2021-12-02 17:34:04 +01:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
class network:
|
|
|
|
|
|
|
|
def __init__(self, inputLayerSize, *layerSizes):
|
2021-12-03 15:10:27 +01:00
|
|
|
if type(inputLayerSize) != int:
|
|
|
|
raise TypeError("The input layer size must be an int!")
|
|
|
|
|
2021-12-09 18:50:57 +01:00
|
|
|
self.__weights = []
|
|
|
|
self.__inputLayerSize = inputLayerSize
|
|
|
|
oldLayerSize = inputLayerSize
|
2021-12-02 17:34:04 +01:00
|
|
|
for layerSize in layerSizes:
|
2021-12-09 18:50:57 +01:00
|
|
|
self.__weights.append( np.random.default_rng(42).random((oldLayerSize, layerSize)) )
|
|
|
|
oldLayerSize = layerSize
|
|
|
|
self.__biases = [[0]*layerSize for layerSize in layerSizes]
|
|
|
|
self.__weights = np.array(self.__weights, dtype=object)
|
|
|
|
self.__biases = np.array(self.__biases, dtype=object)
|
2021-12-02 17:34:04 +01:00
|
|
|
|
2021-12-14 10:44:48 +01:00
|
|
|
def __reLu(value, derivative=False):
|
|
|
|
if (derivative):
|
|
|
|
return 0 if (value == 0) else 1
|
2021-12-02 17:34:04 +01:00
|
|
|
return max(0, value)
|
|
|
|
|
2021-12-14 10:44:48 +01:00
|
|
|
def __sigmoid(value, derivative=False):
|
|
|
|
if (derivative):
|
2021-12-14 22:26:11 +01:00
|
|
|
return network.__sigmoid(value) * (1 - network.__sigmoid(value))
|
2021-12-14 10:44:48 +01:00
|
|
|
return 1/(1+np.exp(-value))
|
|
|
|
|
2021-12-15 16:15:16 +01:00
|
|
|
def process(self, _input, __storeValues=False):
|
|
|
|
if type(_input) != np.ndarray:
|
2021-12-03 15:10:27 +01:00
|
|
|
raise TypeError("The input must be a vector!")
|
2021-12-15 16:15:16 +01:00
|
|
|
if _input.size != self.__inputLayerSize:
|
2021-12-03 15:10:27 +01:00
|
|
|
raise ValueError("The input vector has the wrong size!")
|
2021-12-15 16:15:16 +01:00
|
|
|
#if _input.dtype != np.float64:
|
|
|
|
# raise TypeError("The input vector must contain floats!")
|
2021-12-14 22:26:11 +01:00
|
|
|
|
2021-12-15 16:15:16 +01:00
|
|
|
if (__storeValues):
|
2021-12-14 22:26:11 +01:00
|
|
|
self.activations = []
|
|
|
|
self.outputs = []
|
2021-12-03 15:10:27 +01:00
|
|
|
|
2021-12-09 18:50:57 +01:00
|
|
|
for layerWeights, bias in zip(self.__weights, self.__biases):
|
2021-12-15 16:15:16 +01:00
|
|
|
_input = np.matmul(_input, layerWeights)
|
|
|
|
_input = np.add(_input, bias)
|
2021-12-14 22:26:11 +01:00
|
|
|
|
2021-12-15 16:15:16 +01:00
|
|
|
if (__storeValues):
|
|
|
|
self.activations.append(_input)
|
|
|
|
np.insert(self.activations, 0, bias)
|
2021-12-14 22:26:11 +01:00
|
|
|
|
2021-12-03 15:10:27 +01:00
|
|
|
#reLu application
|
2021-12-15 16:15:16 +01:00
|
|
|
with np.nditer(_input, op_flags=['readwrite'], flags=['refs_ok']) as layer:
|
2021-12-02 17:34:04 +01:00
|
|
|
for neuron in layer:
|
2021-12-09 18:50:57 +01:00
|
|
|
neuron = network.__reLu(neuron)
|
2021-12-14 22:26:11 +01:00
|
|
|
|
|
|
|
#On peut comparer la performance si on recalcul plus tard
|
2021-12-15 16:15:16 +01:00
|
|
|
if (__storeValues):
|
|
|
|
self.outputs.append(_input)
|
|
|
|
np.insert(self.outputs, 0, 1)
|
2021-12-03 15:10:27 +01:00
|
|
|
|
2021-12-15 16:15:16 +01:00
|
|
|
return _input
|
2021-12-09 18:50:57 +01:00
|
|
|
|
2021-12-15 16:15:16 +01:00
|
|
|
def train(self, inputs, desiredOutputs, learningRate):
|
|
|
|
ErrorSums = [[0]*(len(layer)+1) for layer in self.__biases]
|
|
|
|
for _input, desiredOutput in zip(inputs, desiredOutputs):
|
|
|
|
self.__output = self.process(_input, True)
|
2021-12-14 22:26:11 +01:00
|
|
|
self.__desiredOutput = desiredOutput
|
2021-12-15 16:15:16 +01:00
|
|
|
for layerNumber in range(len(ErrorSums)):
|
|
|
|
ErrorSums[layerNumber][0] += self.__partialDerivative(layerNumber, 0)
|
|
|
|
for neuronNumber in range(1, len(ErrorSums[layerNumber])):
|
|
|
|
ErrorSums[layerNumber][neuronNumber] += self.__partialDerivative(layerNumber, neuronNumber)
|
|
|
|
for i in range(len(ErrorSums)):
|
|
|
|
for j in range(len(ErrorSums[i])):
|
|
|
|
ErrorSums[i][j] = 1 / ErrorSums[i][j]
|
|
|
|
self.__biases[i, j] -= learningRate * ErrorSums[i][j]
|
|
|
|
|
2021-12-14 10:44:48 +01:00
|
|
|
|
2021-12-14 22:26:11 +01:00
|
|
|
def __Error(self, layer, neuron):
|
2021-12-15 16:15:16 +01:00
|
|
|
return self.__ErrorFinalLayer(neuron) if (layer == len(self.__weights)) else self.__ErrorHiddenLayer(layer, neuron)
|
2021-12-14 10:44:48 +01:00
|
|
|
|
|
|
|
def __ErrorFinalLayer(self, neuron):
|
2021-12-14 22:26:11 +01:00
|
|
|
return network.__reLu(self.activations[len(self.activations)-1][neuron], True) * (self.__output[neuron] - self.__desiredOutput[neuron])
|
|
|
|
|
|
|
|
def __ErrorHiddenLayer(self, layer, neuron):
|
|
|
|
upperLayerLinksSum = 0
|
|
|
|
for upperLayerNeuron in range(len(self.__weights[layer+1]-1)):
|
|
|
|
#A comparer avec un acces direct au erreurs precalcules
|
|
|
|
upperLayerLinksSum += self.__weights[layer+1][upperLayerNeuron][neuron] * self.__Error(layer+1, neuron)
|
|
|
|
return network.__reLu(self.activations[layer][neuron], True) * upperLayerLinksSum
|
|
|
|
|
|
|
|
def __partialDerivative(self, layer, neuron):
|
|
|
|
return self.__Error(layer, neuron) * self.outputs[layer][neuron]
|