7A35T FPGA. To understand sequential circuits,
we will start with their analysis. This will be different from combinational circuit
analysis due to memory elements in the sequential circuit. Therefore, we will introduce
new methods specific for this purpose. Then, we will explore the timing concept in
sequential circuits. Afterward, we will explain working principles of two sequential
circuit families used extensively. These are shift registers and counters. As in
combinational circuits, we will review the basic design methodology for sequential
circuits by adding extra tools. Finally, we will focus on how sequential circuits can be
implemented on the field-programmable gate array (FPGA).

10.1 Sequential Circuit Analysis

We can analyze characteristics of a sequential circuit in three different ways using
state equation, state table, and state diagram. This section is on these concepts. Let’s
first start with defining what a state is.

10.1.1 Definition of State

A flip-flop can store one bit of data as either logic level 0 or 1. Therefore, we can say
that it can be in one of two states. If a sequential circuit has N flip-flops, then it can
store N bits of data having one of 2N combinations. In other words, the sequential
circuit can be in one of 2N states. Since there are finite number of states the sequential

circuit can be in, it is also called a finite state machine. Throughout the book, we will
use both names interchangeably.

10.1.2 State and Output Equations

A sequential circuit changes its state by an input signal and/or clock fed to it. Hence,
we can characterize the sequential circuit using its state transitions described by state
equations. The aim here is representing the next state using the present state and input
values. To represent the output of a sequential circuit, we can use two different models
as Mealy and Moore. In Mealy model, the output is a function of both present state and
input. In Moore model, the output is a function of the present state only. For more
information on Mealy and Moore models, please see [26,33].

Let’s take the sequential circuit in Fig. 10.1 as an example and form its state and
output equations. As can be seen in this figure, the sequential circuit contains two D
flip-flops and logic gates. Let’s call the first and second flip-flops as g1 and g2,
respectively. Based on these, possible state values in the circuit will be as {g2¢g1} €
{00,01,10,11}.

clock > gl

LH 9

FIGURE 10.1 Circuit diagram of the sample sequential circuit.

By analyzing the circuit diagram in Fig. 10.1, we can form state and output
equations of the corresponding sequential circuit. The output of a D flip-flop can be
taken as its present state. This can be represented as g[n] where # indicates the present
clock cycle. Therefore, we will have present state values as ¢g1[n] and g2[n] in the
sequential circuit. The input of a D flip-flop can be taken as its next state since it will
be fed to the output by the next clock cycle. Hence, gl[n + 1] and g2[n + 1] will be
taken as next state values where n + 1 indicates the next clock cycle. These definitions
lead to state and output equations. Here, we will take next states and the output
separately as if they are simple combinational circuits. Using techniques introduced in
Chap. 7, we can form state and output equations for the sequential circuit in Fig. 10.1

as follows:

a2l +1] = g2[n] - q1[n] - x + q2[n] - 71 [n]
qlin+1) = q2[n] - q1[n] - x + q2[n] - g1[n] - X + g2[n] - q1[n] - x
y = g2[n] - q1{n] - x

10.1.3 State Table

The state (characteristic) table of a sequential circuit is similar to the truth table of a
combinational circuit. However, the state table holds all input and present state
combinations at its first section. The second section of the state table holds both output
and next state values.

We can form the state table of the sequential circuit in Fig. 10.1 by using its state
and output equations. Using these, the state table can be constructed as presented in
Table 10.1. This table summarizes characteristics of the sequential circuit. By looking
at it, we can know what the next state and output will be based on the present state and
input values.

Present State | Input Next State Output
q2[n] qi[n] q2[n+1] qi[n+1]

b

R OO O|C|O|(0O|O|=

R IOIRIO|R[([O|RLR|O
C|O|IRPIRP|RLR|IO(O|O
RIO|IO|RLr| OO |O

P R R R|lOlO|O
PrPIOIO|RIPRI OO

TABLE 10.1 State Table of the Example Sequential Circuit

10.1.4 State Diagram

Although the state table characterizes a sequential circuit, it may not be descriptive
enough. Therefore, the third method to describe the sequential circuit is using a state
diagram composed of circles and directed arcs. Each circle represents a state. A
directed arc represents the transition between states. The directed arc also holds the
required input value for transition to occur. However, transition timings are not
explicitly shown in the state diagram.

If the sequential circuit is of the Mealy type, the directed arc holds what the
corresponding output will be after the state transition. Let’s provide part of a generic
state diagram (for the Mealy model) in Fig. 10.2. As can be seen in this figure, the

directed arc holds information on what the input value should be for transition to the
next state to occur. The directed arc also holds information on the output value after

this transition.

input/output

FIGURE 10.2 Part of a generic state diagram for Mealy model.

The state diagram based on the Moore model requires outputs to be defined along
with states. Therefore, directed arcs will have only input values. Next, we provide part
of a generic state diagram for the Moore model in Fig. 10.3. As can be seen in this
figure, the directed arc only contains the input value required for transition. The circle
representing the state also holds the corresponding output value.

input

FIGURE 10.3 Part of a generic state diagram for Moore model.

Let’s turn back to the sequential circuit characterized by its state table in Table
10.1. The output equation of the circuit clearly indicates that this is a Mealy model.
Besides, there are four states based on two flip-flops in the circuit. Hence, there will be
four circles in the state diagram. Since there is one input and output in the sequential
circuit, its state diagram will be as presented in Fig. 10.4.

1/0

0/0

0/0 1/0

0/0 1/0

FIGURE 10.4 State diagram of the example sequential circuit.

The state diagram in Fig. 10.4 can be read as follows. There are four states labeled
as 00, 01, 10, and 11. Directed arcs have labels such as 1/0. Here, the number before
the slash represents input. The number after the slash represents the output. As an
example, the directed arc between states 00 and 01 is labeled as 1/0. This indicates that
when the system is at state 00 and an input with logic level 1 comes, the system goes
to state 01 while producing the output 0. In a similar manner, when the system is at
state 00 and an input with logic level 0 comes, the system stays at the same state while
producing output 0.

We should mention what the initial state of the sequential circuit should be. We
implicitly assumed that the circuit under consideration starts its operation with state
00. In other words, both flip-flops were reset when the first input comes. This setup
can be taken as default unless a specific state is taken as the initial state.

We are in a position to judge what the sequential circuit in Fig. 10.4 does. Here, the
most helpful representation is its state diagram. Based on it, we can decide that the
sequential circuit gives output of logic level 1 only when a sequence of inputs with
pattern 1101 comes. Hence, this device is a sequence detector. Such devices are
helpful in detecting specific patterns in a sequence.

10.1.5 State Representation in Verilog

We can represent the sequence detector in Fig. 10.1 in Verilog. The first method in
describing it is using state and output equations. We provide Verilog description of the
sequence detector using these in Listing 10.1.

Instead of representing the sequence detector as presented in Listing 10.1, we can
take the advantage of the behavioral modeling in Verilog. The aim here is having a
more descriptive representation of the device. Moreover, Verilog allows us to

represent states in parametric form. This makes the description more readable. Let’s
apply this idea to the sequence detector by representing state values {00, 01, 10,

11} in the device as {a, B, c, D}, respectively. Based on this representation, we will
have the new state diagram as shown in Fig. 10.5.

1/0

0/0

0/0 1/0

0/0 1/0

FIGURE 10.5 State diagram of the sequence detector using parametric form.

Listing 10.1 Verilog Description of the Sequence Detector

module sequence detector(y,ql,qg2,x,clk,clr);

input x,clk,clr;
output reg v;

output reg gl=0;
output reg g2=0;

always @ (posedge clk)

1E [(elr==1)

begin
ql <= 1'b0;
g2 €= 1'B0;

end

else

begin
gl <= (x&~g2&~gl) + (~x&g2&~gl) + (xX&g2&gl);
g2 <= (x&~g2&gl) + (g2&~qgl);
Yy <= g2&Ql&x;

end

endmodule

Based on the state diagram in Fig. 10.5, we can reconstruct the Verilog description of
the sequence detector. Here, we will represent states as 2, B, c, and p. Besides, we
will have the actual behavioral description such that state transitions are done by case
statements. The final Verilog description of the sequence detector will be as presented
Listing 10.2. This description allows us to analyze working principles of the sequential
circuit easily. Therefore, we will represent sequential circuits this way whenever
possible from this point on.

Listing 10.2 Verilog Description of the Sequence Detector in Behavioral Form

module sequence detector(y,x,clk,clr);

input x,clk,clr;
output reg vy;

reg [1:0] state=2'b00;
parameter A=2'b00, B=2'b01, C=2'b10, D=2'bll;

always @ (posedge clk)
begin

if (clr == 1) state <= A;
else

begin

if (x == 0)

case (state)

A : state <= A;
B : state <= A;
C : state <= D;
D : state <= A;
endcase
else
case (state)
A : state <= B;
B : state <= C;
C : state == C;
D : state <= B;
endcase
if ((x == 1) && (state == D)) vy <= 1;
else vy <= 0;
end
end
endmodule

Vivado synthesizes the sequence detector description in Listing 10.2 as presented in
Fig. 10.6. Here, four LUTs and three D flip-flops are used in implementation. We will
analyze this implementation in detail in Sec. 10.7.

clk_IBUF_inst clk_IBUF_BUFG_inst

I 0 | 0
kD> > T state_reg[1] state_reg[0]
IBUF BUFG = state[0]_i_1 c
B I
R D R yid () y_OBUF_inst
] 4 I~_0
S 3 fFDRE NG > Dy
1 LUT4 LTS D OBUF
= = 7 b R
IS
L 10 F
% IBUF_inst ' : . ' ;) o
e b state[1] i_1 — —12 =
. [5 ANE]
{BUF L1 o
‘ctr_\%UF_inst 12
cr—> 13
IBUF LUT4

FIGURE 10.6 Synthesization result of the sequence detector in behavioral model.

10.1.6 State Representation in VHDL

The sequence detector in Fig. 10.1 can also be described in VHDL. As in the Verilog
description in Listing 10.1, the first method is using state and output equations in
describing the sequence detector. We provide the VHDL description of the sequence
detector formed this way in Listing 10.3.

The second method in describing the sequence detector is using the power of
behavioral modeling. VHDL provides an extra advantage compared to Verilog such
that states in the device can be represented as a new data type by the VHDL keyword
type. The usage of this keyword will be as type state type is (a,B,c,D). This
usage defines a new data type called state type which can take four values as
a, B, C,D. If a signal with the name state is to be defined by type state type, this can
be done by signal state : state type. We provide the behavioral model of the
sequence detector described this way in Listing 10.4. Compared to the description in
Listing 10.3, this new form is more readable and explains working principles of the
sequence detector clearly. Hence, we will use such a behavioral description whenever
possible from this point on. The synthesization result of the sequence detector
description in Listing 10.4 will be similar to the one in Fig. 10.6. Therefore, we did not
provide it here.

Listing 10.3 VHDL Description of the Sequence Detector

library ieee;
use ieee.std logic 1164.all;

entity sequence detector is
port(x : in std logic;
clk : in std logic;
clr : in std_logic;
gl : inout std logic Qe .
g2 : inout std logic '0';
y : out std logic := '0');

end sequence detector;
architecture behavioral of sequence detector is

begin
process (clk)
begin

if clr="1" then qgle<="'0"; glz="0"; ye="0";
elsif rising edge(clk) then
gl<= (x and not g2 and not gl) or (not x and g2 and not gl) or
and g2 and gl);
g2<= (x and not g2 and gl) or (g2 and not gl);
y <= g2 and gl and x;
end if;
end process;
end behavioral;

Listing 10.4 VHDL Description of the Sequence Detector in Behavioral Model

library ieee;
use ieee.std logic 1164.all;

entity sequence detector is
port(x : in std logic;
clk : in std logic;
clr : in std legie;
y : out std logic := '0');
end sequence detector;

architecture behavioral of sequence detector is
type state type is (A,B,C,D);

signal state : state type := A;
begin

process (clk)

begin

if clr='1' then state<=A; y<='0';
elsif rising edge(clk) then

if x='0' then
case state is
when A => state<=A;
when B => state<=A;
when C => state<=D;
when others => state<=A;
end case;

elsif x='1' then
case state is
when A => state<«=B;
when B => state<=C;
when C => state<=C;
when others => state<=B;

end case;
end if;
if (x='1') and (state=D) then y<='1l"';
else y<='0"';
end if;
end if;

end process;
end behavioral;

10.2 Timing in Sequential Circuits

Sequential circuits can operate in two different modes in terms of timing. These are
synchronous and asynchronous operations. Let’s start with the former one.

10.2.1 Synchronous Operation

What we mean by synchronous operation is as follows. All transitions within the
sequential circuit are done in clock cycles. In other words, circuit elements share a
common clock such that every operation is synchronized with it. The reason of using
such a synchronization signal is as follows. When there are flip-flops in the circuit, we
may need present state values in obtaining next state values. However, these
operations should be done in order. Otherwise, the next state value may be used
erroneously instead of the present state value. Hence, synchronization is necessary
within the circuit. The sequence detector introduced in Sec. 10.1 i1s a good example of
the synchronous sequential circuit. As can be seen in Fig. 10.1, there are two D flip-
flops in the device sharing the same clock signal. The synchronization in the circuit is
accomplished this way.

One method to perform synchronous operation in HDL is putting all state transition
operations in the same block which is evoked by a change in clock signal. Let’s focus
on this operation in Verilog first. In Listing 10.2, the description under always @
(posedge clk) 1s responsible for state transitions and output formation. The posedge
keyword indicates that the a1ways block is executed whenever a rising edge of clock
comes. Since all state transitions are performed in the aiways block, these operations
are synchronized by the rising edge of clock. The same operation can be achieved by
the falling edge of clock. Then, the keyword for this operation would be negedge.

The synchronization in the VHDL description can be performed by using the
process block triggered by clock signal. In the VHDL description of the sequence
detector given in Listing 10.4, the synchronization is done by putting all state
transitions under process (c1k) . Different from Verilog, VHDL does not allow adding
a complex constraint to trigger the process block. Hence, it is triggered first by a
change in clock signal. Then, state transitions are performed by the required transition
type within block. For the sequence detector, this was the rising edge of the clock
described by the condition rising edge (c1k) within the if condition. To perform the
same operation in the falling edge of clock signal, the fa11ing edge (c1k) condition
should have been used.

10.2.2 Asynchronous Operation

There are also asynchronous sequential circuits. In these, there is no common clock
shared by all sequential circuit elements. Although asynchronous operations may be
beneficiary for some applications, such circuits are not easy to construct and analyze.
We can analyze how asynchronous operation can be achieved in HDL using a basic
example. Let’s start with the Verilog description in Listing 10.5. Here, there are two
always blocks. The first one is triggered by the positive edge of the clock signal. The
second block is triggered by the negative edge of the binary variable g in the first
block. In other words, the execution of the second block depends on the first block, not
on the clock signal. This is a simple example of asynchronous operation in Verilog.
The asynchronous operation in Listing 10.5 can also be performed in VHDL. The
corresponding description will be in Listing 10.6. Here, there are two process blocks

the first being triggered by clock signal. Within the first process block, a signal g
changes its state in each rising edge of clock. This change triggers the second process
block. Hence, the second block is not triggered by clock signal. Therefore, the overall
operation within the device becomes asynchronous.

10.3 Shift Register as a Sequential Circuit

There are sequential circuit families extensively used in digital systems. One such
family is the shift register which will be introduced in this section. The register
introduced in Sec. 9.3 can be modified such that bit locations can be altered in a
sequential manner. The family of devices performing this operation is called shift
register. There are four shift register types: serial in/serial out, parallel in/serial out,
parallel in/parallel out, and serial in/parallel out.

Listing 10.5 Asynchronous Operation Example in Verilog

module asynchronous operation(y,clk);

input clk;
output reg y;

reg qj

initial
begin

g =l b0
y =1'b0;
end

always @ (posedge clk)
B &= <Hj

always @ (negedge q)

Yy <= ~Yi
endmodule

Listing 10.6 Asynchronous Operation Example in VHDL

library ieee;
use ieee.std logic 1164.all;

entity asynchronous operation is
port(clk : in std logic;

y : inout std logic :='0');
end asynchronous operation;

architecture behavioral of asynchronous operation is
signal g : STD LOGIC :='0';

begin

process (clk)

begin

if rising edge(clk) then
g<= not q;

end if;

end process;

process (q)

begin

if falling edge(q) then
y<= not y;

end if;

end process;

end behavioral;

In the serial in/serial out shift register, data is fed to the device in a serial manner.
The output is also received in serial manner. This operation 1s especially useful when a
sequence of bits is to be shifted to the left or right. The block diagram of the four-bit
serial in/serial out shift register is as presented in Fig. 10.7. As can be seen in this
figure, the shift register is constructed by four D flip-flops connected as a chain.
Hence, the output of one flip-flop is connected to the input of the next flip-flop. New
data bit is fed to the device through its x pin. At each clock cycle, bits are shifted to
right between flip-flops. Last data bit is fed to output from y pin.

In the parallel in/serial out shift register, data is fed to the device in a parallel
manner. Hence, data is fed all at once. Besides, shifting operation is the same as in
serial in/serial out shift register.

Parallel in/parallel out and serial in/parallel out shift registers work similarly. In
both devices, data is received in parallel manner. The only difference between these
devices is how input is fed to the device. In the parallel in/parallel out shift register,
data 1s fed all at once. In the serial in/parallel out shift register, data is fed bit by bit.
Besides, shifting operation in these devices is the same as in the serial in/serial out
shift register.

We can summarize working principles of four shift register types as follows.

Shifting operation in all these devices is the same. The only difference between them is
how the input and output is received. Therefore, let’s consider N-bit serial in/serial out
shift register to explain the overall operation. To construct the shift register, we should
use N D flip-flops. Here, each bit in the sequence to be shifted is saved in a flip-flop
named gi. In this setup, let g0 and gp—1 represent the least and most significant bits,

respectively. This shift register can be explained best using its state and output
equations as follows:

y = qo[n]
qgoln +1] = qn]

g2+ 1] = gn-1[n]
gn-1n+1] = x

As can be seen in above state equations, at every clock bits are shifted to the right flip-
flop. The output equation indicates this is a Moore machine since the output depends
only on the present state value.

State and output equations given above can be modified such that a left shift
operation can be performed. Modified equations are given below. As can be seen in
these equations, the mechanism of shifting operation is the same. Only the connection
between the flip-flops, input, and output pins is altered.

y = qn-1[n]
gn-1[n+1] = gn-2(n]
nmn+1 = qoln]

Qoln+1 = x

10.3.1 Shift Registers in Verilog

Verilog has predefined operators for shifting data in a vector. The shift right operator
is “>>”. The shift left operator 1s “<<”. Let’s assume that a vector ¢ is to be shifted to
left by one bit. The Verilog description for this operation will be ¢ << 1.

Using predefined shifting operators in Verilog, we can describe shift registers. Let’s
focus on four-bit serial in/parallel out shift register which shifts data to right. We
provide the Verilog description of this device in Listing 10.7. We deliberately handled
the serial in/parallel out shift register to show how shifting operation is done in every
clock cycle.

Vivado synthesizes the four-bit serial in/parallel out shift register description as pre-
sented in Fig. 10.8. Here, only four D flip-flops are used in implementation. This is in
line with the block diagram of the shift register in Fig. 10.7.

- [—> r> r> F>

FIGURE 10.7 Block diagram of four bit serial in/serial out shift register.

10.3.2 Shift Registers in VHDL

The easiest way to construct a shift register in VHDL is using the array assignment
operator. Through it, we can copy and replace portion of the array to be shifted. We
provide the VHDL description of the serial in/parallel out shift register in Listing 10.8.
As can be seen in this description, shifting is performed by array operators. The
synthesization result of the shift register description will be similar to the one in Fig.
10.8. Therefore, we did not provide it here.

clk_IBUF_inst clk_IBUF_BUFG_inst — q_OBUF[O]_inst
| 0

0
ok I~_0 \bo q_reg[0] 0 Da0:3]
IBUF BUFG —C OBUF
x_IBUF_inst —{CE q_OBUF[1]_inst
x> I~ 0 b 9 IP~_.0 1)
IBUF —R : OBUF
T gq_OBUF[2]_inst
FDRE q_reg[1] q_reg[2] | 0 %
= c —C . OBUF
L_lce JcE T q_reg[3]
° o . q_OBUF[3] inst
R —R CE 0 ~.0 3
’7 FDRE FDRE g OBUF

FIGURE 10.8 Synthesization result of four-bit serial in/parallel out shift register.

Listing 10.7 Verilog Description of Four-Bit Serial In/Parallel Out Shift Register

module SIPO shift register(x,clk,q);

input x,clk;
output reg [0:3] q;

initial g=4'b0000;

always @ (posedge clk)

begin

g <=4g > 1;
ql[0] <=x;

end

endmodule

Listing 10.8 VHDL Description of Four-Bit Serial In/Parallel Out Shift Register

library ieee;
use ieee.std logic 1164.all;

entity SIPO shift register is
port(x : in std logic;
clk ¢ in std logic;
q : inout std logic vector (0 to 3) := "0000");
end SIPO shift register;

architecture behavioral of SIPO shift register is
begin
process (clk)
begin
if rising edge(clk) then
g(l to 3)<= g(0 to 2);
qi0)e= x3
end if;
end process;

end behavioral;

10.3.3 Multiplication and Division Using Shift Registers

We can use shift registers to multiply or divide a binary number by integer powers of
two. Assume that we keep a binary number in shift register. As we shift all its bits to
the left, while feeding input of logic level 0, the result will be the multiplication of
original number by two. We can shift the result again to obtain multiplication by four.
This operation can be repeated many times to obtain the multiplication of original
number by a power of two. Here, the reader should be aware of overflow possibility
such that the most significant bit may be lost during operation. Therefore, this bit
should be handled specifically during shifting. If shifting 1s done to the right, then
division of the original number by the power of two will be obtained.

Let’s consider a simple example on binary multiplication and division operations by
powers of two in HDL. We can start with the Verilog description in Listing 10.9. Here,
we use an eight-bit parallel in/parallel out shift register for multiplication and division
operations. Within the description, p2 represents the power of two for multiplication or
division operation. Variable md can be set to logic level 1 for the multiplication
operation. It can be set to logic level 0 for the division operation. If an overflow
occurs, 1t 1s saved in ovr.

Listing 10.9 Verilog Description of the Eight-bit Parallel In/Parallel Out Shift Register
for Multiplication and Division Operations

module PIPO shift register (number,p2,md, clk, result,ovr);

input [7:0] number;
input [1:0] p2;
input md, clk;

output reg [7:0] result;
output reg ovr;

initial ovr =1'b0;

always @ (posedge clk)

begin

if (md==1)

{ovr,result} <= number << p2;
else

result <= number >> p2;

end

endmodule

Listing 10.10 VHDL Description of the Eight-bit Parallel In/Parallel Out Shift
Register for Multiplication and Division Operations

library ieee;
use ieee.std logic 1164.all;

entity PIPO _shift register is
generic (p2 : integer := 2);
port (number : in std logic vector (7 downto 0);
md : in std logic;
clk : in std logic;
result : inout std logic vector (7 downto 0);
ovr : out std logic := '0');
end PIPO shift register;

architecture behavioral of PIPO shift register is

begin
process (clk)
begin
result<=number;
if rising edge(clk) then
if md='1"'" then
ovr <=result(7-p2+1);
result (7 downto p2) <= result((7-p2) downto 0);
result ((p2-1) downto 0)<= (others =>'0"');
else
result ((7-p2) downto 0) <= result (7 downto p2);
result (7 downto (7-p2))<= (others =>'0"');
end if;
end if;
end process;

end behavioral;

We provide the VHDL description of the binary multiplication and division
example in Listing 10.10. As in the Verilog description, we use eight-bit parallel
in/parallel out shift register for multiplication and division operations. Signal names
here are same as in the corresponding Verilog description. While setting bits to logic
level 0, we used others =>’0’. This description is very useful when the total number
of bits to be processed is not known in advance in VHDL.

In Listing 10.10, we used VHDL keyword generic to pass a specific information
into an entity. More specifically, we used it to define constant p2 to be used throughout
the shift register architecture. We will use generic in the following chapters for such
purposes as well.

10.4 Counter as a Sequential Circuit

The counter is another sequential circuit family used in digital systems. As the name
implies, the first usage area of this circuit is counting number of input occurrences.
The second usage area of a counter is in time-based operations. Here, a number of
clock pulses are counted. If the period of the clock is known, then the total time passed

during counting operation can be calculated. The third usage area of the counter is in
frequency division operation. Here, the frequency of the input clock signal is divided
by powers of two.

Working principles of a counter are as follows. Whenever an input signal comes,
the counter circuit changes its state. If we assign successive numbers to states in the
circuit, then the device visits each number successively. Here, the total number of
states indicate the capacity of the counter. Based on the number assignment to states,
upward or downward counting can be done.

The counter can best be explained by its state diagram. Let’s pick a two-bit (four
state) up counter as example. States of this circuit will be 00, 01, 10, and 11. Hence, the
circuit will count upwards. If the count value reaches state 11, then the next state will
be 00. To indicate that the count reached the final value and restarted counting, we can
set the output as logic level 1 at this transition. The corresponding state diagram for the
overall operation will be as presented in Fig. 10.9.

0/0 1/0 0/0

1/1 1/0

0/0 1/0 0/0

FIGURE 10.9 State diagram of two-bit up counter.

A counter can be realized in two different ways as a synchronous or an
asynchronous sequential circuit. Next, we explain each realization in detail.

10.4.1 Synchronous Counter

In asynchronous counter, all flip-flops within the sequential circuit are clocked with
the same clock signal. We can implement the two-bit synchronous up counter as
presented in Fig. 10.9. Since there are four states in the circuit, we will need two flip-
flops in implementation. We can form the state table for the counter as presented in
Table 10.2. Here, the input to the counter is represented by the binary variable x. The
output of the counter is denoted by y.

Present State | Input Next State Output
q2[n] qi[n] x q2[n+1] | qi[n+1] vy
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 0 0 1

TABLE 10.2 State Table of a Two-Bit Synchronous Up Counter

We can form state and output equations by referring to Table 10.2 as follows:

g2l +1] = q2[n] - q1[n] + @2[n] - q1fn] - x + q2[n] - %
glin+1] = gln] & x
y = qlin]-q2[n] - x

Based on these state and output equations, the final circuit for two-bit synchronous up
counter will be as presented in Fig. 10.10.

%}
O

X :j
d ql
clock > ql
B

FIGURE 10.10 Circuit diagram of two-bit synchronous up counter.

10.4.2 Asynchronous Counter

There 1s another way of implementing the two-bit up counter. To do so, we should
analyze the state table in Table 10.2 more closely. As can be seen in this table, g1
toggles its state whenever rising edge of clock comes and input x equals to logic level
1. g2 toggles its state whenever falling edge of g1 comes and input x equals to logic
level 1. This leads to asynchronous (ripple) counter in which clock signal is fed only to
the first flip-flop. The second flip-flop changes its state based on the output of the first
flip-flop.

We provide the circuit diagram of the two-bit asynchronous up counter in Fig.
10.11. Here, we use two D flip-flops. As can be seen in this figure, no extra
combinational circuit is needed.

e

e

clock —>

——

ql q2

o]

A4
Q|

FIGURE 10.11 Circuit diagram of a two-bit asynchronous up counter.

10.4.3 Counters in Verilog

Counters can be described in Verilog using arithmetic operations. Let’s start with the
two-bit synchronous up counter in Fig. 10.10. We can describe this circuit as presented
in Listing 10.11. As can be seen in this description, counting operation is done by
arithmetic addition by one at every clock cycle when input x is at logic level 1.

Listing 10.11 Verilog Description of Two-Bit Synchronous Up Counter

module two bit sync counter(x,clk,q,y);

input x,clk;
output reg [1:0] q;
output reg y;

initial
begin
g=2 "1b00;
y=1"H0;
end

always @ (negedge clk)
if (x == 1) {y,q} g= i s VBl

endmodule

Vivado synthesizes the two-bit synchronous up counter in Listing 10.11 as

presented in Fig. 10.12. Here, three LUTs and D flip-flops are used in implementation.

ok IBUF inst clk_IBUF BUFG_ inst g regi 0 y_reg

K I~ 0 I~ 0 — - q_OBUFO]_inst
c 1> 10 0 o 0
IBUF BUFG LUTL q regl0 - —E o < q[1:0]
q_reg[l] il D OBUF
C 10 O —R y_OBUF_inst
_ Lle | ¢ B IS0 LDy
x_IBUF _inst q[0]_i_1 b 9 Ll U2 FDRE GBUF
XD I~ 0 0ol R b 91| - q_OBUF[1]_inst
BE It —r |
FDRE glli 1
LUT2 1 L T OBUF
- 1 o— | *
12
(_“ LUT3

FIGURE 10.12 Synthesization result of two-bit synchronous up counter.

We can generalize the two-bit synchronous counter to N bits. Moreover, we can add
up or down counting, and clearing the count value functionality. We provide the N-bit
counter having all these properties in Listing 10.12. Here, ud decides the count
direction. If this variable is set to logic level 1, then up counting is performed.
Otherwise, down counting is done. Variable c1r can be used to clear the count value.

Listing 10.12 Verilog Description of N-bit Synchronous Up/Down Counter

module N bit sync counter(x,ud,clk,clr,q,y);
parameter N = 4;
snput aadlsells, vles

output reg [N-1:0] g;
output reg vy;

always @ (negedge clk,posedge clr)
if (elr==1)
begin
g=0.;
y<=0;
end
else
if (x == 1)
if (ud==1) {y,q} <= g + 1'bl;
else
{v.a} <= q - 1'bl1;
endmodule

Next, we consider the two-bit asynchronous up counter in Fig. 10.11. We provide
the Verilog description of this circuit in Listing 10.13. As can be seen in this
description, two always blocks are used to perform the asynchronous operation.

Vivado synthesizes the two-bit asynchronous up counter in Listing 10.13 as
presented in Fig. 10.13. Here, four LUTs and three D flip-flops are used in
implementation. This implementation clearly shows asynchronous operation if the

reader follows clock signal connections.

q_OBUF[0]_inst
| 0

LUT1

y_reg

-
clk_IBUF_inst clk_IBUF_BUFG_inst i1 q_reg(0]
ok D—>2 >0 ol c
IBUF BUFG LUT1 LcE
p ©
—R
FDRE
x_IBUF_inst
x> |[“l’>0 .
IBUF qolil

0 0
11
LUT2

q[1].i.1

11
LuT2

C
CE

S

R

.”_;Llr

FDRE

OBUF
q_OBUF[1]_inst

| 0] al
OBUF

y_OBUF_inst
o)

OBUF

q[1:0]

FIGURE 10.13 Synthesization result of two-bit asynchronous up counter.

10.4.4 Counters in VHDL

Counters can also be described in VHDL. Let’s reconsider the two-bit synchronous up

counter in Fig. 10.10. We can describe this circuit as presented in Listing 10.14. As

can be seen here, counting operation is done by arithmetic addition by one. The
synthesization result of the two-bit synchronous up-counter description will be similar

to the one in Fig. 10.12. Therefore, we did not provide it here.

Listing 10.13 Verilog Description of Two-Bit Asynchronous Up Counter

module two bit async counter(x,clk,q,y);

input x,clk;

output reg
output reg

initial
begin
g=2 "Bl
y=1'b0;
end

always @ (
1E (3 == 1)

[1:0] g3
Yi

negedge clk)
<= g[0]

ql0]

always @ (negedge ql[0])

if (x == 1) {y,ql1]} <= gq[1] + 1'bl;

endmodule

+ 1'b1;

Listing 10.14 VHDL Description of Two-Bit Synchronous Up Counter

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric std.all;

entity two bit sync counter is
port(x : in std logic;
g1k : dn 8=d logic;
g : inout signed (1 downto 0) := "00";
¥ : 0k sid logilc := M0V}
end two bit sync counter;

architecture behavioral of two bit sync counter is
begin
process (clk)
begin
if falling edge(clk) then
if x='1"' then
q <=q+1;
if (g="11") then y<='l"';
else y <='0";
end if;
end if;
end if;
end process;

end behavioral;

Listing 10.15 VHDL Description of N-bit Synchronous Up/Down Counter

library ieee;
use ieee.std logic 1164.all;
ugse ieee.numeric std.all;

entity N bit sync counter is
generic (N : integer :=3);
port(x : in std logic;
ud : in std logic;
olk : dn std leogicy
¢gly i in std logic;
g : inout signed ((N-1) downto 0);
y : out std logic := '0');
end N bit sync counter;

architecture behavioral of N bit sync counter is

begin

process (clk,clr)

begin

if rising edge(clr) then
g<= (others=>'0"');

y <= 'O',‘

end if;

if falling edge(clk) then
if ((x='1') and (ud='1')) then
g<=4dg+1;
if (g="11") then y <= '1';
else v <= '0';

end if;
elsif ((x='1') and (ud='0')) then
q<=q-1;

if (g="00") then y <= '1';
else y <= '0';
end if;
end if;
end if;

end process;
end behavioral;

As in the previous section, we can generalize the counter to have up/down and clear
properties. We provide the VHDL description for this setup in Listing 10.15. Here,
variable names are the same as the ones used in corresponding Verilog description.
Hence, the reader can associate both descriptions.

Listing 10.16 VHDL Description of Two-Bit Asynchronous Up Counter

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

entity two bit async counter is
port(x : in std logic;
¢lk : in std logic;
g : inout signed (1 downto 0) := "00";
y @ out gtd logié := '0');
end two bit async counter;

architecture behavioral of two bit async counter is

begin
process (clk)
begin
if falling edge(clk) then
if x='1' then
g(0) <= not g(0);
end if;
if (g="11") then y <= '1';
else y <= '0';
end if;
end if;
end process;

process (g (0))
begin
if falling edge(g(0)) then
i1f x="1" then
g(l) <= not g(l1);
end if;
end if;
end process;

end behavioral;

Finally, we handle the two-bit asynchronous up counter in Fig. 10.11. We provide
the VHDL description of this circuit in Listing 10.16. As can be seen in this
description, two process blocks are used to perform asynchronous operation. The
synthesization result of the two-bit asynchronous up-counter description will be
similar to the one in Fig. 10.13. Therefore, we did not provide it here.

10.4.5 Frequency Division Using Counters

The clock frequency of a digital system may not be suitable for operation. Hence, we
may need to change it. Module performing this is called frequency divider. Counters
can be used for this purpose. What we have to do is feeding the clock signal as input

and obtaining new clock signal with the frequency divided by powers of two from the
output of counter flip-flops. We provide such a synchronous frequency divider in Fig.
10.14. Here, we use T (toggle) flip-flops introduced in Sec. 9.2.3.

f/2 (Hz) f/4 (Hz) f/8 (Hz)

1—’ECIJ tCIJ th

sosk | & [®

f (Hz) -

FIGURE 10.14 Block diagram of a synchronous frequency divider.

Listing 10.17 Verilog Description of Synchronous Frequency Divider

module sync frequency divider (clk, Fout) ;

input clk;
output reg [2:0] Fout;

initial
Fout=3'b000;

always @ (negedge clk)
Fout <= Fout + 1'bl;
endmodule

Next, we consider HDL description of this frequency divider circuit. We provide
the corresponding Verilog description in Listing 10.17. Here, the synchronous
counting 1s performed. Divided frequency values are taken from count digits. We also
provide the frequency division result of the clock signal obtained from Vivado in Fig.
10.15. As can be seen in this figure, at each output the digit frequency of an input
clock is divided by two, four, and eight. We provide the VHDL description of the
synchronous frequency divider working on the same principle in Listing 10.18.

ame RN o s 50 ns 100 ns 150
ST NN NN NN NN N .
= F'éﬁtlz:ol """"""""""" 1 Wz W3 X a X s X6 W7 o X1 Wz X3 X a4 {5 X &6 X 7 Xo,
2l o I | | |
IO I 22 I 20 N 20

el o I I | | I I I I | I | I

FIGURE 10.15 Frequency division results of synchronous frequency divider.

10.5 Sequential Circuit Design

We have introduced combinational circuit design steps in Sec. 7.5. These apply to
sequential circuit design as well. However, the designer has to plan state
representations and transitions besides usual input/output relationship in designing a
sequential circuit. In fact, the main design criterion is deciding which states to be used.
We can benefit from either the state diagram or state table for this purpose. The easiest
way 1s using the state diagram. Through it, the designer can plan state transitions and
corresponding input/output pairs visually. This leads to state and output equations.

The reader can either implement the state and output equations using HDL or,
implementation can be done in HDL by taking benefit of behavioral modeling. We
strongly suggest the latter method in implementation since it is easy to describe
working principles of the sequential circuit this way. Again let’s emphasize that ideas
mentioned here do not reflect a complete design methodology. The reader should take
these just as introductory steps. Designing a sequential circuit should be mastered by
consulting related literature.

Listing 10.18 VHDL Description of Synchronous Frequency Divider

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

entity sync frequency divider is
port(clk : in std logic;

Fout : inout signed (2 downto 0) := "000");
end sync frequency divider;

architecture behavioral of sync frequency divider is

begin

process (clk)

begin

if falling edge(clk) then
Fout <= Fout+1l;

end if;

end process;

end behavioral;

10.6 Applications on Sequential Circuits

We can use sequential circuits to further improve applications introduced in previous
chapters. Therefore, we will reconsider home alarm, digital safe, and car park occupied
slot counting systems. We will also introduce two new applications on sequential
circuits as vending machine and digital clock in this section.

10.6.1 Improving the Home Alarm System

Using sequential circuits can improve the home alarm system. To do so, we can add
password, buzzer, and LED blink modules to the system. The modified system works
as follows. Once the alarm is activated by pressing btnc on the Basys3 board, the
rightmost seven-segment display digit shows character a. This indicates that the
system is active. If one of the windows is opened, then the alarm LED turns on to
indicate that alarm has turned on. Hence, the buzzer starts working. If the user enters
the correct password, then the alarm is deactivated. Hence, the buzzer stops. If the
door is opened, then the user has 20 seconds to enter the password. If the correct
password is entered within this time slot, then the alarm turns off. Otherwise, the alarm
LED turns on and buzzer starts working. Counting of 20 seconds is displayed on the
two leftmost sevensegment display digits of the Basys3 board.

We provide the modified Verilog description for the home alarm module in Listing
10.19. This module has seven inputs. These are c1k (main clock signal), pass (eight-
bit password), act (activation signal), door (door input), winl, win2, win3 (window
inputs). Door and window inputs are at logic level 1 when they are open. Otherwise
they are at logic level 0. The module has five outputs. These are b1inkled (warning
LED during alarm countdown), alarmled (shows the alarm status), seg, an (seven-
segment display ports), and buzzer (the buzzer output).

Listing 10.19 Verilog Description of the Modified Home Alarm Module via
Sequential Circuits

module home alarm2 (clk,pass,act,door,winl,win2,win3,blinkled,alarmled, seg,
an, buzzer) ;

input clk;

input [7:0] pass;

input act, door, winl, win2, win3;
output reg blinkled=0, alarmled=0;
output [6:0] seg;

output [3:0] an;

output reg buzzer=1;

localparam AQOFF=2'b00, AON=2'b0l, PASSCHECK=2'b10, SOUND=2'bll;
reg [1:0] state=AOQFF;

integer passcounter=0;

localparam secondtime=100000000; //1 second
reg [7:0] seconds=0;

parameter password=8'h55;

reg [3:0]active=4'b0000;

wire [3:0] thos, huns, tens,ones;

binarytoBCD 0 bin({4'b0000,second