Jalon 2 complete

This commit is contained in:
eynard 2021-12-22 21:35:06 +01:00
parent 83e220282c
commit 7733de01d2
7 changed files with 280 additions and 68 deletions

BIN
MNIST30epoch Normal file

Binary file not shown.

41
MNISTDrawingPrediction.py Normal file
View File

@ -0,0 +1,41 @@
import tkinter
from PIL import Image, ImageDraw
from sobek.network import network
import numpy as np
class Sketchpad(tkinter.Canvas):
def __init__(self, parent, predictionLabel, **kwargs, ):
super().__init__(parent, **kwargs)
self.bind("<Button-3>", self.test)
self.bind("<B1-Motion>", self.add_line)
self.PILImage = Image.new("F", (560, 560), 100)
self.draw = ImageDraw.Draw(self.PILImage)
self.MNISTNN = network.networkFromFile("MNIST30epoch")
self.predictionLabel = predictionLabel
def add_line(self, event):
self.create_oval((event.x+32, event.y+32, event.x-32, event.y-32), fill="black")
self.draw.ellipse([event.x-32, event.y-32, event.x+32, event.y+32], fill="black")
smallerImage = self.PILImage.reduce(20)
imageAsArray = np.array(smallerImage.getdata())
imageAsArray = (100 - imageAsArray)/100
self.predictionLabel['text'] = ( "Predicted number : " + str(np.argmax(self.MNISTNN.process(imageAsArray))))
def test(self, event):
self.PILImage = Image.new("F", (560, 560), 100)
self.draw = ImageDraw.Draw(self.PILImage)
self.delete("all")
window = tkinter.Tk()
window.title("Number guesser")
window.resizable(False, False)
window.columnconfigure(0, weight=1)
window.rowconfigure(0, weight=1)
predictionLabel = tkinter.Label(window, text="Predicted number :")
sketch = Sketchpad(window, predictionLabel, width=560, height=560)
sketch.grid(column=0, row=0, sticky=(tkinter.N, tkinter.W, tkinter.E, tkinter.S))
predictionLabel.grid(column=0, row=1)
window.mainloop()

57
MNISTLearning.py Normal file
View File

@ -0,0 +1,57 @@
import numpy as np
from sobek.network import network
import gzip
import time
print("--- Data loading ---")
def getData(fileName):
with open(fileName, 'rb') as f:
data = f.read()
return np.frombuffer(gzip.decompress(data), dtype=np.uint8).copy()
tempTrainImages = getData("./MNIST/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 784)).tolist()
trainImages = []
for image in tempTrainImages:
for pixel in range(784):
if image[pixel] !=0:
image[pixel] = image[pixel]/256
trainImages.append(np.array(image, dtype=np.float64))
tempTrainLabels = getData("./MNIST/train-labels-idx1-ubyte.gz")[8:]
trainLabels = []
for label in tempTrainLabels:
trainLabels.append(np.zeros(10))
trainLabels[-1][label] = 1.0
myNetwork = network(784, 30, 10)
learningRate = 3.0
print("--- Learning ---")
startTime = time.perf_counter()
"""
for i in range(1):
print("Epoch: " + str(i))
batchEnd = 10
while batchEnd < 1000:
batchImages = trainImages[:batchEnd]
batchLabels = trainLabels[:batchEnd]
myNetwork.train(batchImages, batchLabels, learningRate)
batchEnd += 10
if (batchEnd%100) == 0:
print(batchEnd)
"""
myNetwork.train(trainImages, trainLabels, learningRate, 10, 30)
endTime = time.perf_counter()
print("Learning time : " + str(endTime - startTime))
print(trainLabels[121])
print(myNetwork.process(trainImages[121]))
myNetwork.saveToFile("MNIST30epoch")

30
MNISTLoadTest.py Normal file
View File

@ -0,0 +1,30 @@
import numpy as np
from sobek.network import network
import gzip
print("--- Data loading ---")
def getData(fileName):
with open(fileName, 'rb') as f:
data = f.read()
return np.frombuffer(gzip.decompress(data), dtype=np.uint8).copy()
tempTrainImages = getData("./MNIST/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 784)).tolist()
trainImages = []
for image in tempTrainImages:
for pixel in range(784):
if image[pixel] !=0:
image[pixel] = image[pixel]/256
trainImages.append(np.array(image, dtype=np.float64))
tempTrainLabels = getData("./MNIST/t10k-labels-idx1-ubyte.gz")[8:]
trainLabels = []
for label in tempTrainLabels:
trainLabels.append(np.zeros(10))
trainLabels[-1][label] = 1.0
print("--- Testing ---")
myNetwork = network.networkFromFile("MNIST30epoch")
print(myNetwork.accuracy(trainImages, trainLabels))

View File

@ -1,4 +1,8 @@
import random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import pickle
class network:
@ -26,9 +30,9 @@ class network:
def process(self, _input, __storeValues=False):
if type(_input) != np.ndarray:
raise TypeError("The input must be a vector!")
raise TypeError("The input must be a numpy array!")
if _input.size != self.__inputLayerSize:
raise ValueError("The input vector has the wrong size!")
raise ValueError("The input vector has the wrong size! " + str(_input.size) + " != " + str(self.__inputLayerSize))
if _input.dtype != np.float64:
print(_input.dtype)
raise TypeError("The input vector must contain floats!")
@ -59,58 +63,100 @@ class network:
def train(self, inputs, desiredOutputs, learningRate):
def train(self, inputs, desiredOutputs, learningRate, batchSize, epochs=1, visualize=False):
if (type(inputs) != list or type(desiredOutputs) != list):
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
if (len(inputs) != len(desiredOutputs)):
raise ValueError("The inputs and desired outputs vectors must have the same amount of data !")
raise ValueError("The inputs and desired outputs lists must have the same amount of data ! " + str(len(inputs)) + " != " + str(len(desiredOutputs)))
if (len(inputs) == 0):
raise ValueError("The list is empty !")
if (visualize == False):
if (self.__inputLayerSize != 2):
raise ValueError("Visualization is only possible for 2 inputs networks")
if (len(self.weights[-1]) != 1):
raise ValueError("Visualization is only possible for 1 output networks")
for _input, desiredOutput in zip(inputs, desiredOutputs):
errorSumsWeights = []
errorSumsBiases = []
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
if (visualize):
vizualisationData = []
fig, graph = plt.subplots()
#rempli self.activations et self.outputs
self.process(_input, True)
self.__desiredOutput = desiredOutput
for epoch in range(epochs):
randomState = random.getstate()
#Somme de matrice ?
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
random.shuffle(inputs)
total = 0
errorSumsWeights = np.multiply(errorSumsWeights, -(learningRate/len(inputs)))
self.weights = np.add(self.weights, errorSumsWeights)
random.setstate(randomState)
errorSumsBiases = np.multiply(errorSumsBiases, -(learningRate/len(inputs)))
self.biases = np.add(self.biases, errorSumsBiases)
random.shuffle(desiredOutputs)
#print(self.__biases)
"""
for layerNumber in range(len(errorSumsWeights)):
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
if (visualize and epoch%10 == 0):
vizualisationFrame = np.empty((30, 30))
for x in range(30):
for y in range(30):
vizualisationFrame[x][y] = self.process(np.array([float(x), float(y)]))
vizualisationData.append([graph.imshow(vizualisationFrame, animated=True)])
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputs)
total += errorSumsBiases[layerNumber][neuronNumber]
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
inputBatches = [inputs[j:j+batchSize] for j in range(0, len(inputs), batchSize)]
desiredOutputsBatches = [desiredOutputs[j:j+batchSize] for j in range(0, len(inputs), batchSize)]
for inputBatch, desiredOutputsBatch in zip(inputBatches, desiredOutputsBatches):
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
for _input, desiredOutput in zip(inputBatch, desiredOutputsBatch):
#Probablement faisable avec une multiplication de matrices
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputs)
total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
errorSumsWeights = [np.zeros(layer.shape) for layer in self.weights]
errorSumsBiases = [np.zeros(layer.shape) for layer in self.biases]
self.__errors = [np.zeros(len(layer)) for layer in self.weights]
#Probablement faisable avec une somme de matrices
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
#rempli self.activations et self.outputs
self.process(_input, True)
self.__desiredOutput = desiredOutput
#print("Error : " + str(total))"""
#A optimiser
for layerNumber in range(len(errorSumsWeights)-1, -1, -1):
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] += self.__Error(layerNumber, neuronNumber)
#for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
#print("layer : " + str(layerNumber) + " neuron : " + str(neuronNumber) + " weight : " + str(weightNumber))
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] += self.__PartialDerivative(layerNumber, neuronNumber, weightNumber)
#errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsBiases[layerNumber][neuronNumber] * self.outputs[layerNumber][weightNumber]
errorSumsWeights[layerNumber][neuronNumber] = np.dot(errorSumsBiases[layerNumber][neuronNumber],self.outputs[layerNumber])
total = 0
for layerNumber in range(len(errorSumsWeights)):
errorSumsWeights[layerNumber] = np.multiply(errorSumsWeights[layerNumber], -(learningRate/len(inputBatch)))
self.weights[layerNumber] = np.add(self.weights[layerNumber], errorSumsWeights[layerNumber])
errorSumsBiases[layerNumber] = np.multiply(errorSumsBiases[layerNumber], -(learningRate/len(inputBatch)))
self.biases[layerNumber] = np.add(self.biases[layerNumber], errorSumsBiases[layerNumber])
#print(self.__biases)
"""
for layerNumber in range(len(errorSumsWeights)):
for neuronNumber in range(len(errorSumsWeights[layerNumber])):
errorSumsBiases[layerNumber][neuronNumber] = errorSumsBiases[layerNumber][neuronNumber] / len(inputBatch)
total += errorSumsBiases[layerNumber][neuronNumber]
self.biases[layerNumber][neuronNumber] -= learningRate * errorSumsBiases[layerNumber][neuronNumber]
for weightNumber in range(len(errorSumsWeights[layerNumber][neuronNumber])):
#Probablement faisable avec une multiplication de matrices
errorSumsWeights[layerNumber][neuronNumber][weightNumber] = errorSumsWeights[layerNumber][neuronNumber][weightNumber] / len(inputBatch)
#total += errorSumsWeights[layerNumber][neuronNumber][weightNumber]
#Probablement faisable avec une somme de matrices
self.weights[layerNumber][neuronNumber][weightNumber] -= learningRate * errorSumsWeights[layerNumber][neuronNumber][weightNumber]
#print("Error : " + str(total))"""
if (visualize):
ani = animation.ArtistAnimation(fig, vizualisationData, interval=100)
plt.show()
def __Error(self, layer, neuron):
if (self.__errors[layer][neuron] == 0 ):
@ -122,20 +168,38 @@ class network:
def __ErrorHiddenLayer(self, layer, neuron):
upperLayerLinksSum = 0
#Probablement faisable avec une multiplication de matrices
for upperLayerNeuron in range(len(self.weights[layer+1])):
upperLayerLinksSum += self.weights[layer+1][upperLayerNeuron][neuron] * self.__errors[layer+1][upperLayerNeuron]
return network.__sigmoid(self.activations[layer][neuron], derivative=True) * upperLayerLinksSum
def __PartialDerivative(self, layer, neuron, weight):
return self.__Error(layer, neuron) * self.outputs[layer][weight]
#def __PartialDerivative(self, layer, neuron, weight):
# return self.__Error(layer, neuron) * self.outputs[layer][weight]
def accuracy(self, inputs, desiredOutputs):
if (type(inputs) != list or type(desiredOutputs) != list):
raise TypeError("The inputs and desired outputs must be lists of numpy arrays !")
if (len(inputs) != len(desiredOutputs)):
raise ValueError("The inputs and desired outputs lists must have the same amount of data !")
if (len(inputs) == 0):
raise ValueError("The list is empty !")
sum = 0
for i in range(len(desiredOutputs)):
if (np.argmax(desiredOutputs[i]) == np.argmax(self.process(inputs[i]))):
sum += 1
return sum/len(desiredOutputs)
def saveToFile(self, fileName):
np.savez(fileName, biases=self.biases, weights=self.weights)
with open(fileName, "wb") as file:
pickle.dump(self, file)
def loadFromFile(self, fileName):
data = np.load(fileName)
self.biases = data['biases']
self.weights = data['weights']
with open(fileName, "rb") as file:
fromNetwork = pickle.load(file)
self.weights = fromNetwork.weights
self.biases = fromNetwork.biases
self.__inputLayerSize = fromNetwork.__inputLayerSize
def networkFromFile(fileName):
with open(fileName, "rb") as file:
return pickle.load(file)

View File

@ -8,7 +8,7 @@ myNetwork = network(10, 10)
learningRate = 3
for j in range(10000):
for j in range(1000):
rand = []
inputs = []
desiredOutputs = []
@ -36,4 +36,13 @@ test[0][1] = 1.0
test[1][5] = 1.0
print(test[0])
print(myNetwork.process(test[0]))
print(myNetwork.process(test[1]))
print(test[1])
print(myNetwork.process(test[1]))
print("Save and load test :")
myNetwork.saveToFile("test")
myNetwork2 = network.networkFromFile("test")
print(myNetwork.process(test[0]).all() == myNetwork2.process(test[0]).all())

View File

@ -1,10 +1,11 @@
import numpy as np
import random
from sobek.network import network
import time
random.seed()
myNetwork = network(2, 1)
myNetwork = network(2, 2, 1)
learningRate = 3
@ -23,23 +24,29 @@ result.append(np.ones(1))
result.append(np.ones(1))
result.append(np.zeros(1))
for j in range(10000):
inputs = []
desiredOutputs = []
if (j%1000 == 0):
print(j)
learningTime = 0
random.shuffle(test)
nbRep = 1
for i in range(4):
if (test[i][0] == 1.0) and (test[i][1] == 1.0):
result[i][0] = 0.0
else:
result[i][0] = 1.0
myNetwork.train(test, result, learningRate)
for i in range(nbRep):
if (i%(nbRep/10) == 0): print(i)
startTime = time.perf_counter()
#for j in range(10000):
# inputs = []
# desiredOutputs = []
#if (j%1000 == 0):
# print(j)
# myNetwork.train(test, result, learningRate)
myNetwork.train(test, result, learningRate, len(test), 10000, visualize=False)
endTime = time.perf_counter()
learningTime += endTime - startTime
learningTime = learningTime / nbRep
test = []
result = []
test.append(np.zeros(2))
@ -55,9 +62,13 @@ result.append(np.ones(1))
result.append(np.ones(1))
result.append(np.zeros(1))
print(myNetwork.weights)
print(myNetwork.biases)
#print(myNetwork.weights)
#print(myNetwork.biases)
print("0 0 : " + str(myNetwork.process(test[0])) + " == 1 ?")
print("0 1 : " + str(myNetwork.process(test[1])) + " == 1 ?")
print("1 0 : " + str(myNetwork.process(test[2])) + " == 1 ?")
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
print("1 1 : " + str(myNetwork.process(test[3])) + " == 0 ?")
myNetwork.saveToFile("NAND")
print("Learning time : " + str(endTime - startTime))