This commit is contained in:
eynard 2021-12-22 22:08:20 +01:00
parent 7733de01d2
commit 151343b7bd
11 changed files with 22 additions and 61 deletions

View File

@ -51,11 +51,8 @@ class network:
self.activations.append(_input)
#activation function application
#for i in range(len(_input)):
# _input[i] = network.__sigmoid(_input)
_input = network.__sigmoid(_input)
#On peut comparer la performance si on recalcul plus tard
if (__storeValues):
self.outputs.append(_input)
@ -110,18 +107,14 @@ class network:
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
#rempli self.activations et self.outputs
#Rempli self.activations et self.outputs
self.process(_input, True)
self.__desiredOutput = desiredOutput
#A optimiser
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
#for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsBiases[layerNumber][neuronNumber] * self.outputs[layerNumber][weightNumber]
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
total = 0
@ -133,27 +126,6 @@ class network:
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
#print(self.__biases)
"""
for layerNumber in range(len(errorSumsWeights)):
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputBatch)
total += errorSumsBiases[layerNumber][neuronNumber]
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
#Probablement faisable avec une multiplication de matrices
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputBatch)
#total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
#Probablement faisable avec une somme de matrices
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
#print("Error : " + str(total))"""
if (visualize):
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
plt.show()
@ -172,9 +144,6 @@ class network:
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
#def __PartialDerivative(self, layer, neuron, weight):
# return self.__Error(layer, neuron) * self.outputs[layer][weight]
def accuracy(self, inputs, desiredOutputs):
if (type(inputs) != list or type(desiredOutputs) != list):
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")

14
test.py
View File

@ -1,14 +0,0 @@
import numpy as np
from sobek.network import network
test = network(16, 16, 8, 4)
"""
for y in test.weights:
print(y, end="\n\n")
for y in test.biases:
print(y, end="\n\n")"""
#print(network.__reLu(8))
print(test.process(np.random.default_rng(42).random((16))))

View File

@ -1,7 +1,11 @@
import tkinter
from PIL import Image, ImageDraw
from sobek.network import network
import numpy as np
from sys import path
path.insert(1, "..")
from sobek.network import network
class Sketchpad(tkinter.Canvas):
def __init__(self, parent, predictionLabel, **kwargs, ):

View File

@ -1,7 +1,10 @@
import numpy as np
from sobek.network import network
import gzip
import time
from sys import path
path.insert(1, "..")
from sobek.network import network
print("--- Data loading ---")

View File

@ -1,6 +1,8 @@
import numpy as np
from sobek.network import network
import gzip
from sys import path
path.insert(1, "..")
from sobek.network import network
print("--- Data loading ---")

View File

@ -1,5 +1,7 @@
import numpy as np
import random
from sys import path
path.insert(1, "..")
from sobek.network import network
random.seed()

View File

@ -1,7 +1,9 @@
import numpy as np
import random
from sobek.network import network
import time
from sys import path
path.insert(1, "..")
from sobek.network import network
random.seed()
@ -33,20 +35,12 @@ for i in range(nbRep):
startTime = time.perf_counter()
#for j in range(10000):
# inputs = []
# desiredOutputs = []
#if (j%1000 == 0):
# print(j)
# myNetwork.train(test, result, learningRate)
myNetwork.train(test, result, learningRate, len(test), 10000, visualize=False)
endTime = time.perf_counter()
learningTime += endTime - startTime
learningTime = learningTime / nbRep
test = []
result = []
test.append(np.zeros(2))

View File

@ -1,5 +1,6 @@
import numpy as np
import random
from sys import path
path.insert(1, "..")
from sobek.network import network
myNetwork = network(2, 1)