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PREFACE

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of the
modern design approach that relies on computer-aided design (CAD) tools.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

We emphasize the use of a hardware description language in specifying the logic cir-
cuits, because the HDL-based approach is the most efficient design method to use in practice.
We describe in detail the IEEE Standard Verilog HDL language and use it extensively in
examples.

vi



PREFACE

ScoPE oF THE BOOK

This edition of the book has been extensively restructured. All of the material that should
be covered in a one-semester course is now included in Chapters 1 to 6. More advanced
material is presented in Chapters 7 to 11.

Chapter 1 provides a general introduction to the process of designing digital systems.
It discusses the key steps in the design process and explains how CAD tools can be used
to automate many of the required tasks. It also introduces the representation of digital
information.

Chapter 2 introduces the logic circuits. It shows how Boolean algebra is used to
represent such circuits. Itintroduces the concepts of logic circuit synthesis and optimization,
and shows how logic gates are used to implement simple circuits. It also gives the reader
a first glimpse at Verilog, as an example of a hardware description language that may be
used to specify the logic circuits.

Chapter 3 concentrates on circuits that perform arithmetic operations. It discusses num-
bers and shows how they can be manipulated using logic circuits. This chapter illustrates
how Verilog can be used to specify the desired functionality and how CAD tools provide a
mechanism for developing the required circuits.

Chapter 4 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many Verilog constructs, giving the reader an opportunity to
discover more advanced features of Verilog.

Storage elements are introduced in Chapter 5. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. Verilog-specified designs of
these structures are included.

Chapter 6 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Chapter 7 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete Verilog code for these circuits is presented.

Chapter 8 deals with more advanced techniques for optimized implementation of logic
functions. It presents algorithmic techniques for optimization. It also explains how logic
functions can be specified using a cubical representation as well as using binary decision
diagrams.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they provide
an excellent vehicle for gaining a deeper understanding of the operation of digital circuits
in general. They illustrate the consequences of propagation delays and race conditions that
may be inherent in the structure of a circuit.

Chapter 10 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.

vii



viii

PREFACE

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Appendix A provides a complete summary of Verilog features. Although use of Verilog
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing Verilog code.

The electronic aspects of digital circuits are presented in Appendix B. This appendix
shows how the basic gates are built using transistors and presents various factors that affect
circuit performance. The emphasis is on the latest technologies, with particular focus on
CMOS technology and programmable logic devices.

WHAT CAN BE COVERED IN A COURSE

Much of the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter course. This is possible only if the instructor does not spend too much time teaching
the intricacies of Verilog and CAD tools. To make this approach possible, we organized
the Verilog material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only three to four lecture hours on Verilog, describing how the code should be
structured, including the use of design hierarchy, using scalar and vector variables, and on
the style of code needed to specify sequential circuits. The Verilog examples given in the
book are largely self-explanatory, and students can understand them easily.

The book is also suitable for a course in logic design that does not include exposure to
Verilog. However, some knowledge of Verilog, even at a rudimentary level, is beneficial
to the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

The following material should be covered in lectures:

e Chapter 1—all sections.
e Chapter 2—all sections.
e Chapter 3—Sections 3.1 to 3.5.
e Chapter 4—all sections.
e Chapter 5—all sections.

e  Chapter 6—all sections.

One-Quarter Course

In a one-quarter course the following material can be covered:

e Chapter 1—all sections.

e Chapter 2—all sections.



PREFACE

e  Chapter 3—Sections 3.1 to 3.3 and Section 3.5.
e  Chapter 4—all sections.

e Chapter 5—all sections.

e Chapter 6—Sections 6.1 to 6.4.

VERILOG

Verilog is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary
to introduce the entire Verilog language. In the book we present the important Verilog
constructs that are useful for the design and synthesis of logic circuits. Many other language
constructs, such as those that have meaning only when using the language for simulation
purposes, are omitted. The Verilog material is introduced gradually, with more advanced
features being presented only at points where their use can be demonstrated in the design
of relevant circuits.

The book includes more than 120 examples of Verilog code. These examples illustrate
how Verilog is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

All of the examples of Verilog code presented in the book are provided on the Authors’
website at

www.eecg.toronto.edu/~brown/Verilog_3e

SOLVED PROBLEMS

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

HOMEWORK PROBLEMS

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

POWERPOINT SLIDES AND SOLUTIONS MANUAL

PowerPoint slides that contain all of the figures in the book are available on the Authors’
website. Instructors can request access to these slides, as well as access to the Solutions
Manual for the book, at:

www.mhhe.com/brownvranesic
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CAD TooLs

Modern digital systems are quite large. They contain complex logic circuits that would be
difficult to design without using good CAD tools. Our treatment of Verilog should enable the
reader to develop Verilog code that specifies logic circuits of varying degrees of complexity.
To gain proper appreciation of the design process, it is highly beneficial to implement the
designs using commercially-available CAD tools. Some excellent CAD tools are available
free of charge. For example, the Altera Corporation has its Quartus I CAD software, which
is widely used for implementing designs in programmable logic devices such as FPGAs.
The Web Edition of the Quartus II software can be downloaded from Altera’s website and
used free of charge, without the need to obtain a license. In previous editions of this
book a set of tutorials for using the Quartus II software was provided in the appendices.
Those tutorials can now be found on the Authors’ website. Another set of useful tutorials
about Quartus II can be found on Altera’s University Program website, which is located at
www.altera.com/education/univ.
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INTRODUCTION

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Digital hardware components
e An overview of the design process
e Binary numbers

e Digital representation of information




2 CHAPTER 1 e INTRODUCTION

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly-used products like
music and video players, electronic games, digital watches, cameras, televisions, printers, and many household
appliances, as well as in large systems, such as telephone networks, Internet equipment, television broadcast
equipment, industrial control units, and medical instruments. In short, logic circuits are an important part of
almost all modern products.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived
from elementary ones. We cover the classical theory used in the design of logic circuits because it provides
the reader with an intuitive understanding of the nature of such circuits. But, throughout the book, we
also illustrate the modern way of designing logic circuits using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called the Verilog hardware description language. Design with Verilog is first introduced in Chapter 2, and
usage of Verilog and CAD tools is an integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. Commonly
available chips that use modern technology may contain more than a billion transistors, as in the case of some
computer processors. The basic building blocks for such circuits are easy to understand, but there is nothing
simple about a circuit that contains billions of transistors. The complexity that comes with large circuits can
be handled successfully only by using highly-organized design techniques. We introduce these techniques in
this chapter, but first we briefly describe the hardware technology used to build logic circuits.

| 1.1 DiGITAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will be explained in Section 1.5—it derives from the way in which information is
represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
few decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single chip.
In the beginning these circuits had only a few transistors, but as the technology improved
they became more complex. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers.
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1.1 DiGITAL HARDWARE

Figure 1.1  Asilicon wafer (courtesy of Altera Corp.).

About 30 years ago Gordon Moore, chairman of Intel Corporation, observed that in-
tegrated circuit technology was progressing at an astounding rate, approximately doubling
the number of transistors that could be placed on a chip every two years. This phenomenon,
informally known as Moore’s law, continues to the present day. Thus in the early 1990s
microprocessors could be manufactured with a few million transistors, and by the late 1990s
it became possible to fabricate chips that had tens of millions of transistors. Presently, chips
can be manufactured containing billions of transistors.

Moore’s law is expected to continue to hold true for a number of years. A consortium
of integrated circuit associations produces a forecast of how the technology is expected
to evolve. Known as the International Technology Roadmap for Semiconductors (ITRS)
[1], this forecast discusses many aspects of technology, including the maximum number of
transistors that can be manufactured on a single chip. A sample of data from the ITRS is given
in Figure 1.2. It shows that chips with about 10 million transistors could be successfully
manufactured in 1995, and this number has steadily increased, leading to today’s chips with
over a billion transistors. The roadmap predicts that chips with as many as 100 billion
transistors will be possible by the year 2022. There is no doubt that this technology will
have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or designing circuits that involve a number of chips placed
on a printed circuit board (PCB). Frequently, some of the logic circuits can be realized
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Figure 1.2  An estimate of the maximum number of transistors per chip
over time.

in existing chips that are readily available. This situation simplifies the design task and
shortens the time needed to develop the final product. Before we discuss the design process
in detail, we should introduce the different types of integrated circuit chips that may be
used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from simple ones with low function-
ality to extremely complex chips. For example, a digital hardware product may require a
microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For many digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly-used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.
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Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 PROGRAMMABLE LoGIic DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry which can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured in
many different ways. The designer can implement whatever functions are required for a
particular application by setting the programmable switches as needed. The switches are
programmed by the end user, rather than when the chip is manufactured. Such chips are
known as programmable logic devices (PLDs).

PLDs are available in a wide range of sizes, and can be used to implement very large
logic circuits. The most commonly-used type of PLD is known as a field-programmable
gate array (FPGA). The largest FPGAs contain billions of transistors [2, 3], and support the
implementation of complex digital systems. An FPGA consists of a large number of small
logic circuit elements, which can be connected together by using programmable switches
in the FPGA. Because of their high capacity, and their capability to be tailored to meet the
requirements of a specific application, FPGAs are widely used today.

1.1.3 CustoM-DESIGNED CHIPS

FPGAs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, they also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-
cuits. Thus in some cases FPGAs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry that
must be included on the chip is designed first and then the chip is manufactured by a com-
pany that has the fabrication facilities. This approach is known as custom or semi-custom
design, and such chips are often called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.
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A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if an FPGA
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide
variety of environments. For example, designing an automobile is similar in the general
approach to designing a furnace or a computer. Certain steps in the development cycle must
be performed if the final product is to meet the specified objectives.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.
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1.3 STRUCTURE OF A COMPUTER

To understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1.4a. The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB, called
the motherboard. As indicated on the bottom of the figure, the motherboard holds several
integrated circuit chips, and it provides slots for connecting other PCBs, such as audio,
video, and network boards.

Figure 1.4b illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a
logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.
Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.4b—the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

1.4 Locic Circult DESIGN IN THIS BooOk

In this book we use a modern design approach based on the Verilog hardware description
language and CAD tools to illustrate many aspects of logic circuit design. We selected
this technology because it is widely used in industry and because it enables the readers to
implement their designs in FPGA chips, as discussed below. This technology is particularly
well-suited for educational purposes because many readers have access to facilities for using
CAD tools and programming FPGA devices.

To gain practical experience and a deeper understanding of logic circuits, we advise
the reader to implement the examples in this book using CAD software. Most of the ma-
jor vendors of CAD systems provide their software at no cost to university students for
educational use. Some examples are Altera, Cadence, Mentor Graphics, Synopsys, and
Xilinx. The CAD systems offered by any of these companies can be used equally well
with this book. Two CAD systems that are particularly well-suited for use with this book
are the Quartus II software from Altera and the ISE software from Xilinx. Both of these
CAD systems support all phases of the design cycle for logic circuits and are powerful
and easy to use. The reader is encouraged to visit the website for these companies, where
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Figure 1.4 A digital hardware system (Part b).

the software tools and tutorials that explain their use can be downloaded and installed onto

any personal computer.
To facilitate experimentation with logic circuits, some FPGA manufacturers provide

special PCBs that include one or more FPGA chips and an interface to a personal computer.
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Once a logic circuit has been designed using the CAD tools, the circuit can be programmed
into an FPGA on the board. Inputs can then be applied to the FPGA by way of switches
and other devices, and the generated outputs can be examined. An example of such a board
is depicted in Figure 1.5. This type of board is an excellent vehicle for learning about
logic circuits, because it provides a collection of simple input and output devices. Many
illustrative experiments can be carried out by designing and implementing logic circuits
using the FPGA chip on the board.

1.5 DIGITAL REPRESENTATION OF INFORMATION

In Section 1.1 we mentioned that information is represented in logic circuits as electronic
signals. Each of these signals can be thought of as representing one digiz of information. To
make the design of logic circuits easier, each digit is allowed to take on only two possible
values, usually denoted as 0 and 1. These logic values are implemented as voltage levels in
a circuit; the value O is usually represented as O V (ground), and the value 1 is the voltage
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level of the circuit’s power supply. As we discuss in Appendix B, typical power-supply
voltages in logic circuits range from 1 VDC to 5 V DC.

In general, all information in logic circuits is represented as combinations of 0 and 1
digits. Before beginning our discussion of logic circuits in Chapter 2, it will be helpful to
examine how numbers, alphanumeric data (text), and other information can be represented
using the digits 0 and 1.

1.5.1 BINARY NUMBERS

In the familiar decimal system, a number consists of digits that have 10 possible values,
from 0 to 9, and each digit represents a multiple of a power of 10. For example, the number
8547 represents 8 x 10° +5 x 10> +4 x 10" +7 x 10°. We do not normally write the
powers of 10 with the number, because they are implied by the positions of the digits. In
general, a decimal integer is expressed by an n-tuple comprising n decimal digits

D=d,_1d,—>---didy
which represents the value
VD) =dy x 10" +d,n x 1072+ +d; x 10" +dy x 10°

This is referred to as the positional number representation.

Because the digits have 10 possible values and each digit is weighted as a power of
10, we say that decimal numbers are base-10 numbers. Decimal numbers are familiar,
convenient, and easy to understand. However, since digital circuits represent information
using only the values 0 and 1, it is not practical to have digits that can assume ten values.
In these circuits it is more appropriate to use the binary, or base-2, system which has only
the digits 0 and 1. Each binary digit is called a biz. In the binary number system, the same
positional number representation is used so that

B =b, 1b, 5---biby
represents an integer that has the value

V(B) =bp_1 x2" ' 4 b,y x 2" 24 4+ by x 21 + by x 2° [1.1]
n—1
= Z b,’ X 2i
i=0
For example, the binary number 1101 represents the value

V=1x2+1x224+0x2"+1x2°

Because a particular digit pattern has different meanings for different bases, we will indicate
the base as a subscript when there is potential for confusion. Thus to specify that 1101 is
a base-2 number, we will write (1101),. Evaluating the preceding expression for V gives
V =844+ 1= 13. Hence

(1101)2 = (13)10
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Table 1.1 Numbers in decimal

and binary.
Decimal Binary
representation representation
00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

The range of integers that can be represented by a binary number depends on the number of
bits used. Table 1.1 lists the first 15 positive integers and shows their binary representations
using four bits. An example of a larger number is (10110111), = (183);,. In general, using
n bits allows representation of positive integers in the range 0 to 2" — 1.

In a binary number the right-most bit is usually referred to as the least-significant bit
(LSB). The left-most bit, which has the highest power of 2 associated with it, is called the
most-significant bit (MSB). In digital systems it is often convenient to consider several bits
together as a group. A group of four bits is called a nibble, and a group of eight bits is called
a byte.

1.5.2 CONVERSION BETWEEN DECIMAL AND BINARY SYSTEMS

A binary number is converted into a decimal number simply by applying Equation 1.1 and
evaluating it using decimal arithmetic. Converting a decimal number into a binary number
is not quite as straightforward, because we need to construct the number by using powers of
2. For example, the number (17) is 2% 4+ 29 = (10001)5, and the number (50)¢ is 2° +
2% 42! = (110010),. In general, the conversion can be performed by successively dividing
the decimal number by 2 as follows. Suppose that a decimal number D = di_; - - - d,dy,
with a value V, is to be converted into a binary number B = b,,_; - - - bob1by. Then, we can
write V in the form

V=bp x2" Vi by x 22+ by x 2! + by

13
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Convert (857) 19
Remainder

857+ 2 = 428 1 LSB
428+ 2 = 214 0
214+ 2 = 107 0
107+2 = 53 1
53+2 = 26 1
262 = 13 0
13+2 = 6 1
6+2 = 3 0
3+2 =1 1

1+2 =0 1 MSB

Resultis (1101011001),

Figure 1.6  Conversion from decimal to binary.

If we now divide V by 2, the result is

4 =by_ x2" 24 by x2! +b1+l2

2 2

The quotient of this integer division is b, X 2"=2 4 ... 4 by X 2 + by, and the remainder
is bp. If the remainder is O, then by = 0; if it is 1, then by = 1. Observe that the quotient
is just another binary number, which comprises n — 1 bits, rather than » bits. Dividing this
number by 2 yields the remainder b,. The new quotient is

by X 2" 3 4 4 by

Continuing the process of dividing the new quotient by 2, and determining one bit in each
step, will produce all bits of the binary number. The process continues until the quotient
becomes 0. Figure 1.6 illustrates the conversion process, using the example (857);, =
(1101011001),. Note that the least-significant bit (LSB) is generated first and the most-
significant bit (MSB) is generated last.

So far, we have considered only the representation of positive integers. In Chapter 3
we will complete the discussion of number representation by explaining how negative
numbers are handled and how fixed-point and floating-point numbers may be represented.
We will also explain how arithmetic operations are performed in computers.

1.5.3 ASCII CHARACTER CODE

Alphanumeric information, such as letters and numbers typed on a computer keyboard, is
represented as codes consisting of 0 and 1 digits. The most common code used for this type
of information is known as the ASCII code, which stands for the American Standard Code
for Information Interchange. The code specified by this standard is presented in Table 1.2.
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Table 1.2  The seven-bit ASCIl code.

Bit Bit positions 654

positions

3210 000 001 010 011 100 101 110 111
0000 NUL DLE SPACE 0 @ B ’

0001 SOH DCl1 ! 1 A Q a

0010 STX DC2 ” 2 B R b r
0011 ETX DC3 # 3 C S @ s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E} U @ u
0110 ACK SYN & 6 F \Y% f v
0111 BEL ETB ’ 7 G W g w
1000 BS CAN ( 8 H X h X
1001 HT EM ) 9 I Y i y
1010 LF SUB & J 4 ] z
1011 VT ESC + ; K [ k {
1100 ER FS R < IL, \ 1 |
1101 CR GS - = M ] m }
1110 SO RS > N - n -
1111 SI us / ? (0) — o DEL
NUL Null/Idle SI Shift in

SOH Start of header DLE Data link escape

STX Start of text DC1-DC4 Device control

ETX End of text NAK Negative acknowledgement
EOT End of transmission SYN Synchronous idle

ENQ Enquiry ETB End of transmitted block
ACQ Acknowledgement CAN Cancel (error in data)

BEL Audible signal EM End of medium

BS Back space SUB Special sequence

HT Horizontal tab ESC Escape

ILJ® Line feed FS File separator

VT Vertical tab GS Group separator

IFIE Form feed RS Record separator

CR Carriage return [N} Unit separator

SO Shift out DEL Delete/Idle

Bit positions ofcodeformat=| 6 | 5|4 | 3 | 2| 1 | 0|

15
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The ASCII code uses seven-bit patterns to denote 128 different characters. Ten of
the characters are decimal digits 0 to 9. As the table shows, the high-order bits have the
same pattern, bgbsbs = 011, for all 10 digits. Each digit is identified by the low-order
four bits, b3_, using the binary patterns for these digits. Capital and lowercase letters are
encoded in a way that makes sorting of textual information easy. The codes for A to Z are in
ascending numerical sequence, which means that the task of sorting letters (or words) can
be accomplished by a simple arithmetic comparison of the codes that represent the letters.

In addition to codes that represent characters and letters, the ASCII code includes
punctuation marks such as ! and ?, commonly used symbols such as & and %, and a
collection of control characters. The control characters are those needed in computer
systems to handle and transfer data among various devices. For example, the carriage
return character, which is abbreviated as CR in the table, indicates that the carriage, or
cursor position, of an output device, such as a printer or display, should return to the left-
most column.

The ASCII code is used to encode information that is handled as text. Itis not convenient
for representation of numbers that are used as operands in arithmetic operations. For this
purpose, it is best to convert ASCII-encoded numbers into a binary representation that we
discussed before.

The ASCII standard uses seven bits to encode a character. In computer systems a more
natural size is eight bits, or one byte. There are two common ways of fitting an ASCII-
encoded character into a byte. One is to set the eighth bit, b7, to 0. Another is to use this
bit to indicate the parity of the other seven bits, which means showing whether the number
of 1s in the seven-bit code is even or odd. We discuss parity in Chapter 4.

1.5.4 DIGITAL AND ANALOG INFORMATION

Binary numbers can be used to represent many types of information. For example, they
can represent music that is stored in a personal music player. Figure 1.7 illustrates a music
player, which contains an electronic memory for storing music files. A music file comprises
a sequence of binary numbers that represent tones. To convert these binary numbers into
sound, a digital-to-analog (D/A) converter circuit is used. It converts digital values into
corresponding voltage levels, which create an analog voltage signal that drives the speakers
inside the headphones. The binary values stored in the music player are referred to as digital
information, whereas the voltage signal that drives the speakers is analog information.

1.6 THEORY AND PRACTICE

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!
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Figure 1.7  Using digital technology fo represent music.

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this
implies that the designer must be familiar with the underlying theory. We discuss the logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

17
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There is another good reason to learn some logic circuit theory even if it were not
required for CAD tools. Simply put, it is interesting and intellectually challenging. In the
modern world filled with sophisticated automatic machinery, it is tempting to rely on tools as
a substitute for thinking. However, in logic circuit design, as in any type of design process,
computer-based tools are not a substitute for human intuition and innovation. Computer-
based tools can produce good digital hardware designs only when employed by a designer
who thoroughly understands the nature of logic circuits.

*1.1

1.2

1.3

*1.4

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(@) (20)19

(b) (10010

(©) (12910

(d) (260)10

(e) (10240)10

Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(@) (30)10

(b) (110)10

(©) (25910

(d) (50010

(e) (20480) 1o

Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(a) (1000)19

(b) (10000)10

(c) (100000)1

(c) (1000000) 10

In Figure 1.6 we show how to convert a decimal number into binary by successively dividing
by 2. Another way to derive the answer is to constuct the number by using powers of 2.
For example, if we wish to convert the number (23), then the largest power of 2 that is
not larger than 23 is 2* = 16. Hence, the binary number will have five bits and the most-
significant bit is b4 = 1. We then perform the subtraction 23 — 16 = 7. Now, the largest
power of 2 that is not larger than 7 is 2> = 4. Hence, b3 = 0 (because 2 = 8 is larger than
7) and b, = 1. Continuing this process gives

23=164+4+2+1
:24+22+21+2()
= 10000 4- 00100 + 00010 4 00001
= 10111
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Using this method, convert the following decimal numbers into binary.
(@ (1710

(®) 33)10

(©) (6710

(d) (130)10

(e) (2560)10

(f) (51200)9

1.5 Repeat Problem 3 using the method described in Problem 4.

*1.6 Convert the following binary numbers into decimal.
(a) (1001)>
(b) (11100),
() (111111),
(d) (101010101010),

1.7  Convert the following binary numbers into decimal.
(a) (110010),
(b) (1100100),
(c) (11001000),
(d) (110010000),

*1.8 What is the minimum number of bits needed to represent the following decimal numbers
in binary?
(a) (270)10
() (52010
(¢) (780)10
(d) (1029)19

1.9 Repeat Problem 8 for the following decimal numbers:
(a) (1110
() 333)10
(c) (555)10
(d) (1111)10
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INTRODUCTION TO LOGIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Logic functions and circuits

e Boolean algebra for dealing with logic functions

e Logic gates and synthesis of simple circuits

e CAD tools and the Verilog hardware description language

e  Minimization of functions and Karnaugh maps

21




22 CHAPTER 2 ¢ INTRODUCTION TO LoGIic CIRCUITS

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems, such as those that perform control applications or are involved in
digital communications. All such applications are based on some simple logical operations that are performed
on input information.

In Chapter 1 we showed that information in computers is represented as electronic signals that can have
two discrete values. Although these values are implemented as voltage levels in a circuit, we refer to them
simply as logic values, 0 and 1. Any circuit in which the signals are constrained to have only some number of
discrete values is called a logic circuit. Logic circuits can be designed with different numbers of logic values,
such as three, four, or even more, but in this book we deal only with the binary logic circuits that have two
logic values.

Binary logic circuits have the dominant role in digital technology. We hope to provide the reader with
an understanding of how these circuits work, how are they represented in mathematical notation, and how
are they designed using modern design automation techniques. We begin by introducing some basic concepts
pertinent to the binary logic circuits.

| 2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Appendix B we explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb on
or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides the
power source. The lightbulb glows when a sufficient amount of current passes through it.

\
|

(a) Two states of a switch

S
|

X

(b) Symbol for a switch

Figure 2.1 A binary switch.
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S |

Battery Light

i : |

(a) Simple connection to a battery

Power J_ S I

L L

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch.

The current flows when the switch is closed, that is, when x = 1. In this example the input
that causes changes in the behavior of the circuit is the switch control x. The output is
defined as the state (or condition) of the light, which we will denote by the letter L. If the
light is on, we will say that L = 1. If the light is off, we will say that L = 0. Using this
convention, we can describe the state of the light as a function of the input variable x. Since
L=1ifx=1and L =0ifx =0, we can say that

Lx)=x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by a
power supply of a certain voltage, usually in the range of 1 to 5 volts. One side of the power
supply provides the circuit ground, as illustrated in Figure 2.2b. The circuit ground is a
common reference point for voltages in the circuit. Rather than drawing wires in a circuit
diagram for all nodes that return to the circuit ground, the diagram can be simplified by
showing a connection to a ground symbol, as we have done for the bottom terminal of the
light L in the figure. In the circuit diagrams that follow we will use this convention, because
it makes the diagrams look simpler.

Consider now the possibility of using two switches to control the state of the light. Let
x1 and x; be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.

23
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S S |
Power i [ |

Light

supply I X1 X2

(a) The logical AND function (series connection)

S
[
X
Power .
:|: S Light

supply
| T

X2

(b) The logical OR function (parallel connection)

Figure 2.3  Two basic functions.

This behavior can be described by the expression

L(x1,x2) =x1-%2
where L=1ifx;=1andx, =1,

L = 0 otherwise.

The “-” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either the x; or x, switch is closed. The light will also be on if both switches
are closed. The light will be off only if both switches are open. This behavior can be stated
as

L(x1,x0) = x1 + X2
where L=1ifx;=1orx, =1lorifx; =x =1,
L=Oifx1 =)C2=O.

The 4 symbol is called the OR operator, and the circuit in Figure 2.3 is said to implement
a logical OR function. It is important not to confuse the use of the 4+ symbol with its more
common meaning, which is for arithmetic addition. In this chapter the + symbol represents
the logical OR operation unless otherwise stated.

In the above expressions for AND and OR, the output L(xy, x,) is a logic function with
input variables x; and x,. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks
for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
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supply

S
I
X S
I
Power I S x3 Light

Figure 2.4 A series-parallel connection.

R
Power J_ 'W\l T |

supply I xS Light

Figure 2.5  An inverting circuit.

used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1,x2,x3) = (x1 +x2) - X3

The light is on if x3 = 1 and, at the same time, at least one of the x; or x, inputs is equal
to 1.
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2.2 INVERSION

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

Lx)=Xx
where L=1ifx=0,
L=0ifx=1
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The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or an exclamation mark (!), the tilde character (~), or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

X=x =Ix =~x = NOT«x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

S, x2) = x1+x2
then the complement of f is
fGx) =X +x

This expression yields the logic value 1 only when neither x; nor x;, is equal to 1, that is,
when x; = x, = 0. Again, the following notations are equivalent:

X +x = (@ +x) = 10x+x) = ~x +x) = NOT (x; +x,)

2.3 TrutH TABLES

We have introduced the three most basic logic operations—AND), OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the double
vertical line) give all four possible combinations of logic values that the variables x| and x,

X X || X oxp | X+ X,

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
AND OR

Figure 2.6 A truth table for the AND and OR operations.
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Xp o Xy Xy || XXy X3 | X4 X+ X
0O 0 O 0 0
0o 0 1 0 1
o 1 0 0 1
0o 1 1 0 1
1 0 O 0 1
I 0 1 0 1
I 1 0 0 1
1 1 1 1 1

Figure 2.7  Three-input AND and OR operations.

can have. The next column defines the AND operation for each combination of values of x;
and x,, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in
Figure 2.7, which defines three-input AND and OR functions. For four input variables the
truth table has 16 rows, and so on. In general, for n input variables the truth table has 2"
TOWS.

The AND and OR operations can be extended to n variables. An AND function of
variables x1, xp, . . ., x, has the value 1 only if all n variables are equal to 1. An OR function
of variables x1, x», . .., x,, has the value 1 if one or more of the variables is equal to 1.
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The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
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Xy —

X1
X, x . Xp Xyt X,
xz— e

(a) AND gates

X

X

X
1

i>—xl+x2 . Xp Xy H X,
Xy .

(b) OR gates

X 4>07 X
(c) NOT gate

Figure 2.8  The basic gates.

X
X2
=0 +x) x5

X3

Figure 2.9  The function from Figure 2.4.

augmented to accommodate a greater number of inputs. We show how logic gates are built
using transistors in Appendix B.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
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be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

2.4.1 ANALYSIS OF A LoGgic NETWORK

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To analyze its functional
behavior, we can consider what happens if we apply all possible combinations of the input
signals to it. Suppose that we start by making x; = x, = 0. This forces the output of the
NOT gate to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs
to the OR gate is 1, the output of this gate will be 1. Therefore, f = 1 ifx; =x, = 0. If we
then let x; = 0 and x, = 1, no change in the value of f will take place, because the outputs
of the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x; =1
and x, = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x; = x, = 1. Then the output of the AND gate goes to 1, which in turn causes
f tobe equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram

We have determined the behavior of the network in Figure 2.10a by considering the four
possible valuations of the inputs x; and x,. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (x;, x,) = (0, 0)
followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed duration. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

The timing diagram in Figure 2.10c shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs x; and x, change their
values. These idealized waveforms are based on the assumption that logic gates respond
to changes on their inputs in zero time. Such timing diagrams are useful for indicating
the functional behavior of logic circuits. However, practical logic gates are implemented
using electronic circuits which need some time to change their states. Thus, there is a delay
between a change in input values and a corresponding change in the output value of a gate.
In chapters that follow we will use timing diagrams that incorporate such delays.
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] °
A
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(a) Network that implements f = x| +x; - x,
X, X, | f(x,x) |A|B
0 0 1 10
0 1 1 110
1 0 0 010
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(b) Truth table
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(c) Timing diagram
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(d) Network that implements g = x, +x,

Figure 2.10  An example of logic networks.
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Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks

Now consider the network in Figure 2.10d. Going through the same analysis procedure,
we find that the output g changes in exactly the same way as f does in part (@) of the figure.
Therefore, g(x;, x2) = f(x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? We will discuss some of the main approaches
for synthesizing logic functions later in this chapter. For now, we should note that some
manipulation is needed to transform the more complex network in Figure 2.10a into the
network in Figure 2.10d. Since f (x|, x) = X| + x1 - xp and g(x1, xp) = X + x,, there must
exist some rules that can be used to show the equivalence

X1+ XX =X +x

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In Section 2.5 we will introduce a mathematical approach
for dealing with logic functions, which provides the basis for modern design techniques.
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As an example of a logic function, consider the diagram in Figure 2.11a. It includes two
toggle switches that control the values of signals x and y. Each toggle switch can be pushed
down to the bottom position or up to the top position. When a toggle switch is in the bottom
position it makes a connection to logic value 0 (ground), and when in the top position it
connects to logic value 1 (power supply level). Thus, these toggle switches can be used to
set x and y to either O or 1.

The signals x and y are inputs to a logic circuit that controls a light L. The required
behavior is that the light should be on only if one, but not both, of the toggle switches
is in the top position. This specification leads to the truth table in part (b) of the figure.
Since L =1 whenx =0andy = 1 or whenx = 1 and y = 0, we can implement this logic
function using the network in Figure 2.11c.

The reader may recognize the behavior of our light as being similar to that over a set of
stairs in a house, where the light is controlled by two switches: one at the top of the stairs,
and the other at the bottom. The light can be turned on or off by either switch because

Example 2.1
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R
X
0 Logic 0 0 0
.o —— L
circuit 0 1 1
1
! Y 1 0 1
0
(a) Two switches that control a light (b) Truth table
x ,
X
{ ; L L
% y
y
(c) Logic network (d) XOR gate symbol
Figure 2.11 An example of a logic circuit.
it follows the truth table in Figure 2.115. This logic function, which differs from the OR
function only when both inputs are equal to 1, is useful for other applications as well. It is
called the exclusive-OR (XOR) function and is indicated in logic expressions by the symbol
®. Thus, rather than writing L =X - y 4+ x - y, we can write L = x & y. The XOR function
has the logic-gate symbol illustrated in Figure 2.11d.
Example 2.2 In Chapter 1 we showed how numbers are represented in computers by using binary digits.

As another example of logic functions, consider the addition of two one-digit binary numbers
a and b. The four possible valuations of a, b and the resulting sums are given in Figure 2.12a
(in this figure the 4 operator signifies addition). The sum S = 5150 has to be a two-digit
binary number, because when a = b = 1 then S = 10.

Figure 2.12b gives a truth table for the logic functions s; and so. From this table we
can see that s; = a - b and 5o = a @ b. The corresponding logic network is given in part
(c) of the figure. This type of logic circuit, which adds binary numbers, is referred to as an
adder circuit. We discuss circuits of this type in Chapter 3.
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a 0 0 1
+b +0 +1 +0 +
S150 00 01 O 10

pe D
b %0
0 0 0 O /
0 1 0 1
1 0 0 1
11 1 0 } 51
(b) Truth table (c) Logic network

Figure 2.12  Addition of binary numbers.
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In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra

Like any algebra, Boolean algebra is based on a set of rules that are derived from a
small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:
la. 0-0=0
. 14+1=1
2a. 1-1=1
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2b. 0+0=0

3c. 0-1=1-0=0
3. 1+40=0+1=1
4. Ifx=0,thenx =1
4b. Ifx=1,thenx =0

Single-Variable Theorems

From the axioms we can define some rules for dealing with single variables. These
rules are often called theorems. If x is a Boolean variable, then the following theorems
hold:

Sa. x-0=0
5b. x+1=1
6a. x-1=x
6b. x+0=x
Ta. x-x=x
Tb. x+x=x
8a. x-x=0
8. x+x=1
9. X=x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 - 0 = 0, which is true
according to axiom la. Similarly, if x = 1, then theorem 5a states that 1 - 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality

Notice that we have listed the axioms and the single-variable theorems in pairs. This
is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all 4 operators with - operators, and vice versa, and by replacing
all Os with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader might
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties

To enable us to deal with a number of variables, it is useful to define some two- and
three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are Boolean variables, then the following properties hold:
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10a. x-y=y-x Commutative
10b. x4+y=y+x

Ha. x-(y-2)=x-y)-z Associative
11b. x+(y+2)=x+y) +z2

12a. x-(y+2)=x-y+x-2 Distributive
12b. x+y-z=x+y) - (x+2)

13a. x+x-y=x Absorption
13b. x-(x+y) =x

14a. x-y+x-y=x Combining
14b. (x+y)-x+y) =x

15a. xy=x+ DeMorgan’s theorem

y
15. x+y=Xx-y
X X

16a. x+Xx-y=x+y
16b. x-x+y)=x-y
17a. x-y+y-z+x-z=x-y+X-2 Consensus

17b. (x+y)- 0+2)-G+2)=x+y)-&G+2)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the 4+ and - operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

X Y|lx-y|x-y|x|Yy|x+Yy

0O O 0 1 1|1 1

0 1 0 | 110 1

1 O 0 1 011 1

1 1 1 0 00 0
LHS RHS

Figure 2.13  Proof of DeMorgan’s theorem in 15a.
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Example 2.3

Let us prove the validity of the logic equation
(1 +x3) - (X1 +X3) =x1 - X3 + X1 - X3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x1 +x3) - X1 + (X1 + x3) - X3
Applying the distributive property again yields
LHS =x; - X1 +x3 - X1 +x1 - X3 + X3 - X3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x; - X;
and x3 - X3 are both equal to 0. Therefore,

LHS=0+x3-x1+x-x3+0
From 60 it follows that
LHS = x3 - X1 +x1 - X3
Finally, using the commutative property, 10a and 10b, this becomes
LHS =x1 - X3 + X1 - x3

which is the same as the right-hand side of the initial equation.

Example 2.4

Consider the logic equation
X1 -X3+X2-X3+X1 X3+ X2 X3 =X1 - X2+ X1 - X+ X1 X2
The left-hand side can be manipulated as follows

LHS =x; - X3+ x1 -x3+X2 - X3+ X2 -x3 using 10b

=x1 - (X3 +x3) + X2 - (X3 + x3) using 12a
=x1-14+x-1 using 8b
=x1+X using 6a

The right-hand side can be manipulated as

RHS =X; - Xy +x; - (x +X) using 12a

=X -X+x -1 using 8D
=X X +Xx; using 6a
=x;1+X X using 10b

=x +% using 16a



2.5 BOOLEAN ALGEBRA

Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

SO, x0,x3) =X1 - X3+ X2 - X3+ X1 - X3 +X2 - X3

Xp X2+ x1-x+ X1 X
As a result of manipulation, we have found a much simpler expression
F (1, x2,x3) = X1 + X2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.3 and 2.4 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 THE VENN DIAGRAM

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E ={2,4,6,8, 10}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E= {1,3,5,7,9}.

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.14. The universe B
is represented by a square. Then the constants 1 and O are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (¢). An expression involving one or more variables is depicted by
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(a) Constant 1 (b) Constant 0

=1
=1

(c) Variable x (d) x
€) x-y M x+y
(9 x-y (h) x-y+z

Figure 2.14  The Venn diagram representation.

shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1, namely, the AND of x and
¥, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the infersection of x and y. Part
(f) illustrates the OR operation, where x 4 y represents the total area within both circles,
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(a) x (d) x-y

(b) y+z (e) x-z

AQ I
NN /NN
e, .

(©) x-(y+2) ) x-y+x-z

Figure 2.15  Verification of the distributive property x - (y +2) =x-y +x - z.

namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the term x - y, which is represented by the intersection of the area for x
with that for y. Part (k) gives a three-variable example; the expression x - y + z is the union
of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in Section 2.5. Figure 2.15
gives the construction of the left and right sides of the identity that defines the property

x-(y+z)=x-y+x-2

Part (a) shows the area where x = 1. Part (b) indicates the area for y + z. Part (c) gives the
diagram for x - (y + z), the intersection of shaded areas in parts (a) and (b). The right-hand
side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x - y and
X - z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x - y + x - z, as seen in part (f). Since the shaded areas in parts (c¢) and
(f) are identical, it follows that the distributive property is valid.
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As another example, consider the identity
X-y+x-z+y-z=x-y+x-2

which is illustrated in Figure 2.16. Notice that this identity states that the term y - z is fully
covered by the terms x - y and X - z; therefore, this term can be omitted. This identity, which
we listed earlier as property 17a, is often referred to as consensus.

The reader should use the Venn diagram to prove some other identities. The examples
below prove the distributive property 12b, and DeMorgan’s theorem, 15a.

FEE
(5

.y+x.Z

<
™
=

S
(o D>
B ‘D

Figure 2.16  Verificationof x -y +X-z4+y-z=x-y+x-z.
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The distributive property 12a in Figure 2.15 will look familiar to the reader, becauseitis valid ~Example 2.5
both for Boolean variables and for variables that are real numbers. In the case of real-number

variables, the operations involved would be multiplication and addition, rather than logical

AND and OR. However, the dual form 124 of this property, x +y -z = (x +y) - (x + 2),

does not hold for real-number variables involving multiplication and addition operations.

To prove that this identity is valid in Boolean algebra we can use the Venn diagrams in

Figure 2.17. Parts (a) and (b) of the figure depict the terms x and y - z, respectively, and

part (c¢) gives the union of parts (a) and (). Parts (d) and (e) depict the sum terms (x + y)

and (x + z), and part (f) shows the intersection of (d) and (e). Since the diagrams in (c)

and (f) are the same, this proves the identity.

AVA

(@ x (d) x+y
(b) y-z (€) x+z
(©) x+y-z (f) G+ (+2)

Figure 2.17  Proof of the distributive property 12b.
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(@ x-y () x
(b) x-y (d) vy
(e) x+y

Figure 2.18  Proof of DeMorgan’s theorem 15a.

Example 2.6

A proof of DeMorgan’s theorem 15a by using Venn diagrams is illustrated in Figure 2.18.
The diagram in part (b) of the figure, which is the complement of x - y, is the same as the
diagram in part (e), which is the union of part (c¢) with part (d), thus proving the theorem.
We leave it as an exercise for the reader to prove the dual form of DeMorgan’s theorem,
15b.

2.5.2 NOTATION AND TERMINOLOGY

Boolean algebra is based on the AND and OR operations, for which we have adopted
the symbols - and +, respectively. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
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same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 75 in Section 2.5.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
X1 + x is the logical sum of x; and x,, and x; - x, is the logical product of x; and x,. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

X1 X2 X3+ X1 X4+ X2 - X3 X4
is a sum of three product terms, whereas the expression
(41 +x3) - (1 +33) - (2 + 43 + x3)

is a product of three sum terms.

2.5.3 PRECEDENCE OF OPERATIONS

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

X1 X2+ X1 X

it is first necessary to generate the complements of x; and x,. Then the product terms x; - x;
and X - X, are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 - x2) + ((x1) - (x2))

Finally, to simplify the appearance of logic expressions, it is customary to omit the -
operator when there is no ambiguity. Therefore, the preceding expression can be written as

X1x2 + X1X2

We will use this style throughout the book.

43
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Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x,. Assume that x; and x; represent the states of two switches, either of which may
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xpo X || flxpsxp)

—_——O O
_— 0 = O
—_O = =

Figure 2.19 A function to be synthesized.

produce a 0 or 1. The function of the circuit is to continuously monitor the state of the
switches and to produce an output logic value 1 whenever the switches (xi, x;) are in states
(0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be 0. We can
express the required behavior using a truth table, as shown in Figure 2.19.

A possible procedure for designing a logic circuit that implements this truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f. Let us
begin with the fourth row of the truth table, which corresponds to x; = x, = 1. The product
term that is equal to 1 for this valuation is x; - xp, which is just the AND of x; and x,. Next
consider the first row of the table, for which x; = x, = 0. For this valuation the value 1 is
produced by the product term X; - X,. Similarly, the second row leads to the term X - x;.
Thus f may be realized as

fx1, x) = x1x + X% + X120

The logic network that corresponds to this expression is shown in Figure 2.20a.

Although this network implements f correctly, it is not the simplest such network. To
find a simpler network, we can manipulate the obtained expression using the theorems and
properties from Section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

Fx1,x0) = x1x0 + X1 X2 + X1 X2 + XX

Using the commutative property 10b to interchange the second and third product terms
gives

S (x1, x2) = x1x0 + X102 + X1X2 + X102
Now the distributive property 12a allows us to write

SO, x2) = (e +X)x2 + X1 (2 + x2)
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X

X

00 %
5

(a) Canonical sum-of-products

T >

(b) Minimal-cost realization

Figure 2.20  Two implementations of the function in Figure 2.19.

Applying theorem 8b we get
FOnx)=1-x+x-1
Finally, theorem 6a leads to
Fxa,x) =x+X

The network described by this expression is given in Figure 2.20b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables, and
it is formed such that if the input variable x; is equal to 1 in the given row, then x; is entered
in the term; if x; = 0 in that row, then X; is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.20 from the truth table in Figure 2.19.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

45
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Example 2.7

Figure 2.21a depicts a part of a factory that makes bubble gumballs. The gumballs travel
on a conveyor that has three associated sensors sy, s, and s3. The sensor s; is connected
to a scale that weighs each gumball, and if a gumball is not heavy enough to be acceptable
then the sensor sets s; = 1. Sensors s, and s3 examine the diameter of each gumball. If
a gumball is too small to be acceptable, then s, = 1, and if it is too large, then s3 = 1.
If a gumball is of an acceptable weight and size, then the sensors give s; = s, = 53 = 0.
The conveyor pushes the gumballs over a “trap door” that it used to reject the ones that
are not properly formed. A gumball should be rejected if it is too large, or both too small
and too light. The trap door is opened by setting the logic function f to the value 1. By
inspection, we can see that an appropriate logic expression is f = s15> + s3. We will use
Boolean algebra to derive this logic expression from the truth table.

The truth table for f is given in Figure 2.21b. It sets f to 1 for each row in the table
where s3 has the value 1 (too large), as well as for each row where s; = s, = 1 (too light and
too small). As described previously, a logic expression for f can be formed by including a
product term for each row where f = 1. Thus, we can write

[ =515283 + 515253 + 515283 + 515253 + 515283

Sy 83

'/gumball '{/
— 0 O 0O O O —

N

S

f = “reject”

(a) Conveyor and sensors

19
—_
9%
¥
9%
)
-

—_—— == OO OO
—_—— O O == OO
— O = O = O = O
—_—— = O = O = O

(b) Truth table

Figure 2.21 A bubble gumbaill factory.
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We can use algebraic manipulation to simplify this expression in a number of ways. For
example, as shown below, we can first use rule 7b to repeat the term s;s,53, and then use
the distributive property 12a and rule 8b to simplify the expression
S = 515283 + 515253 + 515253 + $15253 + 515253 + 515253
= 5153(52 + 52) + 5153(52 + 52) + 5152(53 + 53)

= 5153 + 5153 + 515
Now, using the combining property 14a on the first two product terms gives
f=s3+s18

The observant reader will notice that using the combining property 14a is really just a short
form of first using the distributive property 12a and then applying rule 8b, as we did in the
previous step. Our simplified expression for f is the same as the one that we determined
earlier, by inspection.

47

There are different ways in which we can simplify the logic expression produced from the
truth table in Figure 2.21b. Another approach is to first repeat the term s;5,53, as we did in
Example 2.7, and then proceed as follows

f =515283 + 515253 + 8152853 + 515283 + 515253 + 515253
= 53(8152 + 5152 + 5152 + 5152) + 5152(53 + 53)
=s3-14 5185
=53+ 5152
Here, we used the distributive property 12a to produce the expression (515 + 5152 + 5152 +

s152). Since this expression includes all possible valuations of sy, 55, itis equal to 1, leading
to the same expression for f that we derived before.

Example 2.8

Yet another way of producing the symplified logic expression is shown below.

S = 515253 + 515283 + 515283 + $15253 + 515253
= 515283 + 515283 + §15253 + 515283 + §15253 + 515253
= 5153(52 + 52) + S253(s51 +51) + 5152(53 + 53)
= 5153 + 5283 + 5152
= 53(51 +52) + 5152
= 53(5152) + 5152
=53 + 5152
In this solution, we first repeat the term 515,53, and then symplify to generate the expression

s3(51 + 52) + s5152. Using DeMorgan’s theorem 15a we can replace (s; + 5,) with (5752),
which can then be deleted by applying property 16a.

Example 2.9
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As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-
sion can be minimized by using Boolean algebra. This process can be daunting, because it
is not obvious which rules, identities, and properties should be applied, and in what order.
Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the
Karnaugh map, that clarifies this process by providing a systematic way of generating a
minimal-cost logic expression for a function.

2.6.1 SuM-oF-ProbpuUCTS AND PRODUCT-OF-SUMS FORMS

Having introduced the synthesis process by means of simple examples, we will now present
it in more formal terms using the terminology that is encountered in the technical literature.
We will also show how the principle of duality, which was introduced in Section 2.5, applies
broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms

For a function of n variables, a product term in which each of the » variables appears
once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including x; if x; = 1 and by including ¥; if x; = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. From the discussion of the
binary number representation in Section 1.5, we can observe that the row numbers chosen
are just the numbers represented by the bit patterns of variables xj, x,, and x3. The figure
shows all minterms for the three-variable table. For example, in the first row the variables

Row
number | x; X, X3 Minterm Maxterm
0 0 0 0 || my=xxx3 | My= x;+ x5+ X3
1 0 0 1 || m=xxx3 | Mjy=x;+x,+ X3
2 0 1 0 | my=2xx05 | My= X+ X5+ X3
3 0 1 1 || mg=2X1xx3 | My=x;+ X5+ X3
4 I 0 0| my=xxX3 | My= X+ x5+ x3
5 1 0 1 || msg=xXx3 | Ms= X, + xp+ X3
6 1 1 0 || mg=x1x3%3 | Mg=X,+ X+ X3
7 I 1 1 || my=xxx; | My= X+ X+ X3

Figure 2.22  Three-variable minterms and maxterms.



2.6 SYNTHESIS USING AND, OR, AND NOT GATES

have the values x; = x, = x3 = 0, which leads to the minterm x;x,x3. In the second row
x1 = x, = 0 and x3 = 1, which gives the minterm X;X,x3, and so on. To be able to refer to
the individual minterms easily, it is convenient to identify each minterm by an index that
corresponds to the row numbers shown in the figure. We will use the notation m; to denote
the minterm for row number i. Thus my = X1x,Xx3, m; = X;X»x3, and so on.

Sum-of-Products Form

A function f can be represented by an expression that is a sum of minterms, where each
minterm is ANDed with the value of f for the corresponding valuation of input variables. For
example, the two-variable minterms are my = XX2, m; = XX, My = X1 X3, and m3 = x;xp.
The function in Figure 2.19 can be represented as

f=mo-14+m-1+m-04+ms-1
=my+my +m3
= X1X2 + X1X2 + X1X2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f* can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be in the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a
canonical sum-of-products for the functionf. As we have seen in the example of Figure 2.20,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of Section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x1, x,, x3), specified by the
truth table in Figure 2.23. To synthesize this function, we have to include the minterms m;,

Row
number | x; X, X3 || f(x;, x5, x3)
0 0 0 O 0
1 0 O 1 1
2 o 1 o0 0
3 0o 1 1 0
4 1 0 O 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.23 A three-variable function.

49
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my, ms, and mg. Copying these minterms from Figure 2.22 leads to the following canonical
sum-of-products expression for f

J (X1, %2, X3) = X1X23 + X1X2X3 + X1X2X3 + X1X2X3
This expression can be manipulated as follows

=G+ x)X2x3 + X1 (%2 + Xx2)%3

=1-Xx3+x1-1-Xx3

= XoX3 + X1X3
This is the minimum-cost sum-of-products expression for f. It describes the circuit shown
in Figure 2.24a. A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.24a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.23 can be specified

X, 4>o_
>

(a) A minimal sum-of-products realization

- Dal
> )
>

(b) A minimal product-of-sums realization

X3

X

Figure 2.24  Two realizations of the function in Figure 2.23.
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as
S, x5 x3) = Z(ml,m4, ms, M)
or even more simply as
fOx,x5) =Y m(1,4,5,6)

The Y sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Consider the function Example 2.10
[ x,x5) =) m(2,3,4,6,7)
The canonical SOP expression for the function is derived using minterms

S =my+m3 +my+mg +my

= X1X00X3 + X1X0X3 + X1X0X3 + X1 X00X3 + X1 X0X3
This expression can be simplified using the identities in Section 2.5 as follows
f =X1x2(x3 + x3) + X1 (X2 + x2)X3 + X102 (X3 + x3)
= XX + X1X3 + X1 X2

= (X1 +x1)x2 + x1X3

=Xy + X1 X3

Suppose that a four-variable function is defined by Example 2.11
fOnx. x5, %) =Y m(3,7.9.12, 13,14, 15)
The canonical SOP expression for this function is
S = X1Xox3x4 + X1X2X3X4 + X1X2X3X4 + X1X2X3X4 + X1X0X3X4 + X1X0X3X4 + X1X2X3X4
A simpler SOP expression can be obtained as follows

[ =x1(2 4 x2)x3x4 4+ x1 (X2 + X2)X3x4 + X100X3 (X4 + X4) + X1x2X3 (X4 + X4)
= X1X3X4 + X1 X3X4 + X1X2X3 + X1 X0X3
= X1X3X4 + X1X3X4 + X1x2(X3 + X3)

= X1X3X4 + X1 X3X4 + X1 X2
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Maxterms

The principle of duality suggests that if it is possible to synthesize a function f by
considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.22. We will refer to a maxterm M; by the same row
number as its corresponding minterm »2; as shown in the figure.

Product-of-Sums Form

If a given function f is specified by a truth table, then its complement f can be rep-
resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.19

fx,x) =m

= )Cl)_Cz
If we complement this expression using DeMorgan’s theorem, the result is
f=f=xx
=X +x

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f. The key point here is that

f=nn=M

where M5 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.23. The complement of
this function can be represented as

F (X1, %2, X3) = mg + may + my + my

= X1X2X3 + X1 X2X3 + X1 X2X3 + X1X2X3

Then f can be expressed as

f =mo+my+m3+my
=Ty - Ty - Tils - T
=My - M, -M;-M;
= (x1 +x2 +x3)(x1 + X2 + x3) (X1 + X2 + X3) (X1 + X2 + X3)

This expression represents f* as a product of maxterms.

Alogic expression consisting of sum (OR) terms that are the factors of a logical product
(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.



2.6 SYNTHESIS USING AND, OR, AND NOT GATES

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 115 from Section 2.5, this expression can be written as

J = (G +x3) +x2) (0 +x3) +X2) (61 + (X2 +X3)) (X1 + (%2 + X3))
Then, using the combining property 14b, the expression reduces to
f= 0 +x3)Fx +x3)

The corresponding network is given in Figure 2.24b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.24aq,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

S, x2, x3) = TH(Mo, Mz, M3, M7)
or more simply
f @, x,x3) =TIM(0,2,3,7)

The IT sign denotes the logical product operation.

The preceding discussion has shown how logic functions can be realized in the form
of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with various different circuit structures, which usually implies
a difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss strategies for finding minimum-cost implementations in
Section 2.11.
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Consider again the function in Example 2.10. Instead of using the minterms, we can specify Example 2.12

this function as a product of maxterms for which f = 0, namely
fx1,x2,x3) =TIM (0, 1, 5)
Then, the canonical POS expression is derived as
f=My-M, -Ms
= (X1 +x2 +x3)(x1 + x2 + X3) (X1 +x2 + X3)
A simplified POS expression can be derived as
f= 0+ x4 x3) (0o +x2 + X3) (01 + X2 +X3) (X1 +x2 +X3)
= ((x1 +x2) +x3) ((x1 + x2) +X3)(x1 + (2 +X3)) (X1 + (x2 + X3))

= ((x1 + x2) + x3%3) (1 X1 + (x2 +X3))
= (x1 +x2)(x2 +X3)
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Another way of deriving this product-of-sums expression is to use the sum-of-products form
of f. Thus,

[, x,x3) =Y m(0,1,5)
= X1X2X3 + X1 X2X3 + X1X2X3
= X1X2X3 + X1 Xox3 + X1 X0x3 + X1 X2X3
= X1%2(X3 + x3) + Xx3(X1 + x1)

= X1X2 + Xox3

Now, first applying DeMorgan’s theorem 15b, and then applying 15a (twice) gives

f=r
= (X1X2 + X2x3)
= (X1%2) (X2x3)
= (%1 +x2)(x2 + X3)
To see that this product-of-sums expression for f is equivalent to the sum-of-products
expression that we derived in Example 2.10, we can slightly rearrange our expression as

f = (x2 + x1)(x2 + x3). Now, recognizing that this expression has the form of the righthand
side of the distributive property 125, we have the sum-of-products expressionf = x, + x;X3.

2.7 NAND AnND NOR LoGic NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly useful
are the NAND and NOR functions which are obtained by complementing the output gener-
ated by AND and OR operations, respectively. These functions are attractive because they
are implemented with simpler electronic circuits than the AND and OR functions, as we
discuss in Appendix B. Figure 2.25 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In Section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown in
Figure 2.26. Identity 15a is interpreted in part (a) of the figure. It specifies that a NAND of
variables x; and x; is equivalent to first complementing each of the variables and then ORing
them. Notice on the far-right side that we have indicated the NOT gates simply as bubbles,
which denote inversion of the logic value at that point. The other half of DeMorgan’s
theorem, identity 15b, appears in part (b) of the figure. It states that the NOR function is
equivalent to first inverting the input variables and then ANDing them.
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